当前位置: 仪器信息网 > 行业主题 > >

磁铁矿分析仪

仪器信息网磁铁矿分析仪专题为您提供2024年最新磁铁矿分析仪价格报价、厂家品牌的相关信息, 包括磁铁矿分析仪参数、型号等,不管是国产,还是进口品牌的磁铁矿分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁铁矿分析仪相关的耗材配件、试剂标物,还有磁铁矿分析仪相关的最新资讯、资料,以及磁铁矿分析仪相关的解决方案。

磁铁矿分析仪相关的资讯

  • 中关村材料试验技术联盟发布《钒钛磁铁矿 硒量的测定 氢化物发生—原子荧光光谱法》征求意见稿
    各位专家、委员及相关单位:中国材料与试验团体标准化委员会决定对《钒钛磁铁矿 硒量的测定 氢化物发生—原子荧光光谱法》等2项团体标准征求意见稿公开广泛征求意见。请登录CSTM官网http://www.cstm.com.cn/channel/details/biaozhunzhengqiuyijian查看征求意见通知并下载相关资料附件。 CSTM标准化委员会2023年4月3日
  • 前沿科技 | OIA全自动铁矿相分析系统在炼铁原材料中的应用
    背景介绍多数情况下,为进行全面的矿产资源评价,了解铁矿石在下游加工作业中的行为或预测矿石品质对下游工艺的影响并优化处理工艺,需要获取大量关于矿石的原始信息。这些信息包括矿相组成、孔隙度、连生关系、粒度分布、解离度、组织结构、矿石颗粒结构分类和计算出的矿物密度和矿物成分等等。现在,所有这些重要信息都可以在OIA全自动铁矿相分析系统的帮助下准确获得。该系统实现在光学显微镜上自动采集图像,并可自动识别不同铁矿石、烧结矿、球团矿和冶金焦炭中的各矿相和孔隙。图像的获取和矿物颗粒的综合表征全部自动化完成,包括结构分类、解离分析、矿物连生关系和计算后的矿物成分、密度、尺寸等。本系统允许用户建立属于自己的特定结构分类方案,宽泛的放大倍数适用于铁矿粉至块矿,所有计算结果均以图、表的形式导出到Excle或Word文档,加之友好的用户界面,使之成为研究铁矿石、烧结和球团矿不可或缺的强力助手 。 图1 OIA全自动铁矿相分析系统工作原理OIA系统的工作原理有两个:基于反射色的多门槛值识别;基于矿物组织结构的识别。应用范围原生铁矿石、铁精粉、烧结矿、球团矿及冶金焦炭等炼铁原材料。应用案例1-铁矿石OIA在铁矿石信息表征中的应用主要包括获取样品矿物种类(磁铁矿、赤铁矿、水赤铁矿、褐铁矿、石英、孔隙等)及其含量(表1)、颗粒尺寸(表2)、连生关系(表3)及解离度(图3)等[1]。同时,可以提供包含丰富信息的彩色矿物分析图像(图2)。7图2 铁矿石光学图像(a)与矿物分析图像(b)表1 铁矿石样品中的矿物组成与含量表2 铁矿石样品中的矿物颗粒尺寸表3 铁矿石样品中各矿物间的连生关系图3 样品中按矿相计算的解离关系应用案例2-烧结矿OIA在烧结矿信息表征中的应用主要在于识别样品中的不同的赤铁矿相--原生赤铁矿(未反应相)和次生赤铁矿(烧结熔体中分异相)和不同类型的SFCA相(复合铁酸钙)[2],并提供包含丰富信息的彩色图像(图4),包括大面积拼图(图5)与微观分析图像(图6)。 图4 烧结矿光学图像(a)与矿相分析图像(b)图5 烧结矿样品的大面积光学图像拼图(a)与矿相分析图(b)备注:该图像由525帧200×的图像拼接而成,覆盖区域面积12mm×13mm,样品由鞍钢集团钢铁研究院提供图6 上述烧结矿样品的微观分析图像应用案例3-球团矿OIA在球团矿中的应用主要在于表征样品中的Fe3O4相、Fe2O3相和孔隙的分布特征。这里以加热到800℃的磁铁矿球团为例简作说明(图7),详细信息可参阅相关资料[3]。图7 球团矿样品的微观信息表征备注:该球团矿直径为12.7mm。图a为21×21帧2×2Mosaix图像拼接而成的光学图像;图b为系统分析后的矿相图像(粉色-Fe3O4相、蓝色-Fe2O3相、黄色-孔隙);图c-图e为各相的空间分布特征应用案例4-冶金焦炭OIA在冶金焦炭中的应用主要在于表征样品中的IMDC相(惰性组分)、RMDC相(活性组分)及两者边界和孔隙的分布特征(图8)。详细应用信息可参阅相关资料[4]。图8 焦炭样品的微观信息表征(品红色-IMDC、浅蓝色-RMDC、黄色-孔隙)OIA与MLA分析方法对比—铁矿石图9 MLA(图a、b)与OIA(图c、d)分析方法在原生铁矿石信息表征中的对比(粉色-磁铁矿、蓝色-赤铁矿、绿色-褐铁矿、黄色-孔隙、黑色-未识别)由于天然主要铁矿物(磁铁矿与假象赤铁矿,赤铁矿与水赤铁矿等)的含铁量往往相差不大,因此在扫描电镜下其灰度相近(图9a),MLA等电镜矿物分析软件易产生较大的识别误差(图9b);但各铁矿物相在光学显微镜下的特征更加明显(反射色各异,图9c),因此,搭载于光镜上的OIA全自动铁矿相分析系统对铁矿物的识别更加精确,同时,对孔隙特别是微孔隙的捕捉更加灵敏(图9d)。OIA与MLA分析方法对比—烧结矿图10 MLA(图a、b)与OIA(图c、d)分析方法在烧结矿信息表征中的对比MLA在烧结矿的应用中产生的问题与铁矿石分析中遇到的问题相同,样品中不同矿相在电镜下的灰度差异不足以使软件清晰的分割划分,所得分析结果与真实分布情况出入很大(图10a,b);而OIA在烧结矿中的表征,无论是矿相的识别,还是细节的捕捉,都远远优于MLA。OIA关键技术优势• 自动化分析,效率性大幅提升(比人工计点法快高效准确)手动计数往往低估了作为包体存在的小相;由于玻璃的反射率与环氧树脂的反射率非常接近,使得人眼无法对两者做出可靠的区分,因此也容易低估玻璃相;手动计数往往低估了孔隙率,因为忽略了微孔隙的存在。• 准确性(比扫描电镜分析方法更精确)• 信息丰富性(包含丰富的矿物信息)• 形貌表征(包括不同矿相和孔隙的组织结构和空间分布特征)OIA潜在应用OIA全自动铁矿相分析系统为广大矿业公司,钢铁企业及第三方检测机构实现以下战略目标提供配套定性及定量表征手段:☆ 定量分析铁矿石矿相,用以评估铁矿资源,预测铁矿特征对下游工艺的影响,优化矿石处理工艺流程,从而优化资源利用,增加资源量,降低矿物加工成本。☆ 定量分析烧结矿和球团矿矿相,研究烧结球团矿微观结构与性能的关系,从而优化配矿和烧结焙烧工艺,改善烧结矿品质,降低配矿成本。☆ 定量分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响,从而实现节能减排。参考文献[1] Donskoi, E. ,Poliakov, A. ,Manuel, J. R. and Raynlyn, T. D. Advances in optical image analysis and textural classification of iron ore fines, XXV International Mineral Processing Congress-IMPC2010, Brisbane, Australia. 2010, pp. 2823-2826.[2] Donskoi, E. ,Poliakov, A. ,Manuel, J. R. Automated Optical Image Analysis of Natural and Sintered Iron Ore: mineralogy, processing and environmental issues, Ed. L. Lu, Elsevier, 2015, pp: 101-159[3] Poliakov, A. ,Donskoi, E. , Hapugoda, S. Lu, L. Optical image analysis of iron ore pellets and lumps using CSIRO software Mineral4/Recognition4. IRON ORE CONFERENCE/PERTH, AUSTRALIA, 2017, 7: 24-26[4] Donskoi, E. ,Poliakov, A. , Mahoney, M. R., Scholes O. Novel optical image analysis coke characterization and its application to study of the relationship betweem coke structure, coke strength and parent coal composition. Fuel, Elsevier, 2017(208), pp: 281-295
  • 欧波同发布全自动光学显微矿物分析系统新品
    1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂创新点:(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。全自动光学显微矿物分析系统
  • 便携式XRD分析仪在管道腐蚀方面的应用
    应用背景近几年来,随着经济的发展,我国已经成为了特种设备使用大国,特别是承压类特种设备数量剧增,其运行风险逐渐增大,其中年限较长的压力管道出现了腐蚀、泄露等安全隐患,其运行安全问题成为了特种设备安全生产的重中之重。传统的无损检测方法只能为检验检测人员和设备管理人员提供设备的当前缺陷状态,无法给出造成承压类设备缺陷的原因。而造成设备缺陷的成因分析,可以为检验检测人员及设备使用单位提供缺陷原因,为后期的设备维护与防腐提供了很好的数据支持,帮助特种设备管理单位对承压累特种设备缺陷的来龙去脉进行合理有效地监控。目前,国内外已有研究人员将X 射线衍射仪(XRD)技术应用于承压类特种设备的检验检测及成因分析中,获得良好的运用效果。如:马磊(2015)利用X 射线衍射仪(XRD)分析了工业锅炉的水垢成分及成因,给出了后期工业锅炉除垢的技术依。本文结合压力管道的检验检测实际情况利用更加高效的便携式X 射线衍射(pXRD)分析仪,定性定量分析湖北某化工厂工业管道内腐蚀层的腐蚀物,通过对腐蚀物的成分分析,推断出其物质来源,给出压力管道内腐蚀的可能成因,为进一步防止压力管道内腐蚀的再次产生和后期保养维护提供参考依据,同时能够为承压类特种设备的安全事故调查提供新的重要线索。石油和天然气资产中的结垢从勘探和萃取环节到石油管线和精炼厂的整个石油和天然气供应链中的设备都可能受到结垢和腐蚀的影响。了解结垢和腐蚀产物的组成成分有助于维护团队立即采取适当的防垢处理措施,或者施用有效的防腐蚀添加剂。例如:盐酸通常用于去除碳酸钙结垢,而硫酸钙结垢可以使用螯合剂去除,如:乙二胺四乙酸(EDTA)。过去,维护团队需要将样本送到远离现场的实验室进行分析,一般要等待几天或几个星期才会得到分析结果,或者使用耗资较高的化学处理方法尝试进行处理(后者可能会有损坏设备的风险)。不过,石油和天然气资产中常见的结垢和腐蚀产物的数量一般来说较为有限,而XRD分析仪可以快速有效地完成这类检测,因此而成为一款受到用户青睐的选择。淤泥沉积物淤泥沉积物常见于精炼厂,通常由以下物质组成:l 碳氢化合物(如:润滑油和油脂)l 液体(如:水和油)l 非碳氢化合物或无机物(如:结垢和腐蚀)使用XRD分析仪了解淤泥的无机物成分,有助于完成淤泥的去除过程,并防止再次出现淤泥。二氯甲烷可用于从淤泥中分离出无机成分(结垢和腐蚀产物),从而可以(通过去除非晶相的方法)对结垢和腐蚀产物进行更详细的表征。X 射线衍射仪原理X射线衍射仪(XRD)属于基于无损探测的射线分析仪器的一种,它通过研究样本的晶体结构,定性定量地分析出样本中的主要成分,在医学、化工、材料、生物、地质等研究领域有着广泛的应用。传统的X射线衍射仪(XRD)主要以放于大型的实验室内的XRD仪器为主,主要包含设计较为复杂的测角仪、外部水冷凝系统等附属设备,其体积庞大、耗能大、需要专业人员定期进行校准的特点在实际使用工作中带来有了诸多的限制。在这种情况下,便携式X 射线衍射分析仪的优势逐渐显现出来,它具有样本准备便捷、高效节能、不需要定期校准以及便携等特性,越来越多地应用于野外实地的快速检测之中,并且其定量分析结果的精度与传统大型实验室内的X射线衍射仪(XRD)的精度具有很好的线性相关性,具有很高的参考价值。 映SHINE仪器是由浪声公司研发生产的一款便携式XRD/XRF设备, 映SHINE仪器移动式XRD系统是一款高性能、全封闭、电池操作、封闭射线式便携XRD分析仪,可以通过对镁到铀元素进行的一次性快速XRF扫查,提供材料主要成份、次要成份或微量成份的全晶相ID信息。系统对样品进行极少准备的技术及其独特的样品舱,可使操作人员在野外对样品进行快速的分析。映SHINE的分析速度极快、数据质量极高,而且就在用户最需要得知检测结果的样本检测现场,为用户实时提供定量化学成份值。映SHINE一起同时运送给用户的附件中有一个必需的软件(CrystalX分析软件),用于处理X射线衍射数据结果。这个软件中集成了AMCSD矿石数据库、ICDD矿石数据库、ICSD矿石数据库,支持用户进行跨数据库物相匹配。针对定量分析,CrystalX分析软件提供了参考密度比率(RIR)定量分析方式以及对各种衍射图案进行分析的工具。此外,映SHINE还可以多种文件格式提供XRD图案数据,从而可使用户方便地获得第三方项目中的XRD图案的判读信息。 常见的腐蚀产物金属腐蚀比较复杂,通常包括氧化腐蚀、硫化腐蚀、高温氢化腐蚀、海水腐蚀及电化学腐蚀等,由于金属所处环境不同其腐蚀机理不同,导致腐蚀的产物也相差万别。常见的腐蚀产物包括如铁的氧化腐蚀产物有磁铁矿、针铁矿、水铁矿、纤铁矿、六方纤铁矿、四方纤铁矿、赤铁矿、方铁矿,这些腐蚀产物主要生产于碳钢管道之中,此外常见于石油天然气管道之中的有重晶石、碳酸钙、石膏、方解石、天青石等。对于城市供水,则常见于石英、钠长石、石膏、绿泥石、伊利石、微斜长石、黄钾铁矾、析出铁及碳酸盐等。这些东西很容易被X射线衍射仪(XRD)检测并且分析出来。水垢是最早被发现的腐蚀产物,它是在管道和容器中慢慢堆积而成。附着在金属表面的锈蚀也是腐蚀物的一种。分析腐蚀物,鉴定其种类可以判定腐蚀物的成因,比如溶解元素混合、温度变化、PH值变化、细菌作用以及氧化作用。通过了解这些信息,可以找出清除腐蚀物的方法及预防方案。最新的腐蚀调查结果显示,我国由于腐蚀带来的损失和防腐蚀投入,总额超过两万亿人民币。因此及时找出金属的腐蚀成因,寻找解决方案防止腐蚀的产生尤为重要。样品/制样本实验采用浪声公司的映SHINE便携式X射线衍射(XRD)分析仪,对某水箱底部管道内腐蚀/水垢层进行检测分析,采集现场的水箱底部管道内腐蚀物样本若干。将块状管道内腐蚀层样本,在120摄氏度烘箱中烘干2小时,通过浪声提供的口袋制样盒制取小于100um粉末样品,将样本放入样本舱内进行检测并获得样本衍射图谱,使用CrystalX分析软件对衍射图谱进行成分定性及定量分析。 口袋制样盒腐蚀物分析流程仪器配置仪器型号:SHINE映靶材:Co靶管压:30kV分析时间:10分钟 分析结果 由浪声公司的映SHINE便携式X射线衍射(XRD)分析仪测试结果可知,腐蚀物/水垢中主要成分为镁方解石,说明该管道设备经常与含矿物水质接触,并且矿物在该设备处富积。另外,从分析结果中可知,存在一定量的石英成分,可能来源于管道内介质附带的杂质。综上所述,分析结果反应出腐蚀物样本产生于高矿物质水质环境的事实,印证了实验采样现场的基本情况。结论从分析结果表明,通过浪声公司SHINE映便携式XRD分析仪现场快速的分析腐蚀物,水垢,可及时获得腐蚀成分信息,有助于了解腐蚀成因,并寻找解决方案防止腐蚀产生。 制作部门:浪声-太湖之光实验室报告日期:2021/07/14
  • 李金华研究员与潘永信院士团队等:环境趋磁细菌单细胞鉴定和综合研究技术路线图
    摘要:微生物是地球上最古老且延续至今的生命形式。它们种类繁多、功能多样、分布极广、数量庞大,扮演着生产者、消费者和分解者的角色,参与近40亿年的地球演化,并且还在持续影响地球的物质元素循环和气候环境变迁等。开展现代环境中微生物多样性和地质记录中微生物化石综合研究,是理解微生物参与地球和生命演化过程和机制的关键所在。尽管微生物的研究已有三百多年的历史,然而目前成功分离培养的微生物仅占0.1%-1.0%,自然界中仍有大量不可培养微生物资源有待挖掘和开发利用。近日,中国科学院地质与地球物理研究所李金华研究员与潘永信院士生物地磁学团队联合法国巴黎第六大学、澳大利亚国立大学等国内外多个单位科研人员,将微生物分子生态学与电子显微学技术相结合,在单细胞水平上,实现了环境样品中脱硫菌门趋磁细菌的特异性鉴定和生物矿化研究。针对环境中大量的未培养趋磁细菌,该项研究还提出了单细胞鉴定和综合研究技术路线图,为地质微生物的种类鉴定及生物地球化学关联研究提供了新思路。本研究提出的环境趋磁细菌单细胞鉴定和综合研究技术路线图:第①步:趋磁细菌分离或收集(A-E)。A.野外采集含趋磁细菌的沉积物或水体样品。B.实验室建立有氧-无氧过渡区(OATZ)微环境,富集培养环境趋磁细菌。C.通过过滤或其他非磁性方法从分层水柱或沉积物中浓缩细菌(包括趋磁细菌)。D.单细胞显微操作分选目标趋磁细菌细胞。E.利用各种磁分离装置收集活的趋磁细菌细胞。第②步:单细胞水平细菌种类和磁小体结构关联鉴定(F-I)。F.利用通用或类群特异性引物扩增趋磁细菌细胞的16S rRNA基因测序。G.基于目标16S rRNA基因序列设计类群/物种特异性寡核苷酸探针。H.利用荧光标记的类群/物种特异性探针对目标趋磁细菌细胞进行荧光原位杂交实验。I.在单细胞水平上对经荧光标记的细胞开展“荧光显微镜—扫描/透射电镜”或“荧光显微镜—聚焦离子束—扫描电镜”关联分析。第③-⑤步:趋磁细菌单细胞水平综合显微学关联研究(J-L)。J.同步辐射扫描透射X-射线显微镜对趋磁细菌细胞开展化学组成和磁学性质分析(纳米尺度)。K.综合透射电镜对趋磁细菌和磁小体进行结构、形貌、磁性和化学成分分析(原子尺度)。L.纳米二次离子质谱对趋磁细菌细胞进行化学元素和同位素分析(纳米尺度)。   一、硫酸盐还原趋磁细菌趋磁细菌是经典的地磁微生物和地质微生物功能群,它们广泛分布于各种水体环境中,在细胞内合成膜包被的纳米磁铁矿(Fe3O4)或(Fe3S4)晶体颗粒,也叫磁小体。趋磁细菌可以感知地磁场,并在地质记录中形成磁小体化石,因而是生物矿化、生物地磁学和古地磁学研究的理想模式系统。趋磁细菌种类和形貌极其多样,但对生长条件要求极其苛刻,因而实验室纯培养非常困难。建立不依赖纯培养的综合研究体系,在单细胞水平上实现趋磁细菌的生物学、矿物学和磁学综合研究,是全面且深入认识趋磁细菌多样性和磁小体生物矿化机制的关键所在。在众多类群中,隶属于脱硫菌门的硫酸盐还原趋磁细菌尤为独特。已知的变形菌门、硝化螺菌门和暂定杂食菌门趋磁细菌只能合成磁铁矿成分的磁小体,且都是单细胞原核生物。与它们不同,脱硫菌门趋磁细菌中,除了能合成磁铁矿型磁小体,也能合成胶黄铁矿型磁小体,除了有单细胞型,还有多细胞型。从生态学上讲,脱硫菌门微生物主要以硫酸盐为电子最终受体,进行厌氧呼吸,因此在自然界的硫-碳循环中起关键作用。二、西安未央湖硫酸盐还原趋磁细菌的发现和鉴定自上世纪八十年代以来,国内外多个研究团队陆续在海洋和盐碱湖等环境中发现并鉴定了多种硫酸盐还原趋磁细菌。然而,对淡水环境中的硫酸盐还原细菌鲜有报道和缺乏深入研究。2013年,中国科学院地质与地球物理研究所生物地磁学研究团队在西安未央湖和护城河中,通过16S rRNA基因序列检测和透射电镜观测,首次在淡水环境中发现了多种硫酸盐还原趋磁细菌(Wang et al., 2013 陈海涛等,2013)。随后,研究团队通过建立的“荧光显微镜-扫描电镜”联用技术(Li et al., 2017),从西安未央湖中鉴定了一株新的淡水硫酸盐还原趋磁杆菌WYHR-1,在细胞内合成“子弹头形”磁铁矿晶体颗粒,沿[001]方向拉长,具有典型的“多阶段晶体生长”模式,在细胞内组装成2-3条紧密排列的磁小体链束结构 (Li et al., 2019, 2020)。然而,由于丰度低,且与其它门类趋磁细菌混合存在,其它种类硫酸盐还原趋磁细菌的鉴定和生物矿化研究并未成功。在本研究中,研究团队设计了特异性上游引物390F,与下游引物1492R配合使用,特异性地检测环境样品中硫酸盐还原趋磁细菌。实验结果表明,利用细菌通用引物对27F/1492R对环境趋磁细菌样品的16S rRNA基因序列进行扩增,只能得到相对丰度高的α-变形菌纲趋磁螺旋菌WYHS-1的基因序列。然而,利用390F/1492R引物对,对同一个环境趋磁细菌样品的16S rRNA基因序列进行扩增,成功地获得了三条新的硫酸盐还原趋磁细菌16S rRNA基因序列,分别命名为菌株WYHR-2,WYHR-3和WYHR-4(图1)。生物信息学分析证实,尽管390F/1492R引物对,对脱硫菌门微生物的覆盖度低于27F/1492R引物对(前者20.6%,后者为32.2%),然而对其它细菌门类的覆盖度仅有0.5%,远远低于27F/1492R的26.0%,因此可以作为类群特异性引物对,从环境样品中特异性地检测脱硫菌门细菌。图1 未央湖淡水硫酸盐还原趋磁细菌WYHR-2、WYHR-3和WYHR-4的系统发育树他们进一步采用三种不同策略,在单细胞水平上分别对这三种新的趋磁细菌开展生物学种类与磁小体结构的关联鉴定和研究。(1)荧光—扫描电镜联用(FISH-SEM)鉴定WYHR-2(图2)。结果显示,菌株WYHR-2为平均长度为2.9±0.6μm,平均宽度为1.5±0.3μm (n=29)的杆状细胞,合成58±16个平均长度为77.9±22.3nm,平均宽度为31.4±5.8nm (n=681 共分析29个细胞)的排列成一条链束状结构的直子弹头形磁铁矿成分的磁小体。(2)荧光—透射电镜联用(FISH-TEM)鉴定WYHR-3(图3)。结果显示,WYHR-3除了合成 33±13个平均长度为71.0±18.7 nm,平均宽度为30.3±4.9nm (n=846 共分析31个细胞)的直子弹头形磁铁矿成分的磁小体外,还合成18±11个平均长度53.7±13.1nm,平均宽度44.0±9.7nm的立方体或棱柱形胶黄铁矿成分的磁小体。(3)荧光—聚焦离子束-扫描电镜(FISH-FIB-SEM)鉴定WYHR-4(图4)。结果显示,WYHR-4也能在细胞内同时合成磁铁矿型和胶黄铁矿型磁小体。图2 趋磁细菌WYHR-2的FISH-SEM关联分析图3 趋磁细菌WYHR-3的FISH-TEM关联分析。使用TEM是因为,WYHR-3细胞相对较大较厚, SEM不能获得相对清晰的磁小体图像图4 趋磁细菌WYHR-4的FISH-FIB-SEM关联分析。使用FIB-SEM是因为,WYHR-4细胞相对较大较厚,单纯的SEM并不能获得相对清晰的磁小体图像,同时由于WYHR-4丰度太低,并不适合FISH-TEM关联分析。因此,在本研究中采用FISH-SEM将目标细菌共定位后,采用聚焦离子束技术(FIB)将目标细菌逐层切开,然后使用SEM对细胞内的磁小体进行形貌和成分分析  三、硫酸盐还原趋磁细菌磁小体晶型和矿化机制完成了三株新的未培养硫酸盐还原趋磁细菌的种类鉴定后,他们进一步采用先进的透射电镜技术对其磁小体晶型和矿化机制开展研究(图5-图6),并与前人以及他们前期的研究结果进行对比。结果表明:(1)脱硫菌门趋磁细菌合成的磁铁矿型磁小体,通常不弯曲,颗粒多沿[001]拉长,底端可保留一个大且平整的{001}面(如WYHR-1和WYHR-2)。然而,硝化螺菌门趋磁细菌合成的磁铁矿型磁小体,通常为弯曲形状,颗粒底端多保留为一个大且平整的{111}面,最终沿[001]拉长。这表明,磁小体的形状与趋磁细菌门类相关,地质记录中直的和弯曲形子弹头形磁小体化石可以用来指示上述两类趋磁细菌及其古环境。(2)与磁铁矿磁小体的结晶度高且通常至少保留一个可明显识别的晶面相比,胶黄铁矿磁小体的结晶度相对较差,形状多变,颗粒外围晶面欠发育且难识别。与棱柱形磁铁矿磁小体(变形菌门趋磁细菌合成)多沿磁铁矿晶体的[111]晶面拉长不同,棱柱形胶黄铁矿磁小体沿胶黄铁矿的晶体[001]方向拉长,其生长机制和磁学性质值得进一步深入研究。图5 趋磁细菌WYHR-2及其磁小体的形貌、尺寸和链束结构特征图6 趋磁细菌WYHR-3的磁铁矿(A-C)和胶黄铁矿(D-F)磁小体的形貌和晶型研究成果发表于国际学术期刊Environmental Microbiology(李金华*, 刘沛余, Menguy Nicolas,Benzerara Karim,白金伶,赵翔,Leroy Eric,张朝群,张衡,刘嘉玮,张荣荣,朱珂磊,Roberts Andrew,潘永信. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: Strategy for culture-independent study[J]. Environmental Microbiology, 2022. DOI: 10.1111/1462-2920.16109)。研究受中国国家自然科学基金重点国际(地区)合作研究项(41920104009)、国家自然科学基金重大项目课题(41890843)和国家自然科学基金创新研究群体项目(41621004)资助。
  • 岛津EPMA超轻元素分析之(三)| 助力新矿物的发现-含有超轻元素的竺可桢石
    日前,由浙江大学地球科学学院饶灿教授课题组发现的、自然界中第一个锂铝氧化物新矿物LiAl5O8,经国际矿物学协会新矿物命名及分类委员会全票通过,获得批准,该矿物被命名为“竺可桢石(Chukochenite)”,以纪念我国著名科学家、教育家、原浙江大学校长竺可桢院士(1890-1974年)。 竺可桢石 竺可桢石具有特殊的晶体结构,在掺入其他杂质后能够发光产生特殊的光学效应。竺可桢石与萤石、云母、金绿宝石、尼日利亚石、绿泥石等矿物一起产出,对铍矿、锡矿等关键金属矿产的指导找矿也具有重要指示意义。 图1竺可桢石在岛津电子探针EPMA-1720H背散射电子像下的形态特征(Ckc - 竺可桢石;Fl - 萤石;Na-M - 钠云母) 专 家 声 音 饶教授回忆当初发现新矿物的情形:当时我们使用岛津电子探针测试此矿物成分时,发现矿物成分总量只有96 wt.% 左右,与已知矿物相差甚远。再排除掉可能有H2O带来的影响,以及对元素精确定量的情况下,经过计算发现,此矿物中阴阳离子很难配平,阳离子偏少。经过反复确认和持续的研究,最终证实了其化学式为LiAl5O8这种含有超轻元素的氧化物矿物。 岛津电子探针EPMA-1720H 据悉,竺可桢石是浙江大学饶灿教授发现的第五种新矿物。自2017年岛津电子探针EPMA-1720H落户浙江大学饶教授团队实验室以来,已协助饶灿教授发现了2种新矿物——锌尼日利亚石和竺可桢石。 表1 浙江大学饶灿教授发现的新型矿物信息新型锌尼日利亚石图2 新型锌尼日利亚石在岛津电子探针EPMA-1720H背散射电子像下的形态特征(Zng – 锌尼日利亚石-2N1S Fl – 萤石 Chb - 金绿宝石 Mgt - 磁铁矿) 经过微区成分定量测试和计算,得到锌尼日利亚石-2N1S的化学式:(Zn0.734Mn0.204Na0.122Ca0.063Mg0.044)∑1.166(Sn1.941Zn0.053Ti0.007)∑2(Al11.018Fe+30.690Zn0.200Si0.092)∑12O22(OH)2 新矿物的发现,提高了我国矿物学基础研究水平,促进了矿物学学科发展,展现了国家基础科技研究的实力。对饶灿教授团队对中国地学研究领域的卓越奉献表示敬意。
  • 元素测定、薄膜分析、样品制备,巧用GDS实现多方位分析【GDS微课堂-8】
    运营一个公司需要不同部门的合作,打好一场胜仗,需要不同的兵种配合。在分析仪器世界里,如果将仪器巧妙组合,让它们充分发挥各自特长,也会事半功倍。因为各种仪器的侧重点不同,单一技术只能得到表面某一方面的信息,但不同仪器亲密合作,就可以对样品进行多方位、多角度、多层次的检测,终得到全面准确、甚至超出预期的科研结果。那你知道GDS都有哪些小伙伴吗?他们怎么相互合作呢?今天我们请了三位小伙伴,来认识一下他们吧!01拉曼光谱仪GDS可以获取不同深度处元素的含量分布信息,结合拉曼光谱仪能够进一步得到物质的化学结构信息。接下来,让我们一起看下两者是如何配合的。GDS和小曼今天收到了一份委托,需要测定不同实验条件下产物是什么,以及怎样分布。实验条件如下:采用阳溅射法在含氟乙二醇溶液中制备了具有纳米孔结构的氧化铁薄膜。在不同的温度(350℃、400℃、450℃)下进行退火。GDS和小曼分别对三份实验产物进行了检测,结果如下:GDS我测定了不同深度处实验产物的元素浓度变化,以350℃退火温度下的实验结果为例,可以明显看出:随着溅射时间的增加,不同深度处(X轴)Fe元素的浓度不断变化,其他元素亦是。综合400℃和450℃退火温度下的实验结果,元素浓度(谱峰强度)相近,可见实验产物较为类似。但产物是什么?还需让小曼揭晓。GDS分析图拉曼光谱仪将不同退火温度下强拉曼峰与拉曼谱图库做对比,我发现:350℃退火温度下主要产物是磁铁矿,400℃和450℃退火温度下是赤铁矿,与上图GDS的结果吻合。拉曼光谱图综合上述结果,我们获取了Fe、C等元素随深度改变的浓度变化信息,并在此基础上,进一步测得不同退火温度下产物分别为磁铁矿和赤铁矿。02椭圆偏振光谱仪由上文我们知道GDS能够得到薄膜在不同厚度的元素含量分布,此外,GDS还能从元素深度的变化来获取镀层的结构、均一性、厚度等信息。结合椭偏仪擅长解析薄膜厚度和其光学常数的优势,两者合作就能够准确获得镀层的结构,并对镀层光学特性有更全面的了解。椭圆偏振光谱仪Hi,我是椭小偏,做表面分析的同学应该对我很熟悉吧!我和GDS是老朋友了,我们经常协作完成测试。近我们对薄膜太阳能电池进行了分析,下面一起看下实验结果。GDS先来说说我的发现,下图我们可以看到电池镀层不同深度处各元素的含量变化,并且我发现Mo基底表面还有两层镀层:层主要含Cu、Se、Sn,而第二层含S、Zn,由此我得到了镀层的元素分布信息。椭圆偏振光谱仪我测试的是一款Cu2ZnSnS4太阳能光伏电池。下图张是电池的光学常数折射率n和消光系数k随波长的变化曲线;第二张图是我模拟出的镀层模型,由图可知:底层为Mo基底;中间是Cu2ZnSnS4层,厚度1472nm;上层厚度为227nm且镀层内存在孔隙,从上往下孔隙率从95%下降到6.8%。Cu2ZnSnS4太阳能电池的折射率n和消光系数k随波长的变化各镀层的厚度和表层孔隙率模型综合上面两种太阳能电池的实验结果,可知GDS能够测得镀层元素分布,椭偏仪可测得光学常数和镀层结构,两者合作为我们进一步解析材料提供了更为丰富的信息。03能谱仪(EDS)能谱仪(EDS)主要是利用不同元素X射线光子特征能量不同,来获取材料的元素种类以及含量等信息,如材料表面微区成分的定性和定量分析、固体材料的表面涂层分析等等,常和SEM扫描电镜、GDS等合作,来获取更为全面的镀层信息。EDS能谱仪大家好,我能够分析材料元素组成和含量等信息,但我获取的是镀层表面信息,无法探测较深的镀层,SEM姐姐推荐我来找GDS帮忙。GDS没问题,快将测定样品告诉我,我来帮你把表层剥蚀掉,你再分析~让我们来见证一下当GDS遇到EDS后产生的花火吧:GDS测试结果从上图的GDS结果可以看出,0~5.8μm为纯锌层,5.8~7.8μm为含有锌、铁和铝的合金层。为了方便能谱仪对合金层进行测试,GDS剥蚀掉了表面的纯锌层,露出铁铝合金层,以便EDS进一步剖析该层元素分布,结果图如下:EDS在GDS剥蚀后测试的结果从测试结果可以看出,在合金层中,Al、Fe、Zn元素的浓度比例分别为3.64%、71.32%和25.05%。铁铝合金层电镜图由上述实验结果可知,GDS能够帮助EDS和SEM剥蚀表面,制作可供分析的合格样品,全面立体地展示出样品结构信息和元素分布,并得到元素随深度变化的分布曲线,为进一步解析镀层提供了更为全面的信息。今天的测试结果到这里就结束了,至此我们知道GDS跟拉曼光谱仪、椭圆偏振光谱仪、EDS能谱仪合作,能够对物质进行全面表征,综合获得材料的化学结构、元素分布、光学常数等信息,这也为深入剖析材料提供了可供参考的方式。通过上面的几个例子,大家是不是对GDS与其他分析技术的合作有了更直观的认识呢?如果还有别的联用方式,也欢迎大家跟我们分享~至此,GDS微课堂全部结束啦!在这个系列里,我带大家了解了GDS的基本原理、基本功能、常用概念、应用范围,并详细讲解了GDS在钢铁、锂电池、太阳能电池以及LED行业中的应用,后,还和大家分享了GDS与其它表面分析技术是如何协作的。不知道同学们掌握的如何了?可以点击往期回顾,再复习一遍。不仅限于GDS,之后我们还将带来一系列其他光谱技术,请一直关注我们哟!往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚?【GDS微课堂-7】超快速表面处理,几秒获取高质量界面HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。您可点击阅读原文进行浏览,还可分享至朋友圈让更多科研工作者看到。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。点击阅读原文,查看更多光谱入门手册。
  • 新矿物+2!我国科研人员发现两种新矿物
    人民政协网北京8月16日电(记者 王硕)记者16日从中国地质调查局获悉,由我国科研人员发现、命名并申报的新矿物“氟碳钙钕矿”以及“菊兴铜矿”近日分别获得国际矿物学协会-新矿物命名及分类委员会批准通过,这意味着我国科研人员发现两种新矿物。其中,氟碳钙钕矿由国家地质实验测试中心范晨子研究员联合中国地质科学院矿产资源研究所、中南大学等单位科研人员发现于内蒙古白云鄂博矿。它的发现对丰富稀土氟碳酸盐矿物学基础理论知识,认识白云鄂博稀土元素赋存状态和替代机制,了解矿床的形成与演变、元素赋存状态、元素迁移、富集机制等具有重要的意义。内蒙古白云鄂博矿是世界最大的稀土矿床,也是我国矿物资源的宝库,迄今已发现210余种矿物,在我国新矿物发现地中占据首要位置。此次发现的氟碳钙钕矿是在该矿床发现的第21种新矿物。钕作为当今稀土元素家族中的佼佼者,对促进稀土在永磁材料、激光材料等高新技术领域中的应用,发挥着极为重要的作用。此次新发现的氟碳钙钕矿属于钙稀土氟碳酸盐系列矿物,是常见的稀土矿物氟碳钙铈矿的富钕类似矿物,也是钕资源的重要矿物原料。氟碳钙钕矿呈黄褐色至褐色,与方解石、萤石、霓石、钠闪石、磁铁矿等矿物共生,钕氧化物平均含量约为30%,稀土氧化物平均含量约为60%,且具有多型、体衍交生等复杂晶体微结构特征。菊兴铜矿由中国地质科学院矿产资源研究所顾枫华助理研究员、中国地质大学(北京)章永梅副教授,联合江西应用科技学院/中南大学谷湘平教授和核工业地质研究院范光研究员等发现于西藏甲玛世界级斑岩-矽卡岩型巨型铜多金属矿床中。初步研究表明,菊兴铜矿是一种重要的载金载银矿物,结构复杂,其形成与中高温热液贵金属矿化密切相关。该矿物的发现不仅为硫化物矿物家族增添了新的一员,而且对于研究斑岩-矽卡岩型矿床的成矿物理化学条件与成矿作用过程具有重要的科学意义。菊兴铜矿主要产出于下白垩统林布宗组与中新世斑岩接触带形成的矽卡岩型铜多金属矿体中,共伴生金属矿物主要包括黄铜矿、方铅矿、辉钼矿、黄铁矿、蓝辉铜矿、辉铜矿,以及少量金-银矿物和含铋矿物(如硫铋铜矿)。该新矿物常在斑铜矿中呈固溶体产出,粒径多变化于数至100微米之间。菊兴铜矿为复杂金属硫化物,不透明,具金属光泽;反射色为浅黄白色,均质性,无双反射和反射多色性;其晶体结构由硫、 硫-铋原子层和不同比例空位的铜-铁原子层组成,与斑铜矿、黄铜矿的结构存在联系。
  • 我国铁矿石选矿设备行业发展机遇分析
    “十二五”以来,我国公路建设进入了全新的高速发展期。中国高速公路网、农村公路网、综合运输网等五个大型公路网络的快速发展,势必将进一步促进铁矿石选矿设备市场的快速增长。目前,中国高速公路总里程已达5.4万公里,总长度仅次于美国。不久的将来,中国将成为全球高速公路总里程第一的国家。不过,我国虽然进行了长达10年的公路建设,却仍然存在巨大潜力。  众所周知,高速铁路造价数倍于常规铁路,因此,其建设对路面与设备的要求更高。每年铁矿石选矿设备近1000台的市场需求,因此选矿设备企业的发展前景和市场环境空前良好。  目前,几乎所有工程、矿山机械企业负责人都对铁路建设,特别是高铁建设投入了极大地关注。其中金马也不例外,金马也在专注于自己设备的发展。以铁矿石选矿设备设备为例,该类产品一直是受铁路、公路、桥梁影响最为显着的产品之一,特别是铁路建设,使用桩工产品在空中建设铁路,需要大量的砂石料和混凝土骨料,这些对破碎设备生产企业有着重大决策作用。  当前,随着我国公路建设的加速发展,铁矿石选矿设备行业近年来也得到迅速发展,其市场保有量不断提升。据了解,目前这些既有产品基本都能正常使用,且小型破碎设备的利用率不断增加。路面建筑行业的发展使铁矿石选矿设备产品流通迅速,市场形势前景光明。
  • 姜志忠课题组在小型铅基堆材料腐蚀行为与机理研究方面取得新进展
    近日,中科院合肥研究院核能安全所姜志忠课题组在小型铅基堆材料腐蚀行为与机理研究方面取得新进展,研究成果发表在国际腐蚀领域知名期刊Corrosion Science上,中科院青促会会员罗林为第一作者,姜志忠和刘静为共同通讯作者。 小型核反应堆具有功率稳定、安全可靠、结构紧凑等优点,在海洋动力、区域供电、海水淡化等领域具有很好的应用前景。以液态铅铋合金作为主冷却剂的铅冷快堆在小型化方面具有独特的优势:堆芯紧凑、核热传输效率高、辅助系统简单。但是由于Fe、Cr和Ni等金属元素在高温铅铋合金中具有较高的溶解度,钢铁材料可能发生均匀的氧化腐蚀或溶解腐蚀,同时局部区域也可能出现铅铋渗透和点蚀现象。点蚀是破坏性和隐患性最大的腐蚀形态之一,会严重影响小型铅冷快堆的长期安全服役。 铁素体/马氏体钢(铁/马钢)是铅冷快堆的重要候选结构材料。当温度≥450℃,且氧浓度≥10-6wt%时,一般认为铁/马钢在铅铋合金中会形成氧化膜,包括磁铁矿层、尖晶石层和内氧化层。近期研究发现铁/马钢在铅铋中腐蚀后,氧化膜可能具有更复杂的亚结构及元素分布特性,而这些复杂的亚结构和元素分布可能是造成铁/马钢发生点蚀的重要原因。 该工作研究了铁/马钢在氧控铅铋环境腐蚀后表面氧化膜的亚结构,发现:磁铁矿表面局部区域存在蜂窝状组织,该组织由贫氧孔洞和网状枝干组成(图1)。低的氧浓度可以促进蜂窝状组织在更短的时间和更多的区域形成。随着腐蚀时间的增加,孔洞尺寸增大、贫氧区和贫铁区面积均增大。经2000h腐蚀,贫氧区延伸至孔洞下方的磁铁矿层和尖晶石层,导致上述层存在大量氧空位(图2),将诱发点蚀的形成,并促进点蚀坑的长大。分析认为蜂窝状组织的形成可能是因为磁铁矿表面高能量的局部区域在氧浓度变得较低后发生溶解。该研究进展表明,铁/马钢表面氧化层中蜂窝状组织的存在意味着所在区域铅铋溶解氧浓度较低,可能诱发点蚀。为避免蜂窝状组织的形成,有必要优化氧控系统的设计。该研究工作为小型铅冷快堆的设计提供了重要参考。 该项研究工作得到国家重点研发计划、中国科学院青年创新促进会及国家自然科学基金项目的资助。 文章链接:https://www.sciencedirect.com/science/article/pii/S0010938X22003286图1 铁马钢表面磁铁矿局部区域的蜂窝状组织图2 在500℃、氧浓度为10-7wt%的铅铋中腐蚀2000小时后,铁马钢氧化膜的截面形貌。红色圆圈1和2是蜂窝状组织的孔洞。
  • 解决方案 | 奥林巴斯便携式XRD在金属腐蚀中的应用
    2010年,美国特索罗阿纳科特斯的石油精炼化工厂的热交换器发生爆炸,导致7人伤亡,百万罚款。2012年,美国里士满的雪佛龙炼油厂管道爆炸,产生的巨大浓烟导致周边1.5万居民到医院就医(200万罚款)。这两起事故的原因,分别是碳钢管材料高温氢蚀和石油管道硫化腐蚀,管壁变薄无法承受高温高压的使用条件,致使其爆裂。由于金属合金的腐蚀造成的人身财产损失相当巨大,最新的腐蚀调查结果显示,我国由于腐蚀带来的损失和防腐蚀投入,总额超过两万亿人民币。因此及时找出金属的腐蚀成因,寻找解决方案防止腐蚀的产生尤为重要。金属腐蚀比较复杂,通常包括氧化腐蚀、硫化腐蚀、高温氢化腐蚀、海水腐蚀及电化学腐蚀等,由于金属所处环境不同其腐蚀机理不同,导致腐蚀的产物也相差万别。如铁的氧化腐蚀产物有磁铁矿(Fe3O4)、针铁矿(α-FeO(OH))、水铁矿(Fe5O7(OH)x4H2O)、纤铁矿(γ-FeOOH)、六方纤铁矿(FeO(OH))、四方纤铁矿(FeO(OH,Cl))、赤铁矿(Fe2O3)、方铁矿(FeO)等,仅仅化学元素分析不足以判定腐蚀产物。奥林巴斯XRD分析仪通过奥林巴斯XRD分析仪现场快速的分析金属腐蚀物,可及时获得腐蚀成分信息,有助于了解腐蚀成因,并寻找解决方案防止腐蚀产生。在炼油厂、石油石化行业、电厂和船舶行业等有非常广泛的应用前景。新加坡某石油公司每年花费3万美元做腐蚀物XRD分析,以确保化工设备安全运行。优点便携,坚固耐用样品制备时间短样品量少(15mg)不需测角仪校正无晶体取向性影响不需外部循环冷却水奥林巴斯的XRD分析仪是一款高性能、封闭射线式便携XRD分析仪,可以通过对Ca到U元素进行的一次性快速XRF扫查,提供材料主要成份、次要成份或微量成份的全晶相结构信息。所需样品量极少,操作简便,可使操作人员在野外对样品进行实时快速的现场分析。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • [应用]奥林巴斯便携式XRD在金属腐蚀中的应用
    2010年,美国特索罗阿纳科特斯的石油精炼化工厂的热交换器发生爆炸,导致7人伤亡,百万罚款。2012年,美国里士满的雪佛龙炼油厂管道爆炸,产生的巨大浓烟导致周边1.5万居民到医院就医(200万罚款)。这两起事故的原因,分别是碳钢管材料高温氢蚀和石油管道硫化腐蚀,管壁变薄无法承受高温高压的使用条件,致使其爆裂。由于金属合金的腐蚀造成的人身财产损失相当巨大,最新的腐蚀调查结果显示,我国由于腐蚀带来的损失和防腐蚀投入,总额超过两万亿人民币。因此及时找出金属的腐蚀成因,寻找解决方案防止腐蚀的产生尤为重要。 金属腐蚀比较复杂,通常包括氧化腐蚀、硫化腐蚀、高温氢化腐蚀、海水腐蚀及电化学腐蚀等,由于金属所处环境不同其腐蚀机理不同,导致腐蚀的产物也相差万别。如铁的氧化腐蚀产物有磁铁矿(fe3o4)、针铁矿(α-feo(oh))、水铁矿(fe5o7(oh)x4h2o)、纤铁矿(γ-feooh)、六方纤铁矿(feo(oh))、四方纤铁矿(feo(oh,cl))、赤铁矿(fe2o3)、方铁矿(feo)等,仅仅化学元素分析不足以判定腐蚀产物。 奥林巴斯Terra-xrd分析仪 通过奥林巴斯xrd分析仪现场快速的分析金属腐蚀物,可及时获得腐蚀成分信息,有助于了解腐蚀成因,并寻找解决方案防止腐蚀产生。在炼油厂、石油石化行业、电厂和船舶行业等有非常广泛的应用前景。新加坡某石油公司每年花费3万美元做腐蚀物xrd分析,以确保化工设备安全运行。优点便携,坚固耐用样品制备时间短样品量少(15mg)不需测角仪校正无晶体取向性影响不需外部循环冷却水
  • “钒钛综合国家重点实验室”落户攀钢
    记者4日从四川省科技厅获悉,国家科技部近日下发了《关于组织制定第二批企业国家重点实验室建设计划的通知》,攀钢申报的“钒钛资源综合利用国家重点实验室”成功入选新一批国家重点实验室建设名录,这是钒钛资源综合利用领域国内首个获准建设的国家重点实验室,也是四川省此次唯一一个入围的实验室。  据悉,攀西地区的钒钛磁铁矿储量达100亿吨以上,钒资源储量(以V2O5计)1570万吨,占全国的62.2%,钛资源储量(以TiO2计)8.7亿吨,占全国的90.5%,具有极高的综合利用价值。为将资源优势转变为经济优势,国家对攀西地区的资源综合利用给予了极大的关怀和厚爱。在全国各兄弟单位的通力合作下,通过攀钢人的艰辛努力,攀西资源的综合利用得到了长足的发展,取得了以普通大型高炉冶炼钒钛磁铁矿、雾化提钒新工艺、三氧化二钒、钒氮合金、选钛工艺、微细粒级钛铁矿回收、造纸用钛白技术、纳米TiO2制备技术等为代表的一系列重大科技成果,并形成了一定的产业群。经过40多年的发展,攀钢已成为中国最大的钛原料生产基地和唯一的氯化法钛白生产基地,中国最大的钒制品生产基地及世界第二大产钒企业。  据介绍,此次获准建设的攀钢“钒钛资源综合利用国家重点实验室”,将建设成为我国钒钛资源综合利用领域从事应用基础研究、共性关键技术研究、聚集和培养优秀科技人才的开放基地,成为辐射先进技术、开展科技交流、推动产学研相结合的开放平台。这对带动我国钒钛磁铁矿资源利用技术研发水平的提升,推动行业的技术进步,变资源优势为经济优势将具有重要意义。
  • 赛恩思仪器与宜宾天原海丰和泰有限公司达成合作
    背景介绍宜宾天原海丰和泰有限公司创建于2016年,是宜宾天原集团股份有限公司的全资子公司,是天原集团“一体两翼”中的重要“一翼”,是发展钛化工产业的重要平台。公司定位于构建“氯—钛”一体化产业模式,充分利用天原集团绿色环保产业链创新模式、成熟的氯碱生产平台,采用目前全球先进的氯化法生产工艺,规划短期实现40万吨、长期实现100万吨目标,致力于做中国氯化法钛白粉行业领跑者。公司现已建成年产5万吨氯化法钛白粉项目。业务挑战钛白粉学名二氧化钛,是一种重要的无机化工颜料。在涂料、油墨、造纸、塑料橡胶、化纤、陶瓷等工业中有重要用途。客户需测定原料以及成品的碳硫含量,以把控产品质量,客户经过多方调研,选择了与赛恩思仪器合作。 解决方案由于客户对于碳硫含量的测定都有较高的需求,我公司向客户推荐了HCS-808型高频红外碳硫仪。双碳双硫的四池配置完全能够满足客户需求,公司售后工程师在现场通过测试标准样品验证了机器在高碳低碳高硫低硫等范围内的表现。最终测试结果获得客户的认可。标样名称编号称样量标准含量测试结果gC%S%C%S%碳化硅2BN4300.051326.93727.08530.051326.93726.84060.053726.93726.79490.051926.93727.07610.055526.93726.9782低合金钢GBW013030.29120.700.0640.69620.06370.29430.700.0640.69950.06540.29290.700.0640.70150.06310.29470.700.0640.70190.06520.29760.700.0640.70220.0646磁铁矿93-400.05242.612.60600.05632.612.64250.05032.612.61910.05052.612.62960.05892.612.6122客户价值四川赛恩思仪器有限公司生产的高频红外碳硫分析仪,具有分析品种全,分析范围广,测试数据准确等优点。在钢铁、铁合金及各类金属材料、核材料、硅材料、电池材料;矿石、土壤、煤焦等非金属原材料以及各种特殊材料的碳硫测定有广泛地应用。这次与钛白粉厂家天原集团的合作再次获得了客户的信任。
  • 攀枝花筹建四川钒钛产业技术研究院
    攀枝花筹建四川钒钛产业技术研究院  近日,攀枝花市全面启动四川钒钛产业技术研究院筹建工作。该市计划在半年内初步搭建起研究院整体框架,探索有效的管理体制和运行机制,实现研究院初步运转。  钒钛磁铁矿是全省重点开发的4大资源之一,钢铁钒钛产业是工业强省的7大支柱产业之一。但由于缺乏强有力的公共技术研发平台,钒钛产业科技支撑力不足,资源闲置等现象不同程度存在,大量关键技术尚未取得突破。攀枝花市组建四川钒钛产业技术研究院,将从更高层面进行设计,有效整合国内钒钛产业优势科研力量,推动钒钛磁铁矿资源高水平综合开发利用。 据了解,该研究院由企业、高校、科研院所和政府共同投入并参与管理,以钒钛及相关产业共性技术和关键技术为研发对象,成立后力争一年内实施研发项目5-10个,整合利用投入研发资金5000万元至1亿元,申请专利20项。
  • 新品MXF-N3 Plus - 钢铁应用篇
    钢铁生产过程中元素分析几乎贯穿整个流程,其中使用X射线荧光光谱法分析元素的包括:全新的MXF-N3 Plus可满足以上各个环节的元素检测,快速、稳定、高精度、无污染。以下摘选部分分析案例供参考。 Plus铁矿石 • 可分析铁矿石中TFe由30%到70%的铁矿石样品;• 矿石种类包括:铁矿石原矿、烧结矿、球团矿、铁精粉、澳矿、南非矿、巴西矿、印度矿等;• 按铁矿结构分类可包括:磁铁矿、赤铁矿、菱铁矿、褐铁矿等以及相关铁矿的铁精粉;• 制样方法:熔片(可消除矿物结构和颗粒度效应,推荐)或压片;• 相对标准偏差(RSD,n=10)在0.23%~3.3%之间。 Plus烧结矿• 制样方法:压片或熔片(炉前实验室操作繁琐时间长,不推荐)• 准确度验证:Plus高炉渣• 制样方法:压片或熔片• 部分曲线示例: Plus生铁• 制样方法:磨样机打磨• 部分测试结果示例:* 参照GB/T223系列标准★注:篇幅所限,仅列举部分分析实例,如您需要其他案例应用报告,请致电岛津。 ★涉及相关标准(部分)★ 1) GBT 6730.62-2005 铁矿石 钙、硅、镁、钛、磷、锰、铝和钡含量的测定 波长色散X射线荧光光谱法2) SNT 0832-1999进出口铁矿中铁、硅、钙、 锰、铝、钛、镁和磷的测定 波长色散X射线荧光光谱法3) ISO 9516:1992 铁矿石—硅、钙、锰、铝、钛、镁、磷、硫和钾含量的测定X射线荧光光谱法4) GB/T 10332.1 铁矿石 取样和制样方法5) GB/T 6730.1 铁矿石化学分析方法6) GBT 21114-2007 耐火材料 X射线荧光光谱化学分析 - 熔铸玻璃片法
  • 【解决方案】马尔文帕纳科钛白粉行业应用解决方案
    日前,马尔文帕纳科组织多位应用专家到访国内钛白粉领军企业技术中心,带去了包含XRF、XRD、激光衍射、DLS、ELS等多种先进表征技术在钛白粉行业及其衍生品方面的应用推介,对其现有多台马尔文帕纳科的检测仪器的日常使用注意事项及维护做了详细的讲解,并于与会者进行了深入的交流和讨论。钛白粉是一种重要的无机化工原料,主要成分为二氧化钛(TiO2),密度很小,具有无毒、最佳的不透明性、最佳白度和光亮度,被认为时目前世界上性能最好的一种白色颜料,具有广泛应用于涂料、油墨、造纸、塑料橡胶、印刷、化纤、陶瓷、化妆品、食品、医药等工业领域。钛白粉的主要原料为钛铁矿,也称为钛磁铁矿,是以多种金属元素共生的复合矿,主要以含铁、钒、钛等金属元素。其制造方法主要有两种:硫酸法和氯化法,对产品质控的要求主要集中在TiO2的含量、亮度、消色力、挥发物、悬浮物、吸油量、筛余物、水萃取液电阻率、金红石含量等。马尔文帕纳科XRF、XRD以及激光衍射、DLS、ELS、静态图像等分析技术可以应为钛白粉行业提供用于原材料、钛白粉及其衍生品的元素分析、晶型鉴定、颗粒粒度及粒度分布、粒形、稳定性等多方面的应用。此文只涉及元素含量、晶型结构和粒度分析。 一、XRF 元素分析在钛白粉行业的应用作为钛白粉原材料的钒钛磁铁成分分析使用的方法为原地质矿产部行业规范DZG93-07《岩石矿石分析规程》中《钒钛磁铁矿石分析规程》[1-2]。该规程中采用化学分析方法,样品用酸溶法或碱熔法溶(熔)矿,再分别用容量分析法测定铁和钛,然后用容量分析法、原子吸收法、比色法等分别测定钙、镁、铝、铬、钒、硅、硫、磷、锰、铜、钴、镍等元素。因此,化学分析方法要完成以上元素的分析,分析周期长,操作繁琐,成本高,劳动强度大,污染严重,已经远远不能满足快速测定的需求。而XRF作为一种快速、无损的元素分析手段已被广泛地应用于钛白粉原料及成品、衍生品的生产过程控制。样品前处理对于XRF在钛白粉行业内的应用极为重要,针对不同类型的原料和产品,需要采用相应的手段进行研磨、压片或者熔融处理以获得最佳的应用效果,现场针对XRF技术在实际工作中的应用进行了详细而深入的分享与探讨。粉末压片法针对钛白粉、高钛渣、钛铁矿均可采用电动玛瑙或人工研磨(玛瑙研体),但要注意,高钛渣和钛铁矿不能与钛白粉使用同一个玛瑙研体,否则会造成样品污染,造成制样误差。由于钛白粉中钛含量高,粉末压片法即可获得较好的精度和重复性良好的结果。而对于成分复杂的高钛渣和钛铁矿来说测量重复性不好。而玻璃熔融法相对于粉末压片法来可以最大程度地消除样品的矿物效应和、不均匀性和粒度效应,配备专业的熔融制样设备,可以获得更好的重复性。下表中列出了熔融制样设备在制备高钛渣或钛铁矿时的参数及程序设置。在钛白粉相关应用中,建议测了条件设置见下表在软件程序条件选择中,需注意Ti,V,Cr之间的干扰,比如谱线的选择、分光晶体的选择和背景位置的选择等。 二、XRD 在钛白粉行业中的应用众所周知,钛铁矿是钛白粉的主要原料,目前国内几乎所有的钛白粉厂都使用它作为原料。而二氧化钛品位的高低是钛白粉生产厂家选择钛铁矿时首先考虑的因素,它直接影响收率和成本,通常一般矿中的二氧化钛含量应不低于47%。我们知道二氧化钛(TiO2)在自然界有三种结晶形态(三种同分异构体),分别是:金红石型和锐钛型和板钛型。金红石型是二氧化钛最稳定的结晶形态,结构致密,与锐钛型相比有较高的硬度、密度、介电常数与折光率。二氧化钛品位过低,不仅要增加原料的消耗,而且还要多消耗硫酸。但通常二氧化钛含量高的钛铁矿(特别是次生矿)一般都含有少量的天然金红石,它以二氧化钛的金红石晶型存在,极难溶解,最后的酸解率降低,而且使生产中的沉降、净化过程变得十分复杂,由于钛铁矿的成分和化学组成十分复杂,化学分析的方法很难准确地反映其金红石成分的含量。而不同晶型的化合物具有完全不同的XRD图谱,可以用XRD技术测量钛铁矿中不同形态存在的二氧化钛的含量。下表为金红石、锐钛矿和板钛矿的XRD主衍射峰数据,可以看到虽然金红石和锐钛矿在结构上有共同相似的特点,但由于金红石与锐钛矿的最强衍射峰一个在27.46°(/2Ө)左右,一个在25.35°(/2Ө)左右,因此将两者可较轻易区分开来。部分板钛矿的最强峰与锐钛矿的最强峰接近,但根据传统的三强法仍能将两者区分开来[3]。三、粒度表征技术在钛白粉行业的应用钛白粉粒度分布是一个综合性的指标,它严重影响钛白粉颜料性能和产品应用性能,因此,对于遮盖力和分散性的讨论可直接从粒度分布上进行分析。影响钛白粉粒度分布的因素较为复杂,需要控制粒度分布的环节分别是涉及水解工艺的水解原始粒径大小;其次是涉及煅烧工艺的成长颗粒粒径分布;以及涉及到粉碎工艺的最终产品的粉碎颗粒粒径。钛白粉行业测定粒度分布的传统方法是沉降法和静态图像法。影响沉降法的因素很多,测定的结果有较大差别;静态图像法(电子显微镜)测定粒度分布又必须借助大量统计工具,结果才能较为接近实际情况。自1975年马尔文激光粒度仪诞生后,大大提高了粒度分析的速度和准确性,目前已广泛的应用于钛白粉行业。 激光衍射粒度分析原理在激光衍射测量中,激光束穿过分散颗粒样品,测量散射光强度的角度变化。大颗粒的散射光角度小,而小颗粒的散射光角度大。之后对角度散射光强数据进行分析,使用米氏光散射理论,对形成散射图样的颗粒进行计算。激光粒度仪测量颗粒粒度具有测量动态范围宽、分析速度快、具有可验证的准确度和重复性等优点,可以提供颗粒粒径以及粒径累计分布值。纳米级钛白粉测试结果主要影响因素有:分散介质、遮光度、光学参数、超声功率和时间。 钛白粉行业粒度分析实例钛白粉无论是锐钛矿还是金红石,都是由直径在0.1~0.3μm的球形颗粒单一晶体所组成。单一晶体粒子的大小和由此凝集结合的二次粒子的结合力数值以及结合量将会导致钛白粉分散体系的白度、消色力、分散性、耐候性等颜料性能的变化。因此颗粒粒度和粒度分布是影响颜料性能和应用的重要指标。马尔文帕纳科Mastersizer 3000激光粒度仪,探头超声5min,连续测试样品粒径逐渐增加,粒度分布图如下。
  • 沈阳自动化所矿浆品位LIBS在线分析仪荣获BCEIA金奖
    近日,由中国分析测试协会主办的第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)在京举行,“中国分析测试协会科学技术奖-分析测试技术奖”(BCEIA金奖)同时揭晓,中国科学院沈阳自动化研究所研发的矿浆品位LIBS在线分析仪(SIA-LIBSlurry)获得2023年BCEIA金奖。   面向战略矿产资源选矿过程矿浆品位信息在线获取困难的问题,沈阳自动化所开展相关技术攻关。科研团队采用激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,简称LIBS)技术,攻克了信号稳定激发与探测、复杂矿物质基体精准建模、恶劣工艺环境的适应性等方面难题,开发出了我国第一台基于LIBS原理的矿浆品位在线分析仪。该分析仪在战略性矿产资源铁矿、磷矿的选矿过程中得到成功应用,在应用中使选矿过程单通道品位测量时间从1小时以上降低到5分钟以内。该分析仪适用于贫矿及难选矿种的选矿,将为选矿过程的数字化发展及资源利用率提高提供有力支撑。   该分析仪为“十三五”国家重点研发计划重大科学仪器设备开发重点专项目、中国科学院前沿科学重点研究项目、中国科学院科技服务网络计划区域重点项目等项目支持成果。   近年来,沈阳自动化所LIBS团队在激光诱导击穿光谱高精度在线分析技术与应用方面取得了多项创新成果。所开发的液态金属LIBS在线分析技术与仪器(SIA-LIBSmelt)已实现了钢铁冶炼、铝合金熔炼、电解铝、铜冶炼等工业过程中液态金属化学成分的在线测量。所开发的跨带式固态粉末物料LIBS在线分析技术与仪器(SIA-LIBSbelt)已实现钾肥、铁矿原料等领域的示范应用。   BCEIA 金奖由中国分析测试协会设立,每两年评选一次,以奖励对我国分析测试仪器创新发展做出贡献的开发和研制生产单位,在国内分析测试仪器领域具有较强的影响力。此次颁奖,共13台仪器整机、5款仪器零部件斩获殊荣。
  • 检测进口铁矿石质量有了“尚方宝剑”
    日前,由北仑检验检疫局牵头,宁波钢铁有限公司参与制订的《ISO/CD17992:铁矿石砷含量的测定—氢化物发生原子吸收光谱法》草案,被国际标准化组织(简称ISO)铁矿石专业技术委员会接受,预计将在两年内出版。该标准是我国提出的第一项铁矿石国际标准。其中,该项标准的国内版已于今年5月1日正式施行。  据悉,新标准有利于帮助国内钢铁企业及时了解进口铁矿石的质量情况,规避贸易风险 也为国外供货商改进工艺、提高铁矿质量提供对比数据。  新标准如何制定?  作为我国唯一的铁矿石专业检测中心,北仑出入境检验检疫局铁矿检测中心一直将参与铁矿石国际标准化活动作为一项重要工作来抓。“在大量的检测中,我们发现原先老版本的标准已经不符合现在的生产需要。”北仑国检技术中心主任兼铁矿石检测中心主任应海松介绍,原先的老版本是上世纪五六十年代借鉴苏联的,其数据、检测试剂都已远远落后。  “而我们做这方面的研究,是有先天优势的。”据介绍,作为国内最大铁矿石进口口岸的检验监管机构,北仑检验检疫局经过多年的发展,已经建成了国家重点实验室铁矿石检测中心。该中心同时进入ISO组织全球名录,成为SAC/TC317全国铁矿石标准化委员会副主任委员单位,并拥有ISO组织注册专家、高工、博士、硕士等中高级科研人才。  “制定行业标准,需要企业参与。当时,宁波钢铁有限公司刚好有整套的设备,还有对这方面检测有多年经验的专家。”据宁钢检化验技术部经理王博介绍,此次宁钢参与的“铁矿石砷含量的测定—氢化物发生原子吸收光谱法”实验,需要用到一种叫原子吸收氢化物发生装置的设备,这种设备国内许多钢铁企业都有,但并不是每一家企业都能做到实验所要求的精密度。“关键在于人,还要有多年的经验。而当时,我们也特别希望能有这样的机会,既是对设备的调试,也是对我们技术人员的锻炼。”经过一年多的努力及实验,《GB/T6730.6:铁矿石砷含量的测定氢化物发生原子吸收光谱法》已经由国家标准委发布,并于今年5月1日起正式施行。  新标准高明在何处?  “砷是钢铁五大有害元素之一。铁矿石的砷含量检测至关重要,过量的砷易导致钢铁产品冷脆,严重影响品质纯度”。王博告诉记者,“近年来进口自澳大利亚、印度的某些铁矿石的合同指标要求砷含量在0.01%以下,有的甚至要求低于0.0001%,新标准的检测下限可达到0.00005%,而且检测过程更加快速、简单。”  “新标准不再使用硫酸肼等剧毒有机试剂,转而采用碘化钾、抗坏血酸等普通试剂,检测过程中产生的废气砷化氢可通过管道直接进入高温石英管燃烧消除,减少了对自然环境和身体健康的影响,检测过程更加环保。”北仑检验检疫局技术中心主任兼铁矿石检测中心主任应海松介绍,“该项检测的自动化程度显著提高,有效降低了人力、物力和财力成本。”  新标准有何意义?  “我国是全世界最大的铁矿石买家,如果我们不制定更为严格的标准,这就意味着越来越多品质不高的铁矿石,将陆续涌入到我国,使我国的钢铁产品的品质得不到保证。”应海松说,铁矿石作为我国大量进口的战略资源物资,其质量优劣直接关系到我国钢铁行业的健康发展。应海松说,只有出台严格、快速、方便、环保的检测标准,才能在源头上帮国内的钢铁企业把好第一道关。  “铁矿石砷含量测定新标准是我国提出的第一项铁矿石国际标准,也是由我国承担召集人的第一项铁矿石国际标准。作为全球最大的买家,这是我们在ISO会议中第一次发出了来自中国的声音,打破了发达国家垄断的话语权。”应海松告诉记者,在提交铁矿石ISO标准草案后,北仑国检又陆续提出4项提案和4项评议意见。据悉,这些新的检测方法和数据,将用于建立一个铁矿石综合信息平台,该信息平台将对进口铁矿质量进行动态监控,实现数据采集和分析处理,不仅为钢铁企业提供服务和帮助,同时还为国家相关部门制订进口铁矿石的相关政策法规提供决策支持。
  • 独家采访BCEIA金奖获得者:国内首台基于LIBS技术的矿浆品位工业在线分析仪
    日前,由中国科学院沈阳自动化研究所、北矿检测技术股份有限公司研制的“SIA-LIBSlurry 201矿浆品位LIBS在线分析仪”荣获了2023BCEIA金奖(整机)。这款仪器有何创新之处?研发过程中有哪些令人印象深刻的故事?仪器信息网特别采访了“BCEIA金奖”获奖单位中国科学院沈阳自动化研究所的孙兰香研究员,倾听了解她的获奖感受、研发过程以及今后的研究方向。获奖产品 “SIA-LIBSlurry 201矿浆品位LIBS在线分析仪”获奖证书仪器信息网:首先恭喜您团队获得“2023BCEIA金奖”,请您谈谈获奖感受,并介绍一下本次获奖仪器技术。孙兰香:谢谢!首先,感谢行业内专家的认可。由于激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,简称LIBS)类分析仪器相比质谱、荧光、红外、火花直读等类型仪器发展较晚,国内外成熟产品很少,因此在“BCEIA金奖”以往获奖仪器中,此类仪器获奖次数很少。此次我们获奖,这是对团队工作的肯定,也对我们继续努力做国产好仪器给予了很大的鼓励。此外,感谢团队的每一位成员,感谢他们工作热忱,心中有梦,齐心协力为此付出努力的汗水。再有,就是对曾经支持过我们,帮助过我们的人或单位表示一并感谢。本次获奖仪器是“十三五”国家重点研发计划重大科学仪器设备开发重点专项项目、中国科学院前沿科学重点研究项目、中国科学院科技服务网络计划区域重点项目等项目支持成果。面向战略矿产资源选矿过程矿浆品位信息在线获取困难的问题,SIA-LIBSlurry分析仪采用激光诱导击穿光谱技术,攻克了信号稳定激发与探测、复杂矿物质基体精准建模、恶劣工艺环境的适应性等方面难题,在战略性矿产资源铁矿、磷矿的选矿过程中得到成功应用。在应用中使选矿过程单通道品位测量时间从1小时以上降低到5分钟以内,将为选矿过程的数字化发展及资源利用率提高提供有力支撑。仪器信息网: 该成果经历了怎样的研制过程,取得了哪些里程碑式的进展,有哪些令您难忘的事件值得分享?孙兰香:我们从2015年开始开展该仪器研制工作,2016年获得了国家重点研发计划重大科学仪器设备开发专项支持,2018年做出来第一套样机,并与北矿检测技术股份有限公司、云南磷化集团合作,在年产450万吨的磷矿浮选过程开展了工业应用测试。第一次现场应用测试碰到很多实验室意想不到的困难,例如:环境湿度过大、矿浆强烈溅射、入矿或排矿管路堵塞、器件可靠性不够等等。在此基础上,我们不断优化调整,又经历了一年半的时间,仪器才可以长时间连续运作。此后,又经历了一段时间的模型优化,最后终于达到了用户的预期。在此过程中,我们再一次深刻体会到,在线分析仪器除了要攻克测量精度问题外,更要与工艺紧密结合,在环境适应性和可靠性上下功夫。工业应用测试、失败、迭代过程虽然艰辛,但却会积累大量经验。在磷矿应用基础上,我们关注到铁矿选矿工业同样有迫切的需求。我们国家的铁矿80%以上依赖进口,国内铁矿资源虽也丰富,但开发利用非常困难。我国铁矿的平均品位不到35%,相比世界平均水平低10%以上,贫矿、难选矿占98%。长久以来,铁矿选矿过程的品位监测也以化验室为主,虽也有一些在线分析仪器的应用,但由于铁矿来料复杂,很多用户反馈效果都不理想。2020年,我们开始与铁矿选矿厂合作,先以工业试验的方式进行工业应用验证。的确,铁矿的应用更难,恶劣的工况、复杂的光谱数据、频繁变化的来料,给在线应用的工艺适应性和测量准确性都带来更大的挑战。为了解决这些困难,科研及工程技术人员长期驻守工业现场,一年内现场时间超过了8个月,可靠性和准确性在不断提高,最后终于获得用户的认可,并在2022年同时采购了3台。这一路上的点点滴滴有很多值得回忆,有遭受质疑时的徘徊,遇到失败时的沮丧,也有受到赞扬时的喜悦,攻克挑战时的骄傲。从仪器开发到逐渐成熟,历经了8年多的时间,这还是在我们已经有了很多年相关研究基础的条件下。当然,仪器要追求更卓越的目标,仍需要不断继续坚持前行。我相信,坚持不懈是突破挑战,获得顶尖成果的条件。仪器信息网:该成果解决了哪些以前没有解决的难题,最适合的应用场景有哪些?孙兰香:该仪器采用了多项创新的关键技术,例如:采用了同轴双脉冲对液流的稳定激发技术、图像与光谱融合的波动校正技术、多级风墙的液滴迸溅防护技术等。这些技术解决了LIBS激发矿浆固液混合物质时的信号弱、稳定性差、液滴迸溅等问题,对仪器工业应用的长期稳定性、可靠性是重要的支撑。仪器在主体结构上具有通用性,一般性流动的液态或混合物质都可以测量。当然,在应用模型上还需要针对应用对象开展有针对性的建模研究。仪器信息网:该成果当前的产业化情况如何,取得了怎样的经济效益或社会效益,未来的市场前景如何?孙兰香:该仪器已经开展了小批量销售,在磷矿、铁矿选矿过程都获得了很好的经济效益。目前,我们正在积极推进规模化应用工作,也有不少相关领域的企业在向我们咨询。目前,LIBS相关的商用化在线分析仪器并不多,国外发达国家相关的产品也少见,这给国产仪器市场提供了更大的空间。根据公开资料,SIA-LIBSlurry分析仪是在我国第一个实现了基于LIBS技术的矿浆品位工业在线分析的仪器,我相信这对于提高我国分析仪器在科研和产业界的影响力是有一定助力作用的,会带来很好的社会效益。仪器信息网: 围绕该成果及相关技术,后续您团队还将开展哪些创新工作?孙兰香:首先,该项成果我们会继续跟踪和完善。通过前期的工业应用反馈和经验积累,在获得了较好的结果的同时,我们也发现了更深层次的问题和规律。解决这些问题,就可以进一步减小测量不确定度,使仪器的指标进一步大幅提高。另外,我们还在开展基于LIBS的钢水成分传感器的研制,以及深海原位探矿传感器的研制等工作。目前这些工作都处于研发攻关的关键阶段,也取得了很好的阶段进展,近期将会开展现场的应用测试工作。仪器信息网: 多年来,您团队一直坚持LIBS分析技术的研究工作,请您谈谈有哪些体会、收获、经验?孙兰香:LIBS技术看起来简单,但“玩”起来却有很多问题和挑战。但我相信,很多技术都是这样,有些技术可能看起来也不简单,做起来更不容易。所以,当长期努力收获甚微的时候,我就会安慰自己“什么事情会容易呢?容易的早被人干完了,剩下的都是难啃的骨头”。当然,热爱是重要的,坚持不懈是一种信念,但坚持自己热爱的工作是件幸福的事情。还有,团队的建设是非常重要的;大家拥有共同的目标,且结构合理、互相协作,能够不断学习、提高能力,这样的团队是高效完成任务的条件。仪器信息网:请您谈谈,对于LIBS发展前景、发展思路等的看法。孙兰香:智能制造的大势所趋,必然对流程工业化学成分分析提出一种模式的变革。世界各国对化学成分在线分析都高度重视,很多研究报告都提到化学成分在线分析在提高产品质量、节能降耗方面的作用是非常巨大的,各大仪器公司也在此方面纷纷布局。纵然,LIBS这项技术还不成熟,但它在某些应用上目前仍然是一种被认可的最有前景的技术。LIBS技术对元素测量的非接触、远距离测量特性使得它在某些应用场合具有不可替代性。应用上的需求必然推动技术的不断发展进步,尤其在中国,能源、矿产、冶金等流程工业在节能降碳方面的潜力使得研究该方向的驱动力更强。另外,国家对科学仪器越来越重视,随着现场应用案例和数据的大量积累,以及当前快速发展的人工智能算法,必将成为LIBS技术发展壮大的重要加速器。2023BCEIA金奖 (分析测试仪器整机) 颁奖合影
  • 又一大批行标来袭 ICP-OES、ICP-MS、AAS等仪器分析方法在列
    2020年11月30日,工业和信息化部办公厅印发2020年第三批行业标准制修订和外文版项目计划,包括797项标准项目计划及4项行业标准外文版项目计划。  797项即将制修订的标准项目中,数十条与仪器分析方法紧密相关,涉及了电感耦合等离子体发射光谱法、电感耦合等离子体原子发射光谱法、辉光放电质谱法、原子荧光光谱法、原子吸收光谱法、波长色散X射线荧光光谱法、激光诱导击穿光谱法等。  部分摘录如下:计划编号项目名称性质制修订完成年限部内主管司局主要起草单位2020-1426T-HG废弃化学品中氮、硫、氟、氯含量测定氧弹燃烧离子色谱法推荐制定2021节能与综合利用司深圳市艾科尔特检测有限公司、中海油天津化工研究设计院有限公司2020-1428T-HG高盐废水中铜、镍、铅、锌、镉含量测定电感耦合等离子体发射光谱法推荐制定2021节能与综合利用司深圳市深投环保科技有限公司、中海油天津化工研究设计院有限公司等2020-1448T-SH塑料乙烯-α-烯烃共聚物支化度分布的测定差示扫描量热法推荐制定2021原材料工业司中国石油天然气股份有限公司石油化工研究院、吉林石化分公司、北京化工研究院、中国建筑科学研究院、湖北金牛管业有限公司等2020-1453T-YB稀土钢镧和铈含量的测定电感耦合等离子体质谱法推荐制定2022原材料工业司中国科学院金属研究所、冶金工业信息标准研究院2020-1469T-YB钼铁硅、磷、铜、锡和锑含量的测定电感耦合等离子体原子发射光谱法推荐制定2022原材料工业司甘肃宏基检测有限公司、酒泉钢铁(集团)有限责任公司、洛阳栾川钼业集团股份有限公司、冶金工业信息标准研究院2020-1470T-YB金属铬痕量杂质元素含量的测定辉光放电质谱法推荐制定2022原材料工业司国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、峨眉半导体材料有限公司2020-1485T-YB焦化废水硫氰酸盐含量的测定离子色谱法推荐制定2023原材料工业司唐山首钢京唐西山焦化有限公司、冶金工业信息标准研究院等2020-1488T-YB连铸保护渣二氧化钛含量的测定二安替吡啉甲烷分光光度法推荐制定2022原材料工业司鞍钢股份有限公司、山西太钢不锈钢股份有限公司、内蒙古包钢钢联股份有限公司、冶金工业信息标准研究院等2020-1489T-YB连铸保护渣二氧化硅、氧化钙、氧化镁、三氧化二铝、五氧化二磷、全铁、氧化锰的测定电感耦合等离子体原子发射光谱法推荐制定2023原材料工业司山东钢铁股份有限公司莱芜分公司、山西太钢不锈钢股份有限公司、鞍钢股份有限公司、冶金工业信息标准研究院等2020-1491T-YB铁矿石物相显微分析方法推荐制定2022原材料工业司北京欧波同光学技术有限公司、冶金工业信息标准研究院2020-1492T-YB铁矿石金属铁含量的测定火焰原子吸收光谱法推荐制定2021原材料工业司长沙矿冶研究院有限责任公司、冶金工业信息标准研究院2020-1493T-YB铁精矿全铁含量的测定能量色散X射线荧光光谱法(半定量法)推荐制定2022原材料工业司朗多科技(北京)有限公司、冶金工业信息标准研究院2020-1494T-YB铁矿石高能脉冲激光全元素在线分析方法推荐制定2023原材料工业司力鸿智信(北京)科技有限公司、贝恩讯谱(北京)科技有限公司、冶金标准信息研究院等2020-1495T-YB铁矿石铅含量的测定原子荧光光谱法推荐制定2021原材料工业司宁波检验检疫科学研究院、中国检验认证集团宁波有限公司、冶金工业信息标准化研究院2020-1496T-YB高铬型钒钛磁铁矿钒、钛、铬、钙、镁、铝、硅、锰和磷含量的测定波长色散X射线荧光光谱法推荐制定2022原材料工业司攀钢集团攀枝花钢钒有限公司、冶金工业信息标准研究院2020-1497T-YB铁矿石的鉴别激光诱导击穿光谱法推荐制定2021原材料工业司上海海关工业品与原材料检测技术中心、上海交通大学、冶金工业信息标准研究院2020-1518T-YS铜熔炼渣中铜、铁、硫、二氧化硅、砷、铅、锌、锑、铋、镍、氧化钙、氧化镁、三氧化二铝的测定波长色散X射线荧光光谱法推荐制定2022节能与综合利用司云南铜业股份有限公司西南铜业分公司、江西铜业股份有限公司、铜陵有色金属集团控股有限公司、阳谷祥光铜业有限公司2020-1525T-YS高纯铝化学分析方法痕量杂质元素含量的测定辉光放电质谱法推荐修订2022原材料工业司国标(北京)检验认证有限公司、新疆众和股份有限公司、昆明冶金研究院、金川集团股份有限公司、包头铝业有限公司2020-1527T-YS镓化学分析方法汞、砷含量的测定原子荧光光谱法推荐修订2022原材料工业司中铝矿业有限公司、中铝郑州有色金属研究院有限公司、平果铝业有限公司、国标(北京)检验认证有限公司2020-1537T-YS铝土矿石化学分析方法第27部分:元素含量的测定电感耦合等离子体原子发射光谱法推荐制定2022原材料工业司中铝郑州有色金属研究院有限公司、中铝矿业有限公司等2020-1539T-YS粗氢氧化镍钴化学分析方法第8部分:铜、铝、锂、锌、镉、铅、砷含量的测定电感耦合等离子体原子发射光谱法推荐制定2022原材料工业司广东邦普循环科技有限公司、湖南邦普循环科技有限公司2020-1540T-YS粗氢氧化镍钴化学分析方法第9部分:水分含量的测定烘箱干燥法推荐制定2022原材料工业司广东邦普循环科技有限公司、湖南邦普循环科技有限公司2020-1544T-YS高硫渣化学分析方法第1部分:硫含量的测定燃烧法推荐制定2022原材料工业司云南驰宏锌锗股份有限公司、呼伦贝尔驰宏矿业有限公司2020-1545T-YS高硫渣化学分析方法第2部分:银含量的测定火焰原子吸收光谱法推荐制定2022原材料工业司云南驰宏锌锗股份有限公司、呼伦贝尔驰宏矿业有限公司2020-1546T-YS锡及锡合金分析方法光电直读光谱法推荐制定2022原材料工业司云南锡业股份有限公司、昆明冶金研究院、北京康普锡威科技有限公司、云南锡业锡材有限公司、个旧市自立矿冶有限公司、个旧市凯盟工贸有限公司2020-1547T-YS硫化钴精矿化学分析方法第2部分:铜含量的测定碘量法和火焰原子吸收光谱法推荐修订2022原材料工业司浙江华友钴业股份有限公司、金川集团股份有限公司、衢州华友钴新材料有限公司2020-1548T-YS铜阳极泥化学分析方法第10部分:铱和铑含量的测定火试金富集-电感耦合等离子体质谱法推荐制定2022原材料工业司紫金铜业有限公司、紫金矿业集团股份有限公司2020-1549T-YS铜阳极泥化学分析方法第11部分:铟含量的测定火焰原子吸收光谱法推荐制定2022原材料工业司紫金铜业有限公司、紫金矿业集团股份有限公司2020-1550T-YS锂硅合金化学分析方法第1部分:锂含量的测定重量法推荐制定2022原材料工业司国标(北京)检验认证有限公司2020-1551T-YS锂硅合金化学分析方法第2部分:铁、镍、铬含量的测定电感耦合等离子体原子发射光谱法推荐制定2022原材料工业司国标(北京)检验认证有限公司2020-1552T-YS锆及锆合金中织构的测定电子背散射衍射法推荐制定2022原材料工业司国核锆铪理化检测有限公司、国核宝钛锆业股份公司、宝钛集团有限公司、国家钛材产品质量监督检验中心、西安汉唐分析检测有限公司2020-1556T-YS氧化铟化学分析方法第2部分:砷含量的测定原子荧光光谱法推荐制定2022原材料工业司昆明冶金研究院、昆明理工大学、云南锡业集团(控股)有限责任公司2020-1557T-YS钒铝、钼铝中间合金化学分析方法第14部分:痕量杂质元素含量的测定电感耦合等离子体质谱法推荐制定2022原材料工业司西安汉唐分析检测有限公司、广东省工业分析测试中心2020-1560T-YS铍精矿、绿柱石化学分析方法第8部分:氧化铍、三氧化二铁、氧化钙、磷含量的测定电感耦合等离子体原子发射光谱法推荐制定2022原材料工业司新疆有色金属研究所、西北稀有金属材料研究院宁夏有限公司、湖南省五矿铍业公司2020-1561T-YS氧化铟化学分析方法第1部分:镉、钴、铜、铁、锰、镍、锑、铅、铊含量的测定电感耦合等离子体原子发射光谱法推荐制定2022原材料工业司云南锡业集团(控股)有限责任公司、昆明理工大学、昆明冶金研究院、云南华联锌铟股份有限公司2020-1617T-XB稀土氧化物中杂质元素化学分析方法辉光放电质谱法推荐制定2021原材料工业司包头稀土研究院、国标(北京)检验认证有限公司
  • 央企铁矿非法排放尾矿 环境污染百姓遭殃
    央企铁矿在河北非法排放尾矿 当地政府称管不了  中国五矿邯邢局两家铁矿2008年8月28日取得由河北省安全生产监督管理局颁发的“安全生产许可证”。然而,这两家铁矿却早在2007年就开始向尾矿库非法排尾。图为2007年11月,北洺河铁矿的排尾管道在向尖山北尾矿库排尾。张春华摄  北洺河河道南侧的河滩成了北洺河铁矿非法排放尾矿的地方。图为用尾矿碴围起来的堤坝,中间是白色的尾矿浆。经济参考报记者 李新民 摄  编者按:国务院国资委于2007年岁末下发《关于中央企业履行社会责任的指导意见》明确要求:中央企业深入贯彻落实科学发展观,“在追求经济效益的同时,对利益相关者和环境负责。”要“积极履行社会责任,成为依法经营、诚实守信的表率,节约资源、保护环境的表率,以人为本、构建和谐企业的表率。”  经济参考报今天刊发的《中国五矿邯邢局两铁矿:非法排尾祸企殃民》的报道告诉人们,个别央企在学习实践科学发展观活动中,不仅没有成为“履行社会责任”的表率,反而成为损害“利益相关者和环境”的典型。  一中央企业下属的两家国有铁矿,在尾矿库尚未验收、更未取得安全生产许可证之际,便非法排放尾矿浆,造成下游一民营矿山企业透水关停 随后,两家国有铁矿改道排尾,其中一家居然将尾矿排入附近的河道,河滩农田被占,环境严重污染,附近村民上访不断。  这起发生在河北省武安市的央企非法排尾祸企殃民事件,在当地造成十分恶劣的影响。  国企大矿非法排尾,民营小矿透水关停  位于冀南太行山东麓的武安市是“全国四大富铁矿基地”之一。这里既有中国五矿集团邯邢冶金矿山管理局(简称五矿邯邢局)所属的国有大铁矿,也有众多民营小铁矿。  武安市矿山镇金祥联办铁矿(简称金祥铁矿)是一家民营小矿。据这家小铁矿的负责人张春华介绍,2007年10月23日,金祥铁矿突然发生大面积突水,井下人员迅速撤离,并组织人员全力排水。  但井下水量之大令人吃惊,原来排水量不足50立方米/日,如今竟高达1200立方米/日。2007年11月10日,金祥铁矿请来具有国家甲级资质的安全评论机构——中国煤炭地质总局水文地质工程地质环境地质勘察院的工作人员,在邯郸市诚信公证处现场监督和公证下,取水样调查突水原因。  2007年11月26日,地质勘察院出具《突水调查报告》认定:金祥铁矿“突水通道为奥陶系中统灰岩岩溶裂隙,突水水源为距该矿上游约60米的尾矿库。”报告认为,如不采取有效措施,“有可能引发突发性的大的突水灾害,并发生巷道垮塌、掩埋事故。”  张春华告诉记者,报告中所说的“上游60米的尾矿库”,是属于五矿邯邢局下属的北洺河铁矿和玉石洼铁矿共有的尖山北尾矿库。  “在随后两个月时间内,我们三次紧急致函两家国有铁矿,要求他们停止侵权行为,停止使用尾矿库,并派人解决给我们企业造成的损失。”张春华说,“但是,两家国有铁矿对我们的请求置若罔闻。最终因为透水严重,金祥铁矿不仅巷道被淹,整个矿井都被灌水。武安市矿山镇矿山企业管理办公室下达通知,金祥铁矿被关停。”  北洺河铁矿有关领导向记者出示的一份由华北有色工程勘察院所做的《北洺河铁矿尖山北尾矿库运行对金祥联办铁矿透水影响论证报告》则称:“尖山北尾矿库建于不透水或透水性极弱的闪长岩体上,库区不应存在渗漏问题。”并得出尾矿库运行与金祥铁矿突水“没有关联”的结论。这份报告的落款时间为2009年1月。  金祥铁矿代理律师胡海清说:“华北有色工程勘察院的这份报告即无公证,也没有从纠纷双方取水样对比检验,而且是在侵权行为发生一年之后做出的,根本不具法律效力。”  记者在查阅尖山北尾矿库的材料时,还发现了一个令人震惊的事实:该尾矿库《安全验收评价报告》(中国安全科学研究院所)是在2008年8月做出的,其取得“安全生产许可证”的时间则是2008年8月28日。从其导致金祥铁矿井下透水时间来看,至少在2007年10月23日之前,即尾矿库通过安全验收并取得安全生产许可证近一年之前,两家国有铁矿就已开始非法排尾了。  尾矿居然改排河道,环境污染百姓遭殃  踏着荒草萋萋的山路,记者登上40多米高的尖山北尾矿库大坝,此时巨大的库区已不见有尾矿注入,但尾矿浆沉淀后形成的沼泽仍清晰可见。据张春华介绍,金祥铁矿透水停产后,于2008年7月把北洺河铁矿和玉石洼铁矿起诉至邯郸市中级法院。2009年3月下旬,这两家国家铁矿不敢再向尖山北尾矿库排尾。  据了解,当时两家铁矿并未停产。那么,其选矿场流出的尾矿排到哪里去了呢?  带此疑问,记者沿尖山北尾矿库大坝北边的山路徒步东行,翻过一道土坡,眼前出现一个巨大的坑塘。一位开着翻斗车拉碎石土方的司机师傅介绍说,这是玉石洼铁矿正在建设的一个新尾矿库。记者看到,库区虽正处于建设之中,但一条管道已开始向坑塘里排放尾矿了。  北洺河铁矿尾矿排到了什么地方?记者追踪调查,在武安市上团城乡高村村北的北洺河道里找到了答案。在河道边的河滩上,布满一道道用尾矿渣堆积围成的高高的堤坝,一条矿管道正在向坝里汩汩喷涌着灰白色的尾矿浆。  在北洺河铁矿采访时,副矿长张金东以没有得到邯邢局领导批准为由拒绝回答记者提出的任何问题。该铁矿负责外联的工农办主任卢新说:“我们向北洺河排尾得到了高村允许,与高村签定了排尾协议。记者应该采访高村村干部。”随后,他打电话叫来高村主持工作的村党支部副书记陈其林。  “北洺河铁矿向河道排尾,是对高村的支持。”陈其林说,“第一、按照协议约定,尾矿排在高村村北的河滩上,每立方米向村里支付1.6元的排放费 第二、村里办起一个选硫厂,可以从尾矿里选出硫矿,这也是一笔不小的收入 第三、尾矿渣排在河滩上,盖住了裸露的鹅卵石,可以植树造林,绿化环境。”  然而,记者深入到高村村民中间调查时却听到完全不同的声音。许多村民表示:北洺河铁矿向河滩上排尾,实际上是高村村干部为满足个人的私利与国有矿山企业相勾结的结果,最终坑害的是老百姓的利益和国家利益。  一位姓王的村民告诉记者:“向河道非法排尾,一方面圈占了河滩上农田 另一方面严重污染了环境,刮风的时候,尾矿矿砂中的有害物质随风飞扬,村里许多人得了皮肤病 更严重的是,堆积如山的尾矿还对河道行洪造成巨大安全隐患。”  民企诉讼百姓上访,央企大矿“岿然不动”  据了解,针对北洺河铁矿和玉石洼铁矿的尾矿库导致金祥铁矿透水被淹事件,金祥铁矿于2008年7月将两家国有铁矿起诉至邯郸市中级法院,但目前法院尚无做出判决。  金祥铁矿负责人张春华说,国家安监总局于2006年4月6日下发《尾矿库安全监督管理规定》,其中第十六条明确要求:“生产经营单位应当按照《非煤矿矿山企业安全生产许可证实施办法》的有关规定,为其尾矿库申请领取安全生产许可证。未依法取得安全生产许可证的尾矿库,不得生产运行。”  “两家国有铁矿在尾矿库尚未获得安全验收、更未取得安全生产许可证情况下就非法排尾,导致刚刚投产的金祥铁矿遭遇灭顶之灾,直接经济损失已达5000多万元。”张春华说,“诉讼至今已一年多了,我们期待着法院能尽早做出公正裁决。”  针对北洺河铁矿向北洺河河道造成河滩农田被占、周边环境污染之事,临河而居的高村村民也开始联名上访。  北洺河是滏阳河的一条重要支流,不仅是邯郸市境内主要行洪河道,也是武安老百姓的母亲河。国家有关部门于1990年12月30日颁布的《选矿厂尾矿设施设计规范》明确规定:“选矿厂必须有完善的尾矿设施,严禁尾矿排入江、河、湖、海。”  “作为国有大矿,北洺河铁矿难道不了解国家的规定吗?为什么仅仅凭借与村干部的一纸协议就可以肆无忌惮地向河道非法排尾?”高村村民侯有良说,对此,他作为村民代表曾带着全村39户村民签名的上访信赴北京反映情况,并受到国家环保部有关领导的重视。4月1日,环保部信访办公室将他们的上访材料批转下来,可问题未得到解决。直到今天,北洺河铁矿的尾矿浆仍在哗哗地向河道里排放着。  武安市政府有关部门的领导在接受记者采访时坦言,对于五矿邯邢局下属铁矿非法排尾一事,当地政府部门不是不知道,但却管不了。“他们是中央企业,自恃财大气粗,根本不把地方执法人员放在眼里。”这位不愿透露姓名的领导建议说,“这需要新闻媒体加大监督力度,只有公开曝光后才能引起上级领导的关注,问题才好解决。”
  • 攀钢将建钒钛资源综合利用国家重点实验室
    8月1日,科技部组织专家对攀钢集团在攀枝花和成都建设钒钛资源综合利用国家重点实验室进行可行性论证。该实验室计划通过2年时间,投入5.2到5.6亿元。  攀西钒资源占全球的9.6%,全国的62.2% 钛资源占全球的30%,全国的90%。攀枝花钒钛磁铁矿的特点是储量大、品位低、难选难冶难分离,其综合利用存在一系列世界难题。该实验室计划通过2年时间,投入5.2到5.6亿元,破解钒钛资源综合利用一系列世界难题,制定相关行业标准,使攀钢钒产业规模和技术达到世界领先,钛产业规模和技术国内领先、国际具有重要影响,为中国及世界清洁、高效、可持续利用钒钛提供技术支持。  评审专家组组长、中科院院士刘宝珺说,国家重点实验室代表国内该领域的最高研究水平,具有唯一性和不可替 代性。攀钢建实验室,意味着在钒钛综合利用领域,攀钢进入
  • 80项行业标准公布!有色分析迎光谱“洗牌”潮
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px text-align: justify text-indent: 28px "近日,工信部公布了新一批共/spanspan style="font-size: 16px text-align: justify text-indent: 28px "80/spanspan style="font-size: 16px text-align: justify text-indent: 28px "项行业标准,在/spanspan style="font-size: 16px text-align: justify text-indent: 28px "26/spanspan style="font-size: 16px text-align: justify text-indent: 28px "项有色新行标中,有/spanspan style="font-size: 16px text-align: justify text-indent: 28px "17/spanspan style="font-size: 16px text-align: justify text-indent: 28px "项涉及光谱法的检测新标准。涉及到的光谱检测方法包括/spanspan style="font-size: 16px text-align: justify text-indent: 28px "X/spanspan style="font-size: 16px text-align: justify text-indent: 28px "射线荧光光谱法、电感耦合等离子体原子发射光谱法、火焰原子吸收光谱法、冷原子吸收光谱法等。这些新的光谱法检测行标覆盖了铝及铝合金、掺锡氧化铟粉、高铋铅、高镍锍、镍精矿、铜砷滤饼、铜磁铁矿、铼酸铵、铅冶炼分银渣等有色金属及矿材的化学成分分析。目前这批标准已进入公开向社会征求意见阶段,截止日期2020年1月3日。br//span/span/pp style="text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "相关标准详情汇总如下:/span/pp style="text-align:center text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "strongspan style="font-size: 16px font-family: 宋体 "工信部最新一批公布的有色行业标准/span/strong/span/ptable border="1" cellspacing="0" cellpadding="0" style="border: none"tbodytr style=" height:1px" class="firstRow"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 806-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铝及铝合金化学分析方法 元素含量的测定 X射线荧光光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了铝及铝合金中硅、铁、铜、镁、锰、锌、镍、镓、钛、铬、钒、铅、锡、锶、钙、镧、铈、镨、钕、钐含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本标准适用于铝及铝合金中硅、铁、铜、镁、锰、锌、镍、镓、钛、铬、钒、铅、锡、锶、钙、镧、铈、镨、钕、钐含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1057.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "四氧化三钴化学分析方法 第2部分:氯离子含量的测定 离子选择性电极法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了四氧化三钴中水溶性氯离子含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于四氧化三钴中水溶性氯离子含量的测定。测定范围:0.010%~1.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 252.6-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高镍锍化学分析方法 第6部分:铅、锌和砷含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高镍锍中铅、锌和砷含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高镍锍中铅、锌和砷含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 252.7-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高镍锍化学分析方法 第7部分:银含量的测定 火焰原子吸收光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高镍锍中银含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高镍锍中银含量的测定。测定范围:20 g/t~300 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 252.8-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高镍锍化学分析方法 第8部分:金、铂和钯含量的测定 火试金富集-电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高镍锍中金、铂和钯含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高镍锍中金、铂和钯含量的测定。测定范围:金1.00 g/t~100.00 g/t;铂1.00 g/t~200.0 0 g/t;钯1.00 g/t~100.00 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1344.1-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "掺锡氧化铟粉化学分析方法 第1部分:铁、铝、铅、镍、铜、镉、铬和铊含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了掺锡氧化铟粉中铁、铝、铅、镍、铜、镉、铬和铊含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于掺锡氧化铟粉中铁、铝、铅、镍、铜、镉、铬和铊含量的测定。测定范围:0.000 5 %~0.010 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1344.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "掺锡氧化铟粉化学分析方法 第2部分:硅含量的测定 钼蓝光度法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了掺锡氧化铟粉中硅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于掺锡氧化铟粉中硅含量的测定。测定范围:0.000 5 %~0.010 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1344.3-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "掺锡氧化铟粉化学分析方法 第3部分:物相分析 X射线衍射分析法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了掺锡氧化铟粉中物相的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于掺锡氧化铟粉中物相的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.1-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第1部分:铅含量的测定 Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中铅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中铅含量的测定。测定范围:50.00%~95.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第2部分:铋含量的测定 Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中铋含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中铋含量的测定。测定范围:10.00%~50.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.3-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第3部分:金和银含量的测定 火试金重量法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中金和银含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中金和银含量的测定。测定范围:金1.00g /t~50.00 g/t,银1000 g/t~25000 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.4-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第4部分:锑含量的测定 火焰原子吸收光谱法和硫酸铈滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中锑含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅矿中锑含量的测定。方法1测定范围:0. 10 %~4.00 %;方法2测定范围:4.00 %~8.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.5-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第5部分:铜含量的测定 火焰原子吸收光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中铜含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中铜含量的测定。测定范围:0.10 %~5.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1345.6-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高铋铅化学分析方法 第6部分:锡含量的测定 碘酸钾滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了高铋铅中锡含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于高铋铅中锡含量的测定。测定范围:0.50%~2.00%/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 341.5-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "镍精矿化学分析方法 第5部分: 铜、铅、锌、镁、镉和砷含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了镍精矿中铜、铅、锌、镁、镉和砷含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于镍精矿中铜、铅、锌、镁、镉和砷含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1346-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铜砷滤饼化学分析方法 铼含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了铜砷滤饼中铼含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本标准适用于铜砷滤饼中铼含量的测定。测定范围为0.0050%~3.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1047.12-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铜磁铁矿化学分析方法 第12部分:硫含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铜磁铁矿中硫含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铜磁铁矿中硫含量的测定。测定范围:0.50%~7.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1047.13-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铜磁铁矿化学分析方法 第13部分:汞含量的测定 固体进样直接测定法和冷原子吸收光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铜磁铁矿中汞含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 仿宋_GB2312 " 本部分适用于铜磁铁矿中汞含量的测定。方法1测定范围:0.010 μg /g~10.0 μg /g;方法2测定范围:>10.0 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/g~500.0 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/g。/span/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 833-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铼酸铵化学分析方法 铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了铼酸铵中铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本标准适用于铼酸铵中铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅含量的测定。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1347-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "高纯铪化学分析方法 痕量杂质元素含量的测定 辉光放电质谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本标准规定了高纯铪中痕量杂质元素含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 仿宋_GB2312 " 本标准适用于高纯铪中痕量杂质元素含量的测定。元素测定范围为:10 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/kg~5000 /spanspan style="font-size: 16px font-family: 宋体 "µ /spanspan style="font-size: 16px font-family: 仿宋_GB2312 "g/kg。/span/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.1-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第1部分:金和银含量的测定 火试金法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中金和银含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铅冶炼分银渣中金和银含量的测定。测定范围:金0.50 g/t~40.00 g/t,银800 g/t~80000 g/t。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.2-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第2部分:铅含量的测定 火焰原子吸收光谱法和Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铅含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铅冶炼分银渣中铅含量的测定。测定范围:0.30 % ~ 5.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.3-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第3部分:铜含量的测定 火焰原子吸收光谱法和碘量法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铜含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法1适用于铅冶炼分银渣中铜含量的测定。测定范围:0.10%~5.00%。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法2适用于铅冶炼分银渣中铜含量的测定。测定范围:5.00 %~65.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.4-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第4部分:锑含量的测定 火焰原子吸收光谱法和硫酸铈滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中锑含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法1适用于铅冶炼分银渣中锑含量的测定。测定范围:0. 10%~7.00%。方法2适用于铅冶炼分银渣中锑含量的测定。测定范围:7.00%~45.00%。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.5-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第5部分:铋含量的测定 火焰原子吸收光谱法和Na2EDTA滴定法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铋含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法1适用于铅冶炼分银渣中铋含量的测定。测定范围:0.10 %~5.00 %。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 方法2适用于铅冶炼分银渣中铋含量的测定。测定范围:5.00 %~50.00 %。/span/p/td/trtr style=" height:1px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "YS/T 1348.6-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun "铅冶炼分银渣化学分析方法 第6部分:铅、铜、锑和铋含量的测定 电感耦合等离子体原子发射光谱法/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"pspan style="font-size: 16px font-family: 宋体, SimSun " 本部分规定了铅冶炼分银渣中铅、铜、锑和铋含量的测定方法。/span/ppspan style="font-size: 16px font-family: 宋体, SimSun " 本部分适用于铅冶炼分银渣中铅、铜、锑和铋含量的测定。/span/p/td/tr/tbody/tablep style="text-indent: 28px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体 "而在/span80span style="font-size: 16px font-family: 宋体 "项行业标准公布的同期,工信部还公布了/span2span style="font-size: 16px font-family: 宋体 "项有色行业/spanspan style="font-size: 16px font-family: 仿宋_GB2312 "光谱单点标准样品目录:/span/span/pp style="text-indent: 0em text-align: center "span style="font-size: 16px font-family: 宋体, SimSun "strongspan style="font-size: 16px font-family: 仿宋_GB2312 "工信部最新一批公布的有色行业标准样品/span/strong/span/ptable border="1" cellspacing="0" cellpadding="0" width="NaN" style="border: none " align="center"tbodytr class="firstRow"td style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="71"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "序号/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="107"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "标准样品编号/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="247"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "标准样品名称/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="57"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "有效期/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="181"p style="text-align:center line-height:200%"span style="line-height: 200% font-size: 16px font-family: 宋体, SimSun "研 制 单 位/span/p/td/trtr style=" page-break-inside:avoid"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="71"p style="margin-left:8px line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: " times="" new=""span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span1span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span/spanspan style="font-size: 16px font-family: 仿宋_GB2312 " /span/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="107"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "YSS102-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="247"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "铝合金6061铸态光谱单点标准样品/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="57"p style="text-align:center line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "15年/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="181"p style="margin-bottom:auto line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "东北轻合金有限责任公司/span/p/td/trtr style=" page-break-inside:avoid"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="71"p style="margin-left:8px line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: " times="" new=""span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span2span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times="" new="" /span/spanspan style="font-size: 16px font-family: 仿宋_GB2312 " /span/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="107"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "YSS103-2020/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="247"p style="line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "铝合金6082铸态光谱单点标准样品/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="57"p style="text-align:center line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "15年/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="181"p style="margin-bottom:auto line-height:24px"span style="font-size: 16px font-family: 宋体, SimSun "东北轻合金有限责任公司/span/p/td/tr/tbody/tablep style="text-indent: 28px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体 "从中我们可以看出,关于有色行业的检测与分析或将迎来新一轮光谱“洗牌”潮。不过不仅仅是光谱法,从上面的表格中我们也能够看到,新一批标准对有色行业检测的/spanXspan style="font-size: 16px font-family: 宋体 "射线衍射分析法、辉光放电质谱法和滴定法等也有新的规定和要求。/span/span/pp style="text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体 "另外,值得一提的是,除了/span26span style="font-size: 16px font-family: 宋体 "项有色标准外,工信部本次公布的新一批行业标准中还包含/span35span style="font-size: 16px font-family: 宋体 "项化工行业标准、/span12span style="font-size: 16px font-family: 宋体 "项冶金行业标准、/span7span style="font-size: 16px font-family: 宋体 "项建材行业标准。其中冶金行业的新标准《锰铁、锰硅合金和金属锰/span span style="font-size: 16px font-family: 宋体 "铅、砷、钛、铜、镍、钙、镁、铝含量的测定/span span style="font-size: 16px font-family: 宋体 "电感耦合等离子体原子发射光谱法/spanYB/T 4801-2020span style="font-size: 16px font-family: 宋体 "》和建材行业的新标准《乙烯/span-span style="font-size: 16px font-family: 宋体 "乙酸乙烯酯共聚物改性防水板中乙酸乙烯酯含量的测定方法/spanJC/T 2556-2020span style="font-size: 16px font-family: 宋体 "》也都明确规定了光谱法检测要求。/span/span/pp style="text-indent:28px"span style="font-size: 16px font-family: 宋体, SimSun "strongspan style="font-size: 16px font-family: 宋体 color: rgb(0, 176, 240) "延伸阅读:/span/strong/span/pp style="text-indent: 28px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201912/attachment/3dd85560-642a-4cc3-b2cb-3f5af8006c11.doc" title="工信部新公布80项行业标准名称及主要内容全录.doc" style="color: rgb(0, 102, 204) text-decoration: underline font-size: 16px font-family: 宋体, SimSun "span style="font-size: 16px font-family: 宋体, SimSun "工信部新公布80项行业标准名称及主要内容全录.doc/span/a/p
  • 新品助力|SpectraFlow在线矿石分析仪助力英美资源集团实现降本增效
    我们很高兴地通知大家,英美资源集团(ANGLO AMERICAN,SOUTH AFRICA)为其在南非的分选业务新订购了一台SpectraFlow交叉带分析仪。这是全球代理的英美资源集团的第三个SpectraFlow分析仪订单,也是在南非共和国安装的第二套仪器。SpectraFlow分析仪已安装在水泥、铁矿石、黄金、铂、铜、钾碱、铝土矿以及回收行业,同时不断扩大在各个行业的应用范围,并拓展新的应用领域。关于英美资源集团(Anglo American) 1917年,Ernest Oppenheimer在南非约翰内斯堡创立了英美资源公司,开始从事金矿开采。1945年,英美资源集团通过收购煤炭产业进入煤炭行业。20世纪40年代末和50年代,英美资源集团专注于进一步开发金矿,成为世界上最大的金矿开采集团。 1961年,英美资源集团成为加拿大哈德逊湾采矿和冶炼公司的主要投资者。1967年,该公司进军钢铁行业。从1967年到1975年,该公司继续发展并建立了许多合资企业,包括蒙迪集团(Mondi Group)(木材、纸浆和纸张行业)、Amgold (后来称为AngloGold Ashanti)和Amcoal(通过合并其在南非的若干采矿业务,后来被称为Anglo Coal)。1999年,英美资源公司与Minorco合并成立英美资源公开股份有限公司。该公司的金矿开采业务被拆分为独立的安格鲁黄金公司(AngloGold corporation),该公司于2004年与阿山帝金矿公司(Ashanti Goldfields corporation)合并,成立了安格鲁阿山帝黄金公司(Angrologold Ashanti)。从2007年开始,英美资源集团收购了秘鲁北部的Michiquillay铜矿项目和巴西的MMX Minas Rio和Amapa铁矿石项目的控制权,后来又收购了阿拉斯加Pebble铜矿项目的股权。从2010年到2017年,该公司进行了重大重组,如今,公司更加专注于主要大宗商品:铁矿石、煤炭、基础金属(铜、镍、铌、磷酸盐)、铂和钻石。如今,英美资源集团拥有69000名员工,收入约250亿欧元。 英美资源集团致力于引进先进的技术,优化运营,推动企业在2023年前成为世界领先的矿业公司。总览 SpectraFlow交叉带分析仪是一种在线分析仪,能够以非常高的频率测量带式输送机上的原料。由于矿石原材料通过破碎机加工,传送带上的原料在统计上是均匀的,因此SpectraFlow交叉带分析仪的分析结果非常准确。基于这些精确、高频率的结果,进入工厂的原料可以被分类成有价值的矿石以及废料。通过在金属生产过程的开始阶段排除废物,可以实现巨大的节约。通过使用SpectraFlow在线分析仪,可以实现原料处理的优化。优势总结如下:无需取样。从传送带上取样方法的代表性较差,且拖慢了工艺优化的进程。另外,采样和维护对于工作人员来说是一种十分密集型的工作。在线分析仪和控制软件一起实现了原料分选流程的完全自动化。分析仪提供分析结果,控制软件则根据结果及生产要求,对进料进行调整。可实时进厂原材料分选,只对高质量的原材料进行进一步加工。 超高的测量频率,可实现快速决策、实时分选。 这是SpectraFlow在矿产行业的第14个订单,也是非洲地区的第4个订单。该订单将在南非安装的分析仪数提高到2台(2台交叉带式分析仪),全球安装的分析仪数超过50台。 瑞士SpectraFlow Analytics 公司是在没有任何放射源或中子发生器的情况下,为矿山、水泥、钢铁等行业提供在线分析的专家。用于SpectraFlow分析仪的NIR技术不需要任何特殊许可或许可证,并且在购买、进口和维护分析仪方面没有任何限制。实现了仪器的高可靠性、非常低的运行成本,以及高精度的测量结果。
  • 我国两项铁矿石国家标准草案被ISO接受
    日前,从日本召开的ISO/TC102第14次铁矿石国际标准会议传来消息,由北仑检验检疫局承担制定的两项国际标准,即ISO17792和ISO2597-4,其工作组草案和项目报告被ISO铁矿石专业技术委员会接受,标准的制修订程序进入下一个阶段。  由北仑局承担召集和项目负责的ISO/TC102/SC2/SG18项目工作组,即“ISO17792铁矿石-砷含量检测-氢化物发生原子吸收光谱法”,进展非常顺利,即将结束关键性的委员会草案阶段,进入CD草案的投票期,如不出意外,该标准预计将会在2年内结束流程而出版。该标准是我国提出的第一项铁矿石国际标准,也是由我国承担召集人的第一项铁矿石标准制定项目。上次加拿大魁北克会议后,在北仑局召集人的协调下,首先在国际范围内征询了草案修改意见,完成了草案的标准化工作。2008年,项目组组织了5个国家10个实验室参与的该项目的国际间精密度试验,至2009年上半年已圆满完成,同时项目组已将精密度数据提交TC102的巴西统计师进行精密度计算。在本次的日本东京会议,在听取了北仑局召集人的工作报告和巴西统计师的精密度报告后,各国专家对项目组的工作表示高度肯定,并一致要求将该标准的制定进入下一个阶段,以便尽快将其出版。SC2主席本曾杰明对北仑局专家的贡献高度赞扬,也对该项目顺利进入下一阶段表示祝贺。另外,由北仑局承担召集的另一个项目工作组(ISO/TC102/SC2/SG24),即“ISO2597-4铁矿石-全铁含量检测-电位滴定法”,在加拿大会议立项后,也完成了预阶段的验证试验,本次提交的修改草案也被顺利注册为工作组草案而将进入下一个阶段,今年北仑局将积极推进该标准的国际间的精密度试验。  标准草案进入委员会草案阶段,并顺利通过投票,是国际标准制修订最关键的一步,表示国际标准制定过程中最艰难的阶段已经过去,之后ISO标准制修订工作将由ISO中央秘书处承担为主,草案标准化及实验基本结束。进入此阶段后,除非有特殊的理由,各成员国一般不会再提出反对意见,阶段流程也只是例行程序。  北仑检验检疫局将以这两项国际标准制修订工作的进展为契机,除完成目前的这两项标准制定工作外,将进一步推出新的提案,推进铁矿石标准的发展,在国际标准化领域增强我们的话语权,在国际技术谈判中维护我国利益,并以此提升我国的影响力和软实力。
  • 开展铁矿石产品中化学成分等调查的通知
    随着我国钢铁产量的持续增长,对铁矿石的需求越来越大,为保障铁矿石产品质量,规范全国统一标准,中国钢铁工业协会准备组织有关单位制定铁矿石产品分等分级冶金行业标准。为此,在全国范围内开展铁矿石产品中化学成分和物理性能指标以及铁矿石标准使用情况的调查,请你单位给予支持。详见附件。 附件:铁矿石产品中化学成分和物理性能指标以及铁矿石标准使用情况调查表
  • 聚光发布铁矿粉中多种微量元素的检测解决方案
    铁矿粉是由铁矿石(含有铁元素或铁化合物的矿石)经过选矿、破碎、分选、磨碎等加工处理而成的矿粉。是钢铁工业的主要原料,常应用于冶金行业、建筑行业、造船业、机械行业、飞机制造等对钢材需求量大的行业。并随着地质科学的发展,由研究矿物来指导找矿成为一个新的找矿方向。从一些微量元素的含量或比值可以为成矿预测和普查勘探研究提供有关科学信息。 聚光科技电感耦合等离子体发射光谱测定铁矿粉中多种微量元素具有用量少、分析速度快、准确等优点。 采用盐酸+硝酸+氢氟酸消解样品,用高氯酸赶酸后,用稀盐酸定容,使用ICP-5000电感耦合等离子体发射光谱仪测定铁矿粉样品中的铝、钛、磷、钾、钠、锌、砷、铅8种元素的含量。 通过计算检出限、回收率和方法精密度,考察ICP-5000电感耦合等离子体发射光谱仪在铁矿粉样品中的实际分析性能。结果表明:测定值与参考值吻合较好,回收率与方法精密度均较好,ICP-5000电感耦合等离子体发射光谱仪可用于铁矿粉样品中元素的分析检测。聚光科技铁矿粉中多种微量元素的检测解决方案在线下载:http://www.instrument.com.cn/netshow/sh100312/s515559.htm
  • 第一个由我国主导制定的铁矿石国际标准正式发布
    2013年9月5日,由北仑检验检疫局主持制定ISO铁矿石国际标准“ISO17992:2013铁矿石-砷含量的测定-氢化物发生原子吸收光谱法”(ISO17992:2013Ironores—Determinationofarseniccontent—Hydridegenerationatomicabsorptionspectrometricmethod)正式发布出版。这是我国自上世纪90年代初参加ISO/TC102铁矿石国际标准化活动以来,第一个制定的ISO铁矿石国际标准,标志着我国实质性参与铁矿石国际标准化活动取得阶段性成果。  铁矿石中伴生的砷在钢铁冶炼中会影响钢铁产品的品质,同时会污染环境、危害人体健康安全,必须严格控制入炉铁矿石砷含量。ISO标准原先有ISO7834-1989《砷含量测定-钼蓝分光光度法》,但该标准使用有机试剂、萃取分离等手段,操作步骤繁琐、有机试剂污染环境、检测下限较高,难以满足使用需求。2003年,我国在瑞典基律纳会议上,递交了北仑局起草的“铁矿石-砷含量的测定-氢化物发生原子吸收光谱法”ISO新标准提案,经过十年的科研攻关,该标准于2013年3月顺利通过成员国评审。我国是世界上产钢第一大国,同时也是铁矿石生产大国和进口第一大国,由我国主导制定的该标准发布,标志着我国在铁矿石国际标准化地位不断提升,对于维护我国经济利益、保护我国战略储备安全、突破相关技术贸易壁垒等方面具有重要意义。文章转载自:国家认监委
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制