当前位置: 仪器信息网 > 行业主题 > >

数字声级测量

仪器信息网数字声级测量专题为您提供2024年最新数字声级测量价格报价、厂家品牌的相关信息, 包括数字声级测量参数、型号等,不管是国产,还是进口品牌的数字声级测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字声级测量相关的耗材配件、试剂标物,还有数字声级测量相关的最新资讯、资料,以及数字声级测量相关的解决方案。

数字声级测量相关的论坛

  • 声级计的分类及工作原理

    声级计又叫噪音计、噪声计是一种用于测量声音的声压级或声级的仪器,是声学测量中最基本而又最常用的仪器。声级计一般由电容式传声器、前置放大器、衰减器、放大器、频率计权网络以及有效值指示表头等组成。声级计按精度可分为精密声级计和普通声级计。声级计按用途可分为两类:一类用于测量稳态噪声,一类则用于测量不稳态噪声和脉冲噪声。 声级计在把声信号转换成电信号时,可以模拟人耳对声波反应速度的时间特性;对高低频有不同灵敏度的频率特性以及不同响度时改变频率特性的强度特性。声级计的工作原理是由传声器将声音转换成电信号,再由前置放大器变换阻抗,使传声器与衰减器匹配。放大器将输出信号加到计权网络,对信号进行频率计权(或外接滤波器),然后再经衰减器及放大器将信号放大到一定的幅值,送到有效值检波器(或外按电平记录仪),在指示表头上给出噪声声级的数值。 声级计采用了先进的数字检波技术,使得仪器的稳定性、可靠性大大提高,声级计具有操作简单、使用方便的优点,具有量程动态范围大、大屏幕液晶数显、自动测量存储各种数据等特点。声级计不仅应用在声学和电声学测量中,而且已经广泛应用于机器制造、建筑设计、交通运输、环境保护、医疗 卫生以及国防工程等各个领域。

  • 数字测量芯片PS081的概念

    数字测量芯片PS081的一个应用方向为太阳能衡器。与传统的电子衡器相比,采用acam公司的数字测量芯片PS081的太阳能衡器方案有着许多的竞争优势。由于传统的电子衡器的竞争点仅仅在于价格,导致中国的衡器厂商为价格战而拼尽了利润,很多厂商赔本赚吆喝,仅仅是为了维持生产线的运转。而采用PS081的太阳能衡器方案将给客户带来不同的竞争优势--创新的产品理念、环保的产品内涵和极具竞争力的价格。在节能环保理念越来越深入人心的今天,谁的产品更节能环保,谁就占据了这个市场的主流。因此,PS081在太阳能衡器上的方案绝对是中国衡器厂商的最优选择,也是中国衡器厂商的新希望。 数字测量芯片PS081的另一个应用方向为高精度、高性能数字传感器。相对于生产技术成熟,应用广泛的模拟传感器来说,数字传感器目前还仅仅处于技术发展阶段。虽然目前数字传感器已经可以应用标准的生产流程来生产,然而在同等的生产流程下,数字传感器和模拟传感器相比较,并没有多大的优势。而采用数字测量芯片PS081的数字传感器方案,却能为数字传感器带来一个新的方向。通过全新的测量技术,来改进现有的生产流程,带来意想不到的效费比,使得无论在商业角度还是技术角度都将为数字传感器的应用打开一个新的篇章。

  • 巧用数字多用表实现精确测量

    一、减少和消除仪器内部连接误差和测量引线带来的误差 内部连接线引入的误差:当不同金属连接时,会构成一个热偶结,热偶结产生随温度变化的电压。这一电压虽然很低.但高精度数字多用表也能显示出来。因此在测量微小电压时,因数字多用表内部连接线热偶结因素可能会带来影响量足够大的误差。外部引线可能带来两方面误差:一是接线的热偶结;二是引线电阻。前者会对直流测量和电阻测量带来影响,后者会影响电阻的测量。 克服接线热偶结误差的方法之一是采用相同材质接线,最大程度降低热偶结带来的偏置误差:另外一个方法是调零测量。但需要注意的是,调零测量适合直流和电阻测量,但在交流测量中由于交流转换器在量程的较低部分不能很好地工作,因此调零测量并不适合交流测量。对于直流电压或电阻测量,选择适合的测量量程,然后使探头处于短路状态,待读数稳定后调零。 通常如果被测电阻远远大于引线电阻,引线电阻带来的误差可以忽略不计。但是如果被测电阻只有几欧姆,甚至更小,引线误差则必须要考虑。最简单的消除引线电阻的方法就是进行调零测量。电阻测量过程中通常会用到2线和4线连接方法,2线测量用于较大电阻测量,这也是最简单的电阻洌量方法,这种测量中,引线的电阻会被引入到测量结果中。4线测量是测量小电阻的最精确方法,用这种方法能自动扣除测试线电阻和接触电阻。在4线测量中,电压测量和电流测量分别由两个独立的测量单元测量完成。电压测量端接在电阻端,由于是高阻输入,通过的电流微乎其微,因此可以消除引线电阻。二、在测量大电阻过程中获得准确、稳定的测量值 通常在对大电阻值进行测量时,绝缘电阻和表面污染会造成相当大的误差,需要采取各种预防措施保持高阻测量系统的“清洁”。测试线和夹具对绝缘材料和表面膜层吸湿所造成的泄漏非常敏感。如果在潮湿条件下测量lMΩ,电阻,尼龙或PVC绝缘体泄漏对误差的贡献很容易超出0.1%。因此,在对大电阻测量时尽可能采用高性能的绝缘材料,保持测试连接线的清洁,测试环境的干燥。 在对大电阻值进行测量时,与电阻器并联的电容会在最初连接后和量程改变后产生稳定的时间误差。根据数字多用表进行测量时根据所选的功能和量程,通过插入一个触发延迟.给出一个使测量达到稳定的时间。在电缆和装置的组合电容量小于数百pF时,这些延迟对于电阻测量是足够的,但如果电阻器上有并联的电容,或测量高于l00kΩ的电阻,默认的延迟住往不够。由于RC时间常数的影响,稳定可能需要相当长的时间。有些精密电阻器和多功能校准器使用并联的电容器(l000pF—l00μF),它和高值电阻器一起滤除由内部电路注入的噪声电流。由于电缆和其他装置中的介电吸收(浸润)效应,有可能会增加RC时间常数,并要求更长的稳定时间。这种情况下,在测量大电阻过程中想要获得更准确、更稳定的测量值则需要在测试前先增加触发延迟。三、使用直流偏置进行交流测量 在使用数字多用表进行测量时,会测量许多包含交流和直流两种成分的信号,例如不对称方波就包含交直流两种成分,许多声频信号中也含有由直流偏置电流产生的直流偏移。有些情况还需要测量直流加交流电压,而另一些情况可能只需要交流成分。使用数字多用表测量时多数情况下会在AC RMS转换器前面使用一个隔直流电容器。它隔离DC电压,而允许数字多用表只测量AC值。例如,在测量电源的AC纹波时,隔离高电平的DC,[font='Tim

  • 【资料】测量误差计算及有效数字修约法则

    GB/T5009食品理化检验中提到“测量值的运算和有效数字修约应符合GB/T 8170和JJF 1027”的规定。因此特将这两个规定贴出来,供大家参考。以前有版友问到过的0.5单位修约在其中也有表述GB-T 8170-1987 数值修约规则,JJF 1027-1991 测量误差及数据处理[~113788~][~113789~]

  • 【经验】数字化影像测量仪(CNC版)与手摇式影像测量仪的区别!!!!

    影像测量仪(又名影像式精密测绘仪)是在测量投影仪的基础上进行的一次质的飞跃,它将工业计量方式从传统的光学投影对位提升到了依托于数位影像时代而产生的计算机屏幕测量。值得一提的是,目前市面上有一种既带数显屏又接计算机的过渡性产品。从严格意义来说,这种仅把电脑用作瞄准工具的设备不是影像测量仪,只能叫做“影像式测量投影仪”或“影像对位式投影仪”。换句话说:影像测量仪是依托于计算机屏幕测量技术和强大的空间几何运算软件而存在的。影像测量仪又分数字化影像测量仪(又名CNC影像仪)与手摇式影像测量仪两种,它们之间的区别主要表现在如下几个方面:一:数字化CNC技术实现了点哪走哪:手摇影像测量仪在测量点A、B两点之间距离的操作是:先摇X、Y方向手柄走位对准A点,在用手操作电脑并点击鼠标确定;然后摇手到B点,重复以上动作确定B点。每次点击鼠标该点的光学尺位移数值读入计算机,当所有点的数值都被读入后计算机自动进行计算并得到测量结果,一切功能与操作都是分离进行的;数字化CNC影像测量仪则不同,它建立在微米级精确数控的硬件与人性化操作软件的基础上,将各种功能彻底集成,从而成为一台真正义上的现代精密仪器。具备无级变速、柔和运动、点哪走哪、电子锁定、同步读数等基本能力;鼠标移动找到你所想要测定的A、B两点后,电脑就已帮你计算测量出结果,并显示图形供校验,图影同步,既使是初学者测量两点之间距离也只需数秒钟。二:数字化技术实现了工件随意放置:手摇式影像测量仪在进行基准测量时,需要摇动工作平台,然后通过认为判断所要求的点。而数字化影像测量仪可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准距离测量变得十分简便而直观。三: 数字化技术能进行CNC快速测量:手摇式影像测量仪在进行同一工件的批量测量时,需要人工逐一手摇走位,有时一天得摇上数以万计的圈数,仍然只能完成数十个复杂工件的有限测量,工作效率低下。数字化影像测量仪可以通过样品实测、图纸计算、CNC数据导入等方式建立CNC坐标数据,由仪器自动走向一个一个的目标点,完成各种测量操作,从而节省人力,提高效率。数十倍于手摇式影像测量仪的工作能力下,操作人员轻松而高效.如有疑问请登陆www.yr17.net

  • 不同声级计有什么区别?5类声级计对比

    不同声级计有什么区别?5类声级计对比

    [color=black][/color][align=left][font=宋体]声级计(SLM)是一种仪器(通常为手持式),用于以标准化方式测量声级。它对声音的响应方式与人耳大致相同,并且可以客观地测量声压级。可用于测量和管理各种来源的噪声,包括工厂、道路和铁路交通以及建筑工程等噪声。[/font][/align][align=left][font=宋体][color=black]本系列声级计是复杂而精密的科学仪器,功能上可分为多功能声级计、精密型声级计、脉冲声级计、积分声级计、积分脉冲声级计。[/color][/font][/align][img=,290,505]https://ng1.17img.cn/bbsfiles/images/2022/07/202207091412420523_9545_5568994_3.jpg!w690x1203.jpg[/img][align=left][b][font=宋体][color=black]多功能声级计 [/color][/font][/b][/align][align=left][font=宋体][color=black]1[/color][/font][font=宋体][color=black]、符合 IEC651.2 国际电工标准,ANSI1.4.2 美国标准。广泛反应用于环保部门及机械、交通、船运及其他噪音的测量;[/color][/font][/align][align=left][font=宋体][color=black]2[/color][/font][font=宋体][color=black]、功能强大。本仪器可以测量 4 种参数。Lp 普通声级测量,Leq等效连续 A 声级测量,Lmax最大声级测量,LN 统计声级测量; [/color][/font][/align][align=left][font=宋体][color=black]3[/color][/font][font=宋体][color=black]、带有报警值设定和输出功能;[/color][/font][/align][align=left][font=宋体][color=black]4[/color][/font][font=宋体][color=black]、带有'A','C','F'三种计权选择以及时间计权“快”和“慢”功能选择;[/color][/font][/align][align=left][font=宋体][color=black]5[/color][/font][font=宋体][color=black]、带直流电输出,10mV/dB; [/color][/font][/align][align=left][font=宋体][color=black]6[/color][/font][font=宋体][color=black]、量程自动选择。数字显示,无视差;[/color][/font][/align][align=left][font=宋体][color=black]7[/color][/font][font=宋体][color=black]、设有自动和手动关机功能。本仪器可以设定 1 至 9 分钟自动关机,或者取消自动关机。同时可按下开关可随时手动关机;[/color][/font][/align][align=left][font=宋体][color=black]8[/color][/font][font=宋体][color=black]、本仪器可储存 30 组测量数据及测量状态可供稍后查阅或计算机输出; [/color][/font][/align][align=left][font=宋体][color=black]9[/color][/font][font=宋体][color=black]、能通过可选联机线及软件实现与计算机相连,实现统计、打印、分析(选配)。[img=,298,399]https://ng1.17img.cn/bbsfiles/images/2022/07/202207091412596891_7590_5568994_3.png!w598x802.jpg[/img][/color][/font][/align][align=left][b][font=宋体][color=black]精密型声级计 [/color][/font][/b][/align][align=left][font=宋体][color=black]其性能符合 IEC61672-2002 标准对 2 级声级计的要求 [/color][/font][/align][align=left][font=宋体][color=black]1[/color][/font][font=宋体][color=black]、时间计权有快(F)、慢(S)两个档位选择; [/color][/font][/align][align=left][font=宋体][color=black]2[/color][/font][font=宋体][color=black]、采用数字检波技术替代以往一些传统的声级计,稳定性和可靠性大大提高;[/color][/font][/align][align=left][font=宋体][color=black]3[/color][/font][font=宋体][color=black]、采用大屏幕显示,显示清晰直观。有动态刻度显示;[img=,291,346]https://ng1.17img.cn/bbsfiles/images/2022/07/202207091413155677_5346_5568994_3.png!w591x704.jpg[/img][/color][/font][/align][align=left][b][font=宋体][color=black]积分声级计[/color][/font][/b][/align][align=left][font=宋体][color=black]1[/color][/font][font=宋体][color=black]、其性能符合 GB/T3785 和 IEC61672-2002 标准对 2 级声级计的要求,也符合 JJG188-2017 标准; [/color][/font][/align][align=left][font=宋体][color=black]2[/color][/font][font=宋体][color=black]、有积分及统计功能,单组测量可达 800 组,整时测量可达 6 天。储存的数据可以调阅及打印。整时测量暂停时可以检查已采数据;[/color][/font][/align][align=left][font=宋体][color=black]3[/color][/font][font=宋体][color=black]、时间计权有快(F)、慢(S)两个档位选择; [/color][/font][/align][align=left][font=宋体][color=black]4[/color][/font][font=宋体][color=black]、采用数字检波技术替代以往一些传统的声级计,稳定性和可靠性大大提高;[/color][/font][/align][align=left][font=宋体][color=black]5[/color][/font][font=宋体][color=black]、采用大屏幕显示,显示清晰直观。有动态刻度显示;[/color][/font][/align][align=left][font=宋体][color=black]6[/color][/font][font=宋体][color=black]、可选蓝牙打印机进行测量数据打印(选配);[/color][/font][/align][align=left][font=宋体][color=black]7[/color][/font][font=宋体][color=black]、采用 USB 线、蓝牙数据输出,与 PC 进行通讯(选配)。 [img=,307,358]https://ng1.17img.cn/bbsfiles/images/2022/07/202207091414027965_8437_5568994_3.png!w607x709.jpg[/img][/color][/font][/align][align=left][b][font=宋体][color=black]脉冲声级计 [/color][/font][/b][/align][align=left][font=宋体][color=black]其性能符合 IEC61672-2002 标准对 2 级声级计的要求 [/color][/font][/align][align=left][font=宋体][color=black]1[/color][/font][font=宋体][color=black]、时间计权有快(F)、慢(S)、脉冲(I)三个档位选择;[/color][/font][/align][align=left][font=宋体][color=black]2[/color][/font][font=宋体][color=black]、采用数字检波技术替代以往一些传统的声级计,稳定性和可靠性大大提高;[/color][/font][/align][align=left][font=宋体][color=black]3[/color][/font][font=宋体][color=black]、采用大屏幕显示,显示清晰直观。有动态刻度显示。[img=,301,353]https://ng1.17img.cn/bbsfiles/images/2022/07/202207091413341622_1000_5568994_3.png!w601x705.jpg[/img][/color][/font][/align][align=left][b][font=宋体][color=black]积分脉冲声级计 [/color][/font][/b][/align][align=left][font=宋体][color=black]其性能符合 GB/T3785 和IEC61672-2002 标准对 2 级声级计的要求,也符合JJG188-2017标准。 [/color][/font][/align][align=left][font=宋体][color=black]1[/color][/font][font=宋体][color=black]、有积分及统计功能,单组测量可达 800 组,整时测量可达 6 天。储存的数据可以调阅及打印。整时测量暂停时可以检查已采数据;[/color][/font][/align][align=left][font=宋体][color=black]2[/color][/font][font=宋体][color=black]、时间计权有快(F)、慢(S)、脉冲(I)三个档位选择;[/color][/font][/align][align=left][font=宋体][color=black]3[/color][/font][font=宋体][color=black]、采用数字检波技术替代以往一些传统的声级计,稳定性和可靠性大大提高;[/color][/font][/align][align=left][font=宋体][color=black]4[/color][/font][font=宋体][color=black]、采用大屏幕显示,显示清晰直观。有动态刻度显示;[/color][/font][/align][align=left][font=宋体][color=black]5[/color][/font][color=black]、可选蓝牙打印机进行测量数据打印(选配);[font=宋体][color=black]6[/color][/font][font=宋体][color=black]、采用 USB 线、蓝牙数据输出,与 PC 进行通讯(选配)[/color][/font][/color][/align][img=,300,353]https://ng1.17img.cn/bbsfiles/images/2022/07/202207091414174145_1791_5568994_3.png!w600x706.jpg[/img][font=&][size=18px][color=#1f1f1f]【英徕铂】[/color][/size][/font][font=&][size=18px][color=#222222]英徕铂ENLAB[/color][/size][/font][font=&][size=18px][color=#1f1f1f],物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务[/color][/size][/font]

  • 【第二届网络大赛参赛作品】声级计原理及记一次采购经历

    【第二届网络大赛参赛作品】声级计原理及记一次采购经历

    [center]前言[/center]我们单位在近期的实验室认可复评审时,有专家提出根据国家环境保护部近日发布了《声环境质量标准》、《工业企业厂界环境噪声排放标准》、《社会生活环境噪声排放标准》等三项标准,需要我们站对声级计进行更换。更换的声级计必须要符合国家新颁布的这三个标准,必须是一型声级计。单位领导将选择型号的重任交给了我,于是我查阅很多资料,联系很多厂商后,终于完成了重任。现在,我将我的一些心得体会写出来,给大家参考参考。.[center]一 了解声级计[/center]在买一件物品之前至少要了解这件物品的使用功能啊,原理啊什么的,这样才能确定是否是自己需要的,是不是值得去购买。所以,要先了解声级计的构造,原理,以及使用标准等等。在这我先简单的和大家介绍一下声级计的原理和构造。1.声级计,又叫噪声计,是一种按照一定的频率计权和时间计权测量声音的声压级或声级的仪器,是声学测量中的最基本而又最常用的仪器。声级计可以用于环境噪声、机器噪声、车辆噪声以及其他各种噪声的测量,也可以用于电声学,建筑声学等测量,如果把电容传声器换成加速度计传感器,配上积分器,就可以利用声级计来测量振动。 为了使世界各国生产的声级计的测量结果互相可以比较,国际电工委员会(IEC)制定了声级计的有关标准,并推荐各国采用,1979年5月在斯德哥尔摩通过了IEC 651《声级计》标准,我国有关声级计的国家标准是GB3785-83《声级计电、声性能及测试方法》。1984年IEC又通过了IEC804《积分平均声级计》国际标准,我国与1997年颁布了GB/T17181-1997《积分平均声级计》。它们与IEC标准的主要要求是一致的。2002年国际电工委员会(IEC)发布了IEC61672-2002《声级计》新的国际标准。该标准代替原IEC651-1979《声级计》和IEC804-1983《积分平均声级计》。我国根据该标准制定了JJG188-2002《声级计》检定规程。按新的标准将声级计按用途可分为通用声级计,积分声级计,频谱声级计等,按精度可分为1级和2级,二种级别的声级计的各种性能指标具有同样的中心值,仅仅是容许误差不同,而且随着级别数字的增大,容许误差放宽。按体积还可分为台式,便携式,和袖珍式声级计。按其指示方式可分为模拟指示和数字指示声级计。2.声级计原理声级计一般都是由传声器单元、放大分析单元、显示仪表单元三大部分组成。其工作原理方框图见图。[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910191656_176554_1611705_3.jpg[/img]图1 声级计原理方框图2.1传声器单元传声器单元由传声器和前置放大器组成。传声器是将声信号转换成电信号的换能器,要求频率范围宽、频率响应平直、失真小、动态范围大、尤其是稳定性要好。前置放大器起阻抗变换作用,要求具有输入阻抗高,输出阻抗低,以便与长延伸电缆连接。2.2放大分析单元放大分析单元应具有放大器和频率计权网络等。放大器电路将来自传声器单元的微弱信号进行放大以达到一定幅度,要求有一定的放大量、一定的动态范围、频率范围宽等等,并确保放大器在整个测量范围内均不失真的反映输入信号的大小变化,以保证测量的准确性和可靠性。计权网络是用有电网络来模拟人耳的响度感觉特性。国家规定了三条曲线对应不同的响度级,其中A计权是模拟人耳对40方纯音的响应,B计权是模拟人耳对70方纯音的响应,C计权是模拟人耳对100方纯音的响应。由于A计权网络测量的噪声声级值较为接近人耳对噪音的感觉,因此在噪声测量中往往用A声级来表示噪声级的大小。有些声级计中还有D计权,主要是用于航空噪声的测量。2.3显示仪表单元包括检波电路,指示器电路等。检波电路是将来自交流放大器的对应于交流信号进行检波,使直流放大器输出对应于被测声级的线性变化的直流电压。检波电路有峰值、平均值和有效值检波电路,声级测量中,用的最多的是有效值检波电路。声级计测量的结果都是在指示器上指示出来,指示器有模拟指示器和数字指示器两种。指示电路还应具有“快”和“慢”时间计权特性。.[center]二 采购篇[/center]当时领导交给我重任的时候,对于声级计给我提了两个要求:一、必须是一型声级计,符合国家噪声监测使用标准,二、要带频谱分析。带着这两个要求,我开始了对声级计的寻找。首先,因为我们站使用的是国营红声和杭州爱华的声级计,红声比如HS6288,HS6288E等,两家的仪器性能都不错,并且操作方面也都习惯了,所以产品基本上就锁定这两家了。进入到红声和爱华的官方网站,查找符合条件的声级计。为了避免有广告之嫌,具体的产品型号我就不写了,我把参数写在下面。[center]红声 主要技术参数及性能[/center]1 传 声 器:Ф12.7mm(1/2″)预极化测试电容传声器2 频率范围:10Hz-20kHz 3 频率计权:A计权、C计权、Lin(线性)4 测量范围:25dB-130dB(A)、30dB-130dB(C)、40dB-130dB(Lin)5 量程控制:手动选择,分三档,线性范围70dB。6 量程范围:L:23dB -90dB M:40dB -110dB H:70dB -130dB7 仪器精度:符合IEC61672 1级或GB3785 1型8 时间计权:快(F)、慢(S)9 定时测量:Lp、Leq、Lae、L5、L10、L50、L90、L95、Lmax、Lmin、SD、Ld、Ln、Ldn等10 时间设定:10s、1min、5min、10min、15min、20min、1h、4h、 8h、整时24h。11 采样时间:31ms12 滤 波 器:内置式1/1倍频程中心频率:31.5Hz、63Hz、125Hz、250Hz、500Hz、1kHz、2kHz、4kHz、8kHz。13 测量显示:大屏幕动态液晶显示器,瞬时声级显示具有模拟电表功能。14 数据储存:500组单组数据、4组整时数据、50组滤波器自动测量数据15 输出接口:AC输出接口:提供交流电压信号可用于外接分析RS-232接口:用于微型打印机进行现场打印或事后通过计算机通讯打印.16 校 准:HS6020声级校准器,1000Hz 94dB。17 电 源:5节5号碱性电池,可连续工作24小时,可外接电源DC9V。18 外形尺寸:l×b×h(mm):307×80×30,质量:386g(连电池)[center]爱华主要性能指标:[/center]1 传声器:Φ12.7 mm(1/2″)预极化测试电容传声器 2 频率范围:10 Hz~20 kHz±1 dB(不含传声器)3 测量上限:130dB,可扩展至140dB4 动态范围:大于110dB(A计权)5 时间计权:并行(同时)F、S、I,以及Peak6 频率计权:并行(同时)A、C、Z7 滤波器(选配):并行数字滤波器,倍频程8 A/D位数:24位。9 采样频率: 48kHz10 仪器类型: 1级或2级。11 显示器:128×128点阵液晶显示,对比度16级可调,有LED背光。12基本测量功能:同时列表或图示测量LPA、LPC、LPZ三种频率计权声压级、等效连续声级Leq。13 统计积分测量时间:手动,1s到99小时任意设置或分档设置。14 数据存贮:128组带分布图的统计分析结果或频谱分析结果。 15 输出接口:1) 交流输出:输出功率:150mW,可接8Ω监听耳机。 2) 直流输出:输出比例:20mV/dB。 3) RS232接口:接至AH40微型打印机打印测量结果及相关图表。4) USB接口:通过USB线将SD卡转为U盘。16 日历时钟:误差小于1分钟/月,可GPS授时、校时。17 电源: 4节LR6(5号)电池或5V外接电源,工作电流约100mA。18 工作温度:-10℃~50℃19 外形尺寸(mm):260×80×3020质量(kg):0.3[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910191657_176555_1611705_3.jpg[/img]

  • 【分享】数字式MEMS加速度传感器在倾角测量的应用

    数字式MEMS加速度传感器在倾角测量的应用  物体在运动中的倾角是描述物体运动状态、特征的重要参数,在交通、航天、军事领域中都有着重要的意义,对目标的定位、追踪起到非常重要的作用。所以开发价格适中、精度高,测量范围大的角度测量模块具有很强的实用价值。  本文根据对实际运动的分析,研究建立了相应的数学模型,利用数字式MEMS加速度传感器并配合适当的硬件电路和软件算法实现了一种性价比高,高精度,测量范围大的角度测量模块并通过实际运行,取得良好的效果。  1 对象研究和建模  本文研究的对象是物体运动时,其整体平台的倾斜角,例如普通车辆机车,军用车辆机车和海上装备等,在运动过程中由于路面、坡度等影响会使整个平台架产生一定的倾角,而这些参数对于精确导航、列车行程控制等系统都具有重要的意义。  根据经典力学可以知道,当对象与基准平面有一个角度的夹角时,其运动方向的加速度与重力加速度的比值和没有夹角时其加速度与重力加速度的夹角α 是不同的。根据力的分解,重力加速度就会有分量作用在Ax方向,且Ax=gsinα,于是倾斜角α=sin-1(Ax/g)。见图1-(a)所示。但是,当对象在基准面方向上做变加速的运动时,其Ax同样是一个变化值,这样将由于无法区别对象的静态加速度和动态加速度而做出正确的判断。也可以考虑采用图 1-(b)中所示方法测量,将Ax设定为始终与运动面垂直的方向,这样Ax=gcosα,则倾斜角α= cos-1(Ax/g)。这个方法在普通的道路坡度只能在Ax方向产生一个很小的加速度变化,而这对于该传感器的精度是很难达到的。  故考虑采用如图1- (c)所示方法进行测量,利用双轴的加速度传感器,其两个夹角之间相差90°,两个角分别为45°和135°角,当车辆静止在平面上时,加速度传感器的两个轴向测得加速度:Ax=Ay=0.707g。  当车辆在平面上加速时,加速度倾角传感器的两个轴向就会测得两个大小相等,极性相反的加速度变化,而(Ax+ Ay)保持不变,例如:车辆向前加速时,Ax增大而Ay减小。  当车辆倾斜时,倾斜角α=cos-1。但是在实际情况中,由于测量、安装等原因,几乎不可能做到加速度传感器与车辆的径向正好成45°,所以需要在系统初始化时,首先测量出加速度传感器与车辆的径向的夹角β,可根据公式β=arctan(Ay/Ax)计算得到。  由此可得最后的倾斜角为:α=cos-1。根据这个数学模型,可以很好的测得角度的变化。所以在实际使用就利用软、硬件根据该模型进行设计从而实现了微小角度的测量。   2 系统设计  根据上面的对象研究和建模分析,并结合实际需求开始进行系统设计。在设计的过程中,根据算法设计选取了相应的硬件,按照硬件的选取经过分析,最后确定所需硬件电路,然后编制了相应的软件完成整个设计。  2.1硬件设计  设计中使用的是ADXL213芯片,其采用先进的MEMS 技术,在同一硅片中刻蚀了一个多晶硅表面微机械传感器,并集成了一套精密的信号处理电路。信号处理电路能将表面微机械传感器产生的模拟信号转换为占空比调制(DCM) 数字信号输出。

  • 颜色测量的数字化探寻

    颜色测量的数字化探寻 颜色测量的数字化也就是用计算机识别颜色,现实中我们对颜色的表述是:“目视感受+思维判断+语言描述”这样受到很多外部环境和人本身等因素的影响很大,使我们用颜色做定量分析时误差很大,有时更本就没有可比性,需要一种方法和理论来规范我们对颜色的认识和理解,用一种仪器来统一数据便于现代化的管理与交易。此方法和仪器应属物性测量的一种基础检测。历史背景:人类对颜色的认识是循序渐进的过程,是随着科学技术的发展不断认识提高,映入眼帘的颜色大部分是人造的颜色,因有了对颜色的管理技术我们的生活才出现了五彩缤纷的视觉感观,对颜色的检测技术也在不断地提高。1666年牛顿在剑桥大学的实验室,把太阳光从小狭缝引进暗室,通过三棱镜后,在屏幕上显示出一条美丽的彩带,红、橙、黄、绿、青、蓝、紫色光,这种现象称做光的分解。随之在英国有很多科技人员进行了大量的科学实验和研究。1870年成立的英国百灵达公司(发明水中余氯的检测方法和仪器,水的浊度检测仪);1885年成立的罗维朋公司对液体颜色检测有大量的贡献。1915年成立总部位于美国密歇根州大激流市的爱色丽公司等等都对颜色的检测做出了标准的贡献。上世纪七十年代胶片相机大量普及,色彩管理分为两大类,第一为美国柯达的色彩管理系统,我国大部分行业以柯达标准为基础(暖色调),第二为日本富士和索尼公司的色彩管理(冷色调),发展中的以色列产品是以富士和索尼公司的色彩管理为基础。2000年前后电子计算机的色彩管理系统快速发展,1997年以美国微软、惠普、日本爱普生公司等电子行业的巨头制定了计算机的颜色标准SRGB色彩空间(Standard Red Green Blue)。这一标准应用非常广泛,其他许许多多的硬件及软件开发商也都采用了SRGB色彩空间做为其产品的色彩空间标准,逐步成为许多扫描仪、打印机、照相机、显示器、摄像头和软件的色彩空间标准。1998年美国Adobe公司推出Ps色彩空间标准,它拥有宽广的色彩空间和良好的色彩层次表现,它包含了SRGB色彩空间所没有完全覆盖的CMYK色彩空间,可以理解为大RGB色彩空间Windows系统色彩空间系统在win7以后有了很大提高和苹果的MAC OSX色彩空间不相上下。颜色模式:现行中颜色的管理模式分类1. R G B模式;2. H S B模式;3. Web模式;4. CMYK模式;5. L a b模式;6. 灰度模式;CCD扫描成像数字化分析:我们根据现有的技术和方法,进行了大量的筛选和改进,最终选择了扫描成像+软件分析这种方法来进行仪器的深层次的开发,结果输出为R G B模式的红绿蓝平均反射光密度值来表示物品的颜色数值。软件部分:美国 Image Pro Plus软件 Image-Pro Plus功能强大的2D和3D图像采集、处理、增强和分析软件,具有异常丰富的测量和定制功能。Image-Pro Plus 是顶级的图像分析软件包, 它适合于荧光成像、质量控制、材料成像及其它的多项科研、医学与工业应用。 Image-Pro Plus 是Image-Pro 软件系列中功能最强大的成员之一,它包含了异常丰富的增强和测量工具,并允许用户自行编写针对特定应用的宏和插件。 主要优势: 1,采用业经证明的解决方案——历经20余年的开发、改进以及用户反馈,Image-Pro Plus提供了全套的实用程序, 如采集、交流、处理、测量、分析、存档、汇报以及打印等。 2,把时间花在实处—— Image-Pro Plus用户友好的使用环境使得您不会将过多的时间浪费在学习使用软件上,而将更多的时间放在对图像的分析和了解上。 3,自动化研究—— 可使用Image-Pro Plus 的Auto-Pro 编程语言,将冗长的操作浓缩至一个单一按键或一次鼠标点击上。 4,添加多维成像—— 可用下述集成式插件模块来进一步扩展Image-Pro Plus 的功能:Scope-Pro 的自动显微镜控制、AFA 的高级荧光采集、SharpStack的 图像反卷积以及3DConstructor的三维重建和测量。 IPP软件功能及相关参数: 1、采集图象:支持多种专业CCD和模拟摄相头,支持twain接口。 2、图象增强、处理;自动、手动图象拼接;扩展视野景深;自动、手动图象位置校对,多维图象管理;彩色通道管理:多通道荧光的色彩叠加,适合于多重荧光标记观察、FISH荧光观察等;自动化报告生成器。 3、测量功能:随意对图象切割、测量、计数、分类;HE等染色方法的阳性灰度、阳性比例计算;简单电泳条带分析;荧光强度分析等。可以选择面积、周长、角度等50多种测量方式。 4、分析功能:荧光共位性分析;空间和灰度校对;数据分析:将测量结果以统计值、单个测量值、三维浓度图和线形等方式输出,并可以将测量结果输出到EXCEL中处理。 5、自动、手动动态追踪:动态跟踪单个或多个物体运动轨迹。测量该物体的运动距离、速度、加速度、角度及显示所有状态下的测量结果。适合精子活力、各种粒子、浮游生物运动状态及细胞生长等动态指标测量。 6、可与其他插件连接,进行功能的拓展,如三、四维重建功能;电动显微镜控制;多时间、多标荧光、Z系列及多位置图象的自动采集和处理;二、三维反卷积运算。 图像输入 支持的图象文件格式有:TIFF、GIF、PCX、BMP/DIB、EPS、WMF、TGA、WPG和部分非标准格式。 支持下列流行图象板:BITFLOW、CORECO、DIPEX、DOME、EPIX、FLASHPOINT等,与扫描仪兼容。 图象显示模式:8、10、12、16、24、32BIT和真彩色下的:RGB、HIS、HSL。 面积百分比、颗粒计数、各种形态参数测量、位置参数测量、灰度光密度测量、数学形态学分析、图象的校准与校正、彩色图象的分割与分析、图象编辑等功能。 MediaCybernetics 提供的350多个图象处理、分析测量、文件操作和外部设备控制函数,为用户编制自己的应用软件提供了方便。 图像处理与增强功能 软件控制调节图象的对比度、图象噪声抑制、各种滤波算法和数学形态学算法对图象进行非常有效的处理,并提供快速FFT处理、图象的旋转、图象的放大、图象标注和打印。 特征范围的选取 对图象特征的选取有矩形框、圆形框和自画任意框等工具,由鼠标方便地控制。边缘检测 系统提供三种自动边缘和特征检测工具,用户可方便地检测出面积特征和点特征。 图像定标和校正及图像合成 可定标图象到任何测量单位,提供图象阴影的校正功能。 图像缝合和拼接使用图像缝合和拼接功能,可将多张分次获取的相邻图像完美 无缺的拼成一幅大图像。 景深扩展从部分聚焦的系列图像合成全聚焦的单幅图像 。 结果输出和打印 测量结果数据可转换成ASCII文件,并可直接进入MS EXCEL和MS WORD进行统计分析、打印。 美国 ImageJ软件ImageJ是一个基于java的公共的图像处理软件,它是由National Institutes of Health开发的。可运行于Microsoft Windows,Mac OS,Mac OS X,Linux,和Sharp Zaurus PDA等多种平台。其基于java的特点,使得它编写的程序能以applet等方式分发。ImageJ能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片,支持TIFF, PNG, GIF, JPEG, BMP, DICOM, FITS等多种格式。ImageJ支持图像栈功能,即在一个窗口里以多线程的形式层叠多个图像, [colo

  • 【资料】高精度数字失真度测量仪的设计

    引言   通信系统中采用的许多算法和技术都是在线性系统的前提下研究和设计的,一定频率的信号通过这些网络后,往往会产生新的频率分量,称之为该网络的线性失真。失真度分析采取的常用方法有基波抑制法和谐波分析法两种。  基波抑制法通常用在模拟失真度测量仪中,原理是采用具有频率选择性的无源网络(如谐振电桥、双T陷波网络等)抑制基波,由信号总功率和抑制基波后的信号功率计算出失真度。理想的基波抑制器应完全滤除基波,又不衰减任何其他频率。但实际上,基波抑制器对基波衰减抑制只能达到-60 dB~-80 dB,对谐波却损耗0.5 dB~1.0 dB。这种方式的失真度仪的性能主要依赖于硬件设计,调试和校准工作烦琐,一般只能实现固定1个或几个频率的失真度测量,其测量误差随着失真度降低而加大,并且随着器件老化,电路的稳定性和可靠性降低。  谐波分析法类似于频谱分析,通常是借助数字方式的以FFF(快速傅里叶变换)为基础的算法,或者采用模拟方式的选频测量方法,从而获得基波和各次谐波的功率,计算出失真度。模拟选频方式的失真度分析仪性能高,但硬件电路复杂。数字方式的失真度分析对硬件的设计要求降低,其性能主要决定于A/D转换的精度和数字信号处理算法。仅仅采用FFT来分析失真度是远远不够的,因为测量精度与其运算量、存储空间的大小和测量速度存在明显的矛盾。 针对以上失真度测量方法的不足,本文以数字谐波分析法为基础,提出了基于DFT(离散傅里叶变换)和过零检测法的失真度分析算法,不仅可满足高精度和任意频率的测试需求,还可降低硬件设计复杂度。  1失真度算法研究  1.1算法分析  失真度定义为: http://www.vihome.com.cn/class/UploadFiles_4704/200909/2009092213540898.jpg  式中:u1,u2,…,uM分别为被测频率的基频、二次谐波、…、M次谐波分量的幅度有效值;E1,E2,…,EM为基频和谐波分量的能量,一般M=5或7。 从失真度定义来分析,要测量信号的失真度,只须设法将被测信号的基波与谐波分离,分别测出它们各自的功率或电压有效值,代入式(1)即可。  DFT在DSP中通常用于对平稳信号的频谱估计,在应用中,将输入信号截短,得到的行向量X=x(n)与一个相同长度的正弦信号W=w(n)相乘积分,可得到向量X中含有正弦信号W的分量。所以,如果向量W的频率等于失真度测量的各个频率分量和它们的正交分量,则可以计算出输入信号中包含第m次谐波的能量Em: http://www.vihome.com.cn/class/UploadFiles_4704/200909/2009092213540809.jpg  将式(2)值代人式(1)就可得到失真度值。   在工程测量中,被测信号的频率往往未知,而DFT计算时是确定的频率,所以应给W提供准确的频率,而且W的频率预测越准确,能量计算也越精确。  为了准确找到基频,对采样信号采用过零检测法来测量频率,为避免噪声干扰,设置零幅度带,每通过零幅度带即为过零一次。被测信号频率由fx=N/T得到,T为时间基准,N为T内过零点数。过零检测法测频虽准确度较高,但是在标准的时间基准T中如10 ms、0.1 s、1 s等,由于被测信号与门控信号不可能同步锁定,所以存在固有的±1量化误差。本系统中如果选用1 s做时间基准的话,实时性不够。因此综合考虑实时性、存储量、处理速度之间的关系,选择T=0.1 s作为时间基准。这时±1误差被扩大10倍,为±10 Hz。为解决±1量化误差,使用以过零测频为中心,固定带宽(30 Hz)内最大值能量搜索办法(二分法)寻找基频能量最大值,经过5~7次迭代可得到准确的基频。然后直接使用此基频得到各次谐波的准确频率,并将基频和谐波频率提供给W,使用DFT就可直接估计基频和各高次谐波能量,完成失真度计算。  1.2仿真结果分析  使用MATLAB对上述算法进行仿真。设输入信号基频为1 kHz,并在±30 Hz范围内随机变动,信噪比20 dB,采样速率为44×103次采样/s,计算到7次谐波能量,基频能量二分法搜索带宽为30 Hz。最大值搜索时,当能量变化小于0.1%时终止,序列运算长度1 024个采样点,使用平方汉宁(Hanning)窗减少频谱泄漏。按这些条件,对500次具有随机频偏和失真特性的输入信号进行算法仿真。结果如图1所示。  仿真结果表明,采用上述条件时,频率计算误差控制在1 Hz以下(见图1(a));失真度误差能控制在1%以下(见图1(b))。如果终止条件更严格,测量精度可以更高。通过仿真还发现,当基频搜索时能量变化小于0.01%时终止,失真度测量误差可小于0.1%(见图1(d))。为使失真度算法更有效率,本系统采用能量变化小于0.1%时终止。  2数字失真度测量仪硬件结构  该系统硬件结构如图2所示。测量仪主要由信号调理、低通滤波、数据采集系统、主控制器AVR单片机(Atmega64L)、DSP(数字信号处理器)等模块组成。  2.1信号调理和低通滤波模块  信号调理和低通滤波的功能是对信号的幅度进行调理和滤波。信号的输入范围是不定的,小信号信噪比较低,大信号会引起A/D转换器对信号进行限幅而失真,所以采用数控可变增益放大器对信号输出电压范围进行调整,将信号的幅度控制在A/D转换器的满幅度附近。保证A/D转换器采集到的波形数据最大值仅占A/D转换器不失真输入范围的80%。低通滤波为20 kHz低通滤波器,其0.1 dB带宽为18 kHz,能有效滤除高频信号,同时保证较好的带内平坦度。  2.2数据采集模块  作为电子测量仪器要得到高精度的测量结果,要求A/D转换器的精度必须足够高。系统采用了TI公司的24 bit工业A/D转换器ADS1271,它可以得到低的漂移、极低的量化噪声。经ADS1271采样后的数据由DOUT引脚串行输出,与TMS320C6713的多通道缓冲串口McBSP直接相连。McBSP可支持字长为24 bit的数据,可直接接收A/D转换器输出的24 bit串行数据,并自动将接收数据中的数据位调整为DSP需要的格式。A/D转换器采样速率为44×103次采样/s。A/D转换器的采样脉冲信号由DSP的定时器提供。  2.3数据处理模块  DSP模块以TMS320C6713芯片为核心。该芯片是TI公司推出的一款高性能浮点DSP,内核包含了8个功能单元,采用先进的VLIW(甚长指令字)结构,使得DSP在单周期内能够执行多条指令。在225 MHz的时钟频率下,其最高执行速度可以达到1350×106次浮点运算/s。它还集成了丰富的片内外设单元,本系统主要用到的有HPI、EDMA和定时器。  主机接口为HPI,外部主机可以直接访问内部的存储器和存储器映像存储器,TMS320C6713的HPI通过EDMA控制器实现对DSP存储空间的访问,本系统中Atmega64L是主机,可以直接配置TMS320C6713的EDMA定时器,节省TMS320C6713的查询周期。ED-MA(增强型直接存储器访问)是C621x/C671x/C64x系列DSP特有的访问方式,其启动可以由内部或外部事件触发,本系统采用外部触发。  2.4外围设备  失真度测试系统的控制和结果显示通过标准RS-232接口完成。因此该数字失真度测量仪可以作为一个独立测量模块集合在其他综合测试仪中。  2.5控制模块  主控制器使用Atmega64L单片机,完成系统的控制。DSP的处理结果由主控制器通过HPI接口获得,并缓存在内存中;当外部命令读取测试结果时,再通过RS-232接口发送出去。控制模块还完成系统的低功耗控制、DSP运行模式等控制。  3软件实现  图3是TMS320C6713芯片的软件流程图。该芯片受Atmega64L控制。Atmega64L根据RS-232接口获得指令,然后根据指令参数来控制仪器的运行。TMS320C6713可执行两种操作:一种是自动测量,首先对采集数据使用过零法粗测频率,然后把粗测频率作为参数传递给失真度测量程序,由失真度计算程序完成测量;另一种是定频测量,把Atmega64L传递来的频率参数直接传递给失真度测量程序完成失真度的测量,而不需要事先测量频率。  失真度测量程序设有一个入口参数fmiddle,以此参数为中心频率在带宽30 Hz内使用最大值搜索法找寻准确的基频频率并完成失真度计算,返回值是实际测量的基频频率、信号电平、失真度。  DSP处理完数据后,把测试结果缓存在内存中,单片机根据指令通过HPI接口读取测试结果。  4性能分析  测量速度是决定仪器实用性的重要因素。每计算一次失真度,基频能量二分法最大值搜索时一般需要5~7次迭代,每次迭代含3次向量乘法(2次乘法,2次加法),取10次迭代需要30次向量乘累加操作、生成30个W向量;剩余6次谐波计算需要6个W向量,合计36个W向量。  W向量的生成如果采用直接调用库函数,运送量太大,而

  • 【原创大赛】数字心电图机测量不确定度的评定

    【原创大赛】数字心电图机测量不确定度的评定

    内定标电压测量不确定度的评定1、测量方法依据检定规程JJG1041-2008《数字心电图机》,对数字心电图机的内定标电压进行测量,并进行计算。2、数学模型http://ng1.17img.cn/bbsfiles/images/2012/10/201210191456_397884_1638093_3.jpg4、标准不确定度评定4.1、测量不确定度的A类评定4.1.1、Ⅰ、Ⅱ、Ⅲ导联上记录的内定标电压信号幅度的不确定度评定 测量值(mm):10.4、10.2、10.2、10.4、10.4、10.5、10.4、10.5、10.4、10.2 标准偏差s=0.12mm 平均值:10.36mmhttp://ng1.17img.cn/bbsfiles/images/2012/10/201210191457_397886_1638093_3.jpg4.1.2、Ⅰ、Ⅱ、Ⅲ导联上记录的外部方波信号幅度的不确定度评定测量值(mm):10.5、10.6、10.8、10.5、10.6、10.8、10.6、10.6、10.8、10.8标准偏差s=0.13mm平均值:10.66mmhttp://ng1.17img.cn/bbsfiles/images/2012/10/201210191457_397888_1638093_3.jpg4.2.1、波形线宽引入的不确定度的评定 波形线宽约为0.3mm,按均匀分布http://ng1.17img.cn/bbsfiles/images/2012/10/201210191458_397890_1638093_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/10/201210191458_397891_1638093_3.jpg4.3、不确定度的合成http://ng1.17img.cn/bbsfiles/images/2012/10/201210191500_397892_1638093_3.jpg5、内定标电压的相对不确定度 因为内定标电压误差以相对不确定度表示,故内定标电压相对标准不确定度为:http://ng1.17img.cn/bbsfiles/images/2012/10/201210191500_397893_1638093_3.jpg心率测量不确定度的评定http://ng1.17img.cn/bbsfiles/images/2012/10/201210191502_397896_1638093_3.jpg2、标准不确定度评定2.1、测量不确定度的A类评定u1 将信号设置为输出幅度0.5mV、频率1Hz的心率(HR)测试信号,被检心电图机灵敏度10mm/mV,记录速度置25mm/s。对HR-1信号进行测量,对应心率60次/min,测得值如下: 60次/min、61次/min、61次/min、59次/min、60次/min、60次/minhttp://ng1.17img.cn/bbsfiles/images/2012/10/201210191502_397897_1638093_3.jpg2.2、检定仪标准值的不确定分量u2 因为标准器最大允许误差为±1%,故u2=0.3次/minhttp://ng1.17img.cn/bbsfiles/images/2012/10/201210191506_397898_1638093_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/10/201210191506_397899_1638093_3.jpg

  • 测量材料动态的3D形貌,效果请看视频,基于菲涅尔衍射的数字全息重建技术

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=薄膜形变实时测量,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_01_1546_3.gif!w384x216.jpg[/img][img=MEMS面内面外运动测量,201,220]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_02_1546_3.gif!w201x220.jpg[/img][/td][/tr][/table]

  • 【原创大赛】颜色测量数字化探寻-----应用实例四:抑菌圈测量分析

    【原创大赛】颜色测量数字化探寻-----应用实例四:抑菌圈测量分析

    颜色测量数字化探寻应用实例四:抑菌圈测量分析 世界上第一台扫描仪1985年诞生于台湾,1988年左右在北京由中检所的老师门战略性地提出抑菌圈扫描测量仪的研究,抗生素效价抑菌圈测量仪一经推出,得到了业界老师们的鼎力支持,历经二十多年的发展抑菌圈测量仪已经成为国产好仪器的重要一项,随着中药发展、食品行业和环境监测的大量需求,高端抑菌圈测量的需用量越来越大。生物法抑菌圈包括:1.管碟法。2.打孔法。3.纸片法。管碟法http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668926_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016090518522086_01_3024149_3.jpg电脑软件操作如下http://ng1.17img.cn/bbsfiles/images/2017/10/2016090518533390_01_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016090518534365_01_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016090518535015_01_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016090518535694_01_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016090518540325_01_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016090518541107_01_3024149_3.jpg打孔法和纸片法的抑菌圈主要是科研和医院药敏实验使用主要是快速、精确、安全的提取抑菌圈的直径数据。农业、林业、畜牧业中的大菌斑和大菌落的物理参数提取。http://ng1.17img.cn/bbsfiles/images/2016/09/201609051855_608428_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609051856_608429_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609051856_608430_3024149_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609051856_608431_3024149_3.jpg以上的图像处理注意阈值的调整。扬子华纳2016-9-5颜色测量数字化探寻应用实例系列暂告一段落,以后的实践中再总结过程方法继续发帖,请大家多提意见,不断开阔新的行业。

  • 西安交通大学XTDIC 三维数字散斑动态变形测量分析系统

    XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的动态测量。其主要应用有:[b]材料力学性能测量:[/b]DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。[b]细观力学测量:[/b]借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。[b]损伤与破坏检测:[/b]DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。[b]生物力学测量:[/b]DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。[b]大中专院校的研究教学:[/b]本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。

  • ‘有奖问答’对错题’有效数字就是在测量中能得到的有实际意义的数字,其中最后一位是不确定数,它包括在有效位数中。( )。

    [b][font=宋体][b]‘有奖问答’对错题’[/b][/font][b][b][font=宋体][b][b][b][font=宋体]如记录滴定管读数时,甲得到[/font]23.43[font=宋体]、乙得到[/font]23.42[font=宋体]、丙得到[/font]23.44[font=宋体],显然,在这三个数据中前三位是准确的,而第四位因没有刻度,是估计出来的,这样第四位是可疑值,它可能有[/font]0.01[font=宋体]的误差。所以,有效数字就是在测量中能得到的有实际意义的数字,其中最后一位是不确定数,它包括在有效位数中。[/font][/b][font=宋体][/font][/b][font=宋体][/font][/b][/font][/b][/b][font=宋体][b][font=宋体][b][b]( )[font=宋体]。[/font][/b][/b][/font][/b][/font][/b]

  • 【原创大赛】颜色测量的数字化探寻

    颜色测量的数字化探寻 颜色测量的数字化也就是用计算机识别颜色,现实中我们对颜色的表述是:“目视感受+思维判断+语言描述”这样受到很多外部环境和人本身等因素的影响很大,使我们用颜色做定量分析时误差很大,有时更本就没有可比性,需要一种方法和理论来规范我们对颜色的认识和理解,用一种仪器来统一数据便于现代化的管理与交易。此方法和仪器应属物性测量的一种基础检测。历史背景:人类对颜色的认识是循序渐进的过程,是随着科学技术的发展不断认识提高,映入眼帘的颜色大部分是人造的颜色,因有了对颜色的管理技术我们的生活才出现了五彩缤纷的视觉感观,对颜色的检测技术也在不断地提高。1666年牛顿在剑桥大学的实验室,把太阳光从小狭缝引进暗室,通过三棱镜后,在屏幕上显示出一条美丽的彩带,红、橙、黄、绿、青、蓝、紫色光,这种现象称做光的分解。随之在英国有很多科技人员进行了大量的科学实验和研究。1870年成立的英国百灵达公司(发明水中余氯的检测方法和仪器,水的浊度检测仪);1885年成立的罗维朋公司对液体颜色检测有大量的贡献。1915年成立总部位于美国密歇根州大激流市的爱色丽公司等等都对颜色的检测做出了标准的贡献。上世纪七十年代胶片相机大量普及,色彩管理分为两大类,第一为美国柯达的色彩管理系统,我国大部分行业以柯达标准为基础(暖色调),第二为日本富士和索尼公司的色彩管理(冷色调),发展中的以色列产品是以富士和索尼公司的色彩管理为基础。2000年前后电子计算机的色彩管理系统快速发展,1997年以美国微软、惠普、日本爱普生公司等电子行业的巨头制定了计算机的颜色标准SRGB色彩空间(Standard Red Green Blue)。这一标准应用非常广泛,其他许许多多的硬件及软件开发商也都采用了SRGB色彩空间做为其产品的色彩空间标准,逐步成为许多扫描仪、打印机、照相机、显示器、摄像头和软件的色彩空间标准。1998年美国Adobe公司推出Ps色彩空间标准,它拥有宽广的色彩空间和良好的色彩层次表现,它包含了SRGB色彩空间所没有完全覆盖的CMYK色彩空间,可以理解为大RGB色彩空间Windows系统色彩空间系统在win7以后有了很大提高和苹果的MAC OSX色彩空间不相上下。颜色模式:现行中颜色的管理模式分类1. R G B模式;2. H S B模式;3. Web模式;4. CMYK模式;5. L a b模式;6. 灰度模式;CCD扫描成像数字化分析:我们根据现有的技术和方法,进行了大量的筛选和改进,最终选择了扫描成像+软件分析这种方法来进行仪器的深层次的开发,结果输出为R G B模式的红绿蓝平均反射光密度值来表示物品的颜色数值。软件部分:美国 Image Pro Plus软件 Image-Pro Plus功能强大的2D和3D图像采集、处理、增强和分析软件,具有异常丰富的测量和定制功能。Image-Pro Plus 是顶级的图像分析软件包, 它适合于荧光成像、质量控制、材料成像及其它的多项科研、医学与工业应用。 Image-Pro Plus 是Image-Pro 软件系列中功能最强大的成员之一,它包含了异常丰富的增强和测量工具,并允许用户自行编写针对特定应用的宏和插件。 主要优势: 1,采用业经证明的解决方案——历经20余年的开发、改进以及用户反馈,Image-Pro Plus提供了全套的实用程序, 如采集、交流、处理、测量、分析、存档、汇报以及打印等。 2,把时间花在实处—— Image-Pro Plus用户友好的使用环境使得您不会将过多的时间浪费在学习使用软件上,而将更多的时间放在对图像的分析和了解上。 3,自动化研究—— 可使用Image-Pro Plus 的Auto-Pro 编程语言,将冗长的操作浓缩至一个单一按键或一次鼠标点击上。 4,添加多维成像—— 可用下述集成式插件模块来进一步扩展Image-Pro Plus 的功能:Scope-Pro 的自动显微镜控制、AFA 的高级荧光采集、SharpStack的 图像反卷积以及3DConstructor的三维重建和测量。 IPP软件功能及相关参数: 1、采集图象:支持多种专业CCD和模拟摄相头,支持twain接口。 2、图象增强、处理;自动、手动图象拼接;扩展视野景深;自动、手动图象位置校对,多维图象管理;彩色通道管理:多通道荧光的色彩叠加,适合于多重荧光标记观察、FISH荧光观察等;自动化报告生成器。 3、测量功能:随意对图象切割、测量、计数、分类;HE等染色方法的阳性灰度、阳性比例计算;简单电泳条带分析;荧光强度分析等。可以选择面积、周长、角度等50多种测量方式。 4、分析功能:荧光共位性分析;空间和灰度校对;数据分析:将测量结果以统计值、单个测量值、三维浓度图和线形等方式输出,并可以将测量结果输出到EXCEL中处理。 5、自动、手动动态追踪:动态跟踪单个或多个物体运动轨迹。测量该物体的运动距离、速度、加速度、角度及显示所有状态下的测量结果。适合精子活力、各种粒子、浮游生物运动状态及细胞生长等动态指标测量。 6、可与其他插件连接,进行功能的拓展,如三、四维重建功能;电动显微镜控制;多时间、多标荧光、Z系列及多位置图象的自动采集和处理;二、三维反卷积运算。 图像输入 支持的图象文件格式有:TIFF、GIF、PCX、BMP/DIB、EPS、WMF、TGA、WPG和部分非标准格式。 支持下列流行图象板:BITFLOW、CORECO、DIPEX、DOME、EPIX、FLASHPOINT等,与扫描仪兼容。 图象显示模式:8、10、12、16、24、32BIT和真彩色下的:RGB、HIS、HSL。 面积百分比、颗粒计数、各种形态参数测量、位置参数测量、灰度光密度测量、数学形态学分析、图象的校准与校正、彩色图象的分割与分析、图象编辑等功能。 MediaCybernetics 提供的350多个图象处理、分析测量、文件操作和外部设备控制函数,为用户编制自己的应用软件提供了方便。 图像处理与增强功能 软件控制调节图象的对比度、图象噪声抑制、各种滤波算法和数学形态学算法对图象进行非常有效的处理,并提供快速FFT处理、图象的旋转、图象的放大、图象标注和打印。 特征范围的选取 对图象特征的选取有矩形框、圆形框和自画任意框等工具,由鼠标方便地控制。边缘检测 系统提供三种自动边缘和特征检测工具,用户可方便地检测出面积特征和点特征。 图像定标和校正及图像合成 可定标图象到任何测量单位,提供图象阴影的校正功能。 图像缝合和拼接使用图像缝合和拼接功能,可将多张分次获取的相邻图像完美 无缺的拼成一幅大图像。 景深扩展从部分聚焦的系列图像合成全聚焦的单幅图像 。 结果输出和打印 测量结果数据可转换成ASCII文件,并可直接进入MS EXCEL和MS WORD进行统计分析、打印。 美国 ImageJ软件ImageJ是一个基于java的公共的图像处理软件,它是由National Institutes of Health开发的。可运行于Microsoft Windows,Mac OS,Mac OS X,Linux,和Sharp Zaurus PDA等多种平台。其基于java的特点,使得它编写的程序能以applet等方式分发。ImageJ能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片,支持TIFF, PNG, GIF, JPEG, BMP, DICOM, FITS等多种格式。ImageJ支持图像栈功能,即在一个窗口里以多线程的形式层叠多个图像, [colo

  • 中科曙光&广电计量联合实验室揭牌 激发数字产业升级新动能

    4月2日,广电计量检测集团股份有限公司(简称“广电计量”)与曙光信息产业股份有限公司(简称“中科曙光”)在中科曙光天津产业基地举行联合实验室揭牌仪式。双方将基于联合实验室的建设,实现产业链上下游的直接合作,进一步提升双方研发协同能力,加快进行数字产业技术迭代,共同推进创新、高效、可靠的IT产品开发和新技术产品的商业化量产。中科曙光副总裁张迎华、品质管理副总经理蒲嘉鹏;广电计量总经理助理黄英龄、天津广电计量总经理谢心冉等出席座谈会和揭牌仪式。[align=center][img=张迎华、黄英龄为联合实验室揭牌.jpg,700,482]https://img1.17img.cn/17img/images/202404/wycimg/5f017d4c-5f31-4463-ac8b-327179297ed6.jpg[/img][/align][align=center]张迎华、黄英龄为联合实验室揭牌[/align]座谈会上,天津广电计量副总经理李雅彬就目前双方合作的计算服务类产品的可靠性、NVH相关试验项目作出阶段性总结,并对后续合作的新方向提出广电计量可给予的技术支持。广电计量民品软件测试技术副总监高树霖从解决方案、认证流程、测试要求及应对方法、服务案例等方面,展示了广电计量全面、专业的信息技术应用创新服务能力。黄英龄提到,工业互联网是新型工业化战略性基础设施,是数字经济和实体经济深度融合的关键底座。广电计量的综合技术服务优势能为中科曙光的信息基础设施建设提供有力的质量保障,双方秉承赋能工业互联网平台的宗旨,将设备、技术等生产要素向智能化、绿色化升级的所需能力互补,加强各板块间协作交流,合力加快形成新质生产力。张迎华表示,制造业作为我国产业核心,在进一步实现智能化升级的过程中,其质量管控也必须纳入顶层设计中。中科曙光与广电计量成立联合实验室,将有助于夯实中科曙光在IT产品质量领域的底层技术,有利于实现科研成果高质转化。联合实验室将聚焦高端计算行业痛点,致力突破技术天花板,保质前提下持续提升产品性能,为用户带来更美好的应用体验。[align=center][img=座谈会现场.jpg,700,444]https://img1.17img.cn/17img/images/202404/wycimg/2035a1e3-d967-4a11-a254-8d93ff16e3fe.jpg[/img][/align][align=center]座谈会现场[/align]会上,谢心冉牵头广电计量参会嘉宾,从科研课题攻关、供应商引入质量提升、信创领域产品认证、管理系统开发及职业资格培训等方面与中科曙光进行深入研讨,双方表达了对未来合作成果的高度期望。此次联合实验室的成立,是深化广电计量与中科曙光战略合作的又一重要举措。后续双方将以联合实验室为载体,聚焦关键核心技术领域,打通前沿技术研发端与产业应用端通路,强化科研联合攻关,提升科研成果高质量转化,共同推进高端计算、存储、安全、数据中心及解决方案的突破与应用,形成从技术研发到产品落地的高效双向循环。关于中科曙光曙光信息产业股份有限公司(简称“中科曙光”)是我国核心信息基础设施领军企业,为中国及全球用户提供创新、高效、可靠的IT产品、解决方案及服务。公司于2014年在上海证券交易所上市(股票代码:603019)。经历20余年发展,中科曙光在全国各省、自治区和直辖市均设立了分支机构,拥有国际领先的3大智能制造生产基地、5大研发中心,在全国50多个城市部署了城市云计算中心。中科曙光在高端计算、存储、安全、数据中心等领域拥有深厚的技术积淀和领先的市场份额,并充分发挥高端计算优势,布局智能计算、云计算、大数据等领域的技术研发,打造计算产业生态,为科研探索创新、行业信息化建设、产业转型升级、数字经济发展提供了坚实可信的支撑。关于广电计量广电计量检测集团股份有限公司(简称:广电计量,股票代码:002967)是广州数字科技集团成员企业,创立于2002年,是国内领先的全产业链综合技术解决方案提供商。广电计量在全国主要经济圈设有30多个综合检测基地、60多家分子公司,通过了中国合格评定国家认可委员会(CNAS)、中国计量认证(CMA)、农产品质量安全检测机构(CATL)认可。广电计量面向航空、低空经济、新能源汽车、人工智能、数字经济等国家战略性新兴产业领域,构建了全产业链“计量检测+科研服务+评价咨询+设计分析+认证服务”一站式综合技术服务能力,其中计量校准、可靠性与环境工程、电磁兼容检测业务的经营规模和服务能力居行业前列。[size=14px][color=#707d8a][ 来源: 广电计量 ][/color][/size][size=14px][color=#707d8a][i]编辑:张圣斌[/i][/color][/size][list][/list]

  • DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    XTDIC三维全场应变测量分析系统,结合数字图像相关技术(DIC)与双目立体视觉技术,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的测量,具有便携,速度快,精度高,易操作等特点。http://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595779_3024107_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595780_3024107_3.png图:系统测量原理及散斑图像追踪过程系统组成:统主要由测量头、控制箱、标定板、标志点、计算机及检测分析软件等组成系统应该包含系统测量头(含两台高速工业相机、进口相机镜头,带万向手柄可调节LED光源)、相机同步控制触发控制箱、系统标定板、系统可移动支撑架、动态采集分析软件、载荷加压控制通讯接口、计算机系统等组成。1.1 主要应用XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,其主要应用有:在材料力学性能测量方面:DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。在细观力学测量方面:借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。在损伤与破坏检测方面:DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。在生物力学测量方面:DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。对于大中专院校的研究教学应用,本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。亦可为学生提供可视化的教学工具,让学生的基础学习课程变得直观和可视,使复杂问题简单化、抽象问题直观化、隐蔽问题可视化。1.2 系统功能(1)基本测量功能:l ※测量幅面:支持几毫米到几米的测量幅面,可以根据需求定制测量幅面。l 测量相机:支持百万至千万像素、低速到高速、千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps。l ※相机标定:支持多个相机(可多于8个)多种测量幅面的标定,支持外部拍摄图像标定。l ※测量模式:三维变形测量,同时支持单相机二维测量。l ※实时计算:采集图像的同时,可以实时进行三维全场应变计算,具备在线和离线两种计算处理模式。l 计算模式:具备自动计算和自定义计算两种模式。l 测量结果:全场三维坐标、位移、应变数据等动态变形数据,应变模式有工程应变、格林应变、真实应变等三种。l 多个检测工程:系统软件支持多个检测工程的计算、显示及分析。l ※支持系统:支持32位、64位windows操作系统,具备64位计算和多线程加速计算功能。(2)分析报告功能l ※18种变形应变计算功能:X、Y、Z、E三维位移;Z值投影;径向距离、径向距离差;径向角、径向角差;应变X、应变Y和应变XY;最大主应变;最小主应变;厚度减薄量;Mises应变;Tresca应变;剪切角。l ※坐标转换功能:321转换、参考点拟合、全局点转换、矩阵转换等多种坐标转换功能。l ※元素创建功能:三维点、线、面、圆、槽孔、矩形孔、球、圆柱、圆锥。l ※分析创建功能:点点距离、点线距离、点面距离、线线夹角、线面夹角、面面夹角。l 数据平滑功能:均值,中值,高斯滤波等多种平滑功能。l 数据插值功能:自动和手动两种数据插值模式。l 材料性能分析:自动计算材料的弹性模量和泊松比等参数。l 三维截线功能:可对三维测量结果进行直线或圆形截线分析。l 曲线绘制功能:所有测量结果均可以绘制成曲线图。l 成形极限分析功能:可绘制和编辑FLD成形极限曲线。l 视频创建功能:可将测量过程二维图像或者三维测量结果制作成视频并输出保存。l 数据输出功能:测量结果及分析结果输出成报表,支持TXT,XLS,DOC文件的输出。(3)采集控制功能l ※采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。l 相机同步控制:多相机外同步触发信号。l ※外部采集通讯接口:支持外部载荷如微电子万能试验机等外部载荷联机采集通讯接口,通过串口通讯或者模拟量实时采集外部的加载力、位移等信号,并与三维全场应变测量数据实现同步,实现应力和应变数据的融合和统一。l 光源控制:可以实现测量过程中不同补光需要的LED光源控制。(4)预留扩展接口:l ※多测头同步检测接口:可以支持1~8个测头的多相机组同步测量,相机数目任意扩展,可以同步测量多个区域的变形应变,适用于不同实验条件需求下的变形应变测量。l ※显微应变测量:配合双目体式显微镜,系统可以实现微小视场的三维全场变形应变检测,并可支持扫描电镜、原子显微镜等显微图像的应变数据计算。l ※大尺寸全方位变形接口:支持摄影测量静态变形系统,实现全方位变形和局部全场应变检测数据的融合和统一。1.3 技术指标 指标名称技术指标1. ※核心技术多相机柔性标定、数字图像相关法2. 测量结果三维坐标、全场位移及应变,可视化显示及测量过程的视频录制输出,测量结果及数据输出成报表,支持TXT,XLS,DOC文件的输出。3. ※测量幅面支持1mm-4m范围的测量幅面,并配备相应编码型标定板标定架,可定制更多测量幅面。4. ※测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps)5. 相机标定简单快捷,需要可支持任意数目相机的同时标定,支持外部图像标定6. ※位移测量精度0.005像素7. ※应变测量范围0.01%-1000%8. ※应变测量精度0.001%9. 测量模式三维变形测量,可兼容二维测量10. ※实时测量计算采集图像的同时,实时进行全场应变计算11. ※系统控制2采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。2相机同步控制:多相机外同步触发信号。2外部采

  • 【资料】声级计的正确使用步骤

    声级计的正确使用步骤   声级计使用正确与否,直接影响到测量结果的准确性。因此,有必要介绍一下声级计的使用。   1、声级计使用环境的选择:选择有代表性的测试地点,声级计要离开地面,离开墙壁,以减少地面和墙壁的反射声的附加影响。   2、天气条件要求在无雨无雪的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声干扰),五级以上大风应停止测量。   3、打开声级计携带箱,取出声级计,套上传感器。   4、将声级计置于A状态,检测电池,然后校准声级计。   5、对照表(一般常见的环境声级大小参考),调节测量的量程。   6、下面就可以使用快(测量声压级变化较大的环境的瞬时值)、慢(测量声压级变化不大的环境中的平均值)、脉冲(测量脉冲声源)、滤波器(测量指定频段的声级)各种功能进行测量?。   7、根据需要记录数据,同时也可以连接打印机或者其它电脑终端进行自动采集。整理器材并放回指定地方

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制