当前位置: 仪器信息网 > 行业主题 > >

传递函数测量

仪器信息网传递函数测量专题为您提供2024年最新传递函数测量价格报价、厂家品牌的相关信息, 包括传递函数测量参数、型号等,不管是国产,还是进口品牌的传递函数测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合传递函数测量相关的耗材配件、试剂标物,还有传递函数测量相关的最新资讯、资料,以及传递函数测量相关的解决方案。

传递函数测量相关的资讯

  • 光伏研究人员的测量新‘利器’
    英国输力强最新打造的&ldquo 一站式&rdquo 光电化学测试系统ModuLab DSSC&ndash 全面满足光电研究者的需求 模块化,集成式的Modulab DSSC 光电化学测试系统,是由位于英国法恩伯勒(Farnbrough)的输力强(Solartron Analytical)工厂,专为染料敏化太阳能电池研究而开发的&ldquo 一键式&rdquo 集光学与电学为一体的测试系统,既可用于进一步开发染料敏化太阳能电池的研究,亦可应用于其它光电化学的研究体系。 英国输力强深知许多用户对于染料敏化太阳能电池的表征技术并不是非常熟悉,所以,其最新产品ModuLab DSSC的核心设计理念就是带给用户(即使初学者)&ldquo 一键式&rdquo 数据分析的体验,无需象以往一样,对频域技术相关知识有所需求。当然,有经验的用户更可通过强大的序列试验设置程序来建立和开发新的试验类型。 英国Bath大学物理化学教授,DSSC研发及光电化学测试体系传递函数技术的业界翘楚&mdash &mdash Laurie Peter博士指出:&ldquo ModuLab DSSC基于输力强世界领先的传递函数测量技术,而开发出的一款易使用,高质量的用于表征染料敏化太阳能电池的测试平台。&rdquo Peter教授作为ModuLab DSSC产品研发的技术顾问,确保了该系统可以满足光电研究人员绝大部分的需求。该系统还植入了以往传统应用中难以做到的新功能,这其中包括自动运行和自动分析功能,即只需点击3次鼠标就能省却300次复杂的单个步骤。 不同于其它系统,ModuLab DSSC可允许所有的测试都可在一个序列试验中完成,且不会产生冲突,这点大大提升了效率及用户体验:ModuLab DSSC配备了一个准直聚焦的高功率光源,以及一个10MHz高速硅光电探测器的光学平台,且每一个探测器都内置了NIST(美国国家标准与技术研究院测试标准)可追溯的传感器。该高功率LED光源,提供了杰出的热稳定性能,完全无需昂贵的电子控制反馈装置来保证热稳定性。 Modulab DSSC不仅仅是一个光电化学测量体系,它集成了英国输力强功能强大的频率响应分析和恒电位仪工艺,以及全套的标准电化学技术,这些都将大大扩展其应用领域。现有的 ModuLab系统亦能通过配备选项卡和光学平台来升级成为ModuLab DSSC。 *英国输力强 是材料和电化学测试分析的设备及软件市场的领导者,现隶属于美国AMETEK集团的子公司AMT公司(Advanced Measurement Technology Co. Ltd)。美国AMETEK集团,是全球电子仪器和电化学设备的领先制造商,年销售额达到36亿美元。更多信息获取请登录www.solartronanalytical.com/。
  • 许人良:气体吸附测量孔径分布中的密度函数理论
    在气体吸附实验中,一定重量的粉体材料在样品管中通过真空或惰性气体净化加热和脱气以去除吸附的外来分子后,在超低温下被抽至真空,然后引入设定剂量的吸附气体,达到平衡后测量系统中的压力,然后根据气体方程计算出所吸附的量。这个加气过程反复进行直至达到实验所预定最高压力,每一个压力以及单位样品重量所吸附的气体量为一数据点,最后以相对压力(试验压力P与饱和蒸汽压Po之比)对吸附量作图得到吸附等温线。然后从到达最高压力后抽出一定量的气体,达到平衡后测量压力,直到一定的真空度,以同样方法做图,得到脱附等温线。实验的相对压力范围P/Po可从10-8或更高的真空度至1,根据吸附分子的面积σ,使用不同的吸附模型,例如Langmuir或BET公式,即可算出材料的比表面积。然而,从气体吸附得出材料的孔径分布就不那么简单了。当代颗粒表征技术可分为群体法与非群体法。在非群体法中,与某个物理特性有关的测量信号来自于与此物理特性有关的单个“个体”。例如用库尔特计数仪测量颗粒体积时,信号来自于通过小孔的单一颗粒;用显微镜测量膜上的孔径时,测量的数据来自于视场中众多的单个孔。由于这些物理特性源自于单个个体,最后的统计数据具有最高的分辨率,从测量信号(数据)得出物理特性值的过程不存在模型拟合;知道校正常数后,一般有一一对应关系。而在群体法中,测量信号往往来自于众多源。例如用激光粒度法测量颗粒粒度,某一角度测到的散射光来自于光束中所有颗粒在该角度的散射;用气体吸附法表征粉体表面与孔径时,所测到的吸附等温线与样品中所有颗粒的各类孔有关。群体法由此一般需要通过设立模型来得到所测的物理特性值及其分布。群体法表征技术得到的结果除了与数据的质量(所含噪声、精确度等)外,还与模型的正确性、与实际样品的吻合性以及从此模型得到结果的过程有关。几十年前,当计算能力很弱时,或采用某一已知的双参数分布函数(往往其中一个参数与分布的平均值有关,另一个参数与分布的宽度有关),或通过理论分析,建立一个多参数方程,然后调整参数拟合实验数据来得到结果(粒径分布或孔径分布),而不管(或无法验证)此分布是否符合实际。在粒度测量中,常用的有对数正态分布函数、Rosin-Rammler-Sperling-Bennet(RRSB)分布函数、Schulz-Zimm(SZ)分布函数等;在孔径分布中,常用的有Barrett-Joyner-Halenda(BJH)方法,Dubinin-Radushkevich(DR)方法、Dubinin-Astakhov(DA)方法、Horwath-Kawazoe(HK)方法等。随着计算能力的提高,函数拟合过程在群体法粒径测量中已基本被淘汰,而是被基于某一模型的矩阵反演所代替。在激光粒度法中,这个进步能实现的主要原因是球体模型(一百多年前就提出的Mie光散射理论或更为简单的,应用于大颗粒的Fraunhofer圆盘衍射理论)相当成熟,也能代表很多实际样品,除了长宽比很大的非球状颗粒以外。在孔径分析中,尽管函数拟合还是很多商用气体吸附仪器采用的分析方法,但矩阵反演法随着计算机能力的提高,以及基于密度函数理论(DFT)的孔径模型的不断建立与反演过程的不断完善而越来越普及,结果也越来越多地被使用者所接受。在孔径测量方面的DFT一般理论源自于1985年一篇有关刚性球与壁作用的论文[ⅰ]。基于气体吸附数据使用DFT求解孔径分布的实际应用开始于1989年的一篇论文[ⅱ],此论文摘要声称:“开发了一种新的分析方法,用于通过氮吸附测量测定多孔碳的孔径分布。该方法基于氮在多孔碳中吸附的分子模型,首次允许使用单一分析方法在微孔和介孔尺寸范围内确定孔径的分布。除碳外,该方法也适用于二氧化硅和氧化铝等一系列吸附剂。” 该方法从吸附质与气体的物理作用力出发,根据线性Fredholm第一类积分方程从实验等温线数据直接进行矩阵反演的方法算出孔径分布。所建立的密度函数理论针对狭窄孔中的流体结构,以流体-流体之间和流体-固体之间相互作用的分子间势能为基础,对特定孔径与形态的空隙计算气态或液态流体密度在一定压力下作为离孔壁距离的函数,对不同孔径的孔进行类似计算,得出一系列特定压力特定孔径下单位孔容的吸附量。基于这个模型,可以计算某个孔径分布在不同压力下的理论吸附等温线,然后通过矩阵反演过程,以非负最小二乘法拟合实际测量得到的等温线,从而计算出孔径分布的离散数据点。上述文章所用的模型是较简单的均匀、定域的、两端开口的无限长狭缝。自此,随着计算机能力的不断提高,30多年来这些模型的不断复杂化使得模型与实际孔的状况更加接近:从定域到非定域,从一维到二维,从均匀孔壁到非均匀孔壁;孔的形状从狭缝、有限圆盘、圆柱状、窗状,到两种形状共存;从较窄的孔径范围到涵盖微孔与介孔范围,从通孔到盲孔;吸附气体从氮气、氩气、氢气、氧气、二氧化碳,到其他气体;吸附壁从炭黑、纳米碳管、分子筛,到二氧化硅及其他材料[ⅲ];总的模型种类已达四、五十种。矩阵反演的算法也越来越多、越来越完善,同时采用了很多在光散射实验数据矩阵反演中应用的技巧,如正则化、平滑位移等。当前,于谷歌学者搜索“DFT adsorption”,论文数量则高达56万篇,其中包含各类专著与综述文章 [ⅳ] 。相信随着计算技术的不断发展与计算速度的不断提高,DFT在处理气体吸附数据中的应用一定会如光散射实验数据处理一样取代函数拟合法,成为计算粉体材料孔径分布的标准方法。而商用仪器的先进性,也必然会从传统的硬件指标如真空度、测量站、测量时间与参数,过渡到重点衡量经过其他方法核实验证的DFT模型的种类以及矩阵反演算法的稳定性与正确性。参考文献【i】Tarazona, P., Free-energy Density Functional for Hard Spheres, Phys Rev A, 1985, 31, 2672 –2679.【ⅱ】Seaton, N.A., Walton, J.P.R.B., Quirke, N., A New Analysis Method for the Determination of the Pore Size Distribution of Porous Carbons from Nitrogen Adsorption Measurements, Carbon, 1989, 27(6), 853-861.【iii】Jagiello, J., Kenvin, J., NLDFT adsorption models for zeolite porosity analysis with particular focus on ultra-microporous zeolites using O2 and H2, J Colloid Interf Sci, 2022, 625, 178-186.【iv】 Shi, K., Santiso, E.E., Gubbins, K.E., Current Advances in Characterization of Nano-porous Materials: Pore Size Distribution and Surface Area, In Porous Materials: Theory and Its Application for Environmental Remediation, Eds. Moreno-Piraján, J.C., Giraldo-Gutierrez, L., Gómez-Granados, F., Springer International Publishing, 2021, pp 315– 340.作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及近期由化学工业出版社出版的《颗粒表征的光学技术及其应用》。扫码购买《颗粒表征的光学技术及其应用》
  • 超构光子产业化:无法测量就无法改进
    引言:10月10日上午,Photonics Insights 的直播专场上,南京大学李涛教授以“一段成像技术的非凡旅程——从超透镜到超构透镜”为题,系统的阐述了超构成像领域的科学本源及最新的产业化进展,为观众呈现了一场精彩纷呈的知识盛宴。在此之前,美国超构表面光学元件供应商 Metalenz 和中国 VCSEL 供应商纵慧芯光公司联合推出了新型图案投影仪 Orion,该产品的创新之处在于将 VCSEL 与超构表面光学元件相融合,为用户提供了高性能、更紧凑、低成本的结构光解决方案。Orion 的推出标志着超构透镜的产业化进入一个新的阶段。图1:Metalenz和纵慧芯光的合作(图片来源:Metalenz官网)李涛教授表示:颠覆传统光学的新型成像架构在研究者的持续努力下日臻成熟,越来越多的创新企业正加入超构表面光学的变革性应用之中,各种新场景、新构型层出不穷,加速从实验室到量产的进程已成为行业共识。伟大的科学家开尔文爵士曾说过:“无法测量就无法改进”,发展测量技术成为打通超构表面光学元件从设计到量产的关键一环。 为什么说无法测量就无法改进? 测量对集成电路的发展至关重要。由于晶体管的形貌直接影响器件的半导体特性,因此对形貌的微观量测(Metrology)成为集成电路制造的关键工艺。然而与集成电路芯片不同的是,超构表面光学器件的局域结构变化并不造成器件光学性能的全局影响,仅观察器件的微观形貌不足以反映其质量,这在引入拓扑光子结构之后尤为如此。2021年,一篇发表于 Light: Science & Application,题为 Phase characterisation of metalenses 的研究论文表明,相位分布才是反映超构透镜光学性能的本质属性,通过测量相位,能够从全局上表征器件的光学性能,从而为设计优化与工艺改进提供直接反馈。图2:集成电路中的测量(图片来源:KLA官网)相位测量,超构透镜产业化进程的推动力让我们通过一个例子来探讨这一问题。两个超构透镜样品 Metalens A(简称A)和 Metalens B(简称B),我们利用扫描电子显微镜(SEM)对二者进行了微纳结构的测量,如图2所示。从 SEM 图可以看出,A样品局部的纳米柱子形状相互连接,呈现出不规则的形状,而B样品的纳米柱子相对独立,形状较为完整。从 SEM 的结果来看,B似乎更优,但在光学性能方面的二者具体表现如何,以及如何进一步优化,这些问题仅通过 SEM 的结果无法直接解答,我们需要深入研究它们的内在光学属性。图3:Metalens A和Metalens B的SEM图接下来,我们测量了这两个超构透镜样品调控的相位分布,如图4所示。从结果我们不难发现,无论是A还是B,其相位都呈现出圆环状分布,但值得注意的是,A的相位分布中缺陷相对较多。通过与理想超构透镜相比(图4),我们可以明显看出,A的相位分布梯度不够明显,相位范围也未覆盖 2π,而B的相位范围覆盖了 -π 到 π,且相位梯度更为明显,说明B的性能比A更优。图4:MetalensA和MetalensB实验测得的相位分布图5:MetalensA和MetalensB实验测得的相位分布x截面与理想值的对比从图5结果我们不难发现,对于微观结构测量结果较优的B样品,其相位分布与理想值相比也有较大的差距,特别是在透镜中央区域,相位分布几乎为一个常数,缺乏明显的相位梯度。通过重新检查设计图,发现造成实测相位分布与理想值差距较大的原因是透镜在中央区域的设计上仅使用了同一个参数的纳米柱子,无法构建相位梯度分布,需要优化设计,并且在制备加工上需要进一步优化工艺。这些实验结果表明,只有通过准确测量超构表面光学元件的相位属性,我们才能全面理解其性能,进而实现对超构表面光学元件的有效改进。MetronLens:超构透镜光学检测的智能化平台MetronLens 超构透镜光学检测系统, 深刻揭示了超构表面、超构透镜、微透镜阵列等平面光学元件的内在物理特性,为验证设计的准确性、制备加工工艺的优化提供了强有力的检测工具。图6:MetronLens超构透镜光学检测系统这一系统综合了显微成像技术、离轴数字全息技术以及远场成像技术等多种先进技术。通过宽波段色差校正和消像差设计,实现了在微米尺度下 400~1700nm 的三维光场分布、相位分布和远场分布的原位检测。此外,该系统还具备对焦距、波相差、泽尼克像差、点扩散函数(PSF)、调制传递函数(MTF)、斯特列尔率、数值孔径等关键性能指标的分析功能。图7:超构透镜的光场分布检测结果图8:多类型超构透镜样品的快速检测 图9:相位分布的3D展示图10:相位解包裹的3D展示推荐阅读:[1] Zhao M, Chen M K, Zhuang Z P, et al. Phase characterisation of metalenses[J]. Light: Science & Applications, 2021, 10(1): 52.[2] Li T, Chen C, Xiao X, et al. Revolutionary meta-imaging: from superlens to metalens[J]. Photon. Insights, 2023, 2: R01.[3] Chen M K, Liu X, Wu Y, et al. A meta‐device for intelligent depth perception[J]. Advanced Materials, 2023, 35(34): 2107465.[4] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.[5] Shen Z, Zhao F, Jin C, et al. Monocular metasurface camera for passive single-shot 4D imaging[J]. Nature Communications, 2023, 14(1): 1035.
  • RIGOL DG4000系列函数/任意波形发生器获“美国R&D100大奖”
    2012年6月21日,美国R&D Magazine宣布,来自北京普源精电科技有限公司(RIGOL)的DG4000系列函数/任意波形发生器获得2012年R&D 100年度产品大奖。R&D 100年度产品大奖,用于表彰年度科技创新产品的一项大奖。是由专家和杂志编辑共同组成的评选专家委员会评出,其评审标准重点在于科技创新产品和与市场需求紧密结合的产品。  R&D 杂志创刊于1959年,是一份工业研究领域的权威杂志。为全世界的科学家、工程师和研发队伍服务。R&D 100年度产品大奖,是用于表彰年度科技创新产品的一项大奖。评审机构均由独立专家、专业顾问、大学教授和工业界的研发人员组成。他们在评审领域中,具有出色的专业技术和经验。评选标准为科技创新产品和与市场需求紧密结合的产品。并且,评审人员与入围产品没有利益关系,做到了公平、公正。 R&D 100 大奖自设立50年以来,已成为全球的高科技领域极为推崇的大奖,被誉为科技界的“创新奥斯卡奖”。  DG4000 系列函数/任意波形发生器,是RIGOL继DS6000系列数字示波器在2011年获得R&D100 大奖后,再次摘得此项大奖,这是中国公司首次两次获奖。如果说DS6000系列获奖,使得RIGOL的产品能够第一次与安捷伦、卡尔蔡司、戴尔、戴安、日立、英特尔、洛斯阿洛莫斯国家实验室、麻省理工大学、三菱、吉时利、美国航空航天局、橡树岭国家实验室、赛默飞世尔、3M等国际公司和著名实验室的创新产品同台交流,RIGOL公司的科技创新能力得到国际的认可,标志着一个中国创造的高技术产品跨入世界主流产品行列 这次DG4000系列再次获奖,则充分体现了RIGOL公司正在创新之路上从突破走向成熟,内部良性的创新机制正在形成 同时这更是对RIGOL公司“不断创新”理念的有力诠释。全部获奖名单(点击这里)RIGOL DG4000系列函数/任意波形发生器拥有如下的优越性能指标:1. 标配等性能双通道2. 500MSa/s采样率,14bits垂直分辨率3. 2ppm高频率稳定度,-115dBc/Hz的低相位噪声信号输出4. 高达150种内建波形5. 丰富的模拟和数字调制功能(AM、FM、PM、ASK、FSK、PSK、BPSK、QPSK、3FSK、4FSK、OSK、PWM)6. 标配分辨率达7 digits/s,带宽达200MHz的高精度频率计7. 高达16次的谐波信号发生器功能8. 7英寸高清屏(800x480 pixels)RIGOL化学分析仪器L-3000高效液相色谱系统,2011年荣获BCEIA金奖Ultra-6000系列紫外可见分光光度计   RIGOL简介  RIGOL是业界领先从事测量仪器研发、生产和销售的高新技术企业 是中国电子仪器行业协会、中国仪器仪表协会会员。公司拥有国际水准的先进技术,拥有数量众多的专利和计算机操作系统软件著作权,自主知识产权填补了国家空白。  RIGOL坚持自主创新,现已研发并生产了七大系列、数十种产品,具体包括数字示波器、函数/任意波形发生器、数字万用表、虚拟仪器、可编程直流电源、高效液相色谱仪、紫外可见分光光度计和多种数字化测试仪器。产品广泛适用于生产制造、工业控制、广播电视、药物分析、食品安全、环保、化工、农林畜牧和科研教学等诸多领域。公司总部设在北京,苏州设有研发生产基地,上海,深圳,西安,Cleveland(美国)、Munich(德国)设有分公司 在国际市场上,产品已销往全球60多个国家和地区,并在全球50个国家注册了 RIGOL商标。  RIGOL科技园区占地约120亩,是国内技术领先的生产、研发基地,其中技术人员占40%。RIGOL拥有世界领先的SMT产线、精密的CNC数控机床加工中心和注塑车间、先进的影像分析系统及多种生产线设备,建立了一流的生产工艺及严格的质量保证体系,已通过ISO9001质量管理体系认证和ISO14001环保管理体系认证。  RIGOL现有员工400余人。在研发、销售和管理人员中大学本科学历占98%,其中硕士、博士占研发人员的70%。RIGOL将秉承持续为客户创造价值的理念,不断创新,成为测试测量仪器领域的世界级供应商和客户首要选择的商业伙伴。  这里汇聚了诸多博士、硕士和本行业的优秀人才,组成一支具有极强创新意识和能力的精英队伍。其宗旨是开展原创性技术创新和集成性技术创新,确保公司现有产业持续稳定发展和保持长期市场竞争优势。
  • 科学家辐照缺陷影响热离子发电器件石墨烯电极功函数研究获进展
    近期,中科院合肥研究院核能安全所在辐照缺陷影响热离子发电器件石墨烯电极功函数研究方面取得新进展,研究成果发表在国际材料薄膜领域期刊 Applied Surface Science 上。   石墨烯作为微型堆热离子发电器件电极涂层材料具有巨大的应用潜力,能够显著提升电极表面的电子发射能力。热离子发电器件在服役过程中,电极材料将面临高能粒子的辐照作用,早期的理论计算和实验研究表明,在石墨烯内部辐照诱导的缺陷类型主要是Stone-Wales缺陷、掺杂缺陷和碳空位等。缺陷的产生将会影响电极间隙内碱金属和碱土金属在石墨烯表面的吸附性质,进而改变石墨烯涂层的电子发射性能(功函数)。   针对上述问题,科研人员通过第一性原理计算方法在原子尺度上研究了缺陷石墨烯表面碱金属和碱土金属的吸附和迁移行为。研究结果表明:(1)石墨烯表面缺陷位点作为陷阱对金属原子具有捕获作用,Stone-Wales缺陷和碳空位缺陷附近的金属原子扩散受到了严重的阻碍,在掺杂B或O的石墨烯表面,金属原子迁移势垒也有不同程度的升高;(2)Stone-Wales缺陷、碳空位缺陷及掺杂石墨烯的表面功函数均显著增加,电子发射能力明显降低,这主要归因于电偶极子形成概率的降低以及金属内聚能的增加。本研究工作为石墨烯涂层材料在反应堆热离子发电器件中的应用提供了理论指导。   上述研究工作理论计算部分在合肥先进计算中心完成。图1 热离子能量转换示意图图2 碱金属和碱土金属在原始和含氧缺陷石墨烯表面的迁移行为
  • 卫星干涉成像光谱仪和CCD立体相机通过鉴定
    由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。  以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干涉光谱成像技术,在国际上首次对月球成功实施了可见-近红外宽谱段连续光谱及光谱图像探测,是国内首台成功应用的星载干涉成像光谱仪 该仪器具有很高的信噪比(S/N)与调制传递函数(MTF),是一台集光、机、电、算为一体的高端光学遥感设备 该项目在“行平场”、“不同光谱仪的对比方法”、“干涉仪胶合时剪切量的精密控制”以及“具有特色的付氏光学系统设计”方面形成一批自主知识产权,申请发明专利四项,已授权三项 该仪器成功应用于嫦娥一号探月卫星,获取了全月面79%区域清晰的多光谱图像,是国际上第一次获取480nm-960nm范围的32谱段的连续光谱和图像,为月球科学家研究月表物质成份提供了具有自主知识产权的原生信息源,并产生了大量的应用成果。  以杨元喜院士为组长的专家鉴定委员会认为,嫦娥一号卫星CCD立体相机优化集成了光、机、电等高新技术,确保了月面高精度成像和摄影测量,获得了与国外现有月球图像相比更为清晰、层次更加丰富的全月面图像 该相机采用广角、远心、消畸变光学系统及带有掩模板的面阵CCD立体成像等技术,有效减小了附加曝光影响、系统体积及定标压力 相机的立体成像系统具有高的信噪比(S/N)与调制传递函数(MTF) CCD立体相机已经成功应用于嫦娥一号探月卫星工程,申请发明专利2项(公开中),授权实用新型1项,为月球科学家研究月球的地形地貌与地质学构造提供了具有自主知识产权的原生信息源,产生了大量的应用成果。  鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪和CCD立体相机总体水平为国际先进,并建议这些技术在国防、民用及深空探测等领域进一步推广应用。
  • 长春光机所所长宣明:深切缅怀“光学泰斗”王大珩先生
    2011年7月21日,王大珩同志永远地离开了我们。  王大珩同志的一生是奋斗的一生、功勋卓著的一生。他将毕生的心血都倾注在祖国的科技事业上,将祖国的科技进步视为最高目标,殚精竭虑、无悔付出,为祖国的科技发展、经济建设、国家安全和社会进步做出了卓越贡献,被国内外公认为中国光学、应用光学、光学计量、光学工程和光学仪器的主要奠基人,也是我国最具影响的战略科学家之一。  艰苦创业 开辟光学事业新天地  1952年,在新中国光学事业一穷二白的情况下,中国科学院决定在长春成立中国科学院仪器馆。大珩先生被任命为馆长,担当起组建中科院仪器馆的重任。  在新中国成立之初,国家急需大量精密科学仪器,但当时国内还不能熔炼光学玻璃。大珩先生运用他在英国昌司(Chance)公司工作的经验,在玻璃配方、退火工艺及测试技术等方面做出重要贡献。1953年12月,中国第一炉光学玻璃熔制成功,结束了中国没有光学玻璃制造能力的历史,也为新中国光学事业的发展揭开了序幕。  在大珩先生的带领下,长春光机所在建所不到十年的时间里,相继建立起了光学设计与检验、光学工艺、光学镀膜、光学计量测试等十多个学科的工艺和技术基础,初步构建了布局合理、结构完整、功能齐备的光学及精密机械学的研究基础,进而一举改变了新中国在该领域一片空白的局面。相继研制成功我国第一台电子显微镜、第一台高温金相显微镜等一大批高水平的科研成果,创造闻名全国的“八大件一个汤”,奠定了我国国产精密光学仪器的基础。  从1954年-1978年,由大珩先生领导或参与分建援建的研究所、学校和企业达到十几家。这些机构现在都已经发展成为我国光学事业发展和光学专业人才培养的重要基地。  勇于担当 做国防光学工程的领航人  早在英国留学期间,大珩先生非常注重光学技术在国防事业中的重要作用,这为长光所致力于国防光学工程研究奠定了基础。从20世纪60年代开始,他带领长春光机所转向以国防光学技术及工程研究为主,先后在红外和微光夜视、核爆与靶场光测设备、高空和空间侦察摄影等诸多领域做出了重要贡献。  上世纪60年代初,面对国外敌对势力对我国的封锁,党中央决定独立自主地发展我国原子弹、导弹技术。在靶场上建立大型光学弹道测量系统(150工程)是其中重要课题之一。对于当时的长春光机所来说,要完成这样重大的工程项目困难是极大的,全所上下对是否要接受这个任务存在分歧。在这种背景下,大珩先生毅然决定承担起150任务,并亲自担任项目的总工程师。他提出的工程总体方案和一些技术路线,对保证仪器性能指标和缩短研制周期起了关键作用。经过五年多的努力,150工程顺利通过鉴定,并于1966年底参加中程地地导弹首次试飞试验,获得了主动段飞行弹道参数,总体性能达到国际先进水平。150工程开创了我国独立自主地从事光学工程研制的历史,建立起了必要的光学领域技术基础和相应学科,使我国的光学技术向前迈进了一大步。  1980年5月,我国发射远程运载火箭试验中,在大珩先生的领导下,长春光机所等研制的激光、红外、电视、电影经纬仪及船体变形测量系统两项光学工程,出色完成了火箭再入段的跟踪测量任务,独立解决了当今世界远洋航天测量的稳定跟踪、定位、标校和抗干扰等技术难题。正是由于大珩先生当年对长春光机所的准确定位,使长春光机所至今致力于国防光电领域的研究工作,并取得了较大成绩。  由于大珩先生在我国国防光学科研中做出突出贡献,1980年被授予全国劳动模范称号,并作为首席获奖者在1985年获得国家科学技术进步特等奖。  矢志教育 桃李天下自成蹊  大珩先生虽然未长期专业从事教育工作,但他特别热心教育事业,关心国内光学专业人才的培养。1952年,在他的建议下,浙江大学在国内首先设立光学仪器系 1958年,他倡导创办了我国第一所光学专业高等院校——长春光学精密机械学院(现为长春理工大学),并兼任院长,他亲自制订教学大纲,亲自为学生授课 1978年,他负责筹办哈尔滨科学技术大学(现为哈尔滨理工大学),兼任校长 1984年,参加全国人大第六届二次会议期间,联名提出设立“教师节”的议案。  他亲自培养的研究生虽然只有10余名,因其注重对学生学术思想的启发和对独立工作能力的锻炼,他培养的研究生成才率很高。“知识分子的优秀代表”蒋筑英是大珩先生的第一个研究生。大珩先生为他选定了光学传递函数这一开创性研究课题,通过悉心指导,蒋筑英在同事们的帮助下建立了我国第一台光学传递函数测量装置。此后,他又在光学传递函数研究方面取得了一个又一个重要成就,先后解决了国产镜头研制工作中的一些关键技术难题。上世纪70年代,大珩先生与蒋筑英一起攻关,提出了彩色复原质量问题的新方案,最后攻破了这一技术难关,使人们得以看到图像清晰、色彩逼真的彩色电视。  大珩先生不仅不遗余力地亲自培养学生,对国家培养人才的体制和机制更为关心。他在“百千万人才工程”座谈会上曾讲到:“要创造条件、改善环境、增加投入,为人才的成长提供更多的机遇。”他的许多关于人才培养的观点都是远见卓识、先人一步。  大珩先生时刻胸怀祖国和人民,一生情系科技事业。他在一篇发展我国航空事业的建议文章中写到:“我们这些老科技工作者的最高追求就是为国家、为民族负更多的责任,尽更多的义务。今年我已95岁了,仍希望为祖国和人民服务鞠躬尽瘁。”他用真切而朴实的语言,表达了作为一名科学家对祖国和人民的无限热爱和对自己未竟事业的不舍和眷恋。  斯人已逝,精神永存。我们缅怀大珩先生的遗志,更要追寻大珩先生未竟的事业。
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 久之洋:2023年度业绩亮眼,营收与净利润双增长,红外热像仪业务成主要增长动力
    近日,湖北久之洋红外系统股份有限公司(简称“久之洋”)公布了2023年年度业绩报告。久之洋成立于2001年,是中国船舶集团有限公司【CSSC】旗下上市公司,控股股东为中国船舶集团第七一七研究所,于2016年在深交所创业板发行上市,是国家专精特新小巨人企业、工信部工业强基“传感器一条龙”示范企业。公告显示,报告期内,公司实现营业收入76,969.88 万元,同比增长 3.50%;归属于上市公司股东的净利润8,292.46 万元,同比增长 1.00%,在复杂的内外部环境下,保持了经营业绩持续稳定。公司主营业务包括红外热像仪、激光传感器、光学镜头及光学元件和星体跟踪器等业务。自主研发的红外热像仪涵盖全球已有全产品谱系,包括短、中、长波各种波段,以及面阵、线阵、扫描各种体制型号。激光技术专注于信息激光并有限拓展能量激光,产品覆盖激光照射、激光告警、激光通信、激光对抗等各种应用领域,尤其在激光小型化方面,处于国际领先水平。在光学膜系和光学镜头方面,设计与工艺功底深厚,拥有超亿元的硬件投资,特别是在定制特种光学制造方面具有较强的竞争优势。公司的光学星体跟踪器团队是国内最早开展星体跟踪相关技术研究和产品研制的团队之一,经过多年的技术积累和产品迭代优化,光学星体跟踪器业务的市场占有率位居国内前列。得益于公司在技术自立自强的坚持和产品质量精益求精的追求,产品已广泛应用于红外侦查、激光照射、导航定位、红外测温、成像光谱、气体探测、安防、监测、测量等领域。报告期内,从产品线角度分析,红外热成像仪领域实现了56470.3万元的营业收入,占据了全年营业收入的73.37%,相较于上一年度,实现了21.53%的同比增长,稳居首位。此外,久之洋在2023年度的研发投入高达9245.53万元,实现了21.76%的同比增长,占公司营收比重达到12%。公司攻克了包括高精度运动控制、全国产化低成本光纤激光测距、杂散光分析与抑制、随机网栅电磁屏蔽膜、临近空间大视场白天稳定测星等关键技术,不仅显著提升了公司在红外、激光、光学、星体跟踪业务领域的技术实力,也进一步增强了产品的市场竞争力。报告期内,公司申报发明专利82项,其中国家发明专利48项,获受理65项,获得专利授权22项,登记软件著作权8项;发表相关领域的专业技术论文73篇。公司的“自由曲面光学系统制造关键技术及产业化应用”项目获得天津市科学技术进步特等奖。高低温环境下光学窗口透射比及传递函数测试仪和红外光学传递函数测量仪项目顺利通过鉴定验收,填补国内外高低温传函测量领域的技术和产品空白。2024年,久之洋将进一步加大力度发展新兴产业,在军品领域,围绕防务产业,加快技术研发创新成果转化,推出新产品快速抢占市场,主动引导用户需求;在民品领域,将以成像信号处理、激光器及应用、光学设计及特种光学加工等核心技术为基础,面向需求、面向产业链,由“项目思维”向“产品思维”转变,持续拓展民品市场,从而形成产业齐头并进发展格局。并强力推进重大专项立项实施,深化完善科技创新平台体系,聚力攻克一批关键核心技术,不断强化“数智赋能”建设。
  • FLIR红外热像仪,助力高校提升学生工程实践能力
    随着教学理念的不断提升,各大高校越来越注重对于学生理论知识实践性应用的培养,特别是在工程应用方面,对于各种工程器材的熟悉和应用非常重要。为此,美国FLIR公司与高校实验室合作,使得学生能够通过FLIR红外热像仪进行光电实验,助力高校提升了学生的工程实践能力。一直以来,受限于实验器材的高昂成本,物理学院和光电学院对于光电技术研发和应用领域后备人才的培养有所力不从心,特别是对于红外热像仪的应用,更是缺乏实操经验,本科的教学计划中只有实践理论的学习,却没有相关内容的教学实验和实践环节,所以亟需完善红外热像领域人才培养体系中的实验教学部分。为了改变以上现状,北京理工大学光电学院光电创新教育实验基地针对光电信息工程专业本科四年级毕业实习课程进行了改革提升,在原有非成像光电测温系统的校内实习内容基础上,增加“光电成像测温系统”的实践教学内容,建成以“非接触式光电测量”为核心内容的实践教学内容体系,推出了“理论知识+专业实践”的教学体系,弥补了学生“光学不练”的教学缺憾,,有力的提高了本科教学体系对于工程实践能力的培养水平。最新提出的实践教学内容体系主要分为三个环节,分别是:红外热像仪的概述和FLIR C2 Education kits操作方法;研究测量距离和被测物体辐射率对测温结果影响;应用黑体模拟器的红外热像仪传递函数实验与研究。一、入门学习:如何使用红外热像仪首先,学生使用红外热像仪拍摄单片机电路板上电时的红外图像,实验场景如图1所示,然后将拍摄的图像导入到FLIR红外图像分析软件FLIR Tools+中。图1. 使用红外热像仪拍摄单片机系统电路板图2. 单片机系统电路板工作时的红外图像如图2所示可以清晰看到电路板最热区域Ar1为电路板的散热片,将该区域最热点温度记录下来。二、初步应用:验证测量距离和辐射率对测温结果的影响1、如何正确的调整测量距离测量温度?首先将平行线红外目标板接上电源,选取一块便于观察的区域,使用FLIR热像仪在距平行线目标板大约30cm、50cm、100cm的地方分别采集红外图像。 图3. 表面平行分布四条电热丝的平行线红外目标板 图4. 使用红外热像仪拍摄目标板图5. 平行线红外目标板的红外图像然后将不同距离下拍摄的红外图像导入到FLIR Tools+ 软件中(如图5),测量同一区域Ar1内最高温度点的温度。并且将温度和拍摄距离一一对应填入下面表1。通过热电偶接触式测温测得Ar1区域内最热点温度在38℃左右,通过对比可知红外热像仪在距离30cm时,测量的温度最接近真实温度。距离(CM)温度(℃)10034.65036.13038.2表1. 不同距离下的温度值在对比过程中,学生们可以清晰的看到红外热像仪中间有一个圆形测温点,只有当被测目标覆盖测温点大小(大约7 个像素)时,测量温度才是准确的。当被测目标不能覆盖测温圆环时需要拉近测量距离或者更换像素更高的红外热像仪,如果更远距离就需要借助长焦镜头来提高测量距离。如图6所示圆环所覆盖区域包含了被测对象和背景,那么31.8℃的测量温度是不准确的,正确的做法是图(b)所示。 图6. 借助红外热像仪中心圈来判断距离远近的图示(其中(a)为错误示范,(b)为正确示范)2、如何通过FLIR红外热像仪测试辐射率对测温结果的影响如图7向贴有黑色电工胶带和铝箔胶带金属杯中倒入适量的热水,保证水位超过了胶带最上沿。将红外热像仪的辐射率调为0.95,记录此时三种材料的测量温度。以温度最高的材料为基准,改变辐射率,使另外两种材料的测量温度等于基准材料,记录此时另外两种材料的辐射率。图7. 使用FLIR C2 拍摄外表面贴有电工胶带和铝箔纸的热水杯下图8是所示是电工胶带、铝箔纸、金属水杯在同一画面下的红外图像。图8. 贴有黑色电工胶带和铝箔胶带金属热水杯的红外图像调整辐射率可以得到不同温度(见表2):被测物体\设置不同辐射率辐射率0.95辐射率0.54辐射率0.25电工胶带sp155.2℃76.5℃123.5℃铝箔SP342℃55.2℃87.1℃不锈钢水壶SP2 32.6℃37.6℃55.2℃表2. 不同辐射率下各材料的温度值表格通过对比分析结果,学生们可以清楚的了解到辐射率对于测温结果的影响:被测物体辐射率影响测温准确度,非金属辐射率大于金属辐射率,高辐射率的非金属更接近真实温度。三、深入应用:对传递函数进行研究 图9. 使用FLIR C2 拍摄黑体模拟器内部的刀口红外图像图 图 10. 黑体模拟器刀口俯视图如图9接通黑体模拟器电源,盖上其上方的圆孔。将热电偶插入到黑体模拟器内部测温,当热电偶测温表上显示的温度稳定时,也就是黑体辐射处于稳定状态时,将FLIR C2红外热像仪镜头贴近黑体模拟器开孔,采集此时的图像。图10是黑体模拟器刀口俯视图,刀口结构是在铝板的右侧贴有黑纸。如图11是刀口的红外图像。图11. FLIR C2 拍摄的刀口红外图像在FLIR Tools+软件中改变辐射率数值,使得所测材料显示的温度与数字温度计上相同,记录此时的辐射率,分别测得铝和黑纸的辐射率。然后在FLIR Tools+软件中导出带有全辐射温度信息的CSV文件,即可将每个像素点的温度值导出。将图像的温度原始数据导入至MATLAB中,编程绘制出MTF曲线。如下图12、13、14所示分别是刀口边缘扩散函数、线扩散函数和调制函数MTF曲线。图12. 灰度曲线 图13. 点扩散函数图14. MTF曲线 FLIR红外热像仪走进学校实验室,从根本上解决了学校目前“光学不练”教学尴尬问题,通过“理论知识+专业实践”的教学体系,三个环节由简入繁,层层递进,不仅有效地提高了学生动手实操的能力,也为培养光电技术人才做出了应有的贡献。
  • 1400万!2023TY023农业农村部农业设施新材料重点实验室建设项目
    一、项目基本情况项目编号:1210-2341YDZB7068项目名称:2023TY023农业农村部农业设施新材料重点实验室建设项目采购方式:公开招标预算金额:14,000,000.00元采购需求:合同包1(X射线高分辨率显微断层扫描仪等设备):合同包预算金额:6,950,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置X射线高分辨率显微断层扫描仪1(台)详见采购文件3,300,000.00-1-2其他试验仪器及装置显微激光共聚焦拉曼光谱仪1(台)详见采购文件2,000,000.00-1-3其他试验仪器及装置超高效液相色谱仪1(台)详见采购文件600,000.00-1-4其他试验仪器及装置矢量网络分析仪1(台)详见采购文件900,000.00-1-5其他试验仪器及装置传递函数吸声系数测量系统1(台)详见采购文件150,000.00-本合同包不接受联合体投标合同履行期限:合同签订后X射线高分辨率显微断层扫描仪240日、传递函数吸声系数测量系统30日,其他设备120日内完成供货、安装调试和验收并交付采购人使用。合同包2(高温凝胶色谱仪等设备):合同包预算金额:7,050,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他试验仪器及装置高温凝胶色谱仪1(台)详见采购文件2,150,000.00-2-2其他试验仪器及装置原子力显微镜1(台)详见采购文件1,100,000.00-2-3其他试验仪器及装置热重-红外-气质联用系统1(台)详见采购文件2,000,000.00-2-4其他试验仪器及装置X射线荧光(XRF)1(台)详见采购文件700,000.00-2-5其他试验仪器及装置低场核磁在线变温成像与分析系统1(台)详见采购文件1,100,000.00-本合同包不接受联合体投标合同履行期限:合同签订后高温凝胶色谱仪和X射线荧光(XRF)180日,其他设备120日内完成供货、安装调试和验收并交付采购人使用。二、获取招标文件时间: 2023年12月29日 至 2024年01月05日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南农业大学地 址:广州市天河区五山路483号联系方式:020-852800792.采购代理机构信息名 称:广东有德招标采购有限公司地 址:广州市天河区天河北路626号保利中宇广场A栋25楼联系方式:020-836295903.项目联系方式项目联系人:吴小姐电 话:020-83629590
  • 快讯!MOTUS波浪传感器成功整合到大型浮标平台
    背景在恶劣环境中的设施将大大增加对气象海洋学参数信息的需求。处于这些环境中的操作员们希望能减少安装的传感器平台数量以提升效率。欧洲大型传感器平台的一家主要制造商选择与我们合作,结合利用 Aanderaa MOTUS 波浪传感器与 Aanderaa 多普勒流速剖面仪,以监控海浪和洋流。通过联合激光雷达与其他传感器,我们致力于为最终用户提供完整的解决方案以实现高质量的气象海洋学监控。MOTUS 波浪传感器MOTUS 波向传感器的产品经理 Stig B. Øen 为我们介绍了更多有关 MOTUS 传感器的最新动态:针对来自 MOTUS 传感器用户和 MOTUS 浮标用户的反馈,我们始终用心倾听并积极响应,为此我们专门对传感器进行了升级:添加了一些基于竖向时间序列位移的波浪参数,并新增了 NMEA AIS 模式。MOTUS 传感器中的新增参数包括:平均波周期 T1/3;有效波高 H1/10;平均波周期 T1/10波;高 H1/1;平均波周期 T1/1;参考东向和北向水平时间序列,可配置为 2Hz 或 4Hz 采样。有关 MOTUS 波浪传感器的参数,请查阅数据表。MOTUS 适用于不同尺寸的浮标为了测量海浪特征,在理想情况下,传感器平台应完美地跟随水面运动。如果未应用补偿,则 MOTUS 传感器会根据安装位置的竖向平台位移计算波高。波向则基于水平浮标位移的方向。为了在众多不同类型的浮标中脱颖而出,MOTUS 传感器提供以下补偿功能。偏心补偿:在不同形状的大型浮标的旋转原点处安装传感器通常难度较大。通过向传感器提供其安装位置相对于旋转原点的信息并激活传感器偏心补偿功能,可以补偿误差。浮标响应/传递函数:如果浮标无法满足在所有频率下均理想地跟随水面,则可以通过激活和修改浮标传递函数来补偿限制。Anderaa 开发了一款简单工具,以帮助您了解不同尺寸形状浮标的期望阻尼因子。磁性:如果传感器受到电磁干扰,则可以将外部罗盘直接连接到 MOTUS 传感器。MOTUS 适用于海上风力/海上设施结合使用 Aanderaa 提供的海浪和洋流传感器与其他传感器(例如环境传感器和激光雷达),可为您提供完整的预研究平台和全面投产的海上风电场。MOTUS 传感器可在其内部完成对波浪参数的所有处理,通过实时/近实时输出基于频率和时间的参数,提供风浪和涌浪的全波频谱。对于海上风电场的运营来说,监控该区域的海浪将有助于确定是否将船只或技术人员派往现场、缩短停运时间,以及对健康、安全和环境保持高度关注。
  • ASD | ASD FieldSpec光谱仪在预测土壤水力特性上的应用
    土壤水力参数,如田间持水量(FC)和永久萎蔫点(PWP),在灌溉管理、干旱风险评估和土地利用规划等方面发挥着重要作用。这些水力特性是动态的,随土壤类型、作物类型和生长季而变化。传统方法估算大尺度水力特性费时费力,而土壤传递函数(PTF)作为一种替代方法,已被用于使用易测量的土壤特性(如土壤粒级、有机碳和容重)来估计土壤水力特性。这些预测参数在很大程度上受各种内在土壤特性如土壤质地、结构、有机质、容重和孔隙度的影响。随着光谱技术的不断发展,因其快速、低成本和无损测量,许多研究者已经利用可见近红外(Vis-NIR)光谱预测了土壤特性,而使用光谱数据绘制印度土壤类型水力特性的研究非常有限。基于此,在本研究中,一组研究团队在印度卡纳塔克邦高原北部地区收集了558个土壤样本,在实验室中测量了其FC, PWP和土壤含水量,并利用ASD FieldSpec光谱仪测量土壤光谱反射率。通过支持向量机、随机森林和偏最小二乘回归三个模型预测FC和PWP。其中,2/3的数据集用于校准(368个样品),1/3的数据集用于验证(190个样品)。本研究目标为通过不同统计技术检验实验室Vis-NIR光谱数据估算水力参数的有用性。研究区域图【结果】卡纳塔克邦高原北部土壤光谱反射率分布(平均值和标准偏差)(N = 558)。FC和PWP预测模型的性能(50 次迭代)验证集FC和PWP预测值和观测值散点图(RF方法)(变性土-绿点,淋溶土-红点,弱育土-蓝点,新成土-黄点)。传统PTF方法预测验证集FC和PWP含水量的性能。【结论】验证结果表明,与PLSR模型相比,RF和SVM性能较好。与田间持水量(R2=0.66-0.69和RMSE=7.25-7.51%)相比,永久萎蔫点预测良好(R2=0.70-0.74,RMSE=5.44-5.74%)。在土纲中,Vis-NIR光谱(R2=0.34&0.42)对变性土FC和PWP的预测不佳,对淋溶土(0.44&0.52)和弱育土(0.55&0.65)的预测结果一般,而对新成土(0.83&0.76)预测结果较好。总体而言,结果与传统PTF方法相当。目前结果表明,可见近红外光谱有助于快速准确地估计该国半干旱地区的水力特性。
  • 中国虚拟仪器之父应怀樵:攻克十大世界性难题
    5月24日,北京东方振动和噪声技术研究所名誉所长应怀樵在第十五届北京科博会“2012中国战略性新兴产业发展论坛”上,作题为《云智慧时代第三次工业革命正在走来——“从软件制造仪器”到“软件制造一切”》的主题演讲。  科学无国界,而科学家是有国界的,这句话在“中国虚拟仪器之父”应怀樵身上,就是近半个世纪的岁月里,他始终以“砍柴樵夫”般的坚韧与顽强,跋涉在为中华崛起而奋斗的科学高峰上,即使古稀之年,面对“3次中风、4次心梗、7次至阎王殿”的生命挑战,依然以超人的毅力、坚定的信念,战胜病魔,执著奋进在创世界一流的“虚拟仪器”科研阵地上。  而支撑他的则是中国科学界应为人类文明进步作出更大贡献的使命感与荣誉感!正是怀着振兴中华、造福人类的理想追求,他数十年如一日,呕心沥血,将全部精力投入虚拟仪器(VI)科学研究之中,自主创新112项新技术,攻克十大世界性难题并填补国内空白,特别是对“传递函数的测试及实时控制和反演关键技术”的成功突破,为提高虚拟仪器测量精度和范围开创新途径,被认为“可与‘光纤之父’诺奖得主高锟教授的‘光纤通信’成果相提并论”,使中美两国同步创造的虚拟仪器达到可问鼎诺贝尔物理学奖的,具有世界性重大意义的成果,是中华民族继四大发明之后,对人类文明有重要意义和影响的现代发明之一。  生命熔铸:“虚拟仪器之父”是怎样炼成的  1941年7月,应怀樵出生于浙江绍兴,这里人文底蕴深厚,而无论是早年受笃信佛教的母亲的熏陶,还是得益蔡元培曾担任校长的小学优良的教学传统,都使他从小树立了为民族崛起而读书的远大理想。  1959年,应怀樵就读浙江大学理论物理专业,后应国家需要全班调整为应用力学专业。1964年,大学毕业后,他被分配到中国铁道科学院,致力于高速列车风洞课题研究,并到清华学习风洞测试分析技术。1965年,他参与我国核爆炸防护工程研究,接触到震动噪声和频谱分析,开始了虚拟仪器科研生涯,而早年五次转换专业,则练就他扎实的学术功底和多学科交叉研究课题的优势。更重要的是,科技水平对国家命运的深刻影响更使他深感责任重大。成为世界一流的科学家,为国争光成为他深埋心中的梦想。而他也毫不讳言对诺奖的钟情,在他看来,诺奖不仅是一种崇高的荣誉,更是激励创新、造福人类的精神泉源。  在他看来,以“四大发明”为标志,中华民族曾为人类科技进步作出重要贡献,然而近代以来却落伍了,应怀樵认为,伴随中华民族的伟大复兴,中国科学家理应在高科技领域取得原创的重大突破,向诺奖冲刺。这不仅是一个科学家的荣誉,更是中华民族屹立世界民族之林的时代要求。  正是怀着这样一份强烈的使命感和荣誉感,应怀樵走过了一条不平凡的科研探索之路。要成为世界一流的科学家,首先要有敏锐、超前发现重大课题的科研能力。应怀樵介绍说,所谓“‘虚拟仪器’其实并非是传统的仪器,它是指集数据采集和信号调理器、信号处理技术与PC机技术于一体的软件制造仪器”。事实上,1965年他参加国防核爆炸防护工程课题——地下铁道核爆炸震动噪声与动力学测试分析的研究,当他遇到地铁道床的下沉残余位移(OHz)用硬件无法获得的难题时,就萌生了虚拟仪器的大胆构想——“用数字算法和软件取代硬件”,1973年他尝试用数字计算机的软件数字积分取代传统硬件模拟积分的方法解决上述难题,1979年获得成功,成为虚拟仪器的最早成功范例。同年于杭州召开的国防科委核试验全国防护工程学术会上,他提出虚拟仪器的核心概念——“软件制造仪器”,获得主持会议的中科院力学所所长郑哲敏院士、清华大学副校长张维院士、同济大学校长李国豪院士的赞扬和支持,比美国NI公司“软件是仪器”的概念提出早7年。  成为世界一流科学家,还要有瞄准国际前沿,不断自我超越的创新意志。据了解,科学仪器与实验技术发展至今已走过模拟式、数字式、智能式三个阶段,从1983年~1986年,开始出现第四代仪器即虚拟仪器(简称VI)。而应怀樵的研究始终走在国际前列。1979年,他编撰的具有该领域应用成果的国内首部专著《振动测试和分析》出版发行,并不断自我超越:1982年《CZ测震仪与测振技术》出版发行,1983年出版了具有中国虚拟仪器早期构思实例框图的《波形和频谱分析与随机数据处理》。1985年他自筹资金创建东方振动和噪声技术研究所(简称东方所),开始系统从事虚拟仪器库、移动实验室技术研究,提出“把实验室拎着走”的目标,正式立题“DASP虚拟仪器库—振动噪声、模态分析移动实验室技术”研究,为此,他自立课题、自筹资金开始研究“PC卡泰”(PCCATAI)—微机卡式自动采集测试分析仪器。他还是国内外最早提出“用软件制造仪器”、“用软硬件相结合”来取代传统仪器的学者。此后,依靠持续创新,他带领团队突破了虚拟仪器的核心技术,开发出适合便携机和笔记本使用的小型数采卡和大容量数据采集分析(LCAS)软件,研制成功台式和笔记本式大容量智能数据采集和信号处理系统以及DASP“达世普”虚拟仪器库系统。这是我国最早研制成功的虚拟仪器产品,实现“把实验室拎着走”的目标。  1988年9月16日,中国虚拟仪器应用于火箭激振钱塘江大桥模态实验圆满成功。1993年3月,该仪器参加北京新技术展览会,并远赴加拿大参展获一致好评。1995年用于“长三捆”火箭全箭模态实验,1996年用于神舟载人飞船移动发射平台模态实验。2004年用于航天员超重训练设备臂架系统模态分析。2007年,在第二届全国虚拟仪器学术交流大会上,东方所的卓越贡献受到高度评价,应怀樵被誉为“中国虚拟仪器之父”。  产业报国:让DASP虚拟仪器库运行在每个实验台  伴随经济全球化及信息时代的来临,如何在世界高科技领域拥有一席之地,如何将中国的高科技产品行销全世界,正成为中华民族是否真正崛起的重要标志。  数十载春秋,对十大世界性难题原创性的解决让其成为具有中华民族自主知识产权关键技术的经历为应怀樵平添几分豪迈与自信。  一是基于平台式设计的VI库技术。用软件制造仪器,软硬件结合取代传统仪器,这一具有里程碑式划时代意义的新路线对仪器制造业和测试技术界产生巨大影响,代表了我国在VI研发方面的最高水平。  二是变时基(VTB)传递函数(导纳)测量分析方法。达到国际领先水平,获国家发明专利。已完成神舟飞船750吨移动发射平台、“长三捆”大型运载火箭、航天员超重训练机模态实验等数十项国家重点项目,效果优良。  三是高精度频率、幅值、相位和阻尼测量技术。东方所原创的高精度频率计和幅值计,比国外常规方法提高精度100万倍,具有重大国际影响力。  四是超低频信号快速测量技术,达到国际领先水平。  五是原创倒熵熵、倒熵富、倒富熵等三种倒熵谱分析方法,达到倒谱分析的国际领先水平。  六是FFT/DFT分析方法,成为目前频谱细化主要方法之一,达到国际领先。  七是振动全息AVD“一入三出”实时测试分析创新技术,原创性地提出了全程微积分方法,实现AVD“一入三出”振动全息实时动态连续测量,达到国际领先。  八是自动化模态分析方法。一般人员通过简单操作即可获得专家级的模态分析结果。  九是24位“双核”变幅基A/D高精度超量程160dB数采仪技术达到国内首创,国际领先。  十是突破传递函数的测试及实时控制和反演关键技术为提高仪器测量精度和范围开辟新途径。此技术是一项世界难题,可极大扩展仪器的频率测试范围,提高测试精度,极具国际竞争力。  仅仅拥有一流的成果还远远不够,在应怀樵眼里,诺贝尔不仅是一位杰出的科学家,还是一代企业家,对科学及人类进步事业的热爱,和凭借巨额财富设立的诺贝尔奖,使他成功激励了一代又一代热爱科学与进步的杰出人物,为人类文明的进步作出不可磨灭的贡献。为此,当虚拟仪器技术攀上科学顶峰的时候,应怀樵直面7次与死神擦肩而过的生命危机,依然没有停止探索与奋进的脚步,开始积极思考中国虚拟仪器的产业化之路,树立起“让INV系统走进每一个实验室,让DASP软件运行在每个实验台上”的宏大目标。  为此目标,他在建所之初就提出“勤奋、创新、坚持、自强、和谐”的十字座右铭和完全自由的判断与讨论的“玻尔所”精神和“六要三不要”的处事准则等基础上,发展成为涵盖精神追求、道德情操的18条共336字法则及幸福六大原则的企业文化,加强了东方所的文化凝聚力。  以此为纽带,东方所不断加强人才队伍建设,一方面加强与全国重点高校合作,为国家培养出大批专业急需人才,以及行业高端人才,该所研究团队也扩大到40余人,拥有博士、硕士数十名,成为虚拟仪器领域一支重要力量。同时他还成功组织和主持了23届全国振动与噪声高技术学术会议,1997年至今主编《现代振动与噪声技术》九卷等十多部专著及《倒熵谱研究》等150多篇论文报告。同时,不断创新软硬件研发,推出CPCI式INV3020和LAN以太网式INV3060、USB式INV3018系列新产品,无线INV9500、手持式INV3080等硬件新产品和DASP的最新软件版本,积极推动产品市场化。  “软件制造仪器,软硬件结合取代传统仪器”能省掉大量昂贵和笨重的硬件材料和人力物力、设备、厂房和能源,便于生产和携带。这是一条划时代的新途径,是科学仪器和测试领域的一次突破和革命,是21世纪的仪器的重要发展方向,是中华民族原创的具有自主知识产权的重大发明之一。中国虚拟仪器DASP软件和INV移动实验室系统是与美国NI同步并行研发的,其中自主创新112项新技术,其中20多项达国际领先水平,是研发最早且核心技术搞得最好的科研成果。  截至目前,该成果产品累计销往2000多家用户,经济效益超过1亿元,打破了此类仪器长期依赖进口的局面,为国家节省外汇数亿美元。目前,已广泛用于国防军工、航天航空等许多部门,参与完成上百项国家重大工程项目测试。若在国内全面推广,其经济价值按我国2007年仪器产值估算,按软件取代硬件30%到一半计算,将产生600亿元到1000亿元/年的巨大价值,为促进技术变革和推动新兴产业形成,造福国计民生发挥重大作用。  面对激烈的国际竞争与广阔的国际市场,应怀樵认为中国虚拟仪器产业化之路任重道远,“达到世界普及”,这是一个目标,更是一种信念!以领先的科技与执著的信念支撑,应怀樵和他的虚拟仪器产业化之路必将迎来胜利曙光!而作为科学家,应怀樵瞄准国际前沿的战略思考从未停止,随着“云计算”和“物联网”时代的到来,他又在国内外率先提出实验室网络云时代——“云智慧仪器实验室”与“云智慧故障诊断中心”和“智慧仪器”的构想,提议国家尽快开展相关研究。  正如诺奖的创立者曾经践行的,科学精神与产业之路的生命熔铸将带给人类更加美好的未来!或许,这正是以不竭的生命激情与创新意志跋涉于科学与产业化之路的“中国虚拟仪器之父”应怀樵教授所真正钟情的。
  • 中国食药检定院2269万元仪器采购结果揭晓
    项目名称:中国食品药品检定研究院2012年专项仪器购置项目(五矿)  招标编号:0716-1241ZJ000275  采购人名称:中国食品药品检定研究院  采购人地址:北京天坛西里2号  采购人联系方式:010-67095114  采购代理机构名称:五矿国际招标有限责任公司  采购代理机构地址:北京市海淀区三里河路5号中国五矿大厦D206  采购代理机构联系人、联系方式:王超010-68494321  采购用途、数量、简要技术要求及合同履行日期:详见招标文件  招标公告日期:2012年8月10日  定标日期:2012年9月11日  评标结果:   包号品目号货物名称数量(台套)中标金额(币种:人民币元)中标商11-1ICP自动进样器1328,000北京超越未来科技发展有限公司 1-2总有机碳分析仪1 22-1助听器测试系统11,557,000北京科尔德科贸有限公司 2-2听力计检测系统12-3水处理系统12-4麻醉气体分析模块12-5红外探测器133-1超声标准源11,237,000北京科尔德科贸有限公司3-2心电信号数据库13-3全自动光学传递函数测量系统13-4标准恒温槽13-5气流分析仪13-6模拟肺144-1三维重建检测体模11,655,800北京华瑞奥利科电子技术有限公司 4-2多用途超声模块14-3光束轮廓测量系统14-4光谱辐照度测量系统14-5二氧化碳光束分析仪14-6医用X射线设备检测系统155-1液相芯片系统11,369,000北京益成恒达国际贸易有限公司 5-2呼吸功能测量系统15-3骨髓读片成像分析系统15-4玻片打号机166-1恒温摇床1449,000北京德泉兴业商贸有限公司 6-2多标记检测系统177-1红外配件1676,900北京万邦君意商贸有限公司7-2衍射多焦人工晶状体分析仪17-3磁场强度测量仪188-1旋光仪12,097,500北京科尔德科贸有限公司 8-2索氏抽提器18-3冻干机18-4TLC-MS接口18-5超临界色谱分离系统199-1精确质量数测定及分子式识别软件11,315,500北京科尔德科贸有限公司9-2热分析仪19-3全自动展开仪19-4薄层色谱半自动点样仪31010-1液质联用仪112,010,000中国科学器材公司 10-2液质联用仪110-3超高效液相-飞行时间质谱1  评标委员会名单: 吕阳、吴金凤、顾利民、王宏、严苏黎、程显隆(第1、8、9、10包)、张琪(第1包)、王建宇(第2、3、4、7包)、刘丽(第2、3、4、7包)、耿兴超(第5、6包)、石大伟(第5、6包)、李永红(第8、9、10包)  五矿国际招标有限责任公司  2012年9月11日
  • 我国离轴三反光学系统技术获重大突破
    我国在离轴三反光学系统先进制造技术上实现重大突破,为我国空间光学遥感器的跨越式发展打下了坚实基础。日前,这一由中科院长春光机所完成的重大科技成果通过鉴定。  自上世纪90年代以来,空间光学遥感器在国防、国民经济领域的需求快速增长。如何解决高分辨率与大视场的矛盾,一直是高分辨率空间光学遥感器研究的瓶颈。离轴三反光学系统可以同时实现长焦距与大视场,且没有中心遮拦,调制传递函数高,被公认为新一代空间光学系统的发展方向。然而,由于其结构复杂性和非对称性,制造难度极大,需要开发多项先进的加工、检测、装调技术予以支持。欧美制造商将离轴三反光学系统制造技术列为核心关键技术,于90年代末取得了突破性进展,研制出在轨性能优良的光学遥感卫星。鉴于该技术在国防、国民经济领域具有重要的意义,欧美国家采取了严格的保密措施。  长春光机所从“十五”开始就展开了离轴三反光学系统的技术攻关。经过10年的艰苦拼博,张学军领导的科研团队在“离轴三反光学先进制造技术”研究上实现了以计算机控制光学表面成形技术为核心,涵盖以大口径离轴非球面自动加工设备、大口径高精度离轴非球面加工工艺技术、离轴高精度非球面检测技术、离轴三反高精度系统装调技术为核心的重大突破。  在国内率先研制成功了具有完全自主知识产权的离轴非球面数控加工中心。该设备采用集成化设计方案,将研磨、抛光和在线轮廓测量单元合为一体,可实现离轴非球面自动加工,综合技术指标处于国际先进水平。  实现了大口径高精度离轴非球面光学表面的确定性加工和面形误差的高效率收敛,提出了高效的反卷积模型及加工轨迹自适应优化算法,系统地建立了大口径碳化硅离轴非球面数控加工方法、模型和软件。  首次提出并建立了计算机全息检测(CGH)离轴非球面的理论模型及其设计与制作方法,检测精度处于国际领先水平 此外,还建立了非球面子孔径拼接的理论模型,取得了良好的工程应用效果。应用三种独立测量手段对离轴非球面进行互检,保证了测量精度,提高了可靠性。  在国际上首次提出了离轴三反光学系统共基准装调技术,实现主镜、三镜的共基准定位,将系统的装调自由度由18个降为6个,装调效率和精度大幅度提高。其中基于计算全息技术的第二代共基准装调技术,大幅度拓展了CGH的应用领域,属国际领先水平。
  • 冷冻电镜单颗粒技术的发展、现状与未来
    p  作者:黄岚青,刘海广(北京计算科学研究中心 复杂系统研究部)/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong1 引言/strong/span/pp  在低温下使用透射电子显微镜观察样品的显微技术,就叫做冷冻电子显微镜技术,简称冷冻电镜(cryo-electron microscopy, cryo-EM)。冷冻电镜是重要的结构生物学研究方法,它与另外两种技术:X射线晶体学(X-ray crystallography)和核磁共振(nuclear magnetic resonance,NMR)一起构成了高分辨率结构生物学研究的基础,在获得生物大分子的结构并揭示其功能方面极为重要。/pp  电子显微三维重构技术起源于1968 年,D.J. De Rosier 和Aaron Klug 在Nature 上发表了一篇关于利用电子显微镜照片重构T4 噬菌体尾部三维结构的著名论文,提出并建立了电子显微三维重构的一般概念和方法。Aaron Klug 本人也因为这个开创性的工作获得了1982 年的诺贝尔化学奖。/pp  为了降低高能电子对分子结构的损伤,Kenneth A. Taylor 和Robert M. Glaeser 于1974 年提出了冷冻电镜技术,并且用于实验研究。经过三十多年的发展,冷冻电镜技术已经成为研究生物大分子结构与功能的强有力手段。冷冻电镜本质上是电子散射机制,基本原理就是把样品冻起来然后保持低温放进显微镜里面,利用相干的电子作为光源对分子样品进行测量,透过样品和附近的冰层,透镜系统把散射信号转换为放大的图像在探测器上记录下来,最后进行信号处理,得到样品的三维结构。/pp  在超低温的条件下,电子带来的辐射损伤被有效控制。即便如此,分子样品所能承受的辐射剂量也是非常低的,导致信噪比非常低。另外,随着观测的进行,额外的电子会累积而造成分子的移动,导致获得的图像变得模糊。这就好比用一个简单的傻瓜相机拍摄在雨中飞驰的子弹,得到的影像必然是模糊的并且充满噪音。因此,冷冻电镜的方法技术在很长时间内只能确定个头比较大的样品的结构,比如病毒颗粒的结构,而且通常分辨率都不高。然而随着工程技术和算法的不断发展,能够确定的分辨率也越来越高(图1(a)),2016 年发布的谷氨酸脱氢酶结构的分辨率甚至已经达到了1.8 Å 。与此同时,也有越来越多的通过冷冻电镜技术得到的研究成果发表在高水平的期刊上(图1(b)),冷冻电镜正备受科学界的关注。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/5b2ef847-cad0-4d88-b1ad-ebf14bd21e9c.jpg" title="1.jpg"//pp  图1 冷冻电镜技术和单颗粒重构技术越来越备受关注(统计数据来源于EMDataBank )(a)不同年份中利用冷冻电镜单颗粒重构技术能够达到的最高分辨率 (b)通过冷冻电镜技术进行的研究成果在不同杂志上发表的论文数/pp  在最近几年,冷冻电镜技术有了革命性的进步,主要得益于三个方面的突破。首先是样品制备,通过利用薄膜碳层甚至石墨烯可以用更薄的冰层包裹分子样品来提高信噪比。第二个突破是电子的探测技术,也就是电子探测器的发明。在300 keV 电子的轰击下,传统的器件都会被高能量打坏,因此在电子探测器出现之前,冷冻电镜中使用的CCD相机需要将电子打在探测器上变成光信号,再通过CCD 把光信号转成电信号后得到图像,“电光—光电”转换的过程降低了信噪比。而现在电子探测器能够直接探测电子数量,同时,互补型金属氧化物半导体(CMOS)感光元件的应用使得探测器支持电影模式(movie mode),可以在一秒钟之内获得几十张投影图片。通过后期对样品进行漂移修正,再把这几十张图片叠加起来,从而大幅提高成像的信噪比。模糊的子弹一下子变得清晰,冷冻电镜的分辨率不断上升。第三个突破是计算能力的提高和软件算法的进步。冷冻电镜的模型重构通常需要对几万甚至几十万张投影图片进行分析、组装和优化。这需要先进的计算资源配合有效的算法才能实现。基于贝叶斯理论的模型重构框架解决了这个问题,我们在下文中详细介绍。综上所述,冷冻电镜技术不仅提高了空间分辨率,而且可以应用于很多以前不能解决的生物大分子的结构研究。/pp  具有里程碑意义的成果是,2013 年加州大学旧金山分校(UCSF) 程亦凡和David Julius 的研究组首次得到膜蛋白TRPV1 的3.4 Å 近原子级别高分辨率三维结构,结果发表在Nature 上。我国在冷冻电镜的应用领域也有很大突破,代表性工作包括清华大学的施一公研究组和剑桥大学MRC 实验室Sjors H.W. Scheres 研究组合作在2015 年获得的γ 分泌酶复合物结构( 图2(c)), 以及2015 年清华大学高宁研究组和香港科技大学戴碧瓘研究组合作得到的3.8 Å 的真核生物MCM2-7 复合物结构 2015 年北京大学毛有东研究组、欧阳颀研究组与哈佛医学院吴皓研究组合作得到炎症复合体的高分辨率三维结构(图2(a)) 2014 年中国科学院生物物理研究所朱平研究组和李国红研究组合作得到的30 nm 染色质左手双螺旋高级结构(图2(b))以及2016 年中国科学院生物物理研究所柳振峰、李梅、章新政三个研究组合作得到3.2 Å 的捕光复合物II 型膜蛋白超级复合体结构。这些成果在结构生物领域得到巨大的反响,这也使得冷冻电镜高分辨率成像技术获得空前的关注。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/44d05be3-281b-4507-b0fc-9d200025422f.jpg" title="2.jpg"//pp  图2 我国在冷冻电镜领域中获得高质量的研究成果(a)近原子分辨率的炎症复合体结构(图中NBD为核酸结合结构域,HD1 为螺旋结构域-1,WHD为翼螺旋结构域,HD2 为螺旋结构域-2,LRR为亮氨酸重复序列) (b)30 nm 染色质左手双螺旋高级结构 (c)3.4 Å 的人源γ 分泌酶复合物结构(图中NCT是一种I 型单次跨膜糖蛋白,APH-1 为前咽缺陷蛋白-1,PS1为早老素-1,PEN-2 为早老素增强子-2)/pp strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 2 图像处理技术/span/strong/pp  经过多年的发展,目前冷冻电镜的数据处理部分主要包含了以下的流程(图3):/pp  (1) 衬度传递函数的修正(CTF correction)/pp  (2) 样品分子投影数据的筛选(particle selection)/pp  (3) 二维投影数据的分类和降噪(2D analysis)/pp  (4) 三维模型的重构和优化(3D reconstruction and refinement)/pp  (5) 多重构象的结构分析(heterogeneity analysis)/pp  (6) 对重建结构分辨率的分析(structure resolution assessment)/pp  (7) 结合生物化学原理和实验数据对三维结构的解读(model interpretation and validation)/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ef81cf1e-580c-4eda-9e77-e2edc542f953.jpg" title="3.jpg"//pp style="text-align: center "  图3 冷冻电镜数据分析处理流程/pp  图像处理软件的发展对冷冻电镜单颗粒重构技术极其重要,当前广泛使用的电镜分析软件系统主要包括SPIDER,EMAN2, FREALIGN,SPARX,RELION等。对于刚刚接触单颗粒重构技术的人来说,更偏好集成的软件套装来完成整个分析流程。我们在表1 中列出了大部分主流的综合冷冻电镜图像处理软件,以供参考。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/f4fafde5-da41-422a-acc4-bcd118be0c8e.jpg" title="4.jpg"//pp style="text-align: center "  表1 冷冻电镜中流行的图像处理软件/pp  strong2.1 衬度传递函数估计与修正/strong/pp  衬度传递函数(contrast transfer function,CTF)是在数学上描述通过透射电子显微镜得到样品图像上的像差变化。准确地判断衬度传递函数对于确认显微图像的质量以及后续的三维结构重建极为重要。常用的估算衬度传递函数的参数软件是CTFFIND4。确定了CTF 的参数以后,就可以对采集到的冷冻电镜图像进行修正。这个修正过程其实就是图像处理中的图像复原技术。/pp  strong2.2 颗粒挑选/strong/pp  接下来需要从原始数据中筛选出颗粒投影,也被称为“颗粒挑选”,颗粒挑选的好坏也将影响所有后续的分析和处理过程,是一个重要并且繁琐的步骤。颗粒挑选方式可以分为手动挑选、半自动挑选和完全自动挑选这几种。/pp  在早期的分析中,对于结构的了解还非常少,优先考虑的都是人工挑选。但是自动的颗粒图像获取方法的出现使得在很短时间内可以收集数十万张颗粒图像,人工挑选大量的颗粒图像不太现实,并且人工的挑选通常会过于集中于某一类颗粒图像,导致遗漏和偏差。/pp  strong半自动和全自动的方法主要有以下三类:/strong/pp  (1)通过例如降噪、反衬增强、边缘算子等图像形态学方法搜索区域,基于数字图像处理学的原理,将颗粒图像与背景分离开来。/pp  (2)基于模板的方法,通过扫描数据图像和已知的模板比较来挑选出潜在的颗粒图像,模板的来源通常为手动选出的数据图像中较为清晰的颗粒图像,或者是已知结构的投影。/pp  (3)结合无模板和有模板的方法,通过一些有监督的机器学习算法进行颗粒挑选。/pp  随着图像识别领域中深度学习方法的流行,各类基于深度学习的颗粒识别框架也被引入到颗粒挑选的过程中。随着深度学习方法的发展,相信如何把深度学习方法应用到单颗粒冷冻电镜图像分析领域的研究将会越来越多。/pp  strong2.3 二维图像分析——颗粒图像的匹配与分类/strong/pp  二维颗粒图像的分类是获取三维结构过程的第一步。对二维图像的分析包括两部分:颗粒图像的匹配和颗粒图像的分类。/pp  匹配的过程通常会对颗粒图像应用一些变换操作,通过关联函数去判断不同颗粒图像之间的相似程度。图像匹配的算法主要分为两种,即不依赖模型的方法和基于模型的方法,取决于是否存在利用样本先验信息得到的模板。/pp  随着图像匹配的完成,颗粒图像需要进行分类。主要利用多元统计分析和主成分分析方法等算法,其他流行的二维颗粒分类技术还有神经网络分类,将图像在二维空间自组织映射(self-organising mapping,SOM)再进行分类和排序。/pp  二维图像分析的目的是,首先通过图像匹配消除旋转和平移的误差,利用类内紧致、类间离散的原则进行图像分类,最终可以对类内颗粒图像进行平均,提高信噪比,从而实现对高分辨率三维结构的构建。/pp  strong2.4 模型重构和优化/strong/pp  模型三维重构的基础是中心截面定理,重构过程中的关键问题是如何确定每个颗粒图像的空间角(orientation determination)。大多数模型重构和优化算法都是基于投影匹配(projection matching)的迭代方法。简单说就是,先利用粗糙的三维结构模型,进行投影得到参考的图像,和实验颗粒图像进行比对,根据结果来更新空间方位参数,继而构造新的三维结构,对实验图像的空间方位修正,形成迭代的过程,直至收敛就获得了最终的三维模型。/pp  strong2.5 分辨率的确定及二级结构的确定/strong/pp  在模型优化的过程中,通常有很多指标给出结构的分辨率信息。目前一个较为广泛使用的分辨率信息参数是被称为傅里叶壳层关联函数(Fourier shell correlation,FSC)曲线,并通过在曲线上选取一个合适的阈值来判定分辨率。/pp  在模型优化中经常伴随着过拟合的问题。过拟合的出现通常由于在优化过程时无法分辨“噪声”与“信号”。为了避免过拟合对分辨率的误判,最近一种被称为“黄金标准”(gold standard)的优化过程开始被广泛使用。/pp  根据不同的分辨率,可以从结构中得到不同的信息量。按照分辨率数值大致分为三个范围:/pp  (1)结构分辨率大于10 Å 的生物大分子结构被视为低分辨率的结构,在低分辨率的结构范围内只观察得到一个大致的整体形状,以及有可能分辨出主要成分的相互位置关系。/pp  (2)一个中等分辨率的生物大分子结构精度大约在4—10 Å 之间,在这个分辨率范围内的生物大分子结构已经可以得到一些二级结构的信息和分辨出大部分组成结构的相对位置关系。分子结构之间如果存在构象变化也可以分辨出来。/pp  (3)高精度甚至是近原子级别的分子结构分辨率可以达到4 Å 以下。在高分辨率的三维结构中,可以准确地看见如α肽链等的二级蛋白质结构以及部分单独的残基,多肽链的结构变得清晰起来。同时高分辨率的分子结构可以描述精确的构象变化。/pp  总之,FSC 曲线等标准提供的分辨率是一个有指导意义的数字,不可作为绝对参考来评价所获得的模型质量,需要批判地对待,尤其是要与生物分子系统的生物化学知识相结合。/pp  strong2.6 三维结构的多构象性和动态分析/strong/pp  生物大分子通常具有内禀的柔性,所以生物分子的动态结构变化以及结构的不均一性一直是结构生物学的研究重点之一。在晶体状态下,生物分子的结构变化被晶格约束,一般只提供一个静态的结构和有限的动力学参数。冷冻电镜相比晶体学方法的优势在于可以捕捉生物分子在溶液中的形态,并记录下不同构象下的投影。因此针对冷冻电镜的数据可以进行多构象的重构,现有的一些算法是通过聚类分析、最大似然法分析等对多构象进行分析,得到的生物大分子结构形态和构象差异还需要结合分子功能来检验分子结构的合理性。/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "3 最新进展和突破/span/strong/pp  strong3.1 最大似然估计理论/strong/pp  近年来在单颗粒分析中取得重大突破的应当是最大似然估计(maximum likelihood)理论。最大似然估计的理论可以贯彻整个单颗粒技术图像分析的过程,在图像匹配,2D、3D分类 和模型优化上均可以应用,是一个强有力的理论工具。最大似然估计的算法已经在RELION、FREALIGN 等软件中实现,方便普通用户使用,这对于推动冷冻电镜成像技术的应用有重大意义,近三四年来有许多突破性的近原子级别分辨率的分子结构大多是由基于最大似然估计理论的分析软件得到。/pp  3.1.1 减少计算需求/pp  最大似然估计算法的计算量很大,如何降低计算量是一个重要问题。过多的计算资源消耗曾经阻碍这个方法在冷冻电镜单颗粒重构中的广泛应用。在减少最大似然算法在冷冻电镜应用中的计算需求方面,有两个重要的贡献是空间降维(domain reduction)算法和网格插值(grid interpolation)算法。/pp  我们最近在研究一个新的方法来对旋转参数进行分步处理,初步的结果显示这种方法可以把计算复杂度降低一个维度,这个方法可很好地应用于高信噪比的数据处理,但对于低信噪比的数据分析还需要对该方法进行改进。/pp  3.1.2 对最大似然方法的未来展望/pp  在未来的研究中,关注点是减少计算的耗时和增加准确度。通用图形处理器(GPU)的应用和CUDA 编程框架已经显示出了在高性能计算领域的威力,研究表明GPU 技术可以显著减少计算时间,而RELION 也将发布支持GPU 计算的2.0 版本。/pp  在加快计算速度的同时,提高模型的重构的准确性则更为重要。如何提高颗粒图像的准确性以及最大似然方法在这些方面的应用还有待深入探索。总而言之,最大似然方法独特的、可扩展的统计理论框架可以适用在冷冻电镜的各种问题上,如多构象、低噪声、信息缺失中均有很好的应用。/pp  strong3.2 流形嵌入方法(Manifold Embedding)/strong/pp  自然界的分子过程通常是连续的,比如三磷酸腺苷(ATP)合成酶等分子结构的状态变化通常都是连续的。现有的方法只能得到有限的、若干个离散的构象变化,限制了我们对于分子结构的进一步观察。而流形嵌入法则是通过将颗粒图像映射到具有特定拓扑结构的参数空间(manifold space),可以分辨出更为细致的动力学变化,进而实现对生物分子连续的结构变化过程的研究。Ali Dashti 等人已经利用这种方法成功刻画出核糖体的结构变化路径。/pp  strong3.3 揭开表面看实质/strong/pp  冷冻电镜对更为复杂的结构并没有很好的处理方式,在一些分子量比较大,包含多层的病毒结构研究中,一直没有高分辨率的三维模型,这也是由于病毒普遍具有对称失配的特性,基因结构被壳体完全覆盖,无法通过二维图形处理的方式对内部结构直接进行重构。刘红荣教授通过改进衬度分离方法展示出了解决该类问题的途径,其发展的新方法已经成功应用在一个多面体衣壳NCPV的病毒颗粒(图4)上,通过该重构方法,使得外部的衣壳结构(图4(a))和内部的基因组结构(图4(b))分离,成功得到包含在内部的dsRNA 近原子级高分辨率结构和分布。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/7ab0c5f3-c403-4231-924f-9900a3758eb7.jpg" title="5.jpg"//pp  图4 利用衬度分离方法得到对称失配情形下的病毒颗粒结构(a)外部的衣壳结构 (b)内部的基因组结构/pp  strong3.4 罗马不是一天建成的(Building Protein in One Day)/strong/pp  最近的研究成果显示,最大似然估计算法能够更好更快地完成三维重构,多伦多大学的Marcus A. Brubaker 教授针对最大似然估计算法提出了优化,有效地缩短了三维重构所需的时间。对传统迭代算法极度依赖于初始模型结构的缺点进行改进,同时通过采样优化的方式降低了计算量,减少计算时间,据称这些优化可以达到100000倍的加速,利用一台计算机工作站在一天内就能完成模型重构。/pp strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 4 展望与总结/span/strong/pp  冷冻电子显微镜技术已经发展成为一个成熟的方法,应用于各种复杂的生物分子体系的高分辨结构研究。按照目前的发展势头,解决生物分子结构组(structural proteome)的问题已经不是遥不可及的了。在解决单一静态结构的基础上,冷冻电镜也展示了其研究多构象体系的潜力。下面对冷冻电镜在结构生物学研究领域的应用做一些大胆的展望,希望能抛砖引玉。/pp  strong4.1 解决膜蛋白的结构/strong/pp  由于膜蛋白是镶嵌在磷脂分子构成的细胞膜内,目前在冷冻电镜领域的样品制备还没有很好的处理方法,因此还很少见到对膜蛋白的结构解析。随着技术的发展,新的试剂分子或者纳米尺度的容器可以用来制备单一性很高的稳定的细胞膜以及镶嵌在内的膜蛋白。这样就可以利用冷冻电镜的方法对膜蛋白进行结构研究。目前在纳米盘(nanodiscs)的研究领域已经取得了一定的进展,对/pp  冷冻电镜解析高精度的膜蛋白结构,我们拭目以待。/pp strong 4.2 细胞内分子结构测定:从溶液内(in vitro)到细胞内(in situ)/strong/pp  当前的高分辨分子结构基本都是在溶液中提纯出来的分子样品,也就是通常所说的in vitro 实验。现在可以利用快速冷冻的方法把细胞固定,再用高能粒子枪对细胞进行高精度切片。在细胞的某些部位,常常有大量同类分子聚集,比如在内质网(endoplasmic reticulum,ER)部分有很多核糖体,在细胞骨架上会有大量的肌动蛋白(actin)分子。对这些切片进行成像研究可以获取这些分子在细胞环境的结构信息。/pp strong 4.3 细胞结构和分子在细胞内的分布:从部分到整体/strong/pp  电镜可以用来做断层成像(cryogenic computed tomography,cryo-CT),应用于亚细胞层面的研究,比如细胞器的结构,蛋白质分子的分布,以及一些细胞骨架的构成。与超低温样品操作结合,cryo-CT 可以提供更高分辨率的信息,衔接分子层面和细胞层面的知识,对于了解细胞功能至关重要。在电镜成像研究领域,这将是一个有广阔前景的课题。/pp strong 4.4 多构象的识别和自由能景观确定/strong/pp  人们开始不满足于近原子级别分辨率能够提供的信息,想要进一步刻画分子结构连续变化的状态。得益于冷冻电镜的成像特性,相对其他技术而言,冷冻电镜技术在时间尺度的系综上具有优势。在冷冻电镜下分子结构的动力学研究中,有两个值得关注的趋势,分别是能够获取分子结构“ 慢” 反应过程(10—1000 ms) 时间分辨(time-resolved)的冷冻电镜技术,以及能够分析出连续构象变化的分类算法。获取短期反应过程(10—1000 ms)分子结构的基础是在准备样本过程中分子反应的速度慢于冷冻样本的时间,目前混合喷雾(mixing-spraying)等快速冷冻技术的实现使得一些较慢的反应过程可以看到动力学变化。而流形嵌入算法在分类过程中取得突破,在更好地利用冷冻电镜观察分子的平衡态结构动力学变化和展现自由能景观上取得了令人鼓舞的成果。/pp strong 4.5 从静态结构到动态分子电影/strong/pp  生物分子在室温下是活跃的,而且大多数的分子功能是通过结构的变化来实现的。基于X射线, 尤其是最近发展的X 射线自由电子激光(XFEL)的结构生物学的研究重点之一便是实现时间分辨的结构生物学研究(time-resolved structure determination)。到目前为止,基于X 射线的研究取得了很大的进展,但主要还是局限在对晶体的衍射方面,比如对光合作用过程中水分子分解的研究和光敏黄蛋白的光吸收过程的研究。三维冷冻电镜的单颗粒成像技术最有希望在单分子水平上实现对时间分辨的结构变化研究,同时,这对于样品制备和实验操作提出了非常高的要求。/pp strong 5 结束语/strong/pp  冷冻电镜的技术突破及其在生物分子结构领域的应用把我们对分子生物学的研究推进了一大步,开始探索未知的区域。立足于解决单一构象的基础,对多构象以及动力学过程和热力学的研究也需要展开,这需要对现有技术进行提升并与其他方法进行结合,计算建模和模拟的方法也需要紧密结合起来,实现对生物分子系统的集成研究。/pp  致谢 感谢北京大学欧阳颀教授对文章写作提出的宝贵意见。/p
  • 环保部发布环境空气臭氧标准传递作业指导书
    p  由于缺少钢瓶标准气体,臭氧监测只能通过臭氧发生器发生的臭氧,进行逐级的量值传递/溯源,任何一级的量值传递工作出现问题,都将导致其下游的各台臭氧的传递标准、臭氧分析仪量值出现偏差。/pp  为贯彻落实《“十三五”环境监测质量管理工作方案》(环办监测〔2016〕104号)和《环境空气自动监测标准传递管理规定(试行)》(环办监测函〔2017〕242号)有关要求,规范环境空气臭氧标准传递,保证监测数据的溯源性和可比性,环保部组织编制了《环境空气臭氧一级校准作业指导书(试行)》《环境空气臭氧标准参考光度计间接比对作业指导书(试行)》《环境空气臭氧传递标准间逐级校准作业指导书(试行)》《环境空气臭氧自动监测现场比对核查作业指导书(试行)》等4项作业指导书。/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/dc4f8676-86b9-4e2f-b8ed-8702c8f9d15f.pdf"环境空气臭氧一级校准作业指导书(试行).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/772103d7-bc54-4e12-86e6-580d39983f0e.pdf"环境空气臭氧标准参考光度计间接比对作业指导书(试行).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/47dfc0c9-f05b-4c7c-a02d-c738282d5d02.pdf"环境空气臭氧传递标准间逐级校准作业指导书(试行).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/39237838-6f55-47dc-953c-4233ea57d463.pdf"环境空气臭氧自动监测现场比对核查作业指导书(试行).pdf/a/ppbr//p
  • 528万!赛默飞等中标广东省医疗器械质量监督检验所仪器设备采购项目
    一、项目编号:GZZJ-ZG-2022114二、项目名称:广东省医疗器械质量监督检验所提升我国医疗器械检验检测能力建设项目仪器设备采购项目八三、采购结果合同包1(仪器设备):供应商名称供应商地址中标(成交)金额广州科纳进出口有限公司广州市天河区珠江西路8号1201室(部位:自编01A、06A)5,285,000.00元四、主要标的信息合同包1(仪器设备):货物类(广州科纳进出口有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)1-1其他专用仪器仪表离子色谱质谱联用仪Thermo ScientificDIONEX ICS 6000-ISQ EC1.00(台)2,498,000.002,498,000.001-2其他专用仪器仪表调制传递函数(MTF)设备TRIOPTICSImageMaster HR1.00(批)1,998,500.001,998,500.001-2其他专用仪器仪表离子色谱仪Thermo ScientificDIONEX AQ 11001.00(批)788,500.00788,500.00
  • 中国实验室仪器创新发展高峰论坛论文一览表
    序 号作 者 姓 名单 位论 文 题 目1范世福天津大学精密仪器学院我国今后科学仪器事业持续发展的战略思考2王维德济南精密科学仪器仪表有限公司测定凯氏氮的新方法及其仪器3金如琛烟台琛雨物质分析新技术研究所气相色谱仪氮磷检测器高性能铷珠的研制4杨凯北京农学院农业应用新技术北京市重点实验室我国实验室电泳设备的现状及发展趋势5毛磊宁波永新光学股份有限公司实验室显微镜的发展与趋势6余兴、罗剑秋、陈永彦、李宏伟钢铁研究总院国家钢铁材料测试中心直流辉光放电光谱仪的研制7沈学静,王蓬,胡少成,杨植岗,马红权,高伟,周振,杨倩倩钢铁研究总院国家钢铁材料测试中心北京纳克分析仪器有限公司脉冲熔融-飞行时间质谱法同时测定金属材料中氧、氮和氢8陈燕、李飞、杨磊、马振亚中国计量科学研究院光学传递函数双胶合镜头标准测量装置的研制9王家龙中国仪器仪表行业协会实验室仪器分会实验室仪器行业与技术发展的研究分析报告 序 号作 者 姓 名单 位论 文 题 目10杨宏捷北京纳克分析仪器有限公司SPARK CCD 1000型火花- CCD光谱仪的应用11余剑中国科学院过程工程研究所气固反应热分析方法与仪器12姚希华、寻继勇、喻 文长沙平凡仪器仪表有限公司董事长湖南赫西仪器装备有限公司总经理长沙英泰仪器有限公司总经理中国实验室离心机的现状与展望 13张希顺、杜志伟、马通达、张智慧、杜风贞、刘安生、牟洪山、孙继光北京有色金属研究总院透射电子显微镜高压电源设计原理14曲静雅清华大学海水挥发酚和腐植酸自动分析仪的研制15李文林中国科学技术大学,中科院化学研究所流变仪在聚合物物理化学性能测量方面的应用16贾文珅北京农产品质量检测与农田环境监测技术研究中心农产品产地环境监测技术与装备17熊一凡 裴玉吉长沙湘平科技有限公司中国计量科学研究院中国天平行业的现状与发展 18钱原铬北京农产品质量检测与农田环境监测技术研究中心X射线荧光检测技术及其应用进展19姜雄平 总后卫生部药品仪器检验所紧贴需求 促进分析仪器民族产业发展
  • 济南精科公司受邀参加实验室仪器创新发展高峰论坛
    实验室仪器创新发展高峰论坛论文表序 号作 者 姓 名单 位论 文 题 目1范世福天津大学精密仪器学院我国今后科学仪器事业持续发展的战略思考2王维德济南精密科学仪器仪表有限公司测定凯氏氮的新方法及其仪器3金如琛烟台琛雨物质分析新技术研究所气相色谱仪氮磷检测器高性能铷珠的研制4杨凯北京农学院农业应用新技术北京市重点实验室我国实验室电泳设备的现状及发展趋势5毛磊宁波永新光学股份有限公司实验室显微镜的发展与趋势6余兴、罗剑秋、陈永彦、李宏伟钢铁研究总院国家钢铁材料测试中心直流辉光放电光谱仪的研制7沈学静,王蓬,胡少成,杨植岗,马红权,高伟,周振,杨倩倩钢铁研究总院国家钢铁材料测试中心北京纳克分析仪器有限公司脉冲熔融-飞行时间质谱法同时测定金属材料中氧、氮和氢8陈燕、李飞、杨磊、马振亚中国计量科学研究院光学传递函数双胶合镜头标准测量装置的研制9王家龙中国仪器仪表行业协会实验室仪器分会实验室仪器行业与技术发展的研究分析报告 序 号作 者 姓 名单 位论 文 题 目10杨宏捷北京纳克分析仪器有限公司SPARK CCD 1000型火花- CCD光谱仪的应用11余剑中国科学院过程工程研究所气固反应热分析方法与仪器12姚希华、寻继勇、喻 文长沙平凡仪器仪表有限公司董事长湖南赫西仪器装备有限公司总经理长沙英泰仪器有限公司总经理中国实验室离心机的现状与展望 13张希顺、杜志伟、马通达、张智慧、杜风贞、刘安生、牟洪山、孙继光北京有色金属研究总院透射电子显微镜高压电源设计原理14曲静雅清华大学海水挥发酚和腐植酸自动分析仪的研制15李文林中国科学技术大学,中科院化学研究所流变仪在聚合物物理化学性能测量方面的应用16贾文珅北京农产品质量检测与农田环境监测技术研究中心农产品产地环境监测技术与装备17熊一凡 裴玉吉长沙湘平科技有限公司中国计量科学研究院中国天平行业的现状与发展 18钱原铬北京农产品质量检测与农田环境监测技术研究中心X射线荧光检测技术及其应用进展19姜雄平 总后卫生部药品仪器检验所紧贴需求 促进分析仪器民族产业发展
  • 方家熊院士:卫星遥感技术民用化 促进国产光谱仪发展——访中科院上海技术物理研究所方家熊院士
    方家熊院士是我国光传感技术领域的领军人物,2001年当选为中国工程院院士,现任中国科学院上海技术物理研究所研究员、副总工程师,兼任传感技术国家重点实验室学术委员会主任、中国光学学会红外与光电器件委员会主任。  方家熊院士历年来从事中、长波红外传感器、紫外传感器、短波红外传感器等半导体传感器的研究开发。其主持开发的多种传感器成功应用于“风云1号”、“风云2号”气象卫星,“神舟3号”航天飞船等,相关成果获6项国家科技进步奖,为我国航天红外遥感解决了重大关键技术问题,开拓了中国航天遥感用红外传感器技术。中国科学院上海技术物理研究所 方家熊院士  近日,仪器信息网编辑专访了方家熊院士,方家熊院士系统介绍了航天遥感用红外传感器技术民用化研究的最新进展并对目前我国分析仪器行业发展存在的问题发表了见解。航天红外遥感技术在民用领域发展前景广阔  “我们原来一直在研究航天红外遥感技术,并未涉及民用近红外光谱仪领域。而现在中国科学院上海技术物理研究所开始全面涉足红外多光谱技术的研究。”方家熊院士说道。  “为什么我们会对航天红外遥感技术民用化感兴趣?”  方家熊院士首先介绍了他和他的同事们由原来研制航天红外传感器转向民用近红外光谱仪器技术研究的相关背景。  2006年,我们参加了第一届全国近红外光谱学术会议,获得了一个有用的信息:一些仪器公司在生产小型光谱仪器时,一些关键的器件国内没有,都是向国外公司购买。对此我们进行了调研,结果发现,近10年来科技部等部委通过各个渠道支持了很多研制小型、微型近红外光谱仪项目。但这些项目研制出的仪器其核心部件都采用了国外的,并且,这些仪器完成后并没有产业化。  事实上,上面所说的核心部件正好是四年前我们为航天应用研发的“铟镓砷近红外焦平面”,仪器就缺这个器件,用户很迫切,而我们又能够生产这个核心部件,那么,我们应该在这方面做一点事情了。  另外,将航天红外遥感技术民用化还有一个大的背景:国家明确提出逐步转变经济发展方式,其中,希望中国科学院不光是研究一些“大”科学,像发展航天技术等重大科研项目以及发表科技文章,还要为工业、农业、医学等各领域做“一些”具体事情,为国民经济发展贡献力量。  在这个指导思想下,中国科学院有两个“大部署”:一是创办新所,这个新所要和地方政府联合创办,其目的很明确,不仅要研究尖端技术,更要为地方的经济发展做一些有用的事情;二是一些老所办分所,分所的研究领域要与地方经济发展特色相结合。中国科学院各个所都在“动”,我们所也在努力。例如,我们所办了两个分部,一个常州分所 另一个嘉定分部正在建设中。  航天仪器技术转向民用:重点在于研发低成本技术  中国航天遥感用红外传感器技术,毋庸置疑是先进的、高水平的。但航天仪器技术应用到民用领域,需要突破哪些“瓶颈”呢?针对这一问题,方家熊院士谈到:  将一些航天仪器技术转向民用有许多需要再研发的地方,以近红外光谱为例,近红外光谱技术发展是以应用为驱动的,所以,我们在2008年就开始和“外面”联系。其中,一位是江苏大学的陈斌教授,他研究的领域主要是食品工业,自己也研制一些近红外光谱仪器分析软件和硬件。另外一位是浙江大学的龚淑英教授,她研究的领域主要是茶叶质量评价。两位教授都是从事应用研究的,他们对近红外光谱仪的要求是小型化、可靠、便宜。  说实话,研制符合这三个要求的近红外光谱仪的难度不比研制航天仪器低。航天仪器也要求小型、可靠以及低功耗,但对成本没有过多要求。小型、微型近红外光谱仪器在工业、农业、医学等各方面的应用范围非常广泛,但是现在一般一台仪器需要几十万,如果是野外使用的常常需要上百万,所以迫切要求降低成本。  然而,对我们来说,“便宜”不是通常认为的扩大生产规模来降低成本,而是要研发低成本技术。例如,原来在航天仪器中使用铂金、黄金材料,现在转向民用需要使用铝等普通金属材料,成本降低的同时要保证相应的性能也能满足使用要求。低成本技术要求从原理上、基础上研究,进而带动基础技术研究。而且,这些相关课题的提出是我们从应用中移植过来的,不是跟踪国际先进技术,完全是我们自创的。  成立“组件应用技术研究组”:已完成微型近红外光谱仪原理样机  2009年的时候,方家熊院士团队专门成立了一个研究组——组件应用技术研究组,研究组的近期发展目标是建立三个设计平台、三个测试平台,还要研制出微型近红外光谱仪。  其中,设计平台分别是大规模电路设计平台、工艺设计平台、可靠性设计平台;测试平台分别是红外器件MTF(调制传递函数)测试平台、小型光谱仪参数测试平台、短波红外焦平面参数测试平台。这些设计平台、测试平台属于应用基础技术,主要是为了我们的“铟镓砷近红外焦平面”器件能在近红外光谱仪中得到很好应用,通过发现问题、解决问题,不断提高器件性能、降低成本,也为航天应用中的器件问题的解决提供了新手段。  目前,我们已经完成了近红外光谱仪的原理样机,正在测试“铟镓砷近红外焦平面”器件的应用效果。同时,我们也搭建了MTF测试系统,现阶段主要测试“铟镓砷近红外焦平面”的传递函数,目标是找出传递函数与器件的设计、加工、物理机理之间的关系,将器件本身搞清楚,以提高器件的传递函数。MTF测试系统项目就是我们从应用中提炼出来的基础研究课题。  在这个过程中,方家熊院士团队有两点体会:首先,近红外光谱技术是以应用带动有关技术的发展,这里的“技术”包括软件技术、基础技术、硬件技术,基础技术主要是化学计量学;其次,从新应用要求——低成本技术要求中提炼出基础技术课题进行研究,获得我们自己的拥有自主知识产权的科研成果,而且这个成果是可以马上实现应用的。方家熊院士谈我国分析仪器行业存在问题及与国外差距  方家熊院士是我国著名的光传感器专家,为我国科技事业作出了突出贡献。针对我国分析仪器行业发展中存在的问题,方家熊院士以其40多年科研工作的经验指出:  我国分析仪器发展中存在的主要问题:基础研究与应用研究、生产制造脱节  首先最大的问题:我国科研力量分散,如何将其“捏合”起来?  我国科研力量存在着分散、“小打小闹”、“捏不起来”的问题。如何能把科研力量捏合起来,形成我国分析仪器硬件技术、软件技术的攻坚力量是目前我们着重需要解决的问题。  第二个问题:如何与国外仪器公司相处?  一方面我国分析仪器行业应该感谢国外仪器公司的帮助,另一方面两者之间还存在着竞争关系。所以,国产分析仪器公司与国外仪器公司之间是一种又合作又竞争的关系,而在这个关系中,最好的结果是能够获得双赢,国外仪器公司能够赚到钱,我们的相关工业水平也得到了提高,共同使仪器的价格降下来,共同努力使应用范围更广泛。  第三个问题:如何将企业人才培养计划提升至更重要的位置?  国家基金委每年投入大量资金,主要有两个任务:第一就是把基础研究成果成功延伸到应用研究和生产制造环节中,为应用研究和生产制造提供科学方法 第二是培养科技人才。当前的科技人才培养主要在大学和科研院所,未来应该把企业人才培养列到更重要的位置上,促进企业提升技术水平,促进企业能很快将基础研究的成果应用到生产中。  第四个问题:我国科技界只紧盯、跟踪国际前沿技术,这是一个误区!  紧盯、跟踪国际科技前沿以前是需要的,但做不出具有完全自主知识产权的科研成果。所谓“紧盯国际科技前沿”就是一些人在做,但领头的人多是外国人,等于说我们是跟着别人跑、是落后的。“跟踪国际先进技术”则是别人已经做了五六年、已经产业化了,我们再跟着做,距离“前沿”就更远了。  为什么过去我们一直都是在跟踪国际先进技术?我认为是我们对应用技术没有研究透彻。没有研究透彻,就发现不了问题、提炼不出基础研究课题。我们的基础研究通常是看到国际上发表了什么文章,跟着做。我想我们要努力改变这种状况了。  国产近红外光谱仪器与国外的差距:不在水平而主要在可靠性  国产近红外光谱仪器与国外的技术水平相差并不大,差距主要在可靠性方面。但我国分析仪器行业对仪器的可靠性研究并不太重视。陆婉珍院士曾经提出的“我国分析仪器企业应发展稳定、可靠的硬件”的经验之谈应引起我们的重视。  另一个差距是在仪器的配件方面,通常,国产仪器配备的附件没有国外仪器配备的完善。国内仪器生产企业与应用者的联系不紧密,生产企业对用户不了解,不知道用户想干什么。并且,若只是为一部分用户的应用需求而投入大量的人力、物力,多数国内生产企业是不愿意的。  事实上,在仪器的关键器件方面,国内与国外差不多,国内外仪器公司的关键部件都是购买的,区别只在于,国外仪器公司的国内有这方面的器件,或有价格的优势;而我国的仪器公司则需要向国外购买,无法实现完全本土化生产。  对年轻基层科研工作者的建议:在干中学、在干中提升水平、在干中获得利益  首先,做好当前的工作。即使只做一天的工作,也不要马虎的混过去。遇到什么问题,记录下来,再寻求各种方式去解决。  第二是碰到任何分析仪器、分析方法时,主动把它们的原理搞清楚,这个学习过程比在大学里的学习有效得多。  第三是在做一个实验时,尽力将实验的所有配置以及它们相互之间是如何配合的全部弄明白。  总的来说,就是在干中学,在干中提升自己的水平,在干中获得自己的利益。在当前的工作中磨练创新思维,从小改小革向重大创新发展。  后记  采访过程中,方家熊院士谈到,“今年6月,胡锦涛总书记在院士大会上的讲话中指出,未来我国将加快转变经济发展方式,促进经济增长由主要依靠增加物质资源消耗向主要依靠科技进步转变,我国科技界肩负着重大使命。”  “那么,科技界如何为国民经济发展贡献力量?我认为具体就是提炼自主知识产权的科研成果,如专利、生产方式等。大家常说为国家做出贡献,但上升到‘贡献’的程度还需要几年的时间,现在只是做一点有用的事情吧。”  “科技要为国家经济战略转型做贡献”,是方家熊院士反复强调的观点。这充满深情的话语,折射出这位年过七旬的老科学家对国家民族、对科学事业的强烈责任感和远大抱负!  采访编辑:刘丰秋  附录:方家熊院士简历  方家熊,1939年出生,中国工程院院士,我国光传感技术专家,安徽黄山市人,1962年毕业于南京大学物理系,1966年中国科学院研究生毕业,中国科学院上海技术物理研究所研究员。  方家熊院士多年从事光传感器研究,为我国空间遥感系统提供了多种红外传感器。他提出了变能隙半导体红外传感器的工程优值参数概念和测试方法 解决了空间用红外传感器的技术基础及工程问题,满足了我国首次从卫星对地球的长波红外遥感的要求;为新型空间遥感系统的需要实现了碲镉汞红外器件对1~15微米探测的全波段覆盖;提出了我国第一个多光谱红外焦平面组件方案并研制成功;为“风云1号”卫星、“风云2号”卫星以及“神舟3号”飞船提供了各种多波段红外传感器组件,并推广应用于航空遥感系统和工业、交通、环境和医学等领域。  方家熊院士近几年从事光传感器组件应用技术研究,包括组件应用功能的增强方法,涉及微弱信号提取和处理电路设计和测试分析以及各个接口技术及综合集成系统组件的发展。  联系方式:jxfang@mail.sitp.ac.cn
  • 新型干涉光谱成像技术研究取得重要进展
    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。  面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限 离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。  此次研究工作取得重大进展的过程,充分体现了我所科研人员勇于攻关、勤于奉献、努力进取的精神。由于是在国内首次开展基于干涉光谱成像的离轴三反光学系统的研究,研制难度大,时间进度紧。在所各级领导的关心支持下,项目负责人胡炳樑研究员积极牵头组织专家进行方案论证,为项目设计、加工和装调,在人员、技术、设备等多方面提供了强有力的支持 白清兰研究员、熊望娥副研究员勇于攻坚克难,通过多次与领域内专家研讨,并组织科研人员无数次的讨论、论证,最终确定了新型离轴三反光机系统的设计和初步装调方案,并亲自带领年轻科研人员赵强、赵稳庄、孙剑、李勇、李立波、邹纯波、张宏建、赵瑞萍等参与项目的设计调试工作,实现了预期的研制目标 刘学斌研究员带领王爽、皮海峰、张雯、王彩玲等年轻科研同志,加班加点顺利完成了低噪声短波红外电路的设计工作,为全系统调试的顺利进行做出了极大贡献 王忠厚研究员、白加光研究员等为项目的前期方案论证和整个过程的研制提供了大量的技术支持和帮助 系统调试过程中,在系统工程部李华主任、检测中心赵建科主任的支持下,段嘉友、张建、李智勇等与项目组密切配合,出色完成了离轴三反光学系统装调任务。  日前,短波红外干涉光谱成像系统的研究工作仍在深入进行中,科研人员将不断创新进取,力争取得更大成绩。
  • “爱心传递积聚正能量”系列活动之植树造林
    3月23日上午,青岛盛瑞德集团公司旗下的青岛盛瀚和盛达利两个公司在青岛市城阳区举办了第二届&ldquo 植树绿化,爱心公益&rdquo 活动。本次活动历时4个小时,参与人数40余人。活动中,大家不畏山路艰险,勇往直前,各小组齐心协力,在短短一上午的时间里种植了近百棵樱桃树。活动结束后当场评选了两组植树小能手,给予奖励。分小组植树 左1:盛瀚董事长朱新勇先生大家干的很卖力劳动最光荣植树我最行活动合影 本次活动是一次心灵与大自然亲密接触的旅程,走出城市,走出喧嚣与沉浮,青山绿树,饮烟袅袅,让大家的心彻底纯净了下来。经历了这次活动,大家对以后的工作生活会更加充满活力和激情。 为公益事业出一份力,青岛盛瀚一直秉持着这种理念,不断地传递爱心,积聚正能量,为自己也为他人建造崭新的环境,创造美好的明天!
  • 即将更新!Moku:Go新增支持多仪器并行、云编译、协议分析仪等功能!
    昊量光电代理的liquid instruments即将发布2.4.0版升级,除了moku:go新增多个功能模块外,此次更新还将进一步提升moku:pro的性能。作为软件定义精密测试测量仪器创新者,liquid instruments 利用平台可拓展优势满足用户全方位的需求。继4月份moku: go新增锁相放大器及数字滤波器功能后,此次更新将为moku:go新增3个先进仪器功能,进一步缩小了教学仪器和专业科研设备之间的差距,助力于培养学生的创新和科研思维能力。 协议分析仪 此次更新,moku:go将协议分析功能集成到了逻辑分析仪中,支持spi、i2c和uart通信协议。与码型发生器相结合,moku:go将成为市面上蕞具竞争力和性价比的数字激励和系统表征高度集成的仪器之一。 多仪器并行模moku:go将支持同时运行两个仪器功能,无需增加额外硬件成本,就能满足用户多元化的系统定制需求。比如,在多仪器并行模式下同时运行pid控制器和频率响应分析仪功能,可以协助用户更轻松地设计和表征控制系统。将频率响应分析仪和数字滤波器或fir滤波器生成器并行,可以用于深入研究滤波器的传递函数。多仪器并行模式使得用户能将单个强大的仪器功能结合使用,解锁了更多系统应用的可能性。moku云编译高端平台moku:pro上的云编译功能这次也集成到了moku:go上,用户可以将自己编写的hdl代码部署到moku:go的 fpga上,直接通过moku:go的模拟和数字i/o通道完成数据采集和数字信号处理,让用户真正实现自定义测试测量仪器。在多仪器并行模式下,还可以与其他既有仪器互联,满足更复杂的系统应用需求。moku云编译无疑是这次moku:go一系列更新中蕞令人激动的新功能之一。高校无需采购额外定制设备,就能引入实时数字信号处理等实践内容教学,推动实验教学改革创新。 moku:pro 的改进与提升moku:pro的现有仪器功能也在持续增强。在此次更新中,相位表的蕞大跟踪带宽从10khz提升到了1mhz,以满足高动态控制和锁相应用需求。锁相放大器和激光锁频/稳频在低频pll锁定性能也得到显著提升。 频率响应分析仪的蕞高扫频点数增加到8192个点,在更大的频率范围能够实现更高分辨率的扫频。此外,在全新的动态参考模式中可以将输入1作为归一化参考轨迹,从而可以实现实时动态归一。用户可以通过此模式实时测量比较多个系统。频率响应分析仪也可以通过多仪器并行模式与数字滤波器结合使用,可以对正弦扫频进行实时调整,以跟踪大型系统响应并有效去噪。 除了ipad外,现在用户也可以在电脑端通过moku:pro的桌面应用程序(windows app)使用多仪器并行模式,根据自己的需求灵活拓展工作台。 7月7日起,moku:go及moku:pro的用户可以通过升级软件即可获取以上更新。liquid instruments将始终围绕用户的需求,为用户不断完善优化产品和服务体验。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!昊量光电作为liquid instruments的主要代理商,可以为您提供个性化的咨询和购买服务。对于moku产品有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系
  • 振动试验基础:实践操作题
    振动试验的实践操作主要包括振动台的操作、加速度传感器的安装、试验体的安装、振动控制仪的操作等项目。每个环节都对试验结果有着一定的影响,不容有失。加强对工作人员的培训,尤其是培养其认真细心的工作态度,极为重要。所以,在新入员工理论知识考核合格前提下,再进行以上各操作培训(各操作1对1培训2星期+现场跟机培训1个月),主要培训内容集中在试验内容说明和振动控制仪的软件操作上,培训后,需要进行实践操作考核。一般考核是提供各种试验条件,抽签决定试验条件,需要新入社员在无负载情况下正确安装加速度传感器、切换振动台、使用振动控制仪使试验进行,且在试验前说明确认试验内容,并在试验后回答考官1-2个简单问题(主要是电脑操作,比如切换通道显示、显示试验的传递函数、显示失真度曲线等),最后完成试验报告书。下表是在考核过程中,评判的基准,供大家参考。表1 实践操作考核评判基准1 振动控制仪的操作、数据处理等2 振动试验机的操作等3 加速度传感器的安装等4 试验的说明等5 试验报告书等实践操作考核分两个阶段进行,第一阶段为常见简单试验条件,比如定频正弦、正弦扫频、随机试验、正弦半波冲击试验等;第二阶段为比较少见的试验条件,比如拍波试验、SOR、ROR等,可以安排在第一阶段考核半年后。以下为两个考核阶段的试验内容(以前振动试验基础的文章中都有介绍),供参考。第一阶段考核各种试验内容:第二阶段考核各种试验内容:考核的目的除了让工作人员掌握最基本的操作内容,主要是为了培养其认真仔细的工作态度,粗心大意的人员是没有办法适应此工作的。因为振动试验考虑的因素实在是太多太多,涉及到方方面面,一个疏忽,试验即报警停止。特别是长时间的三综合试验,一旦由于细节出错,时间上、金钱上、工作上、客户的信赖性上都将产生不可弥补的问题。切记细心细心再细心!!!备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 武威公司完成省公司实验室能力传递比对验证
    6月13日消息 日前,武威供电公司电能计量中心顺利完成了省公司实验室能力传递比对验证工作。省公司计量中心领导亲临现场检查指导,在听取该计量中心负责人工作汇报后,对武威公司计量中心前阶段计量管理工作给予充分肯定,并要求武威供电公司计量中心按照实施方案实事求是做好实验室能力传递比对验证工作,同时还对计量授权工作做了详细的安排部署。  电能表实验室能力传递验证工作在全省尚属首次,采用的方法是:用被考核的计量标准测量一稳定的被测对象,然后将该被测对象用另一更高级的计量标准进行测量。为了使检定装置达到准确、可靠的目的,武威公司计量中心精心组织,在满足实验室要求的环境条件下,进行了多次模拟试验。通过这次实验室能力比对传递验证工作,既是与全省同行学习与交流、相互切磋技艺的机遇,更是对给出的检定或校准结果的可信程度的肯定,为计量检定、校准奠定了可靠的技术保证,为计量认证授权提供了坚实的评审基础,为顾客满意提供了强有力的法律依据。
  • ALIO六轴位移台Hybrid Hexapod® 重新定义纳米加工和精 准对位贴合技术!
    ALIO六轴位移台Hybrid Hexapod重新定义纳米加工和精 准对位贴合技术!自昊量光电推出以来全新的六轴位移台,ALIO Industries的Hybrid Hexapod彻底改变了6D运动的方法,并重新定义了运动控制在需要平整度和直线度加上刚度的应用中的作用,如纳米加工和精 准对位贴合技术中的应用。ALIO工业公司总裁Bill Hennessey表示:“在6自由度(6DOF)纳米技术应用领域,Hybrid Hexapod技术允许在纳米级精度的运动中提供身体所有6DOF性能的文件证明。因此,它是独 一 无 二的,这是第 一次成为可能。我们现在看到领 先技术研发人员在光学、半导体、制造、计量、激光加工和微加工领域致力于纳米应用,并取得了以前无法企及的成功。”所有的传统六足位移台运动系统都在三维空间内运行,并且在所有的六个自由度上都存在误差。然而,传统六足位移台的运动系统通常只能用单自由度的运动数据来表征。这种做法在几个自由度上留下了误差来源,特别是在平面和直线度方面,这是纳米级别的关键精度需求。所以说,一个传统的六足位移台在测量行程的平整度和直线度时,每轴会损失几十微米的精度。庆幸的是,Hybrid Hexapod完全克服了这些问题。Hennessey继续说道:“因为传统六足位移台有六个独立控制的连杆连接在一起,移动一个共同的平台,平台的运动误差将是所有连杆和关节误差的函数。众所周知,传统六足位移台在执行z轴运动时具有最 佳的精度和可重复性,因为所有连杆在相同的相对连杆角上执行相同的运动。然而,当任何其他X、Y、俯仰、偏航或摇摆运动被指令时,由于所有连杆执行不同的运动,传统六足位移台的精度和几何路径性能大幅下降。传统六足位移台的关节不精确,运动控制器无法实现正运动学和逆运动学方程,因此误差的来源更加明显。”Hybrid Hexapod由ALIO开发,旨在解决传统传统六足架设计的关键弱点,以及堆叠串行级的弱点,并在运动过程中实现纳米级的精度、可重复性和高完整性的平面和直线度。它采用了一个三脚架平行运动学结构来提供Z平面和尖 端/倾斜运动,集成了一个整体串行运动学结构来进行XY运动。一个旋转平台集成到三脚架的顶部(或下面,根据应用需要)提供360度的连续偏航旋转。在这种混合设计中,每个轴可以定制,提供从毫米到1米以上的行程范围,同时保持纳米级的精度。Hennessey总结道:“让我们看看4K镜头的制造商。典型的4K镜头需要极其高科技的材料技术,精密的组装实践,以及非常复杂的制造工艺和技术。所有方向的公差几乎为零用于制造透镜的制造过程经常会导致误差,这就是为什么它们需要不断的主动对准。 传感器和镜头对齐,多个目标沿着镜头投影到传感器,然后拍摄图像。调制传递函数(MTF)总是由主动对准装置不断监测,以保持每个MTF值在预先确定的范围内。当满足限度时,用紫外光对胶粘剂进行部分固化,然后再进行完全热固化。这确保了在对准镜头和传感器平面时的极端准确性。Hybrid Hexapod被证明是这种应用的完美选择,因为它的绝 对重复性和精度可以一次又一次地产生准确的结果。” “必须激励在可能的前沿工作的工程师提出更多要求,因为他们看到这项技术可以实现其他人无法实现的目标,具有促进创新的潜力,并且可以优化制造的效率和成本效益。Hybrid Hexapod 比传统六足位移台精度高出几个数量级,刚性提高100倍,速度提高30倍,可用工作范围是传统六轴位移台的10倍。 和传统六足设备同类型型号主要参数对比优势关于生产商:ALIO Industries 成立于 2001 年,由一支由杰出工程师组成的无与伦比的团队推动,他们痴迷于纳米级运动控制、客户成功以及尽可能突破感知界限。今天,ALIO非常重视对客户的响应。作为一家公司,我们一直专注于纳米级精度,因此我们拥有声誉、知识库和稳定性,这在需要超精确和可靠的运动控制时是无法比拟的。与 ALIO 作为您的合作伙伴,您将与一个强大、完善、财务稳定、全球认可和受人尊敬的品牌合作,为各种行业领 先客户提供服务。我们培养伙伴关系的基本含义,相信当知识在整个团队中公开共享时,结果总是更好。这也使我们能够创造性地为任何应用找到实用的运动控制解决方案。ALIO 的团队以诚实、正直和热情为特征。我们专注于成功,而不是为了现金流而出售解决方案。这就是性格!这就是为什么我们在纳米级运动控制解决方案领域享有无与伦比的声誉。上海昊量光电作为ALIO在中国大陆地区最 大的代理商,为您提供专业的选型以及技术服务。对于ALIO有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 如果您对六轴位移台有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/details-1529.html欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是目前国内知 名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。
  • CT分辨率知多少—高分辨率微纳CT的精确度量
    在 X 射线 CT 中,空间分辨率是重要的量化参数之一,它被定义为重建图像中两点之间可以区分的最小线性距离。因此,对空间分辨率的适当评估是至关重要的,特别是对于微纳 CT 这种高精度要求的成像系统。目前有两种最常见的空间分辨率评估方法:第一种是利用分辨率测试卡评估,其包含了可进行直接视觉评估的图案结构,在工艺上可制成二维和三维结构,适用于 X 射线断层和 X 射线 CT。测试卡的优势在于操作简单,可直观评估分辨率。但测试卡有一个明确定义的结构分布,只能评估测试卡上所列的图案尺寸;第二种是利用遵守 ASTM E1695-95 标准(Standard Test Method for Measurement of Computed Tomography (CT) System Performance)的斜边法或边缘瞬变法,光源扫描圆柱体或球体边缘,随后基于一套标准的数据处理方法计算空间分辨率。该方法需严格遵守测试标准,能够精确度量空间分辨率且不受测试卡的图案尺寸限制。1Resolution-spirit—微纳 CT 空间分辨率测试捷克CACTUX公司推出的 Resolution-spirit 是按照 ASTM E1695-95 标准制造的微纳 CT 模体,并由超精密三维测量机 nano-CMM 标定。Resolution-spirit 是一个高精度的红宝石球(Φ=0.5~5 mm),粘在一根碳棒上,如下图(左)所示。为评估 XY 平面的分辨率,只需对模体成像,如下图(右)所示,其中绿点为计算的质量中心。用户只需对模体边缘像素的数据进行处理,即两个红色圈内的数据,以质量中心为准,获得不同半径下强度分布—边缘响应函数(ERF)。这里最大挑战是以非常高的精度确定质量中心,如果没有正确地定义中心,那么根据中心对像素进行分组将不准确,错误将导致边缘模糊。然后依次通过求导和傅里叶变换得到点扩散函数(PSF)和调制传递函数(MTF),根据体素大小和 MTF 精确算出空间分辨率。最后类推到其他平面,可获得 CT 系统的三维空间分辨率。例如,布尔诺理工大学的研究人员利用传统 2D 分辨率测试卡和模体对 Heliscan 微米 CT 进行分辨率测试,如下表所示,模体能提供更精确的度量。2 Voxel-spirit—纳米 CT 体素校准在锥束 X 射线 CT 中,光源、样品和探测器之间的距离(SOD和SDD)影响重建体的视觉保真度和体素大小。除了这两个距离的估计存在偏差外,体素大小的真实值还受到 X 射线源漂移、CT 组件热膨胀、探测器和转台倾斜等因素的影响。因此,使用参考样品进行校准是防止在估计体素大小时出现误差的适当工具。对于视场在 10 mm及以上的锥束CT,体素尺寸校准已经很好地建立起来,并且有大量合适的参考样品可用。然而,对于小视场、高分辨率的微纳 CT 来说,很难找到合适的参考样品。CACTUX 的 Voxel-spirit 可以对 SOD 和 SDD 的误差进行精确校准,从而提高重建质量和体素大小的准确性,其适用于视场较小且锥束放大倍率接近 1 的微纳 CT。voxel-spirit由两个高精度的红宝石球(Φ=0.3 mm)组成,它们粘在一根碳棒上,球中心间距(约0.5 mm)并且经过 nano-CMM 严格度量,精度约 70 nm,如下图所示。首先保证两个球体完全在视场内,光源中心与探测器平面正交,两球中心连线平行于探测器平面。在对 Voxel-spirit成像后,可根据下图公式 1 计算体素大小。根据这种关系,在体素大小上的误差可能是由于 SOD 和 SDD 的不精确以及像素大小 p 的不精确造成的,而这些在实验中都是难以精确测量的。因此,在给定的 CT 测量条件下,利用图像中两球中心间距 lCT 和真实度量过的球中心间距 lref,可以获得体素修正因子 cf,算出修正后的体素大小,如下图公式 2、3。3 R1-shadow—微纳 CT 机械误差校正在微纳 CT、双能 CT 或 4D CT中,旋转转台同样会引入误差,即旋转中心的不对准、装台的不稳定或移动等等。尤其是针对颗粒、粉末样品,更容易受到这些机械误差的影响。CACTUX 的 R1-shadow 可以快速直观地纠正这些机械误差,并且提供配套的数据处理软件。R1-shadow是一个由 kapton 制成的样品基底(Φ=25~100 um),在中心处有一根碳纤维增强棒(Φ=2.5~10 um)作为机械误差校准的参考基准点,如下图所示。在确保基准点获得较高对比度的图像后,即可开始 CT 测量。下图展示了胶囊颗粒在机械误差修正前后的图像,可以清晰看到修正后的红色区域伪影消除了。 点击获取产品详细信息:捷克 CactuX—致力于提升您微纳 CT 系统的成像质量和测试效率参考文献:1. Standard Test Method for Measurement of Computed Tomography (CT) System Performance: E 1695–95. 1st edition. United States: American Society for Testing and Materials, 2013.2. Bla&zcaron ek P, &Scaron rámek J, Zikmund T, et al. Voxel size and calibration for CT measurements with a small field of view. Proceedings of the 9th Conference on Industrial Computed Tomography (iCT 2019), Padova, Italy. 2019: 13-15.3. Zemek M, Bla&zcaron ek P, &Scaron rámek J, et al. Voxel size calibration for high-resolution CT. 10th Conf. on Industrial Computed Tomography. 2020: 1-8.4. Laznovsky J, Brinek A, Salplachta J, et al. 3D spatial resolution evaluation for helical CT according to ASTM E1695–95. 10th Conference on Industrial Computed Tomography. 2020.5. Laznovsky J, Brinek A, Salplachta J, et al. Comparison of two different approaches for Spatial Resolution determination for X-ray Computed Tomography with helical scanning trajectory.
  • 物理所透射电镜非线性效应可应用性研究取得进展
    p  高分辨透射电子显微镜是研究微观结构的有力工具。获得可解释的高分辨像,样品厚度要满足苛刻的要求-弱相位物体近似。可以选择在Scherzer欠焦下观察,但有时不得不在大欠焦下拍摄图像提高图像衬度,比如在冷冻电镜中通常拍摄的离焦量为1-2μm,通过扣除成像过程中的衬度传递函数来获得样品的投影结构。实际中,很难获得如此薄的样品(冷冻电镜中样品厚度通常在100nm左右),此时高分辨成像过程中电子束之间会发生强烈的相互作用。高分辨电子显微像包含线性成像信息、非线性成像信息,而已有的像衬理论通常以线性信息为研究对象,难以满足定量化的要求,因此有必要对非线性信息进行更加深入的研究。/pp  在以往研究中,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)软物质物理实验室常云杰等结合透射交叉系数理论和赝弱相位物体近似理论,获得了衍射图中线性信息和非线性信息的解析表达式,并提出线性、非线性分离的方法。对分离后结果的研究发现,晶体厚度增大后,即使在Scherzer欠焦下线性成像也会偏离晶体结构,而非线性信息则更复杂。特殊条件下,非线性信息能够在某种程度下反映轻原子位置,比如负球差成像(这一现象已在实验上观察到)。这表明,可尝试利用非线性成像所包含的信息用于晶体结构的确定而不是简单地抛弃。/pp  此外,透射交叉系数理论(TCC)以及杨氏干涉条纹实验表明,非线性信息的信息极限远高于线性信息的信息极限,在高频信息中起到主要作用。在球差为零的条件下,S.Van Aert等提出非线性信息的信息极限约是线性信息的1.41倍。研究结果显示,在通常理论可解释的线性信息极限之外,仍存在高频率的结构信息,有可能被用作结构信息的测定,但目前关于利用非线性信息进行结构研究的报道甚少。/pp  近日,物理所/北京凝聚态物理国家实验室(筹)软物质物理实验室的科研人员,以AlN为模型使用数值模拟方法,研究了不同厚度不同成像条件下衍射束的相位。研究发现对于普通电镜成像,当样品比较薄的时候,信息极限以内的012衍射斑的相位随着离焦量的变化而变化,但当样品厚度较厚时相位近似为一个常数,且与物体的结构因子的相位基本一致。通过分离线性和非线性部分发现,当样品较薄时非线性部分的影响可以忽略,线性部分的相位随着离焦量的变化而变化 当样品较厚时,非线性成像的影响占主导地位,且非线性部分的相位近似为一个常数,接近结构因子。对超出线性信息极限的更高频的013衍射的研究可以得到类似的结论,且由于频率更高,013衍射的相位在样品更薄的时候就趋于常数,即对于高频的衍射束,其非线性效应在同等样品厚度下比低频衍射束更显著。利用超出线性信息极限的衍射点013的信息进行结构解析,可分开AlN 110 方向投影的Al-N的哑铃对。也就是说,得益于非线性信息的存在,即使普通的透射电子显微镜也可以得到更高分辨率的结构信息。虽然部分机理尚不清楚,但提供了新思路,即“变废为宝”,充分利用不可避免的厚样品的非线性效应。相关研究结果发表在Microscopy上。/pp  研究工作受到国家自然科学基金项目和中科院的支持。/pp 论文标题:Applicability of non-linear imaging in high-resolution transmission electron microscopy/pp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制