当前位置: 仪器信息网 > 行业主题 > >

自动变速箱仪

仪器信息网自动变速箱仪专题为您提供2024年最新自动变速箱仪价格报价、厂家品牌的相关信息, 包括自动变速箱仪参数、型号等,不管是国产,还是进口品牌的自动变速箱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动变速箱仪相关的耗材配件、试剂标物,还有自动变速箱仪相关的最新资讯、资料,以及自动变速箱仪相关的解决方案。

自动变速箱仪相关的论坛

  • 【讨论】FEI Tecnai G2 12电镜Y轴变速箱故障

    2007年3月2日,一个灰色的日子。观察人员在看片移动标本时突然发卡,伴随着几声咔咔后再也无法移动标本了。 电话打进FEI维修工程师手机,对方电告可能的故障,按指示拆下可能故障部分,发现Y轴变速箱内输出轴上一个薄薄的(经测量厚度0.1mm)钢片(压住三颗滚珠的钢片)缺了一个小口,滚珠滚动到此时卡住。询问FEI,答复此乃易损件,但无单独的钢片更换,要换就得换整个变速箱,要价6000美刀!主任一听当即抓狂了,6000美刀啊,实验室所有人员辛苦一年也落不下6000美刀啊,全给FEI打工了。 各位使用FEI电镜的兄弟单位,这个变速箱有无更换的历史?我们这台机器才运转2年,2年啊,变速箱已经更换2次了,第一次在刚刚过保的时候坏了,是X轴的,经交涉免费更换了,可这次看来是得自己掏腰包了!

  • 变速箱齿轮油分析

    变速箱油乳化粘状,静止后沉淀。有没有大佬知道什么情况?[img]https://ng1.17img.cn/bbsfiles/images/2019/11/201911110929516523_5065_3241252_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/11/201911110929516064_7132_3241252_3.png[/img]

  • 高低温系列试验箱对温变速率的解释

    高低温系统试验箱对温变速率的解释如下: 1、温度变化试验:为设置一定的温度变化速率进行高温与低温之间的转变。也称之为慢速的温度变化试验,此设备为高低温试验箱,其温变速率是升温1~3℃/min,降温0.7~1℃/min。 2、快速温变试验:目前发现部分企业标准中有此类项目,此类试验属于加速寿命试验方法,故一般不推荐应用于认证试验中。设备名称为温度快速变化试验箱,其温变速率可达15℃/min。 3、冷热冲击试验;在特定时间内进行快速温度变化,低温区、高温区转换时间小于等于15秒。温度恢复时间小于等于5分钟。常用术语中的冷热冲击试验也属于温度冲击试验或高低温冲击试验。

  • 【讨论】讨论 一个物理概念 应变速率与取向

    讨论 一个物理概念 应变速率与取向请大家帮忙讨论一下在牵伸的过程中,应变速率,分子取向和分子松弛速率之间的关系应变速率增加是不是肯定导致非晶取向增大?应变速率的增加与分子松弛速率有什么关系外文文献中有个orientation relaxation 表达的是什么意思,是表达解取向过程还是取向过程?哪个朋友这个方面的资料,可否提供

  • 仪表盘信息能帮助你调整驾驶方式以降低油耗

    随着油价的不断上涨,车辆节油性能的好坏成为了购车者关注的焦点。不同级别的车型,不同排量的发动机,每百公里的油耗不尽相同。目前国内很多的车型,仪表盘信息中都加入了油耗显示的功能,即便是作为家用为主的A级车,如标致307(图库 论坛)、斯柯达明锐等车型,都配备了该功能。通常大部分人都认为油耗显示中的平均油耗比较有价值,可以了解车辆在一定行驶里程(图库 论坛)内的油耗值,而瞬时油耗则没有太多的参考价值,踩踏油门的力度稍有变化,瞬时油耗就会随之改变,看起来太累,而且起步时,瞬时油耗动辄30升以上,让人看得心惊胆战。其实不然,瞬时油耗并不是像上文所说的那样一无是处,如果合理利用瞬时油耗的改变以调整自己的驾驶习惯,随着瞬时油耗的降低,平均油耗不也能随之而下降吗?具体来说,待车辆起步之后达到相对平稳的行驶状态,通过观察瞬时油耗的变化,可以了解此时踩踏油门踏板的力度是否适中、变速箱所处的挡位和速度是否匹配等问题,提升驾驶者对车辆的了解以及培养更好的驾驶习惯。对于一款排量在2.0L左右的车型来说,合理的驾驶方式加上速度与变速箱挡位良好配合,瞬时油耗低至5-6升/百公里,是很平常的事情。

  • 【分享】加工中心在机测量对工序质量的提升(第一部分)

    [摘要]:随着生产模式的转变,加工中心在汽车制造业中的配备数量日趋增多。尤其是用于发动机中的缸体、缸盖,变速箱中的壳体等复杂零件的加工过程中。本文阐述了如何利用机床内在机量仪的在机测量功能,通过对刀具、工件、夹具等的检测和补偿,有效地提升了工件的制造质量和工序质量。文中例举的来自生产实际的典型示例,从不同的角度反映了这种在机检测功能的有效性。[关键词]:在机量仪组成 在机测量功能 典型应用实例 工序质量保证 随着轿车制造业的生产模式从大批量单一品种渐渐演变成中小批量多品种,加工中心在相关企业中的应用日趋增多,尤其是用于动力总成部件中那些复杂零件的加工,如发动机中的缸体、缸盖,变速箱中的壳体等。鉴于这些零件不但形状复杂、工艺要求高,一旦出现废品就会造成很大损失,因此,如何提升加工中心的制造质量意义是很大的。而在机检测功能的设置就是一种十分有效的手段。 1、 在机测量系统的基本组成及主要功能 1.1 在机测量系统的组成 实施在机测量的在机量仪主要由接触式测头、信号接收器和输出电缆(或接口装置)组成,根据传送信号的性质,又分为红外线和无线电等二种。相比之下,后一种的信号传送能力更强些,不但传送距离大,在受到物体阻挡的情况下也不受影响。图一给出了一种典型系统的组成和工作过程:接触式测头的检测结果以红外信号方式发送到安装在加工中心内的接收器,接收器通过输出电缆(或经过接口装置)将信号传送到机床控制系统。目前,检测软件部分两类:由在机量仪厂家提供的全面三维计量在机测量软件,由在机量仪厂家或者机床厂商按实际需求编制好的简单的一维或二维几何特征测量宏程式。目前有很多用户采用后者辅助加工,有普及的势头。 1.2 主要功能在机量仪的接触式测头,测量的对象可以是工件、夹具,也可以是刀具,完全根据不同用户的需要来。设计和实施相应的功能。当检测对象是工件和夹具时,将采用图一中的测头1。此时,接触式测头就象刀具一样,平时存放在加工中心的刀库中,依照不同的要求,在一道加工工序之前或之后调出,再按程序执行自动检测,从而实现某种功能。而当检测对象是刀具,就采用图1中的测头2(也叫对刀仪),这时“座式”的测头被固定在加工中心的机床工作台面上。概括地说,通过在机量仪执行的在机测量,主要可以达到以下目的:刀具状态的检测 对刀具状态的检测也称为“对刀”,参见图二。此时,是利用设置在机床工作台面上的测量装置(对刀仪),对刀库中的刀具按事先设定的程序进行对刀测量,然后与既定值进行比较后作出判断。同时,通过对刀具的检测也能实现对刀具磨损、破损或安装型号正确与否的识别。图二是对刀测量的几个示例:A:正在进行刀具的长(高)度检测,B:正在进行刀具半径方向的测量,C:待检测的刀具此时已破损,通过对刀测量能及时发现并报警。利用对刀仪进行机内对刀,不仅节约了机外对刀时的人力、物力,提高了工效,而且对刀所处的环境与加工状态一致,能最大程度地减少由刀具夹紧力和温度变化带来的影响。 在“刀具状态检测”这种应用场合,检测信号采用的是前述电缆传送方式输入接口装置,或直接与机床数控系统连接。对刀测量装置有接触式和非接触(光学)式等两种,图二是较常用的接触式的示例。

  • 中华人民共和国国家质量监督检验检疫总局《关于进口克莱斯勒牧马人越野车仍然存在着火风险的警示通告》

    关于进口克莱斯勒牧马人越野车仍然存在着火风险的警示通告由于进口克莱斯勒吉普牧马人越野车发生多起起火燃烧,导致车辆损毁的严重事故,国家质检总局于2011年4月发布45号公告,暂停相关车型车辆进口,并敦促制造商尽快查明原因,采取措施消除在用车辆隐患。到目前为止,虽然制造商已经积极查找原因、采取措施,降低了因变速箱过热原因造成火灾的风险,但是近期仍然继续发生数起燃烧损毁车辆事故,相关车型还存在着火风险。为保护消费者和公共安全,根据《进出口商品检验法实施条例》和《出入境检验检疫风险预警及快速反应规定》的规定,现发布关于进口吉普牧马人越野车起火风险的警示通告如下:一、为保护人身和财产安全,防止引发火灾等其他衍生事故,请相关车型用户尽快与维修站联系,安装相关装置,以降低变速箱过热风险。由于火灾隐患并未完全消除,已安装相关降低变速箱过热装置的用户,仍然需要注意使用条件与环境。消费者遇到类似燃烧损毁事故时,还应及时与当地检验检疫机构取得联系。二、敦促制造商尽快组织技术力量查明起火的根本原因,彻底消除起火损毁隐患,降低风险至合理水平。三、各地检验检疫机构要加强监督管理,提醒消费者注意安全防范,督促制造商授权服务站点提高效率落实隐患消除措施,搜集并报告缺陷信息,重大事故及时报告。

  • 【分享】大众单人汽车----RMB4000

    【分享】大众单人汽车----RMB4000

    *买电动车的人后悔了吧*心动吗?*明年将在上海上市的单人汽车 (预计售价人民币4000元 )*一个字"酷",简直没法比喻了 概况: 在汉堡举行的第42次大众公司股东年会上,世界上最经济的小车诞生了。在这之前,没有人见过其真正的面貌,而当这辆车真正的从大众总部沃尔夫斯堡行驶到汉堡年会上时,人们才知道,这是真的。在此之前没有人能想到能建造它。在年会之前,大众公司董事长皮尔希驾驶这辆1升车从公司总部到达汉堡,平均燃油消耗仅每100公里0.99升。这再一次难以致信的证明了大众公司在当今处于业界最前沿的技术。 这次开发的目标是制造一辆安全的,实用的,能适合公路行驶的每100公里耗油1升的汽车。目标确定以后,大众公司研究及开发部就接受了这个挑战开始设计世界上最经济的汽车,仅仅3年时间,并开发了这部“准备上路”的车。从沃尔夫斯堡到汉堡的旅行也证实了这辆车的技术可行性以及非常与众不同的驾驶乐趣。该计划主管Thomas Gansicke说道:“这真的是一个非常令人难以忘怀的经历,在夜晚以每小时100公里驾驶这辆车时,燃油指示器显示你100公里仅仅消耗了1升油,在那个时候什么也没有,只有你头上的点点繁星”。 在开发上最关键的目标亦是最小化所有的驾驶阻力,亦有轻型的车身结构,出色的空气动力学,新开发的轮胎以及其它运行机构部件。 在1升车开发的最起始阶段,不同的驱动概念模似显示只有柴油才是真正的最适宜的驱动系统,仅仅只有这样的燃烧原理能适合能量开发的最大需求。从以往开发的经验来看,3升的路波车便是最好的例子。首先3缸的引擎对于1升车来说是毫无可能的。而2缸引擎也迅速被淘汰掉,最后的解决方案是采用一台只有0.3升排量的1缸自然吸气柴油引擎。这款1升车上装的1缸SDI引擎并不纯粹是从其它车辆上派生出来的,我们更乐意认为它是一台全新的,是公司最高技术的产物。2 个顶置凸轮轴促动滚子摇臂来开合3个气门,2个进气门及一个排气门。2个顶置凸轮轴利用加固的齿形皮带来驱动。引擎采用铝质单体结构,意思是压缩点火引擎的缸头与曲轴都铸为一体,燃油泵壳由镁制成,梯形连杆由微粒加强钛制成,如此多的措施得到的结果是,除去操作液体,例如水跟油,引擎的重量仅仅只有26公斤。 除了减少重量以外,减少燃油消耗也是工作重点之一。最小化摩擦,气缸运转区域采用激光合金,滚子摇臂能在摆动气门时减少摩擦,甚至活塞环的张力都减少了。位于中央位置的SDI柴油引擎横放在后轴的前方,排量299毫升,4000转时生成最大8.5匹马力,2000转时生成最大18.4牛/米的扭力。 较低马力以及扭力输出,非常轻的车身重量(可以与一些休闲型摩托车比较),优秀的空气动力值(风阻系数仅仅0.159,比摩托车更少,更是远远超过现在所有的生产型车)能提供常活泼的性能。例如,这辆1升车能达到120公里的最高时。油箱能装6.5升燃料,也就是说,装满油后你可以行驶650公里。 由于空间限制,引擎变速箱采用了一款新的非常紧凑型的自动顺序式6速变速箱,换档程序经过特别的调校,以优化动力传输,减少燃油消耗。变速器不可能用现成的,而新开发的宗旨仍然是减少重量,变速箱外壳由镁金属制造,所有的齿轮以及轴都是空心的,螺栓由钛制成。另外,特殊的高质润滑油保证这款仅仅重量为23 公斤的6速变速器能够运行得更加圆滑。变速器的机械装置通过传感器由电子液力控制,去掉了传统的离合器踏板。在这里也不需要变速杆,加档以及减档都全部自动化,这样能使引擎与变速器更加完美的合作,减少燃油消耗。档位的选择,前进,后退或者是空档,都可以由驾舱右手边的一个开关来控制。 无论从这辆1升车的前面来看来是从它的侧面来看,外貌看起来更像是一辆过去的运动车而并非一辆研究型车辆。为了达到1升的耗油量目标,风阻系数必须严格控制,1升车确定有2个座位,而车前部必须尽可能的小,这才附合空气动力学,仅有的选择是将2个座位成一条直线排列,就像竞速的滑雪长橇以及滑翔机一样。入口是一个1.5米长的欧翼式车门,从左边开启,这样进出更加方便。 车轮也经过了包围,后轮几乎完全藏于车板以内,前轮的轮盖完全由碳纤维制成。甚至侧面的冷却空气进气口也仅仅是在引擎需要冷却时才打开,否则关闭。从上面看,泪滴似的车体以及车尾急剧收拢的线条非常明显。而空气动力学优化的车底以及后端的分流装置为后轴提供必须的下压力。为了获得更完美的风阻系数,必须去掉车门后视镜,取而代之的是位于车侧转向信号灯上的摄像机,可以从仪表台左右的2个小的LCD显示屏上看到后方情况。泊车时,也可以从位于刹车灯中央的摄像机里获取后方图像。 为了降低车身,采用了镁金属空间框架以及碳纤维外壳,共重74公斤,比铝质的空间框架轻了约13公斤。 安全亦是小车开发的重点之一。在计算机模似辅助下,所有撞击类型在设计期间都经过反复的验证。所谓的“撞击管”,位于车前端,集成了能触发气囊的压力感应器,可吸收全部的变形能量,保持脚部空间不变形。全铝的油箱位于乘客席后碰撞保护区内,采用开放式加注口设计,可自动机械化加油。此外,主动安全也包括最新一代的4通道ABS以及电子稳定程序 悬挂方面也是一项精密的工程。该车采用了双叉臂悬挂结构,上叉臂由镁金属制成,下叉臂以及支点轴承由铝制成。轮毂由钛金属制成,而在轻型车轮轴承里的球则由陶瓷制成。如此一来,整个前轴,包括弹簧避震器在内仅重8公斤。后驱动轴则采用完全不同的结构。大量部件仍以减重为原则:板式弹簧由玻璃纤维制成。横向管以及车轮支架由铝制成。车轮毂由钛金属制成。驱动轴以及车轮轴承都整合在轮轴里。 安全刹车由4轮合金碟盘刹车以及合金刹车卡钳提供保证,整个刹车系统仅重7.8公斤。轮圈以及轮胎都有合作厂家特别的定做,比如轮圈由碳纤维复合材料制成,仅重1.8公斤,比传统的轮圈轻一半。车胎的材质以及胎纹都是特殊设计以减少阻力。另外由钛金属制成的车轮轴承也为特别的设计以获得更低的摩擦。 1升车采用双氙头灯,仅32瓦特,效果却等同于传统的60瓦特头灯。整个头灯元件都由聚碳酸酯制成,重量仅仅有1500克。日光灯,所有的转向信号灯以及后灯簇都采用了LED技术。车内照明也同样采用LED,当在晚上打开车门时还会有电致发光金属片提供必要照明。更多的技术则展现在摄像系统中,该系统有自动识别功能可自动的解锁鸥翼车门以及点火键。车内采用了整洁,运动的设计能为2个人提供足够的空间。塔式的玻璃车顶由聚碳酸酯制成并有防紫外线功能。座椅采用镁金属结构以减轻重量。后座乘客可以很舒适的将脚放在位于驾驶位2旁的脚凳上面。驾驶员面对的是一个平顶的方向盘,座舱的风格就好像置身于一台喷气式飞机上。中央圆形仪表的左右2边是2台显示屏提供后视图像,在前面右边控制台上的是换档开关,电子手刹开关以及启动键。左边控制加热,通风以及车内灯照明。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811271657_120710_1664664_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811271657_120711_1664664_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811271657_120712_1664664_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811271657_120713_1664664_3.jpg[/img]

  • GB/T 228.1-2010方法A应变速率

    试样规格:原始标距30mm,平行部分长度60mm,示例1:GB/T228A224表示试验为应变速率控制,不同阶段的试验速率范围分别是2,2和4。在万能试验机控制系统中使用引申计反馈如何设置应变速度,使用横梁位移试验如何设置加载速度[img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012181624436859_414_3540587_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012181624438012_3978_3540587_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012181624438304_9459_3540587_3.png[/img]

  • 【讨论】如何实施GB/T228中规定的应变速率控制??

    [color=#DC143C][size=4]在GB/T228中规定的下屈服强度的测定中要求使用应变速率进行测量控制,大家在平时的工作中有没有什么好的方法,提供出来和大家分享!问题1、现在我们那些厂家生产的试验机可以实现该种控制方式? 2、如何实现应变速率控制? 3、是否可以根据标准要求通过粗略计算而使用其它的控制方式来实现?[/size][/color]

  • 【转帖】让最新技术为汽车服务--窥探车载传感器趋势

    日新月异的传感器技术正在广泛应用到汽车中,有调查表明,在2010年,平均每一辆汽车中装载的传感器数量将达到150个。4月12日在深圳举行的中国电子展2008汽车电子与车在技术研讨会中,Infineon的专家全面介绍了汽车传感器技术,从中可以窥探汽车传感器发展的最新进展及未来方向。     动力系统:有源传感器引领趋势,巨磁阻效应引发关注     车用传感器可以大致分为3类:动力系统、安全管理系统和车身舒适系统传感器。其中动力系统传感器市场所占比例最大,也体现了汽车传感器的最先进技术。例如,油门踏板位置传感器的角度误差必须在0.4%以内;节气门位置传感器需要极高的可靠性,并要能够在-50度到150度工作。霍尔传感器也需要有较高的灵敏度,需要精确补偿温度变化带来的偏差,并支持模拟或数字的输出。     凸轮和曲轴传感器与汽车的“心脏”发动机密切相关,因此成为动力系统的关键。Infineon汽车电子系统应用工程师陈毅豪介绍到:“有源的凸轮传感器和曲轴传感器能够为系统提供更多的保护,因此是未来的趋势,将得到更广泛的应用”。预计在2009年,将有5820万个有源曲轴传感器投入使用,而无源传感器则将减少到2150万个。     Infineon的工程师陈毅豪还特别介绍了利用巨磁阻效应实现曲轴传感的最新巨磁阻传感器,“巨磁阻效应传感器感应磁场方向的变化而非强度,具有很高的灵敏度,并能感应更大的空气距离”。他还表示,Infineon今年开始生产巨磁阻效应传感器TLE5025C和TLE5027C,这将为系统供应商提供更大范围的选择。          安全管理系统:压力传感器实现侧气囊控制,ABS、方向盘传感、TPMS一个都不能少     汽车安全管理系统也是广泛使用传感器的领域。汽车侧边气囊的控制有加速度传感器和压力传感器两种方案。权威数据表明,与加速度传感器相比,压力传感器在检测侧边撞击的速度方面,比加速度传感器快了将近3倍,而误动作的概率则更小。因此,未来将得到更广泛的应用。英飞凌提供的方案KP106采用压力传感器方案,精确实现侧气囊控制。     汽车ABS系统使用轮速传感器、方向盘的转角传感器和轮胎压力传感器都是安全管理的重要环节。值得一提的是TLE5011360度方向盘转角传感器——这款传感器利用了巨磁阻效应,通过两个GMR全桥产生正弦和余弦函数,从而提供360度的转角范围检测,并达到极高的精度。          车身舒适系统:车门、变速箱、被动安全让汽车更智能     车门模块中,车门把手、车窗控制上使用了直流马达位置传感器,采用分布式门模块架构,并通过LIN总线相连接。变速箱通过使用2轴或3轴角度/线性传感器,能够满足不同的变速箱位置要求并节省成本,具体的传感器选择则要根据汽车变速箱的功能和设计需求来决定。被动安全装置包括座椅承重的检测、安全带打开/扣住的监测、座椅位置调节的检测(保证气囊系统的有效保护)等等,这些控制的细节对汽车传感器的需求也十分可观。     本次汽车电子与车载技术研讨会上,除了探讨汽车传感器技术外,就车载娱乐设备中的电路保护方案也进行了详细的分析。来自的德方纳米科技有限公司的李光伟博士还展望了碳纳米管技术在汽车工业中即将发挥的重大作用。可以发现,汽车电子技术正经历飞速发展阶段,并将更多的新技术融入其中,为提升整车性能服务。

  • 金属拉力试验机注意事项

    金属拉力试验机注意事项:    1、试验之前,必须保证系统预热20分钟以上,从而使温漂影响最小。    2、缓冲器用油应保持清洁,油面高度不足筒深三分之二时应立即换掉。    3、开机前,检查摩擦活动部位是否应加注润滑油。    金属拉力试验机    在加持试片前,必须将制动手柄卡住,加好试片后放开。    5、测力计主轴承不允许加油。变速箱内摩擦轮表面不得加油或溅有油渍,摩擦面应绝对清洁干净,不得将摆臂上的斜面块猛烈冲击。    6、试验完毕,切断电源后,再给试验机作表面清洁处理,及时进行防护。    7、平均每月对拉力机进行2次维护。

  • 【求助】拉伸试验的应力应变速率转换

    AC7101标准中规定:If the specification does not reference a specific strain rate, the strain rate for both room and elevated temperature tensile testing is to be 0.003 to 0.007 inch/inch/minute through yield, and 0.05 inch/inch/minute after yield, with the yield point being determined at 0.2% offset, unless specified otherwise.拉伸试验中应力应变速率屈服前为0.003到0.007 in/in/min,屈服后的速率为0.05in/in/min.而新三思给我们设定的移动速率为2mm/min,这是如何转换的?是否符合以上规范要求?国产设备可以实现应力应变速率控制吗?

  • 【讨论】同事在问我高应变速率的试验机国内哪有

    我同事找我了解高应变速率的拉伸试验国内哪些地方可以做据我了解,应变速率从0.003到100甚至1000的试验机国内是不是就宝钢有?中国科学院有没有这样的设备?他们的设备都同意对外做实验吗?收费情况如何?

  • 车用PP高应变速率下的应力-应变曲线获得方法研究

    [back=#00b0f0][/back][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/dbcfe59c0b32483a9206d9b5264fd3c1?from=pc[/img][back=#f6f9fd]摘要:[/back][back=#f6f9fd]在通常的汽车碰撞CAE仿真分析中,需要用到应变速率从0.01~100 s-1全应变速率下甚至更高应变速率下的应力-应变曲线。当测试速率达到1 s-1甚至更高时,数据的获得就变得困难起来。通常有两种方法:采用方程拟合法 采用液压原理的高速拉伸试验机测试。结果表明,采用方程拟合的方法可以得到比测试得出的最高应变速率高出两个数量级的曲线及特征值;对于达到峰值应力后应力变化较小的曲线,方程拟合法准确性较好,对于达到峰值应力后应力降低或增加的材料,方程拟合法的准确度稍弱。[/back][align=center][/align]关键词:高速拉伸 方程拟合法 直接测试法 非接触式引伸计 CAE分析汽车在进行碰撞过程中,整个过程只有0.1~0.2 s,会产生大量的能量吸收与转移,而这个能量吸收与转移的能力与材料有关。然而困扰汽车设计的一大难题就是选材。现阶段,车用材料制备结构件需要前期进行更多的模拟试验,CAE动态分析是不可或缺的。而车用材料CAE分析面临着动态拉伸数据获得难的问题,也就是说高应变速率下(如应变速率大于1 s-1)的应力-应变曲线获得相当困难。需要材料在高应变速率下的拉伸数据。目前国际上针对非金属材料的高速拉伸测试方法主要有两个:采用ISO 18872:2007《塑料高应变速率下的拉伸性能测试》(由金发科技股份有限公司联合其他单位已经将其等效转化为国家标准发布,以下简称方程拟合法)和采用高速拉伸试验机直接进行测试——直接测试法。方程拟合法是针对塑料高速拉伸测试的标准,计算出塑料在高速下的力学性能。而直接测试法主要是指使用高速拉伸设备直接测试。[align=center][/align][color=#346eb7]01测试原理[/color]方程拟合法:依据ISO 527-2:2012,拉伸应力-应变曲线在0.1~100 mm/s选定速度下测试获得。同时,测量泊松比随应变的变化。由测试结果,可计算出各应变速率下的真实应力和真实塑性应变值。通过数学函数方程可对各应力-塑性应变曲线进行准确模拟。同时,也可以建模分析此函数中的参数随应变速率的变化,从而外推得出较高应变速率下的参数值。通过计算就可获得较高应变速率下的应力-应变曲线。直接测试法:通过设置应变速率或测试速度、接触力、数据采集频率等参数,使用高速拉伸试验机,沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量在这一过程中试样承受的负荷及其伸长。[color=#346eb7]02方程拟合法[/color][b][color=#ff8124]2.1 低速下特征数据的测试[/color][/b]1) 测试速度选择:试样在0.1,1,10 mm/s速度下进行测试。2) 测试样品:对于在屈服应变以下的性能测试(见ISO 527-2:2012),可使用ISO标准中的1A,1B或1BA试样。3) 测试设备选择:对设备的一般要求见ISO 527-1:2012。当测试速度达到10 mm/s以上时,通常要使用液压伺服式测试设备。为顺应大多数厂家的条件,测试时采用的设备为普通拉力机。[b][color=#ff8124]2.2 结果计算[/color][/b]在选定的测试速度0.1,1,10 mm/s下进行拉伸测试,得出达到屈服应变前的工程应力σ,工程应变ε、拉伸模量E和泊松比μ。根据式(1)计算各应变下的真实应力σT:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/66546996b6f5446cbe10899be29cb0b9?from=pc[/img][align=right](1)[/align]式中:σ为工程应力 μ是由工程应变计算的泊松比。根据式(2)计算真实应变εT:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/4b53cfd50166404c8b22f0fbf14e55b2?from=pc[/img][align=right](2)[/align]根据式(3)计算各应变下的真实塑性应变A:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/2a452345dabb46348dddd8b3f4ccb12c?from=pc[/img][align=right](3)[/align]式中:εe为弹性部分的应变,考虑到εe?1时不用再计算真实弹性应变,因此式(3)做了这样的近似处理。[b][color=#ff8124]2.3 应力塑性应变曲线建模分析[/color][/b][color=#ff8124]2.3.1 低速下参数拟合[/color]根据式(4)进行拟合。拟合模型派生出的参数σ0,σf,B,β的数值,从而使每一测试速度下的真实应力σT与计算得出塑性应变A能够很好地契合。[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/011433bece884a1db7393cae475e59dc?from=pc[/img][align=right](4)[/align]式中:σ0表示无塑性应变时的应力,其值取决于代表应力-应变曲线的线性段的斜率E,σf是高塑性应变时的极限应力。参数B和β决定平均塑性应变及应变范围,在这个范围内,真实应力随着真实塑性应变的增加而增加。[color=#ff8124]2.3.2 高速下方程参数拟合[/color]将参数σf(每一测试速度下)与塑性应变速率的对数作图。将数据进行最佳的线性拟合,并将直线外推至最大测试速率以上两个数量级的应变速率。在此范围内可通过图形或以下公式得出任一应变速率下的σf 的值:[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/a84ed35824264686a35416f6ed88ff75?from=pc[/img][align=right](5)[/align]式中:C为应力轴上的截距 a为曲线斜率。计算有效塑性应变速率A′ 时,可以通过计算峰值应力下的塑性应变随时间的变化速率,如没有峰值应力则采用屈服应力。通过在不同应变速率下的试验数据拟合式(4)的参数值,获得每一个参数的平均值,从而得出参数σ0,σf,B,β的单一数值。[b][color=#ff8124]2.4 高应变速率下材料的应力-应变曲线[/color][/b]根据方程拟合法的原理可知,采用方程拟合法得到高应变速率下的应力-应变曲线,需要用到式(4),而式(4)适合于带有屈服的样品的拟合。因此对于脆性材料便不适合应用此公式得到高应变速率下的应力-应变曲线。对于聚丙烯(PP)、聚碳酸酯(PC)韧性材料,可以采用方程拟合法得到高应变速率下的应力-应变曲线。根据测试所得数据,将某PP材料以及某PC材料使用式(4)以及式(5)进行拟合的各参数如表1所示。[align=center]表1 拟合得出的参数[/align][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/6117d354716a41d0b81e4ffbc7fa0588?from=pc[/img]根据上述拟合的参数,得出高应变速率下的PP,PC应力-应变曲线,如图1,2所示。图1,2中曲线1,3,5分别为0.1,1,10 mm/s速度下测试所得的结果,曲线2,4,6分别为0.1,1,10 mm/s速度下根据式(4)拟合的结果,曲线8,10为采用式(4)与式(5)拟合的结果。[color=#346eb7]03[/color][color=#346eb7]直接测试法[/color]通过设置应变速率或测试速度、接触力、数据采集频率等参数,使用高速拉伸试验机直接进行测试。测试设备应至少可以进行12 m/s速度下的拉伸测试。为实施此速度下的拉伸测试,设备应采用液压伺服式,实际测试速度允许偏差在±15%以内。可见测试装置的设计是非常重要的,使用高硬度的测力传感器(如压电式的)和轻质高刚度的部件是必要的。对于引伸计的选择,通常选择非接触式的引伸计。且引伸计的数据采集频率需要足够高。采用直接测试法得出PP,PC在100,1 000 mm/s测试速度下的结果(图1,2中曲线7,9)。测试设备:Zwick/Roell HTM 2512型高速拉伸试验机 设备测试速度范围:0.0001~12 m/s 引伸计:非接触式光学引伸计。[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/4789d25a65d94e5d87b5df466682d0b5?from=pc[/img][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p1-tt.byteimg.com/origin/pgc-image/5899018541ef4d27915483314e45059a?from=pc[/img][align=center]图1 PP材料的真实应力-真实应变曲线[/align][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/13a12a741fe1467d8a9bb253abf2cafc?from=pc[/img][img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p6-tt.byteimg.com/origin/pgc-image/52d4386c1dca4fa5baef3cbe192b18f8?from=pc[/img][align=center]图2 PC材料的真实应力-真实应变曲线[/align][align=center][/align][color=#346eb7]04 分析与讨论[/color]两种方法均可以得出高应变速率下的应力-应变曲线,其在操作过程中差异明显,但在结果上,对于进行测试的两种材料而言,差异不大。由图1,2可见,采用方法拟合的曲线与采用直接测试得出的曲线在100,1 000 mm/s(高于最高测试速度两个数量级)时吻合情况尚可,对于CAE模拟所需的关键数据可以得出较准确的值。但是仔细观察两个曲线,发现对于PP材料而言,随着应变的增加,应力增加到最大值后变化幅度较小,而采用方程拟合法拟合时,由于方程本身的特性,达到屈服应力后,应力变化小,不会出现增加或降低很大的情况,与材料实际测试曲线吻合较好。而观察PC的测试曲线时发现,PC材料本身的应力达到最大值后,由于材料本身的原因塑性段会出现一个急速的力值降低再升高的过程,而式(4)本身描述的曲线确是塑性应变很小的,可见,对于曲线类似PC类(塑性段应力值降低)的材料采用式(4)很难达到很好的拟合效果,但是对于弹性段和应力的拟合是可以接受的。然而,在应力峰值出现后,受材料分子排布的刚性影响,真实应力随着应变增加或降低的材料也是较多的,如果真的要达到一致性较高的模拟,可以建议在式(4)的基础上加一个类似抛物线的参数项得到,即[img=车用PP高应变速率下的应力-应变曲线获得方法研究]https://p3-tt.byteimg.com/origin/pgc-image/5dbb3c6963c04605b96702b456bce8d1?from=pc[/img][align=right](6)[/align]其中,δ用来描述在应力出现峰值之后的应力下降,F为应力最小时的塑性应变值,H是高塑性应变时的极限应力。式(6)中的参数H仍然比式(4)中的σf稍大一些,因为要弥补由加入类抛物线参数项而引起地峰值之后的应力值降低。然而经过试验证明,即使是添加了类抛物线的参数项,仍然很难达到类似前文中PP材料拟合的一致性,对于达到应力峰值后应力增加或降低的材料,无论是哪种CAE软件中的本构关系,都很难达到一致性较高的拟合。因此,采用方程拟合法只能近似的模拟而不能完全替代高速拉伸测试仪给出的实际测试结果。[b][color=#346eb7]05 结论[/color][/b][color=#ff8124]经过理论分析与试验证实:[/color]1) 采用所述的方程拟合的方法可以得到比测试得出的最高测试速度(应变速率)高出两个数量级的测试速度下(应变速率下)的曲线及特征值。2) 对于选用的PP材料而言,采用方程拟合的方法得出的数据与实际采用高速拉伸测试仪得出的数据吻合情况较好,对于CAE模拟所需的关键数据可以得出较准确的值 但是对于选用的某PC材料而言,两种方法得出的数据有差异,且此差异可能会影响后续应用于CAE仿真分析的结果。经过多次验证,无论是采用哪种CAE软件中的本构关系,对于达到峰值应力后应力降低或增加的材料, 都很难得到实际测试曲线与拟合曲线结果一致性很高的曲线,乃至根据方程的缺陷做了一些改变,按照现有的技术,仍然很难得到一致性很好的拟合,可见采用方程拟合法最终只能近似的模拟而不能完全替代高速拉伸测试仪给出的实际的测试结果。3) 采用方程拟合法测量的材料性能数据精度还不能评估。欲使用方程拟合法获得高应变速率下的应力-应变数据时,建议低速下的拟合的精度尽量高。

  • 【分享】GFG-500高效沸腾干燥机维修保养操作规程

    1、日常维修保养1.1操作人员在每次操作之前先检查蒸汽阀、压缩空气及各量程表是否正常。1.2检查上、下气囊密封圈是否有凸起,平头螺丝是否松脱,防止料车推入时撞坏。1.3检查料斗的叶桨是否过紧,叶桨过紧加上物料的阻力,造成搅拌马达传动负荷增加,使传动凸块折断或马达烧毁。1.4检查上、下气囊密封圈的气压是否在0.1~0.15mpa以下,气压过高容易引起密封爆裂,过低起不到密封作用出现漏粉,影响生产效率及干燥质量。1.5检查压缩空气压力是否过高:1.5.1容易造成冷热风门气缸冲力过大使风门活接折断或密封胶损坏、漏气影响干燥效果。1.5.2布袋柜架气缸推力过大,推杆容易弯曲。2、定期维修保养2.1定期对中效过滤袋每月清洗一次,从沸腾机风口进入,松脱框架螺丝,取出网袋先用清洁剂浸泡30分钟,再用清水冲洗、烘干。2.2定期对搅拌装置中的变速箱清洗加润滑油。2.3定期对料车的传动齿轮加润滑油,填写设备润滑记录。

  • 冲击试验机加荷时如何解决振动这个问题

    1.电动机有较大振动引起共振。2.径向柱塞油泵的变速箱内齿轮副啮合不良3.溢油阀稳压弹簧压力过大4.送油阀内有杂质或锈蚀等原因5.用油粘度过低,活塞周围大量溢油或高压管等处漏油;6.油泵钢球与球座不密合或脏污,活塞上的弹簧断裂或弹力过小,柱塞运动受阻等;7.油路系统中有大量空气8.机械共振,来源于附近其它机器的影响9.安装地基不牢或地脚螺丝松动以上这几点是冲机试验机产生振动的主要原因,因此操作人员必须掌握这几点,操作上多加注意,避免试验误差。

  • 古安泰高清内窥镜

    古安泰[b][url=http://www.coantec.com/news/Details/226]高清内窥镜[/url][/b]功能特点包括以下五点:  1、技术先进:工业内窥镜采用最新电晶体CCD摄像和高亮度LED光源技术,视频图像明亮,显示图像清晰、色泽逼真、分辨率高。 2、强抗液性:从远端探头到手持柄,同三维系列工业内窥镜具有强耐水性,并且耐矿物、合成润滑油、航空燃油、煤油、汽油和柴油性极佳。3、经济实用:工业内窥镜性价比高,物超所值,该款无论是价格还是性能,在市场上均具有很大的竞争性,是您进行管道视频检测、精密仪器检测等的首要选择。4、操作简单:配有外置可充电池,便携式高清晰彩色液晶显示器,极大的方便了户外长时间的使用,并可配专用视频采集卡进行实时抓拍,一键便能实现。可与监视器或显示器连接,实时高清晰显示检测图像。5、坚固耐用:工业内窥镜线缆和镜杆基本都采用金属制成的。摄像头采用采用防刮防油污的玻璃壳,精密模具注塑成型,部分零件采用不锈钢铸压成型,保证产品经久耐用,防水,耐磨,耐腐蚀,提高了在恶劣环境下的耐用性。本产品适用于:1.气管/水管道清洗:有助于检查管道之前之后的清洁,防锈,防腐,防尘,放裂痕2.汽车行业:检查引擎,提高发动机,变速箱,消声,散热器,燃料管等部件的质量3.工业机械:用于检查发动机的伤痕或磨损,变速箱,液压系统,大大缩短了停机的时间4.航空工业:用于涡轮,叶片,燃烧室的定期检查或机体的检查,以及火箭发动机的研开发制造5.船舶工业:用于检查锅炉,汽轮机,柴油发动机,管道6.电子工业:用于确认产品的布线状况,检查机器的工作状况等

  • 热风循环烤箱的结构和保养说明选择标准等等

    热风循环烤箱的结构和保养说明(1)工作室采用优质钢板或不锈钢板、同时采用不锈钢管状电加热器,整机使用寿命长。高温风机热风内循环,温度均匀,工作效率高。  (2)工业电烤箱的外壳由冷轧钢板制成,外壳与内胆之间用陶瓷纤维+岩棉充填或者硅酸铝纤维板(效果比前者好些),形成可靠的隔热层。加热器位于工作室底部或者顶部。采用名牌 电气部件,运行稳定维护成本低。   (3)采用数字PID自动恒温仪表,清晰醒目,操作方便。工业烤箱用久了就需要保养,根据时间的不同可分为日保养,月保养,半年保养,下面就不同的时间具体地介绍烤箱的保养方法:一、烤箱日保养a:打扫表面及内腔灰尘,保持机器干净、卫生。b:检查电流表电流跟正常时是否一样,如有异样,通知维修工检修。c:突然停电,要把加热开关关闭,防止来电时自动启动。d:检查风机运转是否正常,有无异常声音,如有立即关闭机器并通知维修工检修。二、月保养a:检查通风口是否堵塞,并清理积尘。b:风机运转是否正常。c:维修工检查电流是否正常。d:检查温控器是否准确,如不准确,请调整温控器的静态补偿或传感器修正值。e:检查发热管有无损坏,线路是否老化。f:检查延时器是否准确,误差是否允许。三、半年保养a:检查线路及开关是否正常。b:电机变速箱加油。c:变压器绝缘不少于5兆欧,如达不到,必须把变压器重新干燥。d:反光罩用柔软碎布沾酒精擦干净。当然有些烤箱烘箱没有的就不用检查了选择好的工业烤箱的标准作为烤箱设备专门生产企业来做个介绍,工业烤箱是用于工业的烘干设备。是用于工业领域的。需要着重下注意这点。1、订做。产能确定尺寸规格。满足生产需求。产能高,可以选择履带式工业烤箱。就是我们说烘干生产线,隧道炉,烘道。2、温度。选择比实际使用温度高10度即可。根据工艺要求,计算好实际要求的温差,以保证烘烤的效果。举例:如果使用温度是150度,220度,360度,440度,按最高设计温度500度做。4个温度,如果是同一种产品。控制上最好选用可控硅。不同的产品,使用时低温状态下,温差要稍微大一些。150度和220度的实际使用效果,没有低温烤箱好。使用中温500度烤箱,150度烘烤温差比低温250度烤箱要高2~5度。3、放料。怎么把产品放进去。可以给烤箱分层。配置托盘,有网盘,实体盘,冲孔盘。多的话可以用料架,车架。但注意一个问题。操作人员是否方便操作。举例说:高1500宽1500深度850mm的烤箱。工业烤箱如果做烤盘放物品。就要考虑操作人员能不能拿得动的问题。很多工厂里操作人员都是女孩子。身高也1500mm多。如果要她举起那个1500*850规格的烤盘。有点难度哦。还不说要烘烤的产品多重。4、摆放场地。如果烤箱是放置在楼层上。要考虑能不能进门,进电梯。其实,都是一些技术上要满足的问题。烤箱没有多大的技术难度。结构简单。很容易被仿造。建议签署技术协议进行性能验收比较好。工业烤箱操作方法 (1)请正确接上三相电源,零线及地线。 (2) 打开电源开关,电源指示灯亮。仪表有显示:5秒钟自检。自检完毕后,进入加热状态,通过 (5)▲两个键和[/c

  • 意大利BIMAL超高压动态冲击试验机,意大利BIMAL弯曲绕组冲击试验台

    Bimal-泵阀试验台既有可满足大部分产品测试需求的标准试验台以提供专业性、可靠性和有利性的试验,也可根据客户的不同需求来定制。Bimal测试机已在中国经过多年市场验证,获得了众多客户的广泛认可。标准测试设备包括脉冲试验台、爆破试验台、齿轮泵测试台等。除标准测试设备,还可以根据客户需求定制用于马达、阀门、制动器、变速箱、车桥等等设备的试验台。您仅需要告诉我们你们的产品规格和测试需求,我们就能利用自己的专业知识为您量身定做优越的产品。[img]https://ng1.17img.cn/bbsfiles/images/2023/02/202302230816460071_8183_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/02/202302230816459368_8065_1602049_3.png[/img]

  • 微机控制冲击试验机在加荷过程中会出现震动现象

    微机控制冲击试验机的的试验往往是冲击试验机是主要是用来做材料在动负荷下抵抗冲击的试验,以测定材料的冲击韧性指标是否满足标准要求。作为一种精密仪器微机控制冲击试验机如果使用年限很长之后,由于机械的磨损,操作的不当等等,会出现一些小问题,加荷时振动(指针抖动)就是比较常见的问题之一。那么冲击试验机加荷时为什么会振动呢?是什么原因造成试验机的指针抖动呢? 造成产生加荷时振动(指针抖动)现象的原因有很多,主要有以下几个原因: (1) 电动机有较大振动引起共振。 (2) 径向柱塞油泵的变速箱内齿轮副啮合不良; (3) 溢油阀稳压弹簧压力过大; (4) 送油阀内有杂质或锈蚀等原因; (5) 用油粘度过低,活塞周围大量溢油或高压管等处漏油; (6) 油泵钢球与球座不密合或脏污,活塞上的弹簧断裂或弹力过小,柱塞运动受阻等; (7) 油路系统中有大量空气; (8) 机械共振,来源于附近其它机器的影响; (9) 安装地基不牢或地脚螺丝松动; 以上这几点是微机控制冲机试验机产生振动的主要原因,因此操作人员必须掌握这几点,只有掌握了这几点才能针对性的解决为什么冲击试验机在试验过程中会出现抖动的现象。

  • 拉力试验机维护须知

    拉力机的用处认真的很多,因为无论是在钢材的检测,还是木质的分析都会用到电子拉力试验机,这么大的一个群体在使用,当试验机出现问题的时候,不能每次都要去找专业人员去维修,这样的维修效率低,而且也会带出一些不利要的资金投入,机器和人是一样的,人需要日常的锻炼来增强自己的抵抗力,机器也是一样,要时常的去维护和保养,这样拉力试验机才能保持最好的工作状态,给你带来最大的经济效益,下面就请科新试验仪器的技术给大家介绍一下拉力试验机怎么去维护和保养,希望大家能够了解。 1、试验之前,必须保证系统预热20分钟以上,从而使温漂影响最小。 2、缓冲器用油应保持清洁,油面高度不足筒深三分之二时应立即换掉。 3、开机前,检查摩擦活动部位是否应加注润滑油。 4、在加持试片前,必须将制动手柄卡住,加好试片后放开。 5、测力计主轴承不允许加油。变速箱内摩擦轮表面不得加油或溅有油渍,摩擦面应绝对清洁干净,不得将摆臂上的斜面块猛烈冲击。 6、试验完毕,切断电源后,再给试验机作表面清洁处理,及时进行防护。 7、平均每月对拉力机进行2次维护。

  • 【讨论】2009年锂离子电池实现飞跃

    【讨论】2009年锂离子电池实现飞跃

    09年锂离子电池实现飞跃(一):全球主要厂商纷纷采用 富士重工业在2007年秋季举行的东京车展上展出的5座EV概念车“G4e CONCEPT”。配备锂离子充电电池,持续行驶距离的目标为200km。 [img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902230916_134698_1604910_3.jpg[/img]图1:日产汽车将于2010年上市HEV。(a)HEV用变速箱,(b)锂离子充电电池模块。   2009年车载锂离子充电电池市场将正式形成。这是因为日本及海外汽车厂商纷纷开始在乘用车上采用锂离子充电电池。在日本国内厂商中,丰田汽车、富士重工业、三菱汽车已经决定采用,而在欧美,戴姆勒也表示采用。另外,日产汽车、德国奥迪、美国通用汽车也准备在2010年采用。   决定混合动力车(HEV)及电动汽车(EV)的性能最为最重要的充电电池将发生巨变。原因是丰田汽车、日产汽车等日本顶级厂商将在2009年以后相继推出配备锂离子充电电池的车型。   对象涉及HEV、EV、插电式混合动力车(PHEV)等多个领域。丰田表示,将从2009年开始在子公司——松下EV能源小批量生产用于PHEV的锂离子充电电池,2010年开始正式量产。   2000年在“Tino Hybrid”款式上率先配备锂离子充电电池的日产也将于2010年量产配备锂离子充电电池的HEV和EV。HEV预定为后轮驱动车,目前已经公开了变速箱以及横置配备在行李舱内的锂离子充电电池(图1)。该电池将由日产与NEC、NEC东金合资成立的Automotive Energy Supply(AESC)提供。   除丰田、日产以外,其他主要厂商也将陆续采用锂离子充电电池(图2)。富士重工业预定2009年量产以“Plugin Stella Concept”为原型的EV,该车将与日产一样,采用AESC制造的电池。另外,三菱汽车也将采购与GS Yuasa Corporation(GS汤浅)等合资的Lithium Energy Japan(LEJ)制造的电池,于2009年开始量产EV“i MiEV”。   本田计划2009年追加HEV新车型,并于2010年在“飞度”中追加HEV款式,只是目前尚未表明在普通HEV上采用锂离子充电电池。但是,该公司于2008年11月在日本国内开始租售的燃料电池混合动力车“FCX Clarity”配备了锂离子充电电池,替换了此前一直使用的电容器。   在海外厂商中,大众集团旗下的德国奥迪预定于2010年上市HEV,其中的锂离子充电池将由三洋电机从2009年开始量产。而美国通用汽车决定于2010年上市的HEV中,锂离子充电电池也将由日立车辆能源(Hitachi Vehicle Energy)从2009年底开始量产。(未完待续,记者:林 达彦)

  • 气密性测试仪有几种气密检测方法

    气密性测试仪有几种气密检测方法今天小编就和大家聊聊[url=http://www.szzw188.com][b]气密性检测仪[/b][/url] 常常用来测试产品的气密性,但我们经常用到哪些方法呢?接下来小编就会一一介绍给大家认识希望大家有所帮助。第一种、差压测试法:差压测试方法是在压力测试时,添加了差压传感器。一般差压传感器量程为2000Pa,分辨率0.05%或0.005%。充气时,测试阀组打开,差压传感器两端压力一样;稳压开始时,测试阀组关闭,差压传感器右侧压力恒定,另一侧由于连接到测试工件,产品端存在泄漏,左侧压力下降。差压传感器对比两端的压力,进而测试出微小泄露。第二种、直接压力法:直接压力法是通过调压阀直接往产品内充一定压力的的压缩气体。稳压后,压力传感器检测一段时间内压力下降或者泄漏量。第三种、质量流量法:主要用在发动机缸体变速箱壳体总成测试上,可减少温度等环境因素对产品的影响。充气时,同时往产品端和对比容腔端同时充气,稳压后停止充气。若产品端有泄漏,容腔内的气就会往产品端流动,此时可以用质量流量计测试容腔端往产品端的泄漏率。第四种、定量测试法:定量测试法是将工件放入一个密封的容腔内,容腔需要做一个和产品形状类似的仿形容腔,尽量使得被测产品和容腔内壁之间的间隙小。测试仪器的内部原理是先将充气阀打开,将固定压力的压缩空气充入一个仪器内部自带的参考容积,仪器自带的参考容积充入一定量压力的气后,充气阀关闭,测试阀组开,参考容积的压力就释放到了测试容腔内。以上小编所讲到的四种气密性检测仪的检测方法是目前最先进的测漏方法了,如老铁们有更好的气密性检测方法可以留言与小编商讨商讨。

  • 【分享】加工中心在机测量对工序质量的提升(第二部分)

    机床加工参数的设定 通过在机量仪的在机测量,间接或直接地获取加工中心在执行下道工序时最合适的的加工参数,从而可大大提高工件的制造质量。这种有针对性的、智能化的工作方式在那些有配合关系或特殊要求的场合应用较多,如带缸套的缸体上平面加工、缸盖燃烧面的加工等场合。 确保正确的加工状态:工件、夹具的找正和补偿 所谓“找正”,是指为了保证工件的正确安装、定位而采取的相应措施。至于存在“不正”,则既有夹具方面的原因,也有工件自身因素的影响。无疑,加工状态的找正是确保工件加工质量的基础。另外,对于夹具“找正”过程中测得的偏差,以及由于受到温度变化和刀具磨损等渐变因素作用,加工状态的稳定性所发生的会影响到制成品质量的变化,在必要时还需采取一些补偿措施。在机测量系统在期间也发挥了重要的作用。 工件的自动检测 在一道工序完毕后,或者在所有工序都已完成后再对工件进行自动测量,即直接在机床上实施对制成品的检验,是机内在机测量的又一种功能。此时,相当于把一台坐标测量机移到了机床上,显然,这能大大减少脱机测量的辅助时间,降低质量成本。事实上,现今这种在机测量功能也确已十分强大,除了可进行各种几何元素的快速检测外,利用专门开发的软件还能完成脱机编程,通过在电脑中模拟,还可避免在机测量中可能发生的干涉、碰撞等现象。 2、应用实例 加工中心多年前在国内机械制造业已有所应用,但在机检测系统则还是近十年来才出现的一种过程控制设备和方式。由于能显著提升过程控制能力,提高制造质量、工作效率和降低差错,汽车行业、模具、航天航空及其他制造行业对其的应用逐渐广泛起来,而在汽车行业,汽车发动机、变速箱等工厂的应用日趋增多。以下一些来自汽车行业的生产实际的示例提供了充分的说明。2.1、温度补偿和刀具磨损补偿 10年前,某发动机厂正在验收一条柔性缸盖自动生产线,在对其中二台加工中心几项关键线性尺寸参数进行设备能力评定时,发现机器能力指数都能满足要求。但当执行过程能力评价时,即对延续二班或更长时间的抽检数据进行统计分析时,就出现分散性较大,过程能力指数、值偏低的情况,即工序质量达不到规定的要求。经过对可能引起的原因较全面的剖析,确认是环境温度变化造成的,显然,若不采取补偿措施就难以消除由此引起的误差。最后,通过给机床添加了在机检测功能,终于彻底解决了问题。方法是:在刀库中配一触发式测头,根据预先设定的频次(如1次/10件),如同一把刀具般地取出,打在安装工件的夹具上的某一固定位置。由于正确地判断出这一位置的变化与受控关键尺寸之间存在着线性相关,因此就可以根据测得值的变化来调整进刀量,从而有效地实施了补偿。 同样地,进行温度补偿或刀具磨损补偿也可采用另一种方法。不久前,南方一汽车发动机厂为了确保加工缸盖上平面后的尺寸精度,采取了将在机量仪的测头打在铣削完毕后的工件表面上,按每10件1次的间隔进行测量。若发现有较大偏差,即根据设定的补偿方式自动调整加工参量。一般来说,受温度变化或刀具磨损的影响而带来的波动呈现规律性,据此可确定相应的补偿方式。2.2、机床加工参数的设定图三中的铝质缸体需锒嵌缸套,缸套是外购件,其安装平面(见图中绿色箭头所指)低于缸体上平面(见图中红色箭头所致),这台加工中心的一道工序即是加工该缸套安装平面。为了确保缸体上平面至安装平面的轴向距离h能控制在规定公差范围内,机床内设置了在机检测系统。 这道工序需控制的h值是由缸体的底平面到上平面的高度 和缸套的高度决定的,即: h= --L 由于缸体底平面固定于机床夹具的支承面,后者是加工的基准面,而L是定值,因此为了确保得到一致的h值,就必须通过在机检测获取每个工件的 值后,再来确定对应的切削量m: m= --(h+L) 具体做法是图三中的触发式测头顺序在缸体的上平面测量4个点,并按得到的数据取平均值,然后由之前的已设定值来求出相对应的切削量,作为下道工序加工缸套安装面时的依据。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制