叠氮基戊酸甲酯

仪器信息网叠氮基戊酸甲酯专题为您提供2024年最新叠氮基戊酸甲酯价格报价、厂家品牌的相关信息, 包括叠氮基戊酸甲酯参数、型号等,不管是国产,还是进口品牌的叠氮基戊酸甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叠氮基戊酸甲酯相关的耗材配件、试剂标物,还有叠氮基戊酸甲酯相关的最新资讯、资料,以及叠氮基戊酸甲酯相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

叠氮基戊酸甲酯相关的资料

叠氮基戊酸甲酯相关的论坛

  • 求教:紫外测定丙戊酸的浓度!

    恩,要用紫外测定丙戊酸的浓度.知道可以采用a-溴代苯乙酮与之发生脂化反应后可以测定想请教各位:a-溴代苯乙酮怎么和丙戊酸反应,试剂的用量大概是多少?谢谢了我的邮箱cw6775725@163.com

叠氮基戊酸甲酯相关的方案

  • 使用LCMS-8045定量氯沙坦钾原料药中的四种叠氮杂质
    氯沙坦属于一类称为血管紧张素受体阻滞剂(ARBs)的药物。它可以放松血管,使血液更易流动。氯沙坦具有降压和血管舒张作用,用于治疗高血压并帮助保护肾脏免受糖尿病损伤。此外,它还用于降低高血压和心脏肥大患者的中风风险。叠氮杂质来源于叠氮化钠,它是氯沙坦合成的前体,属于一级毒物。叠氮杂质被认为是一种诱变剂。即一种可以引起细胞DNA变化的化学物质。这些突变可能会增加癌症的风险,但这些叠氮杂质导致人类癌症的具体风险尚不清楚。迄今为止,在沙坦类药物中能检测到的叠氮杂质的含量,能引发的风险非常低。然而,对于药物来说,这种风险被认为是不可接受的。这些杂质对健康的实际风险取决于药物的剂量,并且因人而异。因此,有必要开发一种高灵敏度和可靠的分析方法来检测氯沙坦原料药中的叠氮杂质。考虑到癌症的风险以及这些杂质与氯沙坦原料药结构相似性等挑战,必须建立一种灵敏、可靠和准确的方法来测定氯沙坦药物中的叠氮杂质。本应用说明描述了一种直接定量氯沙坦钾原料药中叠氮杂质的LC-MS/MS方法。
  • 赛默飞离子色谱在河水中的叠氮化物应用
    测定叠氮化物的方法有容量分析法、分光光度法,这两种方法在测定低浓度叠氮化物时不够准确;气相色谱法、高效液相色谱法一般需要对样品进行预处理,如将叠氮化物转化成挥发性的叠氮酸或者,-二硝基苯甲酰衍生物,衍生化反应的缺点是前处理繁琐,且会引入外源性干扰。而采用离子色谱法,无需繁复的样品预处理,用IonPac AS色谱柱,KOH梯度淋洗可以将N-和水中常见阴离子如F-、Cl-、Br-、NO-、NO-、PO-、SO-等很好的分离,图-为含有叠氮根和几种阴离子的标准溶液色谱图及样品色谱图
  • 顶空固相微萃取-气相色谱法测定废水中戊酸
    提出了顶空固相微萃取-气相色谱法测定废水中挥发性脂肪酸戊酸的含量。为使固相微萃取达到更高的效率,选择极性85μ m PA作为微萃取头的涂层,微萃取系在pH 1.5的试液中进行,萃取温度及时间为25℃和20 min,在20 mL试样溶液中加入氯化钠3.5 g作为盐析剂。用Stabilwax-DA毛细管色谱柱分离,火焰离子检测器检测。6种脂肪酸在一定的质量浓度范围内与其峰面积呈线性关系,相对标准偏差(n=10)均小于10.0%。

叠氮基戊酸甲酯相关的资讯

  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)

叠氮基戊酸甲酯相关的仪器

  • 智能蒸馏仪采用目前全新的远红外加热方法,具有热效率高、寿命长、起温和降温速度快、加热时间和加热功率可调等优点。仪器可外接循环水冷却装置。整个系统简洁、安装维护方便、使用方便,节能环保。广泛适用于环境监测、环保、疾控、水产、供排水、高校、科研院所、厂矿企业等各类化学实验室需要蒸馏处理的场所,如样品中的挥发酚、氰化、氨氮、凯氏氮等项目的蒸馏实验。 适用标准GB/T 5750.5-2006 生活饮用水标准检验方法 无机非金属指标 氰化物/挥发酚 GB 8538-2016食品安全国家标准 饮用天然矿泉水检验方法 HJ 1191-2021 水质 叠氮化物的测定分光光度法 HJ 537-2009 水质 氨氮的测定 蒸馏-中和滴定法 HJ 535-2009 水质氨氮的测定 纳氏试剂分光光度法HJ 536-2009 水质氨氮的测定 水杨酸分光光度法HJ 484-2009 水质 氰化物的测定 容量法和分光光度法 HJ 503-2009 水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 745-2015 土壤 氰化物和总氰化物的测定 分光光度法 HJ 833-2017 土壤和沉积物 硫化物的测定 亚甲基蓝分光光度法 HJ 717-2014 土壤质量 全氮的测定 凯氏法主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用1毫米厚度的品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、控制模块采用PLC控制,性能强劲稳定;5寸液晶触摸屏反应灵敏,设置方便;4、加热单元采用远红外陶瓷加热碗加热,贴合度高,效率更高,更节能,同时具备防水防干烧功能;5、一次可同时对1-6个样品进行蒸馏,大大提高了工作效率,每个加热单元都可独立控制加热功率0-500w可调,可以预设加热时间;6、系统内部自带微沸模式,设定时间到点自动切换微沸模式;7、自带两路样品测温,能高精度实时监控烧瓶内样品的实时温度(可升级六路)8、特殊定制异形蒸馏冷凝管,冷凝效果好,标配专属冷水机;可以一键自动回流,冷凝水自动排空,防止长期不使用滋生细菌;9、自带冷凝管路清洗功能,实验结束后,可以针对馏出液管路进行一键反向冲洗;10、系统内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键连接服务中心; ☆11、可升级6路氮气吹扫,能用于发泡样品蒸馏,也可实现针对食品中二氧化硫残留的蒸馏实验;☆12、可升级6路夹管阀实现每一路的防止过量蒸馏保护。
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。智能一体化蒸馏仪(立面款)(NAI-ZLY-6L)是根据实验室蒸馏预处理操作规程,集恒温加热、蒸馏终点自动控制、冷却水循环于一体的新型智能蒸馏处理装置。该仪器实验了精密控温、自动防倒吸、加热均匀、防暴沸、智能终点控制等功能。使用方便,节能环保。广泛适用于环境监测、环保、疾控、水产、供排水、高校、科研院所、厂矿企业等各类化学实验室需要蒸馏处理的场所。 适用标准GB/T 5750.5-2006 生活饮用水标准检验方法 无机非金属指标 氰化物/挥发酚GB 8538-2016 食品安全国家标准 饮用天然矿泉水检验方法HJ 1191-2021 水质 叠氮化物的测定分光光度法HJ 537-2009 水质 氨氮的测定 蒸馏-中和滴定法HJ 484-2009 水质 氰化物的测定 容量法和分光光度法HJ 503-2009 水质 挥发酚的测定 4-氨基安替比林分光光度法HJ 745-2015 土壤 氰化物和总氰化物的测定 分光光度法HJ 833-2017 土壤和沉积物 硫化物的测定 亚甲基蓝分光光度法HJ 717-2014 土壤质量 全氮的测定 凯氏法主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用1毫米厚度的品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、PLC控制系统,性能强劲稳定;7寸液晶触摸屏反应灵敏,设置方便;4、采用碗状远红外陶瓷加热,红外线辐射加热(无明火、防水,耐干烧),导热效果佳;5、采用压力称重传感器控制蒸馏终点,可任意设置蒸馏体积重量(误差±1克),到量自动停止加热;6、带有防过量截止阀,实现自动精确定量,定量范围:1-500g(ml),整个实验过程无需人员看守,自动化程度高;7、冷却系统:外接专用冷水机,采用封闭式内循环回流系统,适合大批量样品连续工作,节能降耗;☆8、设有防真空电磁阀,自动识别瓶内压力,通过和夹管阀的配置,具有蒸出液防倒吸功能。9、接收装置不受限制,默认配置为容量瓶接收可根据实验要求更换其他器皿接收,托盘可灵活配置。☆10、自带冷凝管路清洗功能,实验结束后,可以针对馏出液管路进行冲洗;11、实验结束后可选择冷凝水自动排空功能,防止长期不使用滋生细菌;12、系统内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键连接服务中心;13、可选配水蒸气发生器,针对蒸馏过程中需要导入水蒸气的蒸馏实验,即可升级成智能水蒸气蒸馏仪(NAI-ZLY-6F)使用。产品参数产品型号NAI-ZLY-6L 控制方式PLC;7寸触控屏加热方式远红外陶瓷加热,6路独立可控,有微沸设置加热功率0~500W功率可调升温时间5~8min(沸腾时间)蒸馏速度12ml/min蒸馏终点控制自动侦测蒸馏终点功能,自动停止加热蒸馏体积控制±2ml之内,自动化程度高冷却方式外接专用冷水机,环保节能防倒吸有夹管阀和泄压配合,具有防倒吸功能时间控制0~200min可调蒸馏瓶规格500mlx6个清洗方式有在线清洗功能冷凝水排空有冷凝水排空功能处理样品数1-6个功率3800W额定电压220V/50HZ尺寸大小930×490×442mm(不含支架)样品架配套6位500ml蒸馏瓶样品架
    留言咨询
  • 检测动植物油脂肪酸甲酯专用色谱仪SP7800型 SP7800型气相色谱仪(动植物油脂肪酸甲酯分析专用)脂肪酸甲酯分析系统是京科瑞达公司推出的一款专用色谱分析系统,主要用于常见植物油油品的分析、鉴别及其掺伪的气相色谱检测。 SP7800型气相色谱仪仪器可用于快速鉴别常见植物油的种类,对常见植物油是否掺伪可作出快速判别,同时对掺伪植物油可作定性、定量分析。植物油主要由棕榈酸等脂肪酸组成的甘油酯,不同油品的植物油脂肪酸组成与含量不同,掺伪后必然会改变其脂肪酸组成与含量,用气相色谱法分析脂肪酸的构成比,并与其对应的纯品油脂肪酸的构成比比较,鉴别是否掺伪,掺伪品种,并计算掺伪量。 分析方法完全满足GB/T17377-2008《动植物油脂 脂肪酸甲酯的气相色谱分析》;GB/T17376-2008《动植物油脂 脂肪酸甲酯制备》中的规定。 仪器还可用于食品中的脂肪酸甲酯(FAME)的分析,FAME 的分析用于食品中脂类部分含量的表征,也是食品分析中极为重要的一项内容,脂类主要包括甘油酸酯,它们是一个甘油分子和三个脂肪酸分子的酯,绝大多数食用脂肪和油主要含有的脂肪酸是从月桂酸(十二碳酸)到花生酸(二十碳酸),除直链饱和脂肪酸外,也有支链脂肪酸、单不饱和脂肪酸、双不饱和 脂肪酸以及多不饱和脂肪酸。 主要技术指标 1、 温度控制,色谱柱室温度; 控温范围:室温加+3℃~400℃。 控温精度:优于± 0.1℃。 温度梯度:室温加+5℃~400℃,柱室有效区域内不大于1%。 程序升温阶数:五阶, 升温速率:0.1~40℃/min。 初温终温控制时间:0~600min,程序升温的重复性不大于2%。 (2) 汽化室、检测室温度控温精度: 汽化室:优于± 0.1℃ 检测室:优于± 0.1℃ 2、 氢火焰离子化检测器:检测限:不大于1× 10-11g/s 噪音:不大于0.025mV漂移:不大于0.15mV/h 3、仪器尺寸与重量。 外型尺寸:635× 490× 470mm 重量:约55kg
    留言咨询

叠氮基戊酸甲酯相关的耗材

  • 气相色谱法测定丙戊酸纳和丙戊酸镁的有关物质 推荐HR-20M /PEG-20M色谱柱
    气相色谱法测定丙戊酸纳和丙戊酸镁的有关物质 推荐HR-20M /PEG-20M色谱柱 关键词:丙戊酸钠,丙戊酸镁,抗癫痫药,聚乙二醇,气相色谱柱 2010年中国药典,测定丙戊酸纳和丙戊酸镁的有关物质,照气相色谱法(附录V E )实验,以聚乙二醇为固定液的毛细管色谱柱,起始温度为130℃,维持20分钟,再以每分钟5℃的速率升温至200℃,维持15分钟,进样口温度为220℃。(药典二部 P91、92) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 日本北川216S© 异戊酸检测管
    测量气体 化学分子式型号测量范围(ppm)颜色的变化有效期(年)试管数量/盒变化前变化后异戊酸(CH3) 2CHCH2COOH216S?3—50浅粉红色黄色310
  • 液相色谱耗材 脂肪酸甲酯
    DescriptionChinese NameCat. No.C1:0Methyl formate甲酸甲酯12gd-424C2:0Methyl acetate乙酸甲酯12gd421C3:0Methyl propionate丙酸甲酯12-gf-432C4:0Methyl butyrate丁酸甲酯12-dg422C5:0Methyl valerate戊酸甲酯12-OdgC6:0Methyl hexanoate已酸甲酯12ggdfC7:0Methyl heptanoate庚酸甲酯12f2332C8:0Methyl octanoate辛酸甲酯12gfdC9:0Methyl nonanoate壬酸甲酯12-gfC10:0Methyl decanoate癸酸甲酯12-gfC11:0Methyl undecanoate十一烷酸甲酯12-d33C12:0Methyl laurate十二碳酸甲酯/月桂酸甲酯12gfOdfgC13:0Methyl tridecanoate十三烷酸甲酯12d-dOgd-2334C14:0Methyl myristate十四烷酸甲酯/豆蔻酸甲酯/肉豆蔻酸甲酯12-dO-gC14:1Methyl myristoleate顺式-9-十四碳烯酸甲酯50J-dfgC14:1Methyl myristelaidate反式-9-十四碳烯酸甲酯50J-7dfg5-fdgdC15:0Methyl pentadecanoate十五烷酸甲酯12-Odf-2335C16:0Methyl palmitate十六烷酸甲酯/棕榈酸甲酯/软脂酸甲酯12-O-43fgd1C16:1Methyl palmitoleate9-十六烯酸甲酯/棕榈油酸甲酯/棕榈烯酸甲酯50Jfdg6-1GgfC16:1Methyl palmitelaidate十六碳烯酸甲酯gf7gf-dfgC17:0Methyl heptadecanoate十七烷酸甲酯/珠光脂酸甲酯12-dC17:1Methyl cis-10-heptadecenoate十七碳烯酸甲酯54gfC18:0Methyl stearate十八烷酸甲酯/硬脂酸甲酯12gfC18:1Methyl oleate顺-9-十八烯酸甲酯/油酸甲酯12-gfC18:1Methyl elaidate反-9-十八烯酸甲酯/反油酸甲酯fdg-1MLC18:1Methyl ricinoleate蓖麻酸甲酯fg C18:1Methyl ricinelaidate反蓖麻酸甲酯5fg-fgC18:1trans-Vaccenic acid methyl ester反式-十八碳烯酸甲酯54gf*C18:1Petroselinic acid methyl ester岩芹炔酸甲酯54dfgfggfC18:2Methyl linoleate顺-9,12-十八碳二烯酸甲酯/亚油酸甲酯gdggfC18:2Methyl linolelaidate反亚油酸甲酯gdf C18:3methyl linolenate顺-9,12,15-十八碳三烯酸甲酯/亚麻酸甲酯dfgdfC18:3Methyl γ-linolenateγ-十八碳三烯酸甲酯fdgdfg C19:0Methyl nonadecanoate十九烷酸甲酯12fgC20:0Methyl eicosanoate二十 烷酸甲酯/花生酸甲酯12-fgC20:1Methyl cis-11-eicosenoate11-二十碳烯酸甲酯fdgdg C20:2cis-11.14-Eicosadienoic acid methyl ester11,14-二十碳二烯酸甲酯dfg C20:3cis-8,11,14-Eicosatrienoic acid methyl ester8,11,14-二十碳三烯酸甲酯fdgfg C20:3cis-11.14.17-Eicosatrienoic acid methyl ester11,14,17-二十碳三烯酸甲酯dfg C20:4Methyl arachidonate5,8,11,14-二十碳四烯酸甲酯/花生四烯酸甲酯(ARA甲酯)(AA甲酯)fdgC20:5cis-5.8.11.14.17-Eicosapentaenoic acid methyl ester5,8,11,14,17-二十碳五烯酸甲酯 /(EPA甲酯)dfg-gfC21:0Methyl heneicosanoate二十一烷酸甲酯12gfC22:0Methyl docosanoate二十二烷酸甲酯/山嵛酸甲酯12dfgC22:1Methyl cis-13-docosenoate顺-13-二十二碳烯酸甲酯/芥酸甲酯/芥子酸甲酯5dfg-fgC22:2cis-13.16-Docosadienoic acid methyl ester二十二碳-顺13,16-二烯酸甲酯fdg-fdgC22:3cis-13.16.19-Docosatrienoic acid methyl ester二十二碳-顺13,16,19-三烯酸甲酯dfg-fgC22:4cis-7.10.13.16-Docosatetraenoic acid methyl ester7,10,13,16-二十二碳四烯酸甲酯fdg-fgC22:5cis-7.10.13.16.19-Docosapentaenoic acid methylester7,10,13,16,19-二十二碳五烯酸甲酯/鲱油酸甲酯(DPA甲酯)54-fg-gfC22:6cis4.7.10.13.16.19-Docosahexaenoic acid methyl ester4,7,10,13,16,19-二十二碳六烯酸甲酯/(DHA甲酯)gdf-fgC23:0Methyl tricosanoate二十三烷酸甲酯12gdC24:0Methyl tetracosanoate二十四烷酸甲酯/木焦油酸甲酯ffgOfg2342C24:1Methyl cis-15-tetracosenoate顺-15-二十四碳单烯酸甲酯fgdgf100MG*C25:0Methyl pentacosanoate二十五烷酸甲酯dfgfgC26:0Methyl hexacosanoate二十六烷酸甲酯5fg-dfgC28:0Methyl octacosanoate二十八烷酸甲酯ggdC29:0Methyl nonacosanoate二十九烷酸甲酯fdg-100MGC30:0Methyl melissate三十烷酸甲酯5gfg-fdgC31:0Methyl hentriacontanoate二十一酸甲酯fdggsd

叠氮基戊酸甲酯相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制