当前位置: 仪器信息网 > 行业主题 > >

超声显微系统

仪器信息网超声显微系统专题为您提供2024年最新超声显微系统价格报价、厂家品牌的相关信息, 包括超声显微系统参数、型号等,不管是国产,还是进口品牌的超声显微系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超声显微系统相关的耗材配件、试剂标物,还有超声显微系统相关的最新资讯、资料,以及超声显微系统相关的解决方案。

超声显微系统相关的论坛

  • 显微系统(KEYENCE—基恩士)

    [font=&]【题名】:显微系统(KEYENCE—基恩士)[/font] [font=&]【链接】: https://www.doc88.com/p-8969240676677.html?s=like&id=5[/font]

  • 实时超分辨率显微成像系统特点介绍

    [url=http://www.f-lab.cn/microscopes-system/storm.html][b]实时超分辨率显微成像系统[/b][/url]突破了光学显微镜的半波长分辨率极限,提供了比宽视场,共聚焦显微镜更好分辨率。实时超分辨率显微成像系统采用尼康或奥林巴斯显微镜,Chroma 滤波片,Andor公司EMCCD相机以及独特的照明系统,为客户提供全球同步的超分辨率成像系统。[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-2.JPG[/img][b]实时超分辨率显微成像系统特点[/b]横向分辨率可达20nm,轴向分辨率可达40nm实时和线下图像重建GPU加速处理图像先进的自动聚焦硬件高分辨率X-Y-Z工作台灵活的配置[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-1.JPG[/img]实时超分辨率显微成像系统:[url]http://www.f-lab.cn/microscopes-system/storm.html[/url]

  • 【原创】徕卡DM500生物显微镜

    【原创】徕卡DM500生物显微镜

    徕卡DM500生物显微镜 徕卡DM500生物显微镜是创新教学显微镜的新一代选择,为了革新科研教学以及实验在生命科学课程上有更多的动手操作时间而专门设计开发的。这款教学显微镜,成为激发科学学习和有效教育下一代科学家的好工具。徕卡DM500生物显微镜设计人性化,操作简单,成像清晰,在日常实验工作中带来便利。http://ng1.17img.cn/bbsfiles/images/2015/12/201512110936_577336_3049546_3.jpg极佳的光学特性:基于与徕卡显微系统有限公司的研究型显微镜系列相同的光学平台,学生们可以享受到卓越的光学性能,而且几乎可以使用徕卡显微系统有限公司显微镜产品系列的所有附件。方便收存: DM500一体化垂直握柄,便于运输,可以轻松地放到高架子上;支架正面的凹槽与握柄一起发挥作用,可以用两手更安全地搬运显微镜。 DM500显微镜支架的独特造型可以防止控制装置在显微镜并排保存时受损。 DM500集成的电源线包装设计避免了不当电源线包装对显微镜组件造成的损坏;垂直电源线插入可以防止电源线在保存或使用时部分脱离支架。http://ng1.17img.cn/bbsfiles/images/2015/12/201512110936_577337_3049546_3.jpg长寿命照明: DM500采用LED 照明,观察中呈现白色冷光,平均寿命可超过 15 年,实验时不再需要更换灯泡,节省更换灯泡的费用。载物台: DM500显微镜载物台没有暴漏的传动齿条,避免了碰擦受伤的风险;边缘为圆角设计,不会伤及皮肤。防菌涂层: 教学环境中,因接触表面而传播的疾病备受关注。徕卡显微系统有限公司在显微镜的所有触点上都使用了添加剂进行处理,可以抑制细菌生长。这样有助于防止通过显微镜表面接触而发生的疾病传播,并有助于形成更健康的实验室环境。http://ng1.17img.cn/bbsfiles/images/2015/12/201512110937_577338_3049546_3.jpg观察筒: 目镜与镜筒集成在一起,防止脱落;预设屈光度调节,避免屈光度设置错误的可能;还有其它镜筒可选。准备就绪 预对中,预对焦聚光器,无需调节。 Leica DM500 非常适于初级的生命科学课程。显微镜支架具有“即插即用”功能。所有学生要做的就是打开电源,把样本载玻片放到载物台上,对焦就可以享受观察的乐趣了!

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 杭州海康威视数字技术股份有限公司正在寻找系统工程师(显微)-杭州市职位,坐标杭州市,谈钱不伤感情!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-87273.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]系统工程师(显微)-杭州市[b]职位描述/要求:[/b]岗位职责:负责显微系统设计及开发,包括但不限于:1、负责光学显微镜的系统架构设计和实现,包括光学、硬件、结构等子系统或模块的设计综合;2、负责协同光学、硬件、算法等开发团队完成光学显微系统的产品实现。3、负责光学显微方向的技术规划,对光学显微镜的技术和行业应用,有深入的理解,掌握发展趋势。岗位要求:1、硕士5年以上/博士3年以上工作经验,光电、计算机、仪器仪表等相关专业;2、熟练掌握光学显微系统原理,具备光学显微系统设计及开发经验者优先;3、具备较强的系统思维,良好的沟通能力,团队协助能力,能独立思考,善于创新。[b]公司介绍:[/b] 海康威视成立于2001年是一家专注技术创新的科技公司 ,在安防、智能物联领域耕耘二十余年, 业务覆盖全球150多个国家和地区。 公司致力于将物联感知、人工智能、大数据技术服务于千行百业,引领智能物联新未来:以全面的感知技术,帮助人、物更好地链接,构筑智能世界的基础;以丰富的智能产品,洞察和满足多样化需求,让智能触手可及;以创新的智能物联应用,建设便捷、高效、安心的智能世界,实现“助力人人享有美好未...[url=https://www.instrument.com.cn/job/position-87273.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 徕卡DM750生物显微镜

    徕卡DM750生物显微镜

    徕卡DM750生物显微镜http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581595_3049546_3.jpg 徕卡DM750生物显微镜,是为高级生命科学课程的全面要求以及医学、兽医和牙医学校的专业培训专门设计的,同时,是为了革新科研教学以及实验在生命科学课程上有更多的动手操作时间而专门设计开发的。这款教学显微镜,设计人性化,操作简单,成像清晰,在日常实验工作中带来便利的同时,徕卡DM750生物显微镜在使用及维护方面也显示出了极大的优势。1、一体化的垂直手柄便于运输,保证更安全的搬运显微镜;各种镜筒在安全地固定在支架上的同时可以自由旋转;带目镜锁定螺钉的标准镜筒可以防止目镜脱落;2、一体化的电源线收集盒避免了电源线包装不当对显微镜组件造成的损坏;垂直电源线插入可以防止电源线在保存或使用时部分脱离主机,并且使实验台干净整洁;3、LED长寿命照明,平均使用寿命超过15年。LED 照明消耗的能量比标准卤素照明少大约 80%;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581597_3049546_3.jpg4、专利的延时开关功能可在2小时不用后自动关闭照明,节约能源;5、徕卡显微系统有限公司在显微镜的所有触点上都使用了添加剂进行处理,可以抑制细菌生长。这样利用显微镜表面的特殊处理有助于防止疾病传播,从而形成更健康的实验室环境;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581596_3049546_3.jpg6、标准聚光镜,放大倍率4X-100X;7、聚光镜可实现明场和相衬的转换。选配用于低放大倍率的摇摆式聚光镜;8、可以选装具有最佳照明和对比度的Koehler视场照明;9、DM750配备4位或5位物镜转换盘;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581599_3049546_3.jpg10、可配相衬、荧光、共览、集成或独摄像CCD,提供了无限扩展的可能;11、DM750显微镜载物台采用特殊材料加工,可以更好的防止摩擦损坏;12、重平衡聚焦手柄提供了惯性,可以非常精确地定位聚焦;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581600_3049546_3.jpg13、所有包装都是完全可回收利用的;所有玻璃组件中均不含铅;所有产品都经过独立的安全实验室的测试,并带有 cULus 和 CE 认证标志以证明其设计安全。 徕卡显微系统有限公司致力于教育发展和为国际社会做贡献。为了我们自己和子孙后代,我们积极实施可以让我们的环境更清洁、更安全的措施!

  • 超声生物显微镜的应用进展

    超声生物显微镜 ( ultras ound bi omicroscope, UBM)是由高频率换能器与超声仪器结合而成,探头频率为 20~100 MHz,分辨力 100~20μm,探查深度 15~1mm。目前用于小动物的中心频率 20~60 MHz,分辨力 100~30μm,探查深度15~5mm;用于人体的频率为 50~100 MHz,分辨力 70~20μm,探查深度 6~1mm;中心频率为 40 MHz,轴向分辨力约 40μm。本文仅就 UBM近几年的应用综述如下、、、

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • LEICA显微镜-思贝舒专业销售LEICA显微镜

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。本文转自:***

  • 倒置荧光显微镜与活细胞的培养

    倒置荧光显微镜与活细胞的培养

    细胞活体的培养,是现代生物医学界一重要科研项目,细胞的繁殖,复制,新陈代谢过程,这些都是科学家们都想观察到的现象,借助于荧光显微镜,我们可以很清楚的观察到细胞的所有繁殖过程,那么什么样的倒置荧光显微镜比较好呢? 我们需要注意一下几点:倒置荧光显微镜一般由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远色差独立校正光学系统,配置长工作距离平场消色差物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。 我们来看看倒置荧光显微镜到底是怎么样的!http://ng1.17img.cn/bbsfiles/images/2016/06/201606131012_596689_1783654_3.jpg倒置荧光显微镜成像效果http://ng1.17img.cn/bbsfiles/images/2016/06/201606131014_596690_1783654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606131014_596691_1783654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606131014_596692_1783654_3.jpg

  • 超微力测量系统的特点、规格以及应用

    这款[url=http://www.f-lab.cn/micromanipulators/fms-ls.html][b]超微力测量系统[/b][/url]是高精度[b]微力测量测试系统[/b]FMS-LS,它[b]与[/b]显微操作器联合使用,用于[b]测量纳米压痕[/b]和[b]超微力测量,还可用于[/b]测量细胞力学,杨氏模量,微机电系统MEMS的弹簧常数和共振频率的弹性参数。[b]超微力测量系统FMS-LS特点[/b][url=http://www.f-lab.cn/micromanipulators/fms-ls.html][b]超微力测量系统[/b][/url]调节器连接附件,调节器显示力反馈,并且在扬声器上播放材料的谐振频率。由具有集成吸管夹持器的力传感器,具有前置放大器和扬声器的控制模块,PC软件,电源,和操作者的手册组成。[img=超微力测量系统]http://www.f-lab.cn/Upload/FMS-LS-L_.jpg[/img][b]超微力测量系统FMS-LS应用[/b]测量细胞,杨氏模量,微机电系统(MEMS)的弹簧常数和共振频率的弹性参数纳米压痕[b]超微力测量系统[b]FMS-LS[/b]规格[/b]分辨率:亚μN测力范围:最高可达10毫米输出:+/-10 V

  • 超精细显微操纵仪

    [url=http://www.f-lab.cn/micromanipulators/mo-972.html][b]超精细显微操纵仪MO-972[/b][/url]是集高精度液压,步进电机电动控制和精密机械制造特色与一体的高精度[b]微操纵仪[/b]器,能够在30mm的距离内无振动地完成插入电极工作[b],[/b]是全球领先的高精度[b]显微操纵仪[/b]器。[b][img=超精细显微操纵仪]http://www.f-lab.cn/Upload/MO-972-L_.jpg[/img][url=http://www.f-lab.cn/micromanipulators/mo-972.html]超精细显微操纵仪[/url]特点[/b]油压精细,机械,显微操作器 瓦特/步进电机,开放型,W/ XYZ轴10mm驱动单元,(Z轴)50mm,(X轴)13mm,(Y轴)18mm。开放式平台可以安装允许许多驱动单元,或安装一个网格。在30mm工作距离内,使用远程控制可以实现准确,无振动的电极插入.导管可拆卸。平台和室可以拆卸和单独移动。油压显微操作器(带步进电机)用于慢性实验。使用5相步进电机操作更精确的精细Z轴电机驱动。产品包括数字控制系统+电机模块+驱动单元位置记忆功能和收回及退回功能。三种驱动模式:自由,设置和步骤.?三种驱动精度可供选择:粗,细,超细。深度,垂直,水平坐标都会显示。一种位置测量系统在实验时或实验后会计算移动距离,带来方便。另外,可以输入各驱动模式数值改变驱动量。一个控制箱可以经由内部卡总线插槽系统控制多达三个驱动单元。最小驱动精确度:粗调:0.5μm;精细:0.05微米;超细:0.005微米。 USB通信接口。

  • 【网络讲座】快速原子力显微镜和超分辨光学系统联用技术 (2016-11-11 10:00 )

    【网络讲座】快速原子力显微镜和超分辨光学系统联用技术 (2016-11-11 10:00 )

    【网络讲座】:快速原子力显微镜和超分辨光学系统联用技术【讲座时间】:2016-11-11 10:00【主讲人】:樊友杰先生,JPK Instruments AG,中国区技术负责人。樊先生长期从事原子力显微镜在生物学领域的成像与力学表征以及高速原子力显微镜与先进光学系统(如Raman/STED)的联用工作。【会议简介】原子力显微镜由于其对样品的是否导电或是否处于液体环境没有要求被广泛应用于科学研究的各个领域。原子力显微镜可以获得样品役区域的表面形貌和力学性质(如粘性和硬度等)。随着应用领域的不断扩展和对仪器性能越来越高的要求,尤其是生物研究者希望能实时监测细胞和蛋白分子的反应过程,对原子力的扫描速度提出了越来越高的要求。传统的原子力的扫描速度已经无法满足需要了。同时因为原子力只能得到形貌和力学性质而无法获得样品的化学信息和样品内部结构,研究者希望能将原子力与光学仪器联用起来,这样,就能同时获得同区域的原子力信息和光学信息。本次的webinar,将会为大家带来JPK公司的最新快速原子力显微镜与超分辨光学系统联用的最新进展。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016-11-11 10:003、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2174http://ng1.17img.cn/bbsfiles/images/2016/09/201609271102_612272_2507958_3.jpg扫描二维码,报名参会4、报名及参会咨询:QQ群—290101720,扫码入群“大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669141_2507958_3.gif

  • 【求助】单/双光子显微镜原理示意图(较形象)

    [size=2]求助各位同行: 在报告、讲座中经常看到各位专家、厂家用比较漂亮的双光子显微系统的原理示意图,直观上可以形象地区分激光扫描共聚焦显微镜与双光子显微镜的异同,请教大家是否有这方面的图片? 多谢各位!!![/size]

  • 【网络讲堂】快速原子力显微镜和超分辨光学系统联用技术

    http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2174原子力显微镜由于其对样品的是否导电或是否处于液体环境没有要求被广泛应用于科学研究的各个领域。原子力显微镜可以获得样品役区域的表面形貌和力学性质(如粘性和硬度等)。随着应用领域的不断扩展和对仪器性能越来越高的要求,尤其是生物研究者希望能实时监测细胞和蛋白分子的反应过程,对原子力的扫描速度提出了越来越高的要求。传统的原子力的扫描速度已经无法满足需要了。同时因为原子力只能得到形貌和力学性质而无法获得样品的化学信息和样品内部结构,研究者希望能将原子力与光学仪器联用起来,这样,就能同时获得同区域的原子力信息和光学信息。 本次的webinar,将会为大家带来JPK公司的最新快速原子力显微镜与超分辨光学系统联用的最新进展。

  • 显微镜相关文献

    Michael Potente和同事们使用LSM 710显微系统,从而获得了人类脐静脉内皮细胞中血管增长的图像。该项研究支持了在细胞、组织的Specification和Patterning过程中的Notch信号通路的研究。文献来源:Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by SIRT1 deacetylase. Nature 473:234-8 (2011).

  • 【显微镜系列讲座】:6月23日 新型数码显微镜在电子行业的创新应用及实例

    【网络讲座】:新型数码显微镜在电子行业的创新应用及实例【讲座时间】:2016年06月23日 10:00【主讲人】:王田 徕卡显微系统工业部资深产品专家。【会议简介】电子和微电子行业的产品在接受检测、质量控制和失效分析时,往往难度较大。不同的衬度观察方法和照明方式有助于完美呈现产品表面的瑕疵和缺陷,即便上述产品具有反射性。数码显微镜快速、可靠且使用方便,适合所有用户。它结合了出众的光学器件、直观的操作和智能化的软件,为您节省时间。本期网络讲堂将介绍新型数码显微镜在电子行业的创新应用,并分享应用案例。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年06月23日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/19355、报名及参会咨询:QQ群—171692483,扫码入群“显微镜之家”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667776_2507958_3.gif

  • 【求助】有前辈用过建立在原子力显微镜基础上的超声原子力显微镜系统吗

    我的课题要在原子力显微镜基础上外加一个激励信号,使得被测试件在外加激励下振动,我的想法是把这个信号加在试件台上:即在试件台下加一个压电陶瓷管,再将要加的激励信号通过传感器贴在压电陶瓷管下方。但不知道是否可行,请问哪位前辈做过类似工作没?或者给点相关建议也好啊,急切求助!!![em0808]

  • 【网络讲座】:3月31日 显微成像与显微切割在干细胞研究领域应用实例分享

    【网络讲座】:3月31日 显微成像与显微切割在干细胞研究领域应用实例分享

    【专家讲座】:显微成像与显微切割在干细胞研究领域应用实例分享【讲座时间】:2016年03月31日 10:00【主讲人】:张坤 徕卡显微系统生命科学部应用专家。【会议简介】干细胞涉及到个体发育、器官移植、延缓衰老、癌症治疗等方方面面。单个的干细胞是如何分裂、分化成新的细胞、组织或器官呢?在成体中,干细胞又是如何完成细胞修复更新的使命呢?如果要将特定的干细胞从复杂的组织器官中分离出来,分析其特异的遗传、代谢性质,该采用什么样的手段呢?在这次Webinar中,我们将介绍如何借助共聚焦、双光子、超高分辨率显微镜及激光显微切割等先进的显微成像分析技术一一解决在干细胞研究中的这些问题。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年03月31日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/18985、报名及参会咨询:QQ群—171692483http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667315_2507958_3.jpg

  • 带您走进LEICA显微镜的世界

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。http://www.gzspecial.com/uploadfile/images/MZ6(1).jpghttp://www.gzspecial.com/uploadfile/images/S8(1).jpg一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。

  • 【推荐讲座】浅谈显微镜在电子行业的应用

    【讲座时间】:2016年04月28日 10:00:00  【主讲人】:金刚,徕卡显微系统工业部资深产品专家  【会议介绍】:  体视镜在电子行业的生产线,检测、部件失效、质量控制、质量分析等领域应用广泛,高倍显微镜在平板显示器模组检测中的使用颇多,新型显微镜在电子行业的便利性。本次网络讲座将就这几种类型的显微镜在电子行业的实际应用和优势进行介绍。~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  1、报名条件:只要您是仪器网注册用户均可报名参加。  2、报名截止时间:2016年04月27日  3、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1917  4、参会咨询:QQ群—171692483

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • 徕卡显微系统(上海)贸易有限公司正在寻找(高级)电子工程师-苏州市职位,坐标苏州市,谈钱不伤感情!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-82461.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b](高级)电子工程师-苏州市[b]职位描述/要求:[/b]工作内容:负责电子系统和仪器相关的电子设计工作岗位要求:1.3-5年电子产品设计经验,外企经历优先2.本科以上学历3.英语读写能力[b]公司介绍:[/b] 公司简介徕卡仪器有限公司是德国著名的光学制造企业,具有160年显微镜制造历史,现主要生产显微镜、照相机及照相机镜头, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公司历史及荣誉产品1847年 成立光学研究所1849...[url=https://www.instrument.com.cn/job/position-82461.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【资料】新型气体泄漏超声检测系统的研究与设计

    介绍了一种新型的气体泄漏超声检测系统,在分析小孔气体泄漏产生超声波的原理的基础上,阐述了该检测系统的原理及设计方案。该系统能对各种压力容器的孔隙泄漏所产生的微弱超声信号进行精确检测。该系统利用DSP技术对泄漏所产生的超声波信号进行分析处理和声压级计算,从而实现对泄漏的检测及泄漏量的估算。 http://www.instrument.com.cn/download/shtml/044647.shtml

  • 基于高精度外贴式超声液位计的油罐车防盗系统

    基于高精度外贴式超声液位计的油罐车防盗系统

    利用最新的超声技术开发的高精度外贴式超声液位计,测量精度可达0.1mm,可以用于储罐特别是油罐车的交接计量工作。本系统是以高精度的外贴式超声液位计为基础,重点监控罐体内油品的油层和水层的变化,能够实时监控罐车在运输过程中的内两种液体的体积变化情况,还辅以温度检测,根据油品在不同温度下的体积变化情况计算出装油时与到油时的体积变化。http://ng1.17img.cn/bbsfiles/images/2011/07/201107061017_303409_2333795_3.jpg http://ng1.17img.cn/bbsfiles/images/2011/07/201107061018_303411_2333795_3.jpg系统指标:l 液位分辨率:≤0.1mm;l 温度精度:≤0.2oCl 可测壁厚:≤10mm;l 可测液高:≤3m;l 可检测介质:不超过两种液体的可分层液体介质;系统优势及特点1、采用外贴式超声界面仪对罐体内的液位进行检测,避免与罐体内液体进行接触,可以适用于高腐蚀性液体的检测;2、可对具有双层液体层面的罐体进行检测,特别适用于罐内含有两种液体(如油和水)的罐车监控;3、测量精度高,测量精度达到0.1mm量级,对罐体内的液体进行精度计量,真正杜绝非自然损耗的产生,一旦发生液位剧烈变化,系统将自动输出报警提示;4、更加精确的温度测量,通过准确的油品膨胀系数计算,杜绝因温度变化而导致的罐内油品体积变化,进一步降低自然损耗比例。5、安装方式灵活,超声波界面仪直接吸附在罐底,其他部件固定在罐车上即可;6、监测无死角,系统直接对罐体内的液体进行体积测算,不会受到其他外界因素的干扰。

  • 光声显微镜参数

    这款[url=http://www.f-lab.cn/microscopes-system/pam.html][b]光声显微镜PAM[/b][/url]是全球首款覆盖光学分辨率到声学分辨率级别的[b]光声显微镜系统[/b]和[b]光声成像显微镜[/b],是全球[b]光声显微镜品牌[/b]中[b]光声显微镜价格[/b]合理的仪器.在光学分辨率的系统(OR-PAM)和声学分辨率(ar-pam)领域MPA提供商业光声显微镜(PAM)。发展快速扫描光学分辨率的光声显微镜(OR-PAM),能够通过无荧光、荧光吸光剂标记而成像。• 结合OR-PAM系统与明场声学分辨率的光声显微镜(ar-pam),能够获得具有高分辨率和深度组织信息的图像。• 通过提供前沿光声显微镜设备,促进生物和临床研究的创新。[img=光声显微镜]http://www.f-lab.cn/Upload/PAM-Microscope.JPG[/img][b][url=http://www.f-lab.cn/microscopes-system/pam.html]光声显微镜PAM[/url]参数OR-PAM Systems:[/b]Signal penetration depths up to 1 mmLateral resolution down to 5 μmAxial resolution down to 30 μmIntegrated, KHz tunable laser[b]AR-PAM Systems:[/b]Signal penetration depths up to 3 mmLateral resolution down to 45 μmAxial resolution down to 30 μmIntegrated, KHz tunable laser[img=光声显微镜]http://www.f-lab.cn/Upload/microphotoacustics.png[/img]光声显微镜:[url]http://www.f-lab.cn/microscopes-system/pam.html[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制