当前位置: 仪器信息网 > 行业主题 > >

自动化显微镜

仪器信息网自动化显微镜专题为您提供2024年最新自动化显微镜价格报价、厂家品牌的相关信息, 包括自动化显微镜参数、型号等,不管是国产,还是进口品牌的自动化显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动化显微镜相关的耗材配件、试剂标物,还有自动化显微镜相关的最新资讯、资料,以及自动化显微镜相关的解决方案。

自动化显微镜相关的资讯

  • 岛津发布红外显微镜新品AIM-9000 让分析更加自动化
    p  strong仪器信息网讯/strong 2016年10月28日,由中国光学学会和中国化学会主办,中国科学院福建物质结构研究所、福州大学和闽江学院联合承办的第十九届全国分子光谱学学术会议暨2016年光谱年会在福州开幕。500多名来自150多家国内外科研院校单位的光谱研究领域的专家学者参加了此次会议。/pp  第一天的会议结束后,岛津公司举办晚宴欢迎与会的专家学者,并且借此机会在中国发布了新品AIM-9000红外显微镜。今年是岛津公司推出红外光谱产品60周年,那么,在这么重要的、有纪念意义的时刻推出的新产品AIM-9000红外显微镜有着众多的创新之处。/pp style="TEXT-ALIGN: center"img title="2.jpg" src="http://img1.17img.cn/17img/images/201610/insimg/387612f1-95bb-4bed-b0cc-11e9457b286a.jpg"//pp style="TEXT-ALIGN: center"img title="3.jpg" src="http://img1.17img.cn/17img/images/201610/insimg/4ef78cc7-d37b-4e0e-b17e-0994f5abc138.jpg"//pp style="TEXT-ALIGN: center"岛津公司分析测试仪器市场部胡家祥部长致欢迎辞/pp  据工程师介绍,岛津产品研发的理念——研发出来的仪器可以使分析变得更加简单、高效,任何人都能得到准确可靠分析结果 一款智能化的分析仪器应该是可以使得科学家更专注于他的研究工作,而不是花大量的时间和精力去考虑如何才能把样品结果测好。/pp style="TEXT-ALIGN: center"img title="1.jpg" src="http://img1.17img.cn/17img/images/201610/insimg/7624ef8c-2868-4944-89b9-8f1b72e96918.jpg"//pp style="TEXT-ALIGN: center"岛津分析测试仪器市场部 刘舟/pp  AIM-9000红外显微镜的特点正是体现了这一理念——让红外显微分析的自动化程度更进一步。从观察、定义测量位置,到进行测量,再到鉴别结果的给出,红外显微分析所需的全部操作都能由仪器软硬件自动执行,同时保证了测试数据的质量。/pp style="TEXT-ALIGN: center"img title="od0gjn0000004myg.jpg" src="http://img1.17img.cn/17img/images/201610/insimg/9deb2a2f-8338-4d14-93f0-5b63be1f1e96.jpg"//pp style="TEXT-ALIGN: center"AIM-9000红外显微镜/pp  AIM-9000在标准物镜之外,提供了大视野相机的选项。从而实现从宏观目视尺寸(10x13mm)到显微异物尺寸(30x40μm)的330倍连续放大,使得样品观察、定位的效率和可靠性获得了进一步提高。同时,基于数字图像识别算法的异物(测量)位置识别功能,使得分析新手在仪器系统帮助下1秒钟之内即可决定需要进行测试的位置。/pp  AIM-9000还采用了高速的XYZ三轴自动化样品台,以及为微小样品专门优化的MCT检测器,配合高性能的红外光谱仪主机和高效光路系统,可实现多个样品的超快速自动测量。并能结合特征峰、光谱相似度和多变量分析等功能,实现高质量的红外光谱化学成像(mapping)。/pp  新品中还内置了岛津公司独有的异物(混合物)分析程序,可以快速、自动地判断可能的主要成分和次要成分,而不需要用户预先知道具体的组分数量,让真正的自动化异物分析系统成为可能。/ppbr//p
  • 新品预告 | 徕卡自主共聚焦显微镜登场:人工智能引领自动化显微新时代
    生物样品中稀有事件的检测和分析与癌症和阿尔茨海默症等研究领域相关。该图像显示了Aivia提供支持的自主显微镜检测到的有丝分裂。依托基于人工智能分析软件的稀有事件检测技术,发挥自主共聚焦显微镜的功能。徕卡显微系统宣布推出由Aivia 提供支持的自主显微镜,让科学家能够从实验中自动提取最为相关的数据,从而获得更多科学发现。6月30日14:00-14:20Leica Al图像分析软件Aivia报告人:南希 徕卡客户成功专家14:20-15:00Al驱动的自主共聚焦显微镜报告人:徐建平 徕卡共聚焦产品经理15:00-15:20样机演示报告人:游换阳 徕卡应用专员15:20-15:30交流答疑报告人:南希/徐建平点击此链接,立即报名吧!这项基于人工智能的全新共聚焦显微镜检测工作流程可以自动检测稀有事件。它根据用户定义的感兴趣对象来触发稀有事件扫描。通过自动检测实验期间多达90%的稀有事件,用户可以从中获得更多发现。通过关注采集过程中获得的重要数据,获得结果的时间最多可以缩短70%。Aivia提供支持的工作流程可以大幅减少研究人员花在显微镜上的时间(多达75%),从而提高生产率以完成更多工作。 徕卡显微系统生命科学和应用显微镜副总裁James O'Brien表示:“Aivia提供支持的自主显微镜以简单易用的方式将人工智能融入日常实验环境。研究人员现在可以建立共聚焦显微镜工作流程,解决深入的实验和生物学问题,如果没有自动化流程,这些问题根本无法解决或者处理起来非常费力。这个解决方案为他们提供了出色的全新选择,以获得能够回答他们研究问题的实验结果。”稀有事件检测工作流程基于STELLARIS共聚焦系统上两大组件的相互作用。通常,分析生物样品的全景扫描。如果基于Aivia人工智能技术的图像分析软件检测到稀有事件,相关位置就会发送回STELLARIS的控制软件中的Navigator Expert。接着,根据用户定义的设置以3D高分辨率方式自动扫描已识别的稀有事件。使用Aivia提供支持的自主显微镜,用户仅需在初始设置阶段进行交互操作,就能更快、更准确地检测感兴趣对象。不同实验可以采用相同的设置以确保一致性。由于仅会识别并捕捉感兴趣对象,因此大大减少了数据采集和最终分析时间。这种排他性还意味着可以大幅节省存储空间。了解更多:徕卡显微
  • 沈阳自动化所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像研究方面取得新进展,提出一种将原子力显微镜(AFM)与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法。相关研究成果(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在Advanced Science上。  在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。  为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合,实现了三种成像模式——微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。  实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了新的技术手段。  研究工作得到国家自然科学基金国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的支持。AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • Park FX40:一款高智能全新型自动化原子力显微镜重磅来袭
    (2021年6月25日)Park帕克原子力显微镜公司(以下简称为“Park”)作为一家飞速成长的原子力显微镜公司,一直潜心于研发新科技并取得了丰硕的成果。近日Park隆重推出了一款重量级的全新型显微镜——Park FX40!该显微镜集全自动技术、安全性能、智能学习等人工智能软件一体化。这也是世界首台能够自动化所有前期设置和扫描过程的智能型原子力显微镜(AFM)。毋庸置疑,Park FX40将为研究界翻开崭新的一页!新型全自动原子力显微镜Park FX 40助力您的科学研究“与Park推出的前几代AFM系列不同,Park FX40自行负责了扫描前和扫描期间的所有设置,包括自动换针、探针识别、激光校准、样品定位以及近针和成像优化等操作。”Park全球产品研发部门副总裁Ryan Yoo评论道,“Park FX40兼有最新的人工智能技术和Park领先于半导体行业且价值百万美金的自动化技术,所以可以轻松自主执行上述任务。”新的 Park FX40 原子力显微镜不仅是几十个新功能的组合和原件的再升级,它还在原有的设计基础上,进行了全面而彻底的改革,使得AFM 具备高级的自动化能力。福音来了!即便是未经专业培训的研究型科学家们也能通过该显微镜轻松快捷地完成扫图过程,而专业的研究人员更可以将选择和正确装载探针的时间节省下来,以专注于他们更擅长的领域。“作为研发的新品,Park FX40的强大功能来源于其他AFM迄今为止从未使用过的全新技术。”Yoo补充道。除此之外,Park FX40还彻底升级了AFM的许多关键方面,其中包括采用尖端的机电技术极大降噪,减少束斑大小,调整光学视野,以及多功能嵌入样品台等。“我们很高兴能成为北美第一个体验Park FX40原子力显微镜的研究所。”哥伦比亚大学机械工程系的James Home教授发言道,“这款FX40增加了许多新功能并且升级了很多特性。作为Park的长期用户,我们对此感到非常兴奋和激动。这款FX40在人工智能和自动化技术上都实现了崭新的突破。我相信它可以极大地提高我们实验室的研究水平,并且推动整个纳米计量领域的创新。”Park FX 尖端的智能系统可以让您在初始操作时同时放置多个样品(相同或不同类型),它将根据您的需求进行自动成像。除此之外,该显微镜还能轻松及时地获取可发布的数据,并缩短研究周期来获得科学和工程上的最终成功。这些都有助您实现更快更准的研究。 Park FX40 独特的环境传感、自我诊断系统和避免头部碰撞的智能系统确保自身能够以最佳性能持续运行。在与全球原子力显微镜应用科学家们的密切合作下,Park产品市场部过去一整年都在不懈努力,潜心研发Park FX。"我们的科学家认识到AFM可以帮助研究人员获得前所未有的科学数据,并对纳米科学创新产生不可估量的影响。” Park公司的创立者,全球CEO朴尚一博士(Dr. Sang-il Park)评论道,“一直以来,我们都秉承着一颗赤诚之心来研发超级智能自动化的 Park FX 。因为我们的终极目标是为研究人员的工作保驾护航,帮助他们发现并打开科学更深处奥秘的大门!”在半导体市场,Park一直以其领先的自动化AFM 系统而闻名。它率先将AFM 技术作为纳米级计量的主要工具,使其成为行业的主流。而现在,Park最新推出的Park FX也将引领AFM创新领域开启新的自然篇章。关于帕克原子力显微镜帕克原子力显微镜是全球第一个推出商业原子力显微镜产品的上市公司。帕克公司成立30多年来,始终致力于纳米领域的形貌和力学测量以及半导体先进制程工艺的计量的新技术新产品的开发。帕克独有的技术是将XY和Z扫描器分离,实现探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,快速成像还可以大大提高测试效率,降低实验测试成本。帕克公司成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park公司的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。 为了给客户提供高效便捷的售后服务,帕克公司在中国区建立有售后服务中心并配有备件仓库。
  • 1046万!中国科学院自动化研究所等离子聚焦离子束扫描电子显微镜采购项目
    一、项目基本情况项目编号:OITC-G230571925项目名称:中国科学院自动化研究所等离子聚焦离子束扫描电子显微镜采购项目预算金额:1046.000000 万元(人民币)最高限价(如有):1046.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1等离子聚焦离子束扫描电子显微镜1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月28日 至 2023年10月11日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院自动化研究所     地址:北京市海淀区中关村东路95号        联系方式:010-82544573      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、曹山010-68290529            3.项目联系方式项目联系人:窦志超、曹山电 话:  010-68290529
  • 显微镜数字化自动化利于生命科学和纳米技术发展
    p  Frost & Sullivan最近提供了一份全球分析显微镜市场的详细报告。报告研究分析了显微镜的关键技术及其市场的影响趋势。在这份研究中,Frost & Sullivan的分析师将市场分为以下细分市场:扫描探针显微镜、电子显微镜、光学显微镜 应用领域包括:a style="COLOR: #ff0000 TEXT-DECORATION: underline" title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="COLOR: #ff0000"strong生命科学/strong/span/a、材料科学、纳米技术。/pp  对于提供降低人为干扰以及能够高速准确检查等功能的自动显微系统的需求一直很高。在各应用领域中,生命科学领域一直是显微镜的最大终端用户。这是因为该领域重点聚焦于神经学研究、药物开发和细胞分析,需要更高的、小型化的工具。生命科学的持续发展也促进了纳米技术的发展,相应的也扩大了显微镜市场的潜力。/pp  未来显微镜可能采用集成软件系统,可以解决测量和自动调节过程的复杂性。这将确保及时识别错误、促进更快数据积累。/pp  值得注意的是,数码显微镜、扫描探针显微镜为研究和开发提供了大量的机会。光学、电子、扫描探针显微镜与创新技术结合,将产生更加灵活微观系统。同时,显微镜公司应该通过提供定制显微镜解决方案和优越的客户支持改善公司的品牌形象。/ppimg style="FLOAT: none" title="1.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/999116e6-5a7f-4952-92a0-7390c93e696a.jpg"//ppimg style="FLOAT: none" title="2.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/7b5af27a-e6d7-48eb-b8e2-fa99d0658cd2.jpg"//ppimg style="FLOAT: none" title="3.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/9b2bdb73-e233-4ee1-bf2a-5cacf662ae33.jpg"//pp style="text-align: right "编译:刘丰秋/p
  • 新品|布鲁克推出自动化生物型原子力显微镜JPK NanoWizard V
    仪器信息网讯 2021年12月20日, 布鲁克发布生物型原子力显微镜JPK NanoWizard V BioAFM ,这是一种新型系统,标志着生命科学原子力显微镜研究的自动化和易用性的里程碑。NanoWizard V是一种非常快速的自动化 生物型AFM,可以选择与先进的光学显微镜完全集成。它能够对从亚分子到细胞和组织的大小范围内的样品进行快速、定量的机械测量和动力学分析。系统参数的自动设置、对齐和重新调整为力学生物学动态实验的长期、自我调节实验开辟了新的可能性。NanoWizard V 生物科学原子力显微镜澳大利亚悉尼大学生物医学工程高级讲师,纳米健康网络传感器和诊断集群联合主席David Martinez Martin博士表示:“该系统承诺的速度和分辨率、易用性以及高达毫米范围的能力使其成为纳米医学和生物医学应用中 AFM 研究的改变者,”(Martinez Martin博士的研究重点是发现健康和疾病的新生物标志物,以及细胞生理学)“我们相信NanoWizard V 是最先进的生物型AFM,它在一个系统中结合了三项重大创新:快速、定量的力学生物学测量、快速扫描 AFM 以及需要最少用户输入的自动化,” 布鲁克公司生物型AFM总监Heiko Haschke博士补充道,“在过去十年中,我们在使用 PeakForce Tapping 和定量成像 (QI) 模式的定量纳米力学方面积累了丰富的经验。通过在我们新的PeakForce-QI TM模式中结合两者的最佳方面,我们使新手和专家都能够进行高分辨率、定量的力学生物学BioAFM 实验。我们希望这个新系统能够为更全面地了解动态细胞过程和相关分子机制做出重大贡献。”关于 JPK NanoWizard V BioAFMJPK NanoWizard V是布鲁克业界领先的最新一代生物型AFM。它已针对高时空分辨率进行了优化,具有大扫描区域、灵活的实验设计以及与先进光学显微镜系统的出色集成。其 PeakForce-QI 模式可实现快速灵活的定量纳米力学测量,显着扩展 AFM 在速度和分辨率方面的能力。NanoWizard V采用新颖的扫描仪和传感器技术以及先进的控制软件,包括直观的、基于工作流程的图形用户界面 (GUI),以确保真正、易于使用的 AFM 操作。该系统包括 JPK 标志性的高速、高性能 Vortis 2 控制电子设备、先进的数字控制以及增强其多参数成像能力和数据处理程序。借助motorized mapping、 DirectOverlay、DirectTiling 和 ExperimentPlanner 功能,定位和测量可以被设置为自动运行和重新排列,确保快速的样品观察和最高的力灵敏度。结合新的自动化硬件功能和丰富的液体池和温度控制选件,JPK NanoWizard V使各种级别的用户都能够完全专注于他们的实验。因此,它是多用户环境或成像设备的理想工具。关于 JPK BioAFMJPK于2018年7月加入布鲁克公司,为布鲁克公司的全球业务和已有的仪器开发和支持带来了活细胞成像、细胞力学、粘附力、分子力测量、光阱和生物刺激-反应表征方面的深入专业知识。JPK BioAFM充分利用两段历史的优势,为生物分子和细胞成像以及单分子、细胞和组织的力测量提供显微仪器。 关于布鲁克公司布鲁克公司使科学家能够获得突破性的发现,并开发新的应用,以改善人类的生活质量。布鲁克公司的高性能科学仪器以及高价值的分析和诊断解决方案使科学家能够在分子、细胞和微观层面探索生命和材料。通过与客户的密切合作,布鲁克公司在生命科学分子研究、制药应用、显微和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究和临床微生物学等领域实现了创新,提高了生产力,并使客户获得成功。
  • 沈阳自动所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像方面取得新进展,提出一种将AFM与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法,相关成果以论文的形式(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在国际顶级学术期刊Advanced Science (中科院一区,IF= 16.806)。在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合起来,实现了三种成像模式:微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了一种新的技术手段。该研究得到了国家自然科学基金委国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的大力支持。(机器人学国家重点实验室)AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • 青岛能源所开发智能化、自动化的微生物单细胞分选仪
    单细胞分析已成为生命科学的有力工具,原位样品在单个细胞精度的识别、分选、测序/鉴定对于深入解析微生物组的结构和功能具有重要作用。青岛能源所单细胞中心与青岛星赛生物合作,成功开发微生物单细胞自动分选系统EasySort AUTO,可将常规显微镜升级为微生物单细胞的智能化、自动化分选装置,并利用酵母和大肠杆菌细胞示范了单细胞分选—测序/培养的全流程,为微生物资源的探测和挖掘提供了有力手段,该研究成果近日发表于《微生物》mLife杂志。 EasySort AUTO的“慧眼”和“巧手”服务微生物组资源挖掘   微生物组(亦称菌群)在自然界及人体中无所不在,它们蕴含着精准健康、碳减排、环境保护、清洁能源等当今人类社会重大挑战的解决方案。然而,微生物细胞尺寸小,操控难度大,单个细胞的识别与分选极具挑战性;同时,菌群中的庞大的细胞数量让原位、单细胞层面的菌群研究对于自动化、高通量的需求尤为迫切。   针对上述问题,单细胞中心刁志钿博士、阚凌雁工程师、赵怡龙工程师带领的研究小组,基于青岛星赛生物的单细胞微液滴分选系统EasySort Lego,开发了新一代人工智能辅助的微生物单细胞自动化分选系统EasySort AUTO。经测试,系统搭载的AI辅助图像识别算法可以智能化、自动化地识别目标细胞,准确率达80%;系统嵌入的光镊技术可以捕捉并精准操控目标细胞;最后,基于界面接触的微量液体分离专利技术,目标细胞能够以单管单细胞(One-Cell-One-Tube)的形式自动收集于PCR管中,通量为~120细胞/小时,单细胞率高于93%。该系统分选的目标单细胞可以直接开展单细胞测序、培养等工作,单细胞测序成功率高于84.2%,酵母细胞和大肠杆菌单细胞培养的成功率分别为~85%和~80%。   此外,EasySort AUTO的设计还具备三个显著特点:1)广谱适用性,由于光镊可以操控不同尺寸的细胞,该系统广泛适用于各类单细胞的分离、分选、培养及测序实验;2)灵活性,该系统采用模块化的设计,可通过安装“巧手”—光镊模块和自动收集模块,将生物实验室常见的正置显微镜升级为单细胞分选装置;3)高活性保持,分选后的目标细胞具备较高的活性和DNA/RNA质量。   单细胞中心长期致力于微生物单细胞技术开发、装备研制和产业化,前期和青岛星赛生物合作已陆续推出高通量流式拉曼分选仪(FlowRACS)、临床单细胞拉曼药敏快检仪(CAST-R)、单细胞拉曼光镊分选仪(RACS-Seq)、单细胞微液滴分选系统(EasySort)等产品,并已进入市场。作为EasySort仪器系列的新成员,EasySort AUTO的设计聚焦在为显微镜的“慧眼”提供一双自动的“巧手”,使得显微镜可以智能化发现目标单细胞,并自动化分离获取。基于上述创新,EasySort AUTO系统将以便捷的操作、灵活的组装、自动化的细胞收集、目标细胞的高活性保持等优势为微生物单细胞的分选工作提供特色解决方案。   该工作由单细胞中心马波研究员和李远东工程师主持,与青岛星赛生物合作完成,得到了国家重点研发计划的资助。
  • AI显微镜面世,20分钟内自动检测出疟疾寄生虫
    p  据世界卫生组织统计,每年,有32亿人处于罹患疟疾的风险之中,导致约1.98亿例疟疾病例(不确定范围为1.24亿至2.83亿)以及估计发生58.4万例疟疾死亡病例(不确定范围为36.7万人至75.5万人)。而在欠发达地区的国家,这一疾病的患病率和死亡率出奇的高,每年有近百万人死于疟疾,研究人员估计全世界将近一半的人口有被感染的风险。其中很大一部分原因就是这些地区的专业疾病诊断人员的缺失。/pp style="TEXT-ALIGN: center"img title="8A1A4B8EF670E7B2198B764BCACD3497FCED2DB1_size163_w700_h525.jpg" style="HEIGHT: 338px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/a1d5ce7e-5e8e-49ea-abd3-69febdce02f0.jpg" width="450" height="338"//pp  不过随着人工智能领域的发展,这一状况有望得到改善。近日,雷锋网了解到,中国公司麦克奥迪宣布与比尔梅琳达盖茨基金会支持的 Global Good 基金合作推出一款用于疟疾检测的显微镜EasyScan Go,这并不是一款普通的显微镜,而是用人工智能技术驱动的显微镜。运用自定义图像识别软件,EasyScan Go 能在 20 分钟内识别和计数血片中的疟疾寄生虫。/pp  “疟疾是在显微镜切片上最难识别的疾病之一”, 戴维 · 比尔 (David Bell), Global Good 全球健康技术总监表示:“通过让实验室技术员操作人工智能显微镜,我们可以克服两个主要障碍用于对抗变异寄生虫——改善了病例管理中的诊断及标准化了跨地域和时间的识别。/pp  这款合作开发的AI显微镜量产后将会大大降低疟疾检测的人工成本,欠发达地区运用人工智能显微镜可以自动化检测过程,有效缓解资源贫乏造成的专业人员短缺的现状。/p
  • 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》
    [报告简介]单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN别,过去通常使用原子力显微镜才能够进行测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了大的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]05月25日 下午15:00-16:00 [主讲人介绍]Tamás Gerecsei 亚太区席应用科学家,高FluidFM解决方案工程师,Cytosurge AGTamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。 郭亚茹 北京大学口腔医院,口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。 2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。 [原理&应用简介]FluidFM技术如何测定细胞粘附力?众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:Force cell-cell ≌ Force Monolayer – Force Indiv.cellFluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。FluidFM技术测量单细胞力谱的基本流程。仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。FluidFM技术测量HeLa细胞核CHO细胞的粘附力。能够高通量测量单细胞粘附力谱FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,一天可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。 应用举例一:FluidFM技术测定衰老内皮细胞的力谱内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN别粘附力差异。如下图所示:FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。 应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够大地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。FluidFM技术用于酵母属间交配过程单细胞力谱测量。MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。 总结 细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的测量的特性,真正意义上做到、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
  • 纤维电子器件连续自动化制备技术及设备研制
    成果名称纤维电子器件连续自动化制备技术及设备研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:纤维电子器件是近年来在国际上兴起的热点研究领域。它是在纤维上集成光、电、热、磁等功能,并最终可以直接以纤维形态应用的新形态电子器件。目前国际上报道的真正意义上的纤维电子器件包括纤维太阳能电池、纳米压电机、纤维电容器、纤维发光二极管等。这些光电子器件的最终应用形态是纤维状的,故可以利用成熟的纺织工业技术生产各种便携式、可穿戴的电子设备。因此,如何将纤维电子器件的制备方法与最终织物制造工艺相结合,实现从基本材料到纤维器件再到织物电子设备的制备是一个亟待解决的重大课题,也是国际、国内相关技术领域的一个空白和潜在的原创性产业技术开发机会。2012年,北京大学化学学院邹德春教授申请的&ldquo 纤维电子器件连续自动化制备技术及设备研制&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金的支持下,通过相关部件的购买和材料的加工,该课题组开展了富有成效的工作,包括:(1)纤维基底表面连续处理技术的研究;(2)功能超薄膜纤维基底上的连续沉积、生长技术的研究;(3)由功能纤维自动组装纤维电子器件技术研究;(4)纤维电子器件制备系统的计算机控制。通过以上工作,相关原理样机试制成功,项目顺利结题。应用前景:该项目的成果和经验可以发展成为工业化制备纤维电子设备的蓝本,为将来的纤维太阳能电池在内等多种纤维电子器件的规模化生产奠定了基础。
  • 非凡体验,触手可得——日立全自动型原子力显微镜AFM5500M
    日立高新技术集团在原有AFM系列原子力显微镜产品线的基础上, 于2016年3月8日在全球重磅推出了AFM5500M新一代全自动型原子力显微镜。这是日立高新收购精工纳米科技以来,又一款通过技术整合来提供更全面解决方案的代表性产品。  日立AFM5500M全自动型原子力显微镜的特点有: 一、该产品和之前型号相比,新增了自动悬臂更换和自动激光调节功能。由于涉及到参数的优化,传统原子力显微镜需要高度熟练的操作者,而日立AFM5500M仅需一次点击就可以进行悬臂的更换,极大地提升了操作简便性。 二、扫描器、传感器及图像化部采用了全新技术,测定精度和自动化程度更高。 三、通过马达台坐标共享,与日立高新的经典产品扫描电镜联用,观察样品的同样位置,为科研提供更全面的解决方案。日立AFM5500M不仅适用于纳米尺度的基础研究,而且还满足工业仪表领域的需求。  关于日立全自动型原子力显微镜AFM5500M的详细特点,请见点击:http://www.instrument.com.cn/netshow/SH102446/C248662.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 病理学数字化——介绍虚拟显微镜以及要问的问题
    • Katharina Eser病理学实验室作为一个机构正在发生变化。即使有一段时间的滞后,这门至关重要的医学学科也正在转向数字化:实验室正在变得虚拟。这个过程的一部分也是虚拟显微镜,它支持向数字病理学的转变。许多病理学家仍然通过模拟显微镜观察,同时决定作为切片制剂位于他们面前的一小段组织是否注入了肿瘤细胞。在其他实验室,这项任务已经由一个自动化系统完成,该系统将切片制剂独立放置在扫描显微镜下,扫描样本,最后由人工智能识别、标记和计数肿瘤细胞。要采取这一步骤,你不仅需要合适的设备,还需要实验室中的新工作流程和经过培训的人员。本文将有助于强调这一过程中的挑战和出现的问题。全球病理学家短缺如今,癌症发病率正在上升,同时,能够治疗和检测癌症的人数正在减少。世界上许多地方的医疗服务不足,但即使在最富裕的国家,也缺乏病理学家等专家。造成这种情况的原因包括医学院期间的教育和广告太少,以及在实验室工作是孤立的情绪因素,与患者的接触往往仅限于观察他们的组织。但也有一个事实是,大多数疾病观察的时间越长,就会变得越复杂。人类无法提供识别某些相关性所需的数据量。因此,病理学实验室的数字化带来的可能性是无限有吸引力的。病理学的一个重要支柱是在显微镜下观察组织样本。虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。为此,显微镜制剂被数字化,因此可以在以后的屏幕上查看和处理,而不考虑位置和/或工作站。这些数字制剂可以存储在数据库中,并与无限数量的用户共享。为了生成样本的数字图像,可以使用配有额外摄像头的模拟显微镜。然而,病理学的发展趋向于使用数字显微镜。根据模型的不同,这些显微镜通常不仅可以产生标本的实时图像,还可以对其进行扫描。数字显微镜不仅可以显示单个视场,还可以扫描整个标本。数字化显微镜载玻片可以称为虚拟载玻片、扫描或全载玻片图像。这些术语描述了完全数字化的显微镜标本。为了产生数字图像,该仪器逐片扫描载玻片上的整个样本。该软件将生成的高分辨率单个图像合并为一个完整的图像。这个过程叫做缝合。在电脑上,用户可以浏览样本,放大并分析。图1:虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。©Precision股份有限公司试样质量至关重要与所有显微镜手术一样,标本的质量在虚拟显微镜中也起着重要作用。样品必须尽可能均匀地切割,因为软件在扫描过程中会自动设置焦点。过大的高度差异可能导致平面跳跃和完成扫描中的模糊区域,并且无法校正。样本也必须在仪器的固定扫描区域内。样本必须均匀染色,以正确表示所有细胞结构。此外,应避免样品出现气穴、重叠和其他污染。在特殊情况下,样本的性质会退隐到背景中。例如,在肿瘤手术过程中,通常会在手术过程中对切除的组织进行切片,即所谓的冷冻切片。然后在显微镜下只观察样品的某些区域。数字样本的质量也取决于所用相机的质量。模拟显微镜上的相机附件通常不能提供高质量,因为这些系统不是为数字化过程设计的。数字显微镜是为这一过程设计的,除了扫描功能外,它还具有实时视图,因此可以在屏幕上实时观察样本。纯幻灯片扫描设备为用户提供了在速度和分辨率之间进行选择的可能性。较高的扫描速度会导致图像质量的损失。然而,由于这些设备是自主操作的,因此也可以通过调整扫描仪的工作时间来调整时间损失,例如在晚上。为了充分利用显微镜扫描,需要合适的图像查看软件。根据图像格式的不同,只有非常专业的程序才能处理病理切片的图像。所谓的查看软件也提供了评估图像的不同可能性。例如,使用不同的注释工具,可以绘制直线和圆,也可以附加书面注释。此外,还可以将人工智能集成到此类程序中。在集成人工智能的帮助下,对某些结构或细胞的自动评估成为可能。理想情况下,可以根据图像来存储注释和评估。可以将查看软件集成到云中。这样一来,扫描不仅可以通过网络服务器与其他用户共享,还可以直接在平台上查看。此外,通常可以提供关于图像的特定信息。在大多数云服务中,图像存储、图像共享和图像查看设施都是可用的。任何终端设备都可以查看扫描结果。不管是大屏幕、智能手机、平板电脑还是笔记本电脑。然而,屏幕的性质对于再现的图像质量是决定性的[1]。表1:拥有数字工作流程可以使病理实验室的工作更快、更高效,并为创新腾出空间。©Precision股份有限公司今天的病理学是手工工作目前,在大多数情况下,需要在病理学实验室进行检查的样本都会带着一张提交单到达,上面会手工注明如何处理。这些信息由工作人员传输到实验室信息系统。在病理学家对组织进行宏观检查后,医疗技术人员准备样品进行进一步检查。这些标本有时需要大量的手工制作、切割、在煤油中固定,并使用各种组织化学和免疫组织学技术进行染色;它们被切割,安装在载玻片上,并用玻璃覆盖。然后将标本分类到文件夹中,并提交给病理学家进行检查。在某些情况下,标本也会被扫描。为此,还必须手动插入样本并进行登记。如果存在质量缺陷,则必须重复该过程。这个工作流程在这里只是粗略地概述,涉及许多手册和小规模的工作步骤,其中有许多错误来源。在向完全数字化病理学实验室发展的另一端,大量切片制剂的自动扫描、诊断的数字提供以及临床数据以及数字报告文本生成即将到来。该系统可以在输入样本注册后对订单进行优先级排序和处理,并处理质量控制。此外,人工智能用于支持组织病理学诊断。此外,该系统可以将分析的图像数据和分子信息集成到工作流程中。与此同时,几个研究项目正在接近实现这一愿景,揭示了这一理论的实际机遇和挑战。图2:有了数字样本,算法就有可能取代昂贵的计数和注释工作。©Precision股份有限公司算法打开了广泛的可能性尽管数字图像有很多优点,但它并不能解决用户的许多问题和要求。然而,数字化为使用算法进行图像分析开辟了广泛的可能性。经典算法可以检测和计数定义明确的结构,如肿瘤细胞。这使得病理学家能够通过具体的测量值进行量化。在这样做的过程中,算法有效地进行并且没有偏差。压力或时间压力以及影响人类的视错觉的影响等因素在这里不会发生。现在市场上有许多产品可以用于不同的分析方法。这些程序可以快速有效地找到预定义的结构,并可重复地对其进行量化。有许多研究描述了算法在不同器官和各种疾病的组织学制备中的应用[3]。通常,对这些算法进行训练,以便专家在组织学切片中标记定义的结构。该算法用一系列类似的部分进行训练,直到它自己识别出标记的结构。市场上常见的程序通常专门针对特定的疾病模式;他们的任务是识别和量化预定义的结构。一个算法只能和它所训练的数据集的质量一样好[4]。所寻求的结构的数量越多,变化越大,评估就越好、越可靠。这就是目前正在世界各地建立的生物库发挥重要作用的地方。这些不仅提供了许多物理样本,而且还提供了许多已经数字化的样本。下一步是专门针对用户的应用需求进行训练的算法。在这里,一系列有趣的产品也在开发[2]。挑战在于将获得的数据集转换成什么格式,以及如何最终将其整合到实验室信息系统和相关部门的系统中。当然,还有实验室人员和工作流程的问题。图3:正确的样品制备是虚拟显微镜的关键。©Precision股份有限公司结论病理学实验室向数字化病理学实验室的转变只能循序渐进。该过程的开始是所有过程的文档化和可视化,必须根据各种参数(如人员、机器和开发程度)以及IT和过程支持级别对其进行分析。由此可以产生有意义的转型规划。其中一部分是虚拟显微镜、满足要求的设备以及支持这项工作的算法。现在有许多公司专门帮助实验室进行这种转变。这是一项非常明智的服务,因为这种转变很复杂,需要时间和金钱,而且还必须在人员方面得到很好的支持才能发挥作用。References[1] Brochhausen C. et al (2015) A virtual microscope for academic medical education: the pate project. Interact J Med Res. 4: e11. [2] Li Z et al. (2021) Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images – The ACDC@LungHP Challenge 2019. IEEE J Biomed Health Inform 25: 429-440[3] Mun SK et al. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28 7:614258. DOI: 10.3389/fmolb.2020.614258 [4] Cui, M., Zhang. D.Y. Artificial intelligence and computational pathology. Lab Invest 101, 412-422 (2021). DOI: 10.1038/s41374-020-00514-0 .关于作者Katharina Eser在学习艺术史之前曾在一家日报担任编辑。2021年,她加入PrecisPoint,担任业务创新经理,现在是该公司的自由职业者。来源:Going digital in pathology——Introducing Virtual Microscopy and what questions to askMicroscopy Light Microscopy Lab Automation Image Processing , 17 May 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 全流程高智能!Park原子力显微镜发布全新系列原子力显微镜Park FX40
    仪器信息网讯 2021年6月25日,Park帕克原子力显微镜公司(以下简称为“Park”)宣布推出一款重量级的全新系列原子力显微镜——Park FX40!该原子力显微镜集全自动技术、安全性能、智能学习等人工智能软件一体化,并描述之为“世界首台能够自动化所有前期设置和扫描过程的智能型原子力显微镜(AFM)”,Park FX40或将为研究界带来全新体验。全新型原子力显微镜Park FX40“与Park推出的前几代AFM系列不同,Park FX40自行负责了扫描前和扫描期间的所有设置,包括自动换针、探针识别、激光校准、样品定位以及近针和成像优化等操作。”Park全球产品研发部门副总裁Ryan Yoo评论道,“Park FX40兼有最新的人工智能技术和Park领先于半导体行业且价值百万美金的自动化技术,所以可以轻松自主执行上述任务。”Park FX40中文版预告视频于近日全球首播:新的 Park FX40 原子力显微镜不仅是几十个新功能的组合和原件的再升级,它还在原有的设计基础上,进行了全面而彻底的改革,使得AFM 具备高级的自动化能力。福音来了!即便是未经专业培训的研究型科学家们也能通过该显微镜轻松快捷地完成扫图过程,而专业的研究人员更可以将选择和正确装载探针的时间节省下来,以专注于他们更擅长的领域。除此之外,Park FX40还彻底升级了AFM的许多关键方面,其中包括采用尖端的机电技术极大降噪,减少束斑大小,调整光学视野,以及多功能嵌入样品台等。“作为研发的新品,Park FX40的强大功能来源于其他AFM迄今为止从未使用过的全新技术。”Yoo补充道。“我们很高兴能成为北美第一个体验Park FX40原子力显微镜的研究所。”哥伦比亚大学机械工程系的James Home教授发言道,“这款FX40增加了许多新功能并且升级了很多特性。作为Park的长期用户,我们对此感到非常兴奋和激动。这款FX40在人工智能和自动化技术上都实现了崭新的突破。我相信它可以极大地提高我们实验室的研究水平,并且推动整个纳米计量领域的创新。”Park FX 尖端的智能系统可以让用户在初始操作时同时放置多个样品(相同或不同类型),并将根据用户的需求进行自动成像。除此之外,该显微镜还能轻松及时地获取可发布的数据,并缩短研究周期来获得科学和工程上的最终成功。这些都有助用户实现更快更准的研究。 同时,Park FX40 独特的环境传感、自我诊断系统和避免头部碰撞的智能系统确保自身能够以更佳性能持续运行。据悉,在与全球原子力显微镜应用科学家们的密切合作下,Park产品市场部过去一整年都在不懈努力,潜心研发Park FX。“我们的科学家认识到AFM可以帮助研究人员获得前所未有的科学数据,并对纳米科学创新产生不可估量的影响。” Park公司的创立者,全球CEO朴尚一博士(Dr. Sang-il Park)评论道,“一直以来,我们都秉承着一颗赤诚之心来研发超级智能自动化的 Park FX 。因为我们的终极目标是为研究人员的工作保驾护航,帮助他们发现并打开科学更深处奥秘的大门!”在半导体市场,Park一直以其先进的自动化AFM 系统而闻名。它率先将AFM 技术作为纳米级计量的主要工具,使其成为行业的主流。而Park最新推出的Park FX也将为AFM创新领域开启新的篇章。关于Park帕克原子力显微镜公司Park公司成立于1988年,是全球第一个推出商业原子力显微镜产品的上市公司。Park公司成立30多年以来,始终致力于纳米领域的形貌、力学测量和半导体先进制程工艺的计量的新技术新产品的开发。Park独创的技术包括将XY和Z扫描器分离,实现了探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,能够快速成像的同时还可以大大提高测试效率,降低实验测试成本等。Park公司成立至今,致力于开发新产品和新技术,旨在为客户解决各类技术难题,以提供最完善的解决方案。其原子力显微镜以高端的产品质量和快捷优质的售后服务受到广大客户的认可。为给中国客户提供更加高效便捷的售后服务, Park公司在中国区建立了售后服务中心并配有备件仓库。
  • 网络直播|2022年扫描电镜自动化、智能化成果大赏(含案例集锦)
    随着 SEM 技术的不断成熟,人们对扫描电镜(SEM)的要求也越来越复杂,比如增加更复杂的图像处理算法,提高分析大量数据的能力等。经过调查发现,人们对于 SEM 自动化的期待主要有 3 个:消除人为误差,节省时间和成本,在海量数据中快速找到目标。基于这些用户需求,我们开发了哪些自动化和智能化的解决方案呢?做汽车 / 锂电清洁度分析或钢铁夹杂物分析的您,是否碰到过下面的问题? 传统的分析方法只能提供大颗粒灰尘和碎片的形貌 光镜成像分辨率低 无法获取到元素成分信息Phenom ParticleX 清洁度/夹杂物分析系统1. 提高检测效率,快速反馈样品差异性自动化分析可以显著提升杂质分析速度,其检测速度高于人工 10 倍以上。由于检测效率的提升,可以将生产中存在的质量问题快速反馈给现场,进而快速提升产品质量。2. 提高检测准确性,精确、客观反映样品质量问题自动化分析,可以避免人工统计的主观性,也可以避免使用人员疲惫、情绪波动等带来的误差。另外,自动化分析可以获得大量数据,更能反映产品质量。3. 降低研究人员劳动强度,解放劳动力由于分析过程完全自动化,操作者只需把样品放进系统,点击开始按钮即可,之后可以干其他更有创造性的工作。并且该系统可以隔夜分析,将夜间时间充分利用。4. 标准化检测流程,提升产品稳定性自动化分析更容易制定严格的标准化流程,进而提升产品稳定性。 相关阅读1. 锂电行业都在关注丨电池材料清洁度检测新方案2. 钢铁夹杂物的高效检测方法3. 汽车清洁度分析中,不同种类颗粒的危害性分析 羊毛羊绒检测行业的您,是否碰到下面的问题?1. 样品检测效率低下2. 操作人员视觉疲劳3. 缺乏丰富鉴定经验4. 专家主观判断差异FiberID 智能化纤维检测系统1. 高效的一键式分析将制备好的样品放入显微镜中,设备就可以自动地帮用户完成样品自动扫描。2. 高精度的检测结果服务器依靠图像识别和深度学习的算法对样品进行逐一分析和判断。3. 降低研究人员劳动强度,解放劳动力自动计算纤维数量、识别纤维的种类并测量平均直径,并一键生成专业的检测报告。4. 人工复检双重把关人工复检功能,用户登录复检平台,可对软件分析完成的每一根纤维进行核验和修正。 相关阅读兰波科技与鄂尔多斯集团达成战略合作,推动纺织业走向智能化 法医硅藻检测行业的您,是否碰到下面的问题?1. 硅藻种类多,形态复杂,人工检测准确率低,效率低2. 离心法导致硅藻损失,检出率低3. 光学显微镜漏检DiatomAI 全自动硅藻检测系统1. 自动化程度高硅藻自动扫描软件 + 人工智能硅藻自动识别软件,可最大程度实现硅藻分析的自动化。2. 自动处理多个样品一次性完成多个样品的设置,系统预设,实现夜间无人值守扫描,节约人力。3. 覆盖率高,适应性强多水域样品训练,各种类硅藻覆盖,适应泥沙、杂质含量较多的环境。4. 人工智能让检测更高效平均分析一张 1K 图片的速度为 0.05 秒,相对于人眼识别,工作效率提高 10 倍以上。5. 检测结果可靠高检出率、低检错率,不断优化的深度学习算法模型,有效防止漏检、误判。 相关阅读硅藻的自白 关于其他定制开发功能:扫描电镜是通用形貌和成分表征工具,然而每个行业都有不同的测试需求,依托强大的技术积淀以及研发能力,我们能根据您的要求和方法,开发定制解决方案。 2022 年扫描电镜自动化、智能化成果大赏直播预告
  • 浅谈显微镜未来发展的方向
    自从1673年列文胡克发明显微镜,至今已经历了大约三百多年的历史,显微镜也从过去的单目变为双目乃至三目,由简单的观察变为可拍照,由初始的放大300倍左右到现在放大1000倍左右。 最近10年,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都出现了很大的发展。显微镜的外观上出现了一些革命性的变化,性能上有了进一步的提高。全球显微镜生产商都为此做出了不懈的努力。通过对一些特色产品的比较分析,不难发现显微镜设计上的一些特点,从中可以判断出未来显微镜的发展方向。 一、 拍得更清晰 显微镜目的就是为了更好地观察微生物,要求看得更清楚。显微镜厂商为此开发出各种各样的显微镜镜头来消除各种色差和场曲。最近,在显微镜上普遍采用了UIS2光学系统,它充分体现了无限远校正方式的优越性。光线通过物镜后成为平行光束通过镜筒,并在结象透镜处折射或完成无相差的中间象。UIS2无限远光学系统的物镜具有在宽波长范围内(由紫外至近红外区)具有一致的高透过率。同时具有更高的信噪比,不需要额外补偿就可以得到更为清晰的图像。例如美国AMG公司的EVOS fl大屏幕数码荧光显微镜所拍出的图像已经接近于激光共聚焦的水平。 二、 放大倍数更高 对于大多数显微镜来说,对样本的物理放大倍数是物镜放大倍数与目镜的放大倍数乘积。通常情况下,目镜的放大倍数为10倍或者16倍。以40倍物镜为例,也不过是放大400倍或者是640倍,如今却能够将放大倍数提高到840倍。例如美国AMG公司开发的倒置显微镜,在物镜下采用了21倍的光学放大,使得我们能够通过40倍的物镜就可以观察到放大倍数更高的图像了。如果换成100倍的油镜,就可以通过显示器观察到放大到惊人的2100倍甚至更高的图像,无不让人赞叹技术的发展之快。 三、 更为人性化的设计 一提到显微镜,我们的第一印象就是:弯着腰,低着头,抬着手臂,眼睛盯着目镜来观察。对于长期从事显微镜观察的科研人员来说,这一&ldquo 固定姿势&rdquo 往往会引起身体上的疲劳,肌肉损伤。曾经有一位科研人员因为长期观察显微镜而落下了颈椎病。因此改变传统的显微镜观察模式成为一项非常有必要而且紧迫的任务。 不过最近,各大显微镜厂商相继推出了一些更为人性化的显微镜,如美国AMG公司推出了大屏幕倒置显微镜系列,Nikon推出的Coolscope 显微镜,Olympus推出的智能生物导航仪FSX100,leica推出的DMD108等,均是无目镜的显微镜,直接通过液晶显示器来观察,实现了观察细胞就像玩电脑,就像看电影,大大减轻了显微镜观察时的疲劳。 四、 一体化的显微镜 也许现在我们接触到的显微镜大多是机械式的,需要手动来调焦距、调光源、调样品的位置,特别是针对细胞培养,出现了大量连续培养过程中显微观察的要求。为此,各个显微镜厂商设计了能够用于连续培养显微观察的显微镜或配件,如Nikon公司的显微活细胞工作站Biostation IM和Biostation CT,其中Biostation IM是专门针对35mm细胞培养皿设计的,系统中包含了温控系统,CO2气体系统和显微成像系统,可以实现自动化控制,连续培养显微成像。Biostation CT则是更为大型的系统。AMG公司整合了美国Ibidi公司开发的连续细胞培养配件,在其倒置显微镜上也可以实现温控和CO2的供气,从而实现细胞连续培养显微观察,它可以连续观察达60个小时,所采集的图像可进行视频连续播放,从而观察细胞生长过程中形态的动态变化。德国显微镜厂商Leica和Zeiss也开发了自己的连续培养显微观察配件。 五、 专门的网络化显微镜 在临床医学上,专家远程会诊,病理资源共享将会为疑难杂症的诊断和对症治疗提供更大的可能性,这就需要能够实现自动化远程操作的显微镜来观察病理切片。Nikon公司的Coolscope和Leica公司的DMD108为临床远程病理会诊提供了方便,它们专门为载玻片显微观察设计,自动转换物镜,自动对焦,得到的图像可直接通过网络发送到异地进行专家会诊。 六、 光源的革新 对于荧光显微镜,其稳定的激发光源对样本数码成像起着关键性的作用,到现在为止绝大多数显微镜还在使用卤钨灯或者是高压汞灯,一方面这类光源使用寿命短,需要3到4各月更换一次,每次更换后都需要专业工程师进行位置校准;另外一方面,这类光源的强度会随着使用寿命而衰减;还有一方面,这类光源对于显微镜操作来说需要预热来等待光源强度稳定,而且光源关闭后需要等待30分钟左右才能重启,这就造成了使用上的极大不便。 现在LED灯成为大家公认的新一代照明产品,它具有能耗低、光强稳定、寿命长等优点。AMG公司的倒置显微镜系列全部采用了LED光源系统,完全消除了前面所提到的卤钨灯和高压汞灯的使用不便,而且AMG针对荧光倒置显微镜开发了专利的Light cube&ldquo 光立方&rdquo 单色激发光源系统,光源强度可调,不同的单色激发光源可自由更换,在显微镜光源方面可以说是一场前所未有的革命。Leica的DMD108和Nikon的Coolscope也采用了LED光源,因此可以预见未来将会有更多的显微镜厂商采用LED光源。 结束语:综上所述,可以看出最近几年是显微镜出现革命性发展的阶段,越来越多的更为人性化、自动化的理念应用到显微镜设计上,显微镜的性能也大大提高,不仅仅是看到图像,还可以看得更大、更清晰,操作上可以自动化,可以远程控制。还有一些很鲜明的显微镜特点如Olympus 的FXS100的智能化设计,AMG 的EVOS fl荧光成像时无需暗室的独特暗盒设计等由于篇幅有限,无法详细介绍。 以前,在显微镜领域全球一直是Nikon、Olympus、Leica和Zeiss这四家占据着绝大多数的市场,如今美国AMG公司凭借其在倒置显微镜方面的独特设计,开始在显微镜市场上暂露头角。中国内地也出现了很多显微镜生产商,也许在不远的将来,中国制造的显微镜也可以让显微镜领域耳目一新,精神一振,我们期待着这一天早日到来。 参考资料网络来源: 1.http://www.amgmicro.com 2.http://www.leica-microsystems.com/ 3.http://www.nikoninstruments.com/content/download/5113/47632/version/2/file/BioStation-IM.pdf 4.http://www.olympusamerica.com/files/FSX100_brochure.pdf 5.http://www.szsn.cn/szsn_Article_11468.html 欢迎选购,详情请联系东胜创新各地办事处咨询。   东胜创新公司www.eastwin.com.cn   北京:010-51663168,上海:021-64814661,广州:020-38331360
  • 290万!广东工业大学高精度自动原子力显微镜等设备采购
    项目编号:1371-2241GDGH1153项目名称:高精度自动原子力显微镜等设备采购采购方式:公开招标预算金额:2,900,000.00元采购需求:合同包1(高精度自动原子力显微镜):合同包预算金额:1,650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表高精度自动原子力显微镜1(套)详见采购文件1,650,000.00-本合同包不接受联合体投标合同履行期限:合同签订后120天内交付使用。合同包2(四通道耗散型石英晶体微天平分析仪):合同包预算金额:1,250,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他专用仪器仪表四通道耗散型石英晶体微天平分析仪1(套)详见采购文件1,250,000.00-本合同包不接受联合体投标合同履行期限:合同签订后120天内交付使用。
  • 人工显微镜检测逐渐消失 专家疾呼挽救
    时下,各种自动化检验设备可谓日新月异,检测速度和准确性不断提高,传统的人工显微镜检查还有用武之地吗?在近日举行的2012年全国血液体液形态检验诊断学学术会议上,不少专家大声疾呼,在充分发挥现代自动化检验技术优势的同时,不应忽视以传统人工显微镜检查为主要手段的细胞形态学检查的重要价值。  一张小涂片解决了大问题  “一张小小的痰涂片,解决了困扰我一年多的慢性咳嗽。”会上,北京大学第一医院检验科王建中教授与大家分享了自己的经历,  一年前,王建中因受凉患了肺炎,此后一直断断续续地咳嗽,夜里常常咳得无法入睡。痰培养、胸透、肺功能、CT,该做的检查全做了,就是找不到原因,各种对症治疗也效果不佳。家人和同事甚至开始担心他得了肺癌。  直到有一天,王建中为自己做了一张痰涂片,显微镜下发现其中有大量嗜酸性粒细胞,表明咳嗽很可能是由过敏导致的。根据这一检验结果,在医生指导下服用相应抗过敏药物后,王建中终于治愈了病痛。  “形态学检验对疾病的诊断具有独到之处。”他深有感触地说。  据专家介绍,作为临床检验的核心和基础,形态学检验主要是在显微镜下对血液体液标本中的细胞或有形成分进行观察,是临床诊断、疗效观察、预后判断等的重要依据。  人工镜检结果还是一些疾病诊断的“金标准”。如在白血病的血液与骨髓标本中髓系原始细胞计数时,血液或骨髓涂片的显微镜下形态学检查和流式细胞仪分析两者均可用,但世卫组织最新的造血与淋巴组织肿瘤分类方案仍要求以形态学检查为准。  “即使是在临床检验技术自动化大发展的背景下,人工镜检依然是医学检验中不可缺少的重要手段。”王建中说,比如临床最常用的血尿常规检查,自动化仪器目前仍只能作为筛选手段,需要按照一定比例进行人工镜检的复检。  南方医科大学附属中山博爱医院检验科主任技师黄道连说,自动化仪器都是按照正常细胞的相关参数进行设定的,而病变细胞的结构和形态往往会发生改变,病得越重,变化越大,此时,自动化仪器就难以分辨,甚至张冠李戴,造成误诊、漏诊。  对于人工显微镜检查的重要性,很多专家不约而同地提到了曾在社会上引起轩然大波的“茶水发炎”事件。2007年和2012年,两度有记者用茶水代替尿液送到医院化验,结果被检测出炎症。虽然这一做法有违科学原理,但也从另一侧面向检验界敲响了警钟:显微镜检查的环节必不可少。“倘若检验人员能够对出现白细胞阳性的标本进行显微镜复检,也许就可以发现这一明显的谬误。”北京协和医院检验科张时民教授说。  河北医科大学第二医院检验科李顺义教授也举例说,抗凝剂在全自动血细胞分析仪上的使用,有可能造成假性血小板减少,如果不进行进一步镜检就直接发出检验报告,会导致患者接受不必要的辅助检查。  被忽视只因“费时费力还不挣钱”  让与会者感到的担忧的是,人工显微镜检查这一不可或缺的重要检验方式正在被严重忽视和弱化,成为许多医院检验科的“短板”。  这种忽视和弱化首先体现在人工镜检的比例大幅缩水,甚至被取消。“不少医院基本就不做了。”张时民说。  据了解,即使全血细胞分析仪判定为正常的标本中,也有5%是假阴性。2005年,世卫组织涂片复检协作组调查复检结果发现,每天有25%~30%的标本需要进行显微镜复检。但目前不少医院的复检率低于5%,甚至为0。  “自动化仪器主要看细胞数量的变化,而人工镜检则重点关注细胞‘质’的改变,两者本应是左右手的关系,但现在普遍是‘一手硬、一手软’。”黄道连说,他所在的检验科形态学检查做得不错,临床医生从中尝到了甜头,医院也因此非常重视人工镜检,“我们医院要求每一位住院病人在检查血常规时必须同时做血涂片。但据我了解,很少有医院这样要求”。  其次,检验人员对各种细胞的识别能力有限,难以为临床诊断提供有价值的信息。“认得出就认,认不出就当作没看见。”张时民说。  人工镜检被忽视的另一个突出表现是愿意干的人少,干着的人培训进修机会少,专业从事形态学检验的人员严重不足,不少医院采用轮岗、兼职的办法来安排人手。  “青黄不接是普遍现象。”黄道连曾对中山市4家三级医院的检验科人员进行问卷调查,仅有17%的人表示愿意从事形态学检查工作,约12%的人员接受过为期1个月以上的形态学检验诊断培训,而免疫、生化等其他检验项目的检验人员接受培训的比例则为25%~30%。  中国中医科学院广安门医院检验科刘贵建教授指出,过度倚重自动化设备,对仪器的局限性以及人工镜检的重要性认识不足,认为机器检查可以取代人工镜检,加之临床工作量激增,面对每天成百上千份的血尿标本,且要在1小时甚至半小时内出检验结果,检验人员超负荷工作,无暇完成进一步镜检,是人工镜检在检验科被忽视的主要原因。  另一个原因则是收费问题。目前,医院检验项目的收费标准主要按照耗费的物力成本计算,人工镜检所需试剂少、仪器简单,因而这一检验项目基本不收费或收费很低。在目前的医院运行机制下,对于“费时费力还不挣钱”的人工镜检,医院普遍缺乏关注热情。  张时民举例说,在该院做一套肝肾功能血脂检查的收费在300元左右,1小时自动化检验设备大约可以处理上百个标本,而一名检验医师1小时仅能处理约10个普通标本,复杂的标本甚至只能处理两三个。  “有时一张涂片看不到病变细胞,但根据经验判断觉得有问题,为了找到证据,就得多看几张甚至十几张片子,可能花费一天时间就为了找到一个恶性细胞。”黄道连说,“在美国,形态学检查被视为技术含量极高的检验项目,费用也相应较高,属于医保的限检项目。一套骨髓涂片的形态学检查收费为400美元~500美元,而我们的收费只有50元~60元。”  张时民指出,一名成熟的形态学检验技师需要至少10年的经验积累,而现在愿意待在显微镜前的人越来越少,非常不利于我国形态学检验诊断领域的发展。  形态学检查有广阔发展空间  “形态学检查是一门古老的学科,也有着广阔的发展空间,绝不应该是检验科的弱项。”上海交通大学医学院附属瑞金医院王鸿利教授说,在形态学检验的基础上发展起来许多新的检验方法,流式细胞仪就是典型代表。同时,细胞生物学、分子生物学等新兴技术领域都与形态学有关。“放弃了形态学,就放弃了临床检验学的基础。”  王建中表示,近年来逐渐发展成熟的全自动血细胞数字图像分析等现代技术,将为形态学检查的未来发展带来“革命性”的变化。“标本制备的全自动化、仪器自动获取细胞图像,可以减少人工制备标本时间,检验者可以在电脑屏幕上看到标本的显微图像,同时通过网络实现资料共享,同行间可以相互交流,这有助于提高检验诊断的效率和准确性。”  张时民认为,当前应着力加强形态学检验技术骨干的培养和基本技能的培训。在政策允许的情况下,提高形态学检查项目的收费,适当提高从事形态学检验人员的待遇。黄道连建议,应该在岗位安排、人才培养、进修培训、岗位津贴等方面实行政策倾斜,“让从事形态学检验的人员能够安心本职工作,不断提高业务水平,为临床医生提供更有价值的诊断信息”。
  • 地球科学中自动化矿物学的未来
    随着 2021 年 11 月 Mineralogic 3D 的推出,自动化矿物学刚刚见证了其技术的最大转变。这是一项广泛的开发计划,旨在定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以实现一致和准确的识别矿物相直接来自 3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。介绍几十年来,“自动化矿物学”一词一直是地球科学中电子显微镜的代名词。使用能量色散光谱 (EDS) 快速绘制样品图和识别感兴趣的相已逐渐从其最初的行业应用转移到学术研究环境中。对于希望利用这一强大工具的学者来说,一个主要问题是原始平台在其行业设计的输出方面是僵化的,并且能够提供自动化输出的软件和硬件都缺乏开发。蔡司矿物学一直采用不同的方法,2D 和 3D 的持续发展意味着我们现在拥有有史以来设计的最全面和最先进的岩石学研究平台,重新定义了自动化矿物学这一短语。使用定量 EDS 分析,EM 的矿物学一直领先一步。这使得它在自动化矿物学系统中独树一帜,成为真正的地球化学工具,能够计算薄片等区域的矿物和整体成分。然而,这种能力仍然在传统的自动化矿物学软件的框架内,用户如何访问和使用地球化学信息的灵活性有限。在 Mineralogic 1.8 中,这一切都发生了变化,自动化矿物学的使用方式发生了重大转变,特别是在工作流程高度可变的学术环境中。在最新版本中,地球化学信息被放在首位,与软件设计的阶段 ID 一样重要(图 1)图 1:大颗粒观察器 (LPV) 用于可视化苏格兰西北部路易斯安杂岩中的麻粒岩相超长岩的完整薄片。单击即可从 BSE 和矿物分类图更改为定制的范围元素热图,所有这些都来自同一次扫描。图像显示 a) 灰度 BSE,b) 矿物分类,以及 c) 和 d) 定量 Fe 和 Mg 热图。新的大粒子查看器可以将完整的薄片查看为定量元素热图,并且收集的所有地球化学数据都可以导出为简单的 .csv 文件格式。这种简单的数据导出允许将定量地球化学测量值直接导入为地球科学家专门设计的第三方软件,例如 XMapTools。技术上最大的转变是在 2021 年 11 月推出 Mineralogic 3D。这是在一项广泛的开发计划之后定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以允许直接从3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。现代、灵活的自动化矿物学技术可以应用于地球科学以外的许多材料,包括金属、陶瓷,甚至是根和骨头等有机物质。然而,矿物物种在主要元素化学、结构和密度方面的全球一致行为使其成为此类自动化工作流程的理想候选者。完整的蔡司矿物学软件包现在提供最全面的矿物学和岩石学解决方案,这只是对地球科学界长期投资的开始。突破二维自动化矿物学的极限自动化矿物学在四个十年的使用中几乎没有变化。对严格的行业应用程序进行粒子分析的一致输出的要求导致看似相似的软件环境在输出方面几乎没有灵活性。该设置非常适合设计自动化矿物学的常规工作流程、矿物学处理的长期一致性以及破碎样品的地质冶金学,这些样品在数月和数年内在单个地点几乎没有变化。最大的挑战是在学术环境中越来越多地使用自动化矿物学平台。吸引力非常明显,能够将传统的颗粒分析方法转化为 SEM 中的各种样品的映射,从环氧树脂安装的颗粒分离器到完整的薄片和抛光的芯板。能够用模态丰度、纹理信息等绘制矿物学图,对于构建大型数据集、拥有“大数据”和了解我们个体样本的统计相关性的现代科学来说似乎是完美的。然而,在一个依赖灵活性的研究环境中,这个看似理想的工具却受到为工业应用设计的输出的刚性所阻碍。在蔡司,我们对地球科学界做出了承诺,不仅包括推动仪器的功能和为社区量身定制我们的显微镜解决方案,而且投资于地球科学专业知识以帮助推动技术进步。因此,该软件现在是 SEM 自动化矿物学最全面、最灵活的平台,是定量地球化学分析与定量结构分析的独特组合。 从头到尾的灵活性地球科学家是多产的显微镜用户,他们的 SEM 系统通常以具有多种成像模式和用户要求的探测器“圣诞树”而闻名。结果是集成解决方案的必要性,并最大限度地减少操作员和/或技术人员实现目标的时间,因为在一个会话中需要多种成像技术是很常见的。Mineralogic 并不固定在某个平台上,因此从一开始您就可以从钨丝 (CSEM) EVO 系列到 FESEM Sigma 和 GeminiSEM 系列中选择适合您需求的 SEM。无论对成像分辨率、可变压力和探测器组合有什么要求,使用 Mineralogic 的自动化矿物学都可以成为您设置的一部分。定量 EDS 分析的使用始终使该软件有别于其他自动化矿物学解决方案。通过校准和标准化化学分析,它不仅仅是一种识别矿物种类的简单机制,而是将自动化矿物学转变为真正的地球化学工具,提供真实的矿物成分,以及测绘区域的“整体成分”。在研究环境中,能够获得定量的主要元素化学是许多工作流程的关键方面。通过在单一技术中以内在连接的方式将不同的信息组合在一起,在纹理分析的同时获取这些信息可以简化项目。定量地球化学还提供了另一个明显的优势,因为矿物分类库基于每种元素的 wt% 元素值,而不是定性的峰值强度值。这意味着矿物库更易于理解,并且可以在实验室之间和可变光束条件下立即转移,从而改善协作并减少操作员处理新样品或困难样品的时间。与大多数行业工作流程相比,研究项目的可变性要大得多,并且涉及定制的、采集后的图像和数据分析。很难准确预测数据将如何在研究环境中使用,不仅不同的研究小组有不同的要求,而且即使是同一个项目也可能需要根据样本灵活地询问信息。为了充分利用 Mineralogic 定量矿物学的强大功能,收集的数据必须不锁定在专有数据格式中,假设看似不灵活的输出适合所有人。为此,在可视化和导出方面,数据灵活性被置于软件的核心。自动矿物学的图像输出通常涉及两种图像类型,一种是背散射电子 (BSE) 图,另一种是基于自动矿物学分类的假彩色相图。与其将定量地球化学简化为数值输出,不如将这些信息带到最前沿,能够生成以完全数据拼接格式检测到的任何元素的定量元素热图(图 2)。现在可以通过单击导出在屏幕上查看的任何这些图像,为报告和手稿创建即时数据。图 2:a) 苏格兰格莱内尔格变质岩的全薄片扫描。Ca 热图突出显示分区的石榴石,然后以更高的分辨率重新分析。
 图 2: b) 石榴石图显示了元素和浓度范围选择的周期表用户界面。 比灵活的可视化更重要的是能够决定您希望如何处理数据本身,如果软件平台中的数据库无法访问,这是不可能的。Mineralogic 允许以最简单、最灵活的格式导出所有地球化学热图。这允许在任意数量的通用外部数据和可视化平台中查看数据集,作为电子表格或图像,或合并到定制的图像分析程序和脚本中。特别值得注意的是伯尔尼大学的 Pierre Lanari 设计的 XMapTools (xmaptools.ch/) 的使用。XMapTools 专为地球科学家设计,可从元素图中提取信息,这些信息已通过额外的电子探针样品分析步骤进行量化。将定量 EDS 图直接从 Mineralogic 导入 XMapTools 避免了这一额外的校准步骤,并允许使用矿物数据即时计算有用的参数,例如元素氧化物、末端成员成分和每个公式单位的阳离子,以及进行热力学计算。Mineralogic-to-XMapTools 工作流程最大限度地利用了灵活的数据输出,并为石油学家提供了一个出色的集成工具。通过采用定量地球化学并使其与自动矿物分类本身一样易于访问和重要,该软件现在在一个平台上提供了矿物学和岩石学应用的一站式商店,该平台可以结合许多其他图像和分析技术,如 EBSD 、WDS 和 CL。3D 自动化矿物学 - 新领域数十年来,通过微型计算机断层扫描 (µCT) 进行的非破坏性 3D 成像已被用于研究材料科学样品。这些仪器的性质意味着它们长期以来一直停留在成像领域,并没有被大量用于除分割等操作之外的定量分析。CT 平台通常设计用于增强对比度以可视化样本中的特征,从而导致信噪比抑制复杂的异质样本(如岩石)的详细分析,这一事实进一步阻碍了这一点。长期以来,能够完全基于 X 射线衰减值直接从 CT 吸收对比断层扫描 (ACT) 中识别矿物一直是一个目标,然而,由于校准、标准化和信噪比问题的多重障碍,直到现在这种量化仍然遥不可及。随着 2022 年 11 月 Mineralogic 3D 的推出,这个梦想现在已成为现实(图 3)。图 3: a) X 射线数据的自动矿物分割允许对矿物质地和丰度进行非破坏性分析。这些数据为您的岩石样本提供最可靠和最具代表性的 3D 分析,并指导相关工作流程。
图 3:b) 3D X 射线断层扫描的最新进展已使其超越成像并进入定量分析 (1) DeepRecon Pro 机器学习图像增强,(2) 非破坏性晶体取向分析,现在 (3) 自动化矿物学和定量样品分析。
 Mineralogic 3D 是一种突破性的新软件解决方案,旨在同时在 ZEISS Context (µCT) 和 Versa X 射线显微镜 (XRM) 上运行。预计 3D 自动化矿物学将迅速在工业的常规工作流程应用中找到一席之地,它非常适合识别硫化物和氧化物等矿物种类,计算它们的丰度,并确定它们彼此之间的关系以及脉石矿物. X 射线平台在这方面具有显着优势。ACT 的样品制备很少或根本不存在,整个或粉碎的样品可以在提取后立即加载,并且不需要环氧树脂底座的制作、固化和抛光。获取 3D 数据也消除了抛光表面的立体效应,显着提高数据质量,同时减少获取数据的时间。然而,以最少的样品制备或损坏获得如此详细的定量信息的能力意味着各种研究工作流程很可能也将采用该技术。Mineralogic 3D 将许多单独的解决方案组合到一个软件包中,利用校准和量化蔡司 X 射线平台从源到探测器的各个方面的能力,这意味着可以克服以前所有矿物识别的障碍。为了始终如一地识别矿物相并量化它们的关系,3D 重建需要具有尽可能高的信噪比,必须考虑 X 射线衰减伪影,并且必须分割 100% 的感兴趣体积。这些问题以及许多其他技术挑战已通过最近针对蔡司 CT/XRM 的高级开发计划得到解决。Mineralogic 3D 中最重要的并行进展之一是 DeepRecon Pro 的开发,它是最新的 Advanced Reconstruction Toolbox (ART) 的一部分。DeepRecon Pro 于 2021 年推出,是一种深度学习图像增强算法包,利用神经网络将 ACT 的信噪比提高到前所未有的水平(图 4)。图 4:借助 DeepRecon Pro 的图像增强功能,可以以更快的速度对样本进行成像,以清晰地显示复杂的特征。这里是c的增生lapilli。苏格兰西北部的 1 Ga Stac Fada 撞击喷射层在分割富含氧化铁的边缘后可以清楚地看到。 这对执行自动化矿物学的能力有两个积极影响,扫描时间显着减少,加快了常规分析的过程,并且类似的矿物通过其衰减值变得可区分。将这种“日常人工智能”组件纳入显微镜工作流程现在已成为公司在光、电子和 X 射线显微镜方面的理念的一个组成部分,使用户能够最大限度地提高仪器的输出,同时将对其时间的影响降至最低。量化分析工作流程的每一步的能力对于保持跨平台每次分析的同一矿物的一致价值至关重要,而且该价值本身与分析材料本身的内在特性相关,因此是有意义的. 与此相关的是考虑光束硬化的影响,即随着不同能量的 X 射线被样品吸收,通过材料的信号变化。该伪影通常被视为图像处理问题,需要在分析后进行校正,这对于简单的单相材料来说是一项可以完成的任务,但对于复杂的异质岩石样品却充满了问题。通过使用定量平台,并直接从第一原理应用这些和其他修正,在确定了 3D 断层扫描中存在的矿物质后,自动矿物学过程的一个重要组成部分就是能够计算矿物质比例及其关系(图 5)。图 5:完整的 Mineralogic 3D 工作流程可用于提高图像质量、自动分类矿物和分割样品的全部体积以计算 3 维的定量矿物模式和关系。图 1 中的示例是在 DeepRecon Pro 增强(灰度)和分割(彩色体积)之后看到的。全 3D 分段重建可以提供比 2D 更准确和详细的信息,并且几乎不需要样品制备。这意味着 100% 的分析体积必须被分割,矿物之间没有重叠,即体积的任何部分都不会被计算两次。这意味着所有标准输出,例如解放和锁定关系都可以以真正的 3D 形式计算。专门为此目的设计的智能分割例程,可快速生成用于定量纹理分析的 3D 体积,旨在确保忠实地表示微量矿物质,而不会被更大比例的矿物质吞噬。Mineralogic 3D 是一项改变游戏规则的技术,将 40 年历史的自动化矿物学概念带入一个全新的维度,允许对自然 3D 状态下的岩石样本进行全面定量分析。虽然 3D 分析相对于岩石中矿物和结构的复杂性有明显的好处,但 ACT 的非破坏性和完全定量分析可能是处理珍贵样品(如陨石和博物馆标本)工作流程中的关键步骤。 总结和结论/未来发展能够跨多种成像模式生成大型数据集是解决地质问题的理想选择,自动化流程以减少用户时间、建立统计相关性并为大型项目带来一致性至关重要。自动化矿物学的这些新发展也突出了相关显微镜的方向。越来越多的数据集被放置在云环境中,数据可以存储在大型、可访问的服务器中,为协作项目共享,并使用强大的在线处理工具进行处理。跨多个平台的自动化矿物学允许关联变得更加简化,因为跨这些平台的矿物库能够在此类云环境中进行通信并通过智能数据管理构建连接的数据集。用于矿物鉴定的地球科学中最多产的技术是光学显微镜 (LM),通常使用岩相显微镜。虽然 LM 一直是岩相学的中流砥柱,但它也是最难实现矿物识别自动化的技术,因为参数很少且变化足以区分静态图像中的矿物。因此,使用我们训练有素的地质学家的大脑,通过肉眼识别 LM 中的矿物质仍然比在大量矿物质中自动化该过程要容易得多。然而,即使是这项技术也有可能在未来发生转变。新的 Axioscan 7 Geo 是专为透射光岩相学设计的数字化平台,可在平面、交叉和圆偏振光(PPL、XPL、CPL)的整个薄截面上快速收集 LM 数据集,图 6:a) Axioscan 7 Geo 数字化平台为偏光显微镜生成独特的数据集,在多个方向捕获多种光模式。这使得数字薄切片可以在虚拟岩相显微镜中查看,或询问像素或晶粒尺度信息。
图 6:b) Axioscan 7 Geo 可以创建光学矿物学所需的所有成像模式,并将数字信息转换为模态丰度、取向、晶粒尺寸等的强大定量分析信息。
这些丰富的数据集是大量矿物学光学信息的基础,它们自然地提供了自动化的可能性。虽然这最初可能仅限于具有相对受控矿物组合的常规工作流程,但它为自动化矿物学在未来桥接光、电子和 X 射线显微镜铺平了道路,允许真正多模式和多尺度的相关项目自然。Mineralogic 软件套件处于自动化矿物学的最前沿,正在为工业和学术界的定量地球科学新时代铺平道路。可以将 2D 和 3D 矿物和纹理信息层与定量地球化学相结合,以创建对岩石样本的全面描述,并在整个地球科学中具有丰富的应用。关于作者理查德泰勒 Rich Taylor 博士Carl Zeiss 显微镜,Zeiss House,剑桥郡,英国Rich 于 2009 年在爱丁堡大学完成了实验岩石学博士学位,之后前往西澳大利亚科廷大学担任 SIMS 实验室专家。随后,他在科廷大学地球与行星科学学院担任研究职位,研究地球化学和地球年代学,专门研究成像和微量分析。2017 年,他搬到剑桥大学,使用新的显微镜技术研究地球上最古老材料中的磁性包裹体。2019 年,Rich 搬到了位于英国坎伯恩的蔡司,担任全球地球科学应用开发职位。原文:The future of automated mineralogy in geoscienceWiley Analytical Science ——Microscopy,7 June 202
  • 不忘初心,砥砺前行——Park原子力显微镜成长史
    不忘初心,砥砺前行,以下按照时间轴,一起回顾Park原子力显微镜公司成长史,以及伴随世界原子力显微镜技术发展的故事。01Park公司简介 帕克原子力显微镜(Park Systems,以下称Park)是一家专门从事纳米设备测量的公司。Park致力于新技术开发,始终是纳米显微镜和计量学领域的创新者。Park在AFM技术发展中发挥着举足轻重的作用,制造和销售具有全自动化软件且使用方便的高精度原子力显微镜(AFM)。截至2021年4月20日,Park股票估值超过了一兆(万亿)韩元。朴尚一(Sangil Park)博士和他的导师Calvin Quate教授02为梦想而坚守Park原子力显微镜创始人朴尚一博士 Dr. Sangil Park1985年朴尚一博士所在的课题组(师从Calvin Quate教授)研发出世界首台原子力显微镜1988年朴尚一博士在美国硅谷创立了Park Scientific Instruments公司(PSI)1997年朴尚一博士将年销量为1200万美金的PSI以1700万美金的价格转卖给了美国测量设备公司Thermo Micro.1997年朴尚一博士回到韩国,创立PSIA公司,即为后来的Park原子力显微镜公司。Park原子力显微镜1997年4月PSIA(株)成立(资金5亿韩元)1998年7月中小企业厅风险投资企业确认1998年10月被韩国产业资源部评定为工业为主技术开发公司2000年04月韩国科学技术部颁发国家研究奖(NRL)2002年7月获得NT Mark(New Technology)新技术认证2002年消除串扰技术的发展(XE),从而提高了原子力显微镜的反馈和成像2003年4月成立美国分公司(PSIA Inc.)2003年5月被韩国科学技术部选为核心技术开发产业(Nano)2003年10月获得CE标志认证(XE-100, XE-150产品型号)2004年2月获得“工业技术奖”2004年真正非接触模式(True Non-contact Mode)实现无损样品扫描2005年1月被评为2004年韩国十大新技术企业(原子力显微镜技术)2005年7月获得ISO 14001环境管理体系认证2006年1月获得韩国高新技术认证(NEP, New Excellence Product)2007年1月成立日本分公司2007年4月法人名更改为Park Systems Corp.2007年12月被知识经济部评为"世界一流商品生产企业"2008年3月“韩美未来产品经营大奖”2008年7月获得 ISO 9001质量管理体系认证2008年8月XE-3DM:用于高分辨率3D测量的全新3D原子力显微镜2008年11月XE-Wafer: 用于在线晶圆检测和计量的自动化工业AFM2009年5月通过了Hynix海力士半导体的"Preliminary Performance Test"2009年6月荣获彼得.德鲁克创新奖2010年1月获得国家核心技术奖(工业型原子力显微镜技术)2010-11号2010年12月韩国十大新技术奖(XE-3DM技术)-知识经济部2010年12月韩国技术大赏银奖(XE-3DM技术)(经济部长奖)2011年Park NX10新品出市:全新产品系列的最优原子力显微镜2012年8月NanoKorea 2012知识经济部长奖2012年8月新加坡分公司成立2012年10月Park NX-Wafer: 全自动晶圆检测原子力显微镜2012年Park NX20新产品:用于故障分析和大型样品扫描的领先纳米计量工具2013年6月被选为 INNO-BIZ(技术创新中小企业) (13.06.20~16.06.19)2013年Park NX-HDM: 实现硬盘介质和半导体衬底的全自动化缺陷检查和亚埃米级表面粗糙度测量2014年Park SmartScan: 通过Park划时代创新自动成像技术,实现SmartScan软件的三次点击成像2015年2月与IMEC达成JPD协议以开发用于半导体制造业的纳米级原子力显微镜计量学2015年5月被选为国家产业核心技术事业项目 (2015.06~2018.05)-韩国产业通商资源部2015年8月首次在KOSDAQ(科斯达克)评估信息中获得AA等级技术评估,技术保证金2015年9月被指定为国家核心技术(原子力显微镜制造技术)- 韩国产业通商资源部2015年12月在科斯达克(KOSDAQ)上市,首次公开募股2015年6月NX-3DM:失效分析,质量监控和工艺改进的最佳原子力显微镜2015年Park NX-Hivac: 用于故障分析和气压敏感材料研究的高真空原子力显微镜2016年6月荣获第8届韩国KOSDAQ奖"最佳下一代企业奖"2016年6月被选为INNO-BIZ(技术创新中小企业) (A等级,16.06.20~19.06.19)2016年7月2016弗若斯特沙利文(Frost&Sullivan)“全球技术支持领先奖”2016年12月产业通商资源部颁发2016年"第15届产业技术奖"2016年Park NX20 300mm: 可用于300 mm晶片圆测量和分析的自动化纳米测量工具2017年2月成立中国台湾分公司2017年3月成立欧洲分公司2017年Park NX12: 多功能原子力显微镜平台,满足纳米级测量的需求2018年5月2018年科斯达克(KOSDAQ)后起之秀企业2018年6月第十届韩国科斯达克(KOSDAQ)大赏最优秀技术企业奖2018年9月中国北京分公司成立2018年11月科学技术信息通信部,产业通商资源部颁发2018年十大纳米技术奖2018年12月入选2018年最有前途半导体技术解决方案企业2019年7月再次被选为2019年科斯达克(KOSDAQ)后起之秀企业2019年7月获NanoKorea 2019年韩国国务总理表彰奖2020年2月Park NX-TSH: 专为超大纳米平板显示器测量设计的自动化原子力显微镜2020年3月IMEC与Park公司签署第二期JDP协议合作开发用于半导体制造的纳米计量解决方案2020年5月Park原子力显微镜完成其对Molecular Vista的股权投资2021年1月2020年福布斯亚洲10亿美元200强企业榜单- Park原子力显微镜公司上榜2021年2月Park SmartLitho™ -最简易的纳米光刻和纳米操作的智能化软件2021年4月在科斯达克(KOSDAQ)突破一兆(万亿)韩元的关口03Park研发之路"前世今生"近40年间,朴尚一博士致力于原子力的发展。1985年,朴尚一博士在斯坦福大学Calvin Quate教授课题组攻读博士学位期间,亲身参与并见证了首台AFM的诞生。该成果发表在1986年3月的“物理评论快报”上,该成果的共同作者单位为Gerd Binnig(IBM公司阿尔玛登研究中心)、Christoph Gerber(IBM公司苏黎世研究实验室)、Calvin Quate教授(斯坦福大学)。1988年,朴尚一博士在美国硅谷创立了Park Scientific Instruments公司(PSI),PSI作为全球最初的商业化AFM公司在硅谷获得了巨大成功,公司仅用三年时间,销售业绩就达到了595万美金,相比于创业之初的1988年,业绩实现了超过10倍的暴风式增长。1997年, PSI以1700万美金的收购价格被美国测量设备公司Thermo Micro全资收购。1997年,朴尚一博士回到韩国并于当年成立了PSIA公司。伴随着半导体产业的崛起,PSIA公司着力于开发适用于半导体产业的计量型原子力显微镜。1998年,PSIA公司推出了首款可以对8英寸Wafer进行缺陷检测的原子力显微镜"SM5-200"。2000年,PSIA公司根据LCD产业的需求,推出了世界上首台不用破片的大尺寸LCD产业用原子力显微镜--600X720 mm液晶显示器(LCD)。该产品首次实现了原子力显微镜检测的不破片测量,并在同年得到了三星电子的评测认可。但在2001年,由于受制于美国的贸易政策,PSIA公司不能从美国的公司采购任何主要的美国生产的产品备件,导致公司生产一度停滞。“求人不如求己!”面对美国一些贸易壁垒的经营限制条例,朴尚一博士决定借此机会让PSIA成为完全的技术独立者。在随后的漫长时间里,他致力于研发完全本土化的产品。历尽不为人知的众多曲折后,PSIA最终推出了世界上首台扫描器分离的原子力显微镜Park XE-100,并且将非接触模式的算法进行了优化升级,一举解决了传统非接触模式不能进行高分辨扫描的弊端。PSIA推出的非接触模式成像,在获得高分辨率的照片的同时,且使探针寿命得到了显著的提升,有效降低了AFM使用成本。2007年4月,PSIA正式改名为Park Systems (中文名:帕克原子力显微镜,以下称为Park)。随后Park还开发了3D原子力显微镜测量技术,升级款的原子力显微镜可以测量类似TSV样品的侧壁形貌。此项技术问世后,欧洲领先的微电子技术独立研发中心IMEC向Park抛来合作的橄榄枝,并在2015年和Park签署合作意向书,以便在半导体工艺先进制程研发领域建立长期合作伙伴关系。小结Park公司成立至今,从包括朴尚一博士在内的首次创业的几个合伙人,发展到现在拥有400人的全球公司,实现了质的蜕变。截至目前,Park公司市值已超过10亿美金,在全球建立了9个分公司和代表处,并于2017年在中国北京成立了韩国帕克服份有限公司北京代表处… … 毋庸置疑,随着市场地不断开拓,Park公司凭借着与时俱进的研发技术,已经成为业界领先的优秀企业。接下来Park即将推出一系列新品原子力显微镜,并将于2024年扩迁公司总部,以更好地推进公司的运营和发展。Park将为科学和工业实验室引入一种具有人工智能和机器人智能化的全新全自动化原子力显微镜 ,值得期待!
  • 帕克原子力显微镜与您相约Semicon China 2019
    帕克原子力显微镜与您相约Semicon China 2019Semicon China作为中国首要的半导体行业盛事之一,将于2019年3月20日到3月22日在上海新国际博览中心隆重举行,帕克原子力显微镜公司将会亮相此次半导体的行业盛典。 日期:2019年3月20日-22日地点:上海新国际博览中心(SNIEC)展位号:E7馆 7330帕克原子力显微镜与您相约Semicon China 2019Semicon China作为中国首要的半导体行业盛事之一,将于2019年3月20日到3月22日在上海新国际博览中心隆重举行,帕克原子力显微镜公司将会亮相此次半导体的行业盛典。 日期:2019年3月20日-22日地点:上海新国际博览中心(SNIEC)展位号:E7馆 7330帕克的NX-Wafer不仅是可以用于高级5G器件设计的最佳原子力轮廓仪,还可满足VCSEL的一些应用,可提供从2寸到4,6,8,12寸的全自动化测量!帕克公司的应用专家们会在7330展位现场进行技术答疑。 恭候您的光临!帕克原子力显微镜公司帕克的NX-Wafer不仅是可以用于高级5G器件设计的最佳原子力轮廓仪,还可满足VCSEL的一些应用,可提供从2寸到4,6,8,12寸的全自动化测量!帕克公司的应用专家们会在7330展位现场进行技术答疑。 恭候您的光临!帕克原子力显微镜公司
  • 1430万!福建农林大学全自动原子力显微镜等设备采购项目
    项目编号:[3500]FJYS[GK]2022175 项目名称:福建农林大学全自动原子力显微镜等设备采购项目 采购方式:公开招标 预算金额:14300000元 包1: 采购包预算金额:3000000元 采购包最高限价:3000000元 投标保证金:30000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A021099-其他仪器仪表全自动原子力显微镜1(台/套)是详见附件3000000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标 包2: 采购包预算金额:1700000元 采购包最高限价:1700000元 投标保证金:17000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业2-1A021099-其他仪器仪表冷冻超薄切片机1(台/套)是详见附件1700000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标 包3: 采购包预算金额:4800000元 采购包最高限价:4800000元 投标保证金:48000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业3-1A021099-其他仪器仪表透射电子显微镜1(台/套)是详见附件4800000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标 包4: 采购包预算金额:4800000元 采购包最高限价:4800000元 投标保证金:48000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业4-1A021099-其他仪器仪表多功能环境场发射扫描电子显微镜1(台/套)是详见附件4800000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标
  • 新视野—三维彩色的电子显微镜照片
    扫描电子显微镜,作为实验室必备工具,其功能如同照相机一样,让我们清晰的观察到材料的微观形貌,放大的尺度可以达到微米级甚至是纳米级别。扫描电子显微镜原理图一 扫描电子显微镜图片(左)和EDX图片(右)扫描电子显微镜的原理是利用电子束轰击样品产生二次电子、背散射电子、特征X射线、阴极荧光等信号,这些信号会被不同功能的探头分别接收,成像得到相对应的图片。比如二次电子信号获得的图片是材料的微观形貌,这个图像是灰度图,如图一(左)。特征X射线的图片则反应了材料的成分表征,但这个图片相比于二次电子形貌图,它是一张彩色图片,如图一(右)。由于扫描显微图片是二维的,是无法直观的获得Z方向的高度值。但样品表面的实际形貌是三维的,或许获得一个三维图像,可以更加准确的得到真实形貌。我们测试一个铝合金的断口,利用Hitachi Map 3D和SU5000的五分割BSE探头的外环四象限,分别获取图片并最终形成一张三维图片,再获取EDX的成分表征结果,两者叠加,可以得到一张彩色的三维形貌成分图,如图二所示。不仅可以在X,Y,Z方向准确的观察样品材料,同时获得三维成分信息分布的情况。图二 3D形貌EDX图片日立多功能自动化热场扫描电子显微镜SU5000,不仅配置有多个高性能探头,还可以对其增加多种扩展附件及软件,如EDS,EBSD,拉伸台,压缩台,加热台,制冷台,冷冻传输,真空转移,纳米操作手等,也可以进行光镜与电镜联用,原子力显微镜联用,拉曼联用, 3view超薄切片等,甚至可以多附件的联合使用,真正实现了一机多能。图三 SU5000及5分割BSE探头公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 中科院沈阳自动化所在微纳生物探测方面取得新进展
    近日,美国化学会旗下期刊Nano Letters(中科院一区Top类)发表了中国科学院沈阳自动化所微纳米自动化课题组利用微纳操作机器人在外泌体探测方面的最新研究成果(Nanomechanical Signatures of Extracellular Vesicles from Hematologic Cancer Patients Unraveled by Atomic Force Microscopy for Liquid Biopsy)。科研人员基于原子力显微镜(AFM)技术,开展了溶液环境下临床血液癌症患者液体活检标本中单个外泌体黏弹特性及几何特征的原位测量,测量结果展现了血液癌症发生发展过程中外泌体力学特性的动态变化。外泌体作为细胞间通信的载体,在细胞生理病理活动过程中发挥重要的调控作用,因此研究生命活动过程中外泌体的行为特性和变化规律对于揭示生命奥秘以及发展新型临床疾病诊疗方法具有重要意义。此外,越来越多的证据表明力学因素在一切生命活动过程中均起重要作用。然而目前对于癌症发生发展过程中外泌体力学特性的动态变化的认知仍然极为有限。沈阳自动化所科研人员通过医工结合的方式,建立了基于AFM的溶液环境下单个外泌体多参数力学特性(弹性特性、黏性特性、几何特征)原位测量方法,分析了AFM针尖形状及探针加载速度对测量结果的影响,并在此基础上分别对淋巴瘤、骨髓瘤及健康人液体活检标本中提取的外泌体进行了探测实验。实验结果显示,癌变后外周血中外泌体的杨氏模量及黏性系数均显著增加。实验结果展现了癌症患者外泌体与健康人外泌体力学特性之间的显著差异,揭示了外泌体力学特性在血液癌症发生过程中的指示作用,对于癌症液体活检技术研究具有积极意义。该研究得到了国家自然科学基金委员会、中国科学院从0到1前沿科学重点研究计划和机器人学国家重点实验室的大力支持。基于AFM的溶液环境下癌症患者液体活检标本中外泌体力学特性原位探测示意图
  • 沈阳自动化所在微纳生物探测方面取得新进展
    近日,美国化学会旗下期刊Nano Letters(中科院一区Top类)发表了中国科学院沈阳自动化所微纳米自动化课题组利用微纳操作机器人在外泌体探测方面的最新研究成果(Nanomechanical Signatures of Extracellular Vesicles from Hematologic Cancer Patients Unraveled by Atomic Force Microscopy for Liquid Biopsy)。科研人员基于原子力显微镜(AFM)技术,开展了溶液环境下临床血液癌症患者液体活检标本中单个外泌体黏弹特性及几何特征的原位测量,测量结果展现了血液癌症发生发展过程中外泌体力学特性的动态变化。   外泌体作为细胞间通信的载体,在细胞生理病理活动过程中发挥重要的调控作用,因此研究生命活动过程中外泌体的行为特性和变化规律对于揭示生命奥秘以及发展新型临床疾病诊疗方法具有重要意义。此外,越来越多的证据表明力学因素在一切生命活动过程中均起重要作用。然而目前对于癌症发生发展过程中外泌体力学特性的动态变化的认知仍然极为有限。   沈阳自动化所科研人员通过医工结合的方式,建立了基于AFM的溶液环境下单个外泌体多参数力学特性(弹性特性、黏性特性、几何特征)原位测量方法,分析了AFM针尖形状及探针加载速度对测量结果的影响,并在此基础上分别对淋巴瘤、骨髓瘤及健康人液体活检标本中提取的外泌体进行了探测实验。实验结果显示,癌变后外周血中外泌体的杨氏模量及黏性系数均显著增加。实验结果展现了癌症患者外泌体与健康人外泌体力学特性之间的显著差异,揭示了外泌体力学特性在血液癌症发生过程中的指示作用,对于癌症液体活检技术研究具有积极意义。基于AFM的溶液环境下癌症患者液体活检标本中外泌体力学特性原位探测示意图该研究得到了国家自然科学基金委员会、中国科学院从0到1前沿科学重点研究计划和机器人学国家重点实验室的大力支持。
  • 视角:探秘晶泰AI自动化实验室【别人家实验室】
    AI来了,自动化真的来了。当文心一言还在全力“阻击”ChatGPT的时候,AI自动化实验室早已从小谱君对未来想象的文字中 跳进我们的世界 ,在我们身边 低调的运作了很久 。‍‍本文小谱君将带仪粉er们云参观两家 获奖的AI自动化实验室 。AI自动化实验室入选合成生物十大新品‍‍4月27日,中国科学院深圳先进技术研究院合成生物学研究所、深圳合成生物学创新研究院、深圳理工大学(筹)合成生物学院联合发布 2023深圳合成生物十大新品 ,这也是深圳首次发布合成生物十大新品。 现场亮相的十大新品包括:1、柏垠生物发布的重组贻贝蛋白原料2、中科欣扬发布的SYSTASE®SOD产品3、百葵锐发布的新型溶菌酶4、道生生物发布的天然色素染料生物合成—靛蓝5、瑞吉生物研发的冻干新型带状疱疹mRNA疫苗RH3156、赛桥生物发布的多功能细胞处理系统7、未知君发布的重组活体生物药产品8、 晶泰科技发布的基于AI和超大规模的自动化实验室集群解决方案9、循原科技发布的非粮碳源生物炼化平台10、倍生生物发布的低嘌呤起泡酒。小谱君注意到,由 深圳晶泰科技 推出的基于AI的自动化实验室集群解决方案位列其中。XtalDynamics™自动化系统这不仅是晶泰科技的荣誉,还是 AI自动化实验室及AI制药大趋势 的最好印证。今天小谱君就带大家来参观晶泰科技的两家自动化实验室: 上海药物研发中心 和 深圳实验与计算研发中心 。本文图片版权由晶泰科技所有未经允许,严禁转载使用上海药物研发中心自动化化学合成实验室晶泰科技上海药物创新研发中心位于上海自贸壹号生命科技园,研发中心内设晶泰科技自动化化学合成实验室。实验室拥有壮观的自动化工站集群,极大程度的解放了科学家的双手,让科学家发挥更多的创造力。下面我们就去这家实验室一探究竟吧:‍‍‍图源:晶泰科技官网,感谢供图1F核磁共振室6F合成实验区5F合成实验区分析实验室Prep-HPLC制备设备:Gilson GX-281系列、Shimadzu 20AP系列,Warers AutoP系列,配备二极管阵列紫外检测器和质谱检测器,均为全自动高压制备液相,流速范围1-150ml/min,可实现从mg到g级的样品分离纯化。5F合成实验区分析实验室:Prep-HPLC5F合成实验区分析实验室 LC-MS :Agilent 1260+DAD+ELSD+6125B,Waters H.Class+PDA+ODA,Shimadzu 2030Plus+2020MS,标配Walkup软件全开放式送样平台。FA、TFA、NH4HCO3等多种不同流动相体系,2min、3min、5min、 10min等10余种不同分析方法,满足合成检测的不同需求。5F合成实验区分析实验室:LC-MS 5F合成实验区分析实验室:化合物库管理4F合成实验区4F合成实验区:实验记录区噬菌体实验室依托KingFisher和QPix搭建了噬菌体自动化panning和克隆挑选XpeedPlay™平台,整个平台的通量能达到人工的10倍左右。3F抗体实验区:噬菌体实验室 3F抗体实验区:细胞培养间整合了Hamilton工作站、协作机器人、自动化培养箱、堆栈和标签机,以解决杂交瘤在抗体发现中克隆挑选的痛点。3F抗体实验区:分子克隆实验室3F抗体实验区灭菌间3F抗体实验区公共实验平台Sartorius Intellicyt iQue3Cytiva Biacore 8K Plus下面我们来看看位于2F的 自动化实验区 :2F自动化实验区人机结合模式的XtalDynamics™自动化系统现了化学合成实验过程的高度自动化和智能化,通过中心化的 智能调度系统远程操控数百台规模的自动化工站和AGV小车 ,可 7×24小时不间断运行 ,同时提升化学合成和物料传送过程的效率。人和机器系统之间通过ELN模式的界面进行交互,不同功能的自动化工站可以通过不同方式灵活配置组合成小的分区系统。2F自动化实验区高通量投料反应工作站自动化高通量地进行有机合成备料和合成反应过程,功能包含:机器人投料, 精密加粉,精密加液,恒温搅拌功能模块,开关盖模块。自动化高通量地进行有机合成备料和合成反应过程,功能包含:机器人投料、精密加粉,精密加液,恒温搅拌功能模块,开关盖模块。2F自动化实验区:数字化可视化LIMS系统数字化可视化LIMS系统: 智能化实验室调度与分析系统,包含ELN,LIMS,子系统(仿真,资源管理控制等功能模块)。长按识别二维码VR在线参观本文图片版权由晶泰科技所有未经允许,严禁转载使用深圳实验与计算研发中心2021年,晶泰科技实验与计算研发中心落址深圳福田河套深港科技创新合作区国际生物医药产业园二期。除了计算研发中心外,这里还设有 化学合成实验室 、 药物固态研发实验室 、 药物发现生物学实验室 、 自动化实验室等 ,以支持不同项目的实际需求。下面我们就接着去云参观这间实验室吧:图源:晶泰科技官网,感谢供图自动化实验室自动化实验室:控制室自动化实验室:备料区自动化实验室:人机交互货架自动化实验室:自动化合成区自动化实验室:自动化合成区自动化实验室:自动化固态化学区化学合成实验室 化学合成 实验室:试剂室 化学合成实验室:冻干室 化学合成实验室:溶剂 室 化学合成实验室:合成实验 室 化学合成实验室:合成实验 室 化学合成实验室:分析分离实验 室 生物实验室 生物实验室:蛋白表达纯化实验 室 生物实验室:细胞培养实验 室 生物实验室:生化实验 室 生物实验室:药代前处理实验室 生物实验室:LC-MS/MS 生物实验室:电生理实验室冷冻电镜实验室 晶泰科技现有电镜实验室面积150m2,配置来自ThermoFisher Scientific公司的Glacios 200千伏冷冻透射电子显微镜、Ceta-D探测器、Falcon IV直接电子探测器、Vitrobot冷冻制样系统等先进仪器设备。 冷冻电镜实验室:电镜主机间冷冻电镜实验室:电镜操作间冷冻电镜实验室:常温制样 间 冷冻电镜实验室:冷冻制样 间 药物固体形态研究实验室 药物固体形态研究实验室:结晶室 药物固体形态研究实验室:天平室 药物固体形态研究实验室:衍射室 药物固体形态研究实验室:衍射操作室 药物固体形态研究实验室:稳定性实验室 药物固体形态研究实验室:样品干燥室 药物固体形态研究实验室:色谱室 药物固体形态研究实验室:固态分析室长按识别二维码VR在线参观本文图片版权由晶泰科技所有未经允许,严禁转载使用晶泰科技和他们的自动化实验室产品晶泰科技自2019年开启探索自动化实验室的自主研发之路,已成功开发XtalDynamics™自动化系统、SynArt™智能合成工作站、CrysArt™自动化结晶工作站,并已在自动化化学合成、固态研发等场景中成熟应用。采用人机结合模式的XtalDynamics™自动化系统实现了实验过程的高度自动化和智能化, 通过智能调度系统远程操控百台规模自动化工站和AGV小车 ,同时提升实验过程和物料传送的效率。系统可 7×24小时不间断运行 ,并实时记录实验过程数据和结果,有效保证了实验记录的及时性、完整性、规范性和可追湖性。系统配置灵活,可按照客户场景需求分阶段搭建专属自动化实验室。自动化系统中包含:SynArt™智能合成工作站和CrysArt™自动化结晶工作站。SynArt™智能合成工作站自动化工作流程CrysArt™自动化结晶工作站自动化工作流程
  • 华润华晶微电子采购徕卡显微镜等仪器
    无锡华润华晶微电子从上海江文信息技术有限公司采购了德国LEICA DM4000M显微镜,该显微镜安装了徕卡专利的高精度膜厚测量系统,使测量准确度大大提高.  传统的半导体膜厚测量一般用椭偏仪来进行,操作复杂.常规的光谱测量仪光斑在几十个微米,无法满足半导体生产的微区测量要求,准确性不足.LEICA的膜厚测量系统测量速度快,且测量光斑可以达到亚微米,使测量准确性大大提高.  DM4000M显微镜是继INM100后LEICA推出的新一代的产品,而同代的全自动型号DM6000M更是继INM200以后的LEICA最高端显微镜,DM6000M和DM4000M为集成电路,微电子,微加工MEMS等行业的研究,生产检验提供了前所未有的高分辨率,高清晰度,高精度的检测手段.
  • 1340万!清华大学高通量全自动切片成像系统和双光子显微镜采购项目
    一、项目基本情况1.项目编号:清设招第20230367号(TC23190EG)项目名称:清华大学高通量全自动切片成像系统采购项目预算金额:850.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1高通量全自动切片成像系统2套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目不接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:高通量全自动光学切片成像系统是一种基于机械切削的全脑成像系统,该系统利用成像系统对样本表面进行成像,利用切片机对塑性包埋的样本进行表面组织切除,继续对新的表面荧光成像,最终实现了轴向分辨率为1um的完整鼠脑数据集的采集。本次拟采购的高通量全自动光学切片成像系统将被应用于全脑皮层神经元胞体与投射结构的重建与功能机制方向的研究。合同履行期限:交付时间为合同签订后90日内。2.本项目( 不接受 )联合体投标。项目编号:清设招第20230354号(TC23190EH)项目名称:清华大学双光子显微镜采购项目预算金额:490.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1双光子显微镜1套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:双光子显微镜使用长波长超快飞秒脉冲激光激发标本,在焦点部位产生特异荧光,从而得到荧光信号标记的对象在生物标本的分布,可以将实验扩展到在体和毫米厚度样品水平,在活体情况下进行深层次的光学成像,用于分析不同小动物模型蛋白、细胞和组织器官水平的动态微观结构,监控生理生化活动及各种治疗方法的效果,其配备的光刺激模块可应用于光遗传学实验,双波长飞秒脉冲激光可用于同时进行光刺激和双光子成像。设备在研究活体动物的脑皮层神经元活动和形态学方面具有不可替代的作用。合同履行期限:交付时间为合同签订后90日内。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月29日 至 2024年01月08日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:http://www.365trade.com.cn方式:本项目标书发售期内,请供应商通过汇款方式购买标书。纸质版文件请至中招国际招标有限公司9层911A领取(北京市海淀区学院南路62号中关村资本大厦)。电子版招标文件请在线上获取,获取网址http://www.365trade.com.cn。(详见特别告知)售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:清华大学     地址:北京市海淀区清华大学        联系方式:肖老师,010-62780052      2.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦            联系方式:张涵睿、陈思佳、蒋雪娜、邓嘉莹,010-61954121、4120、4122            3.项目联系方式项目联系人:张涵睿、陈思佳、蒋雪娜、邓嘉莹电 话:  010-61954121、4120、4122
  • 原子力显微镜制造商Park Systems(帕克原子力显微镜) 在科斯达克到达1兆(万亿)韩元的关口
    世界领先的原子力显微镜制造商Park Systems(中文名称:帕克原子力显微镜)于2021年4月20日宣布,公司股票估值超过1万亿韩元(近10亿美元)。 Park Systems(中文名称:帕克原子力显微镜)于2015年12月17日在KOSDAQ首次公开发行了100万股股票,KOSDAQ相当于韩国的纳斯达克(NASDAQ)。自首次公开募股以来, Park Systems(中文名称:帕克原子力显微镜)已发展成为全球原子力显微镜领域的领导者,在原子力显微镜半导体先进自动化遥遥领先,并将原子力显微镜(AFM)技术作为纳米尺度测量的首要工具带入主流。Park Systems(中文名称:帕克原子力显微镜)创始人兼CEO Sang-il Park博士在接受采访时候表示,“Park持续收到来自世界顶尖半导体和数据储存供应商的采购订单“。Sang-il Park博士曾作为斯坦福大学课题组的小组成员参与开发了世界首台原子力显微镜,并于1988年研发了首个商业型原子力显微镜。“即使是受疫情影响的近两年Park依旧以超过20%的复合增长率快速成长,订单持续走高。” KOSDAQ的估值接近10亿美元,吸引了外国投资者的注意,他们积极购买股票,使公司的持股比例从1月的11%增加到3月的18%。不仅如此, Park Systems(中文名称:帕克原子力显微镜)还在最新公布的2020福布斯亚洲10亿美元以下200强企业上榜,更是获得科斯达克(KASDAQ)大奖,并在富时(FTSE)小型股指数上榜。 2020年, Park Systems(中文名称:帕克原子力显微镜)与IMEC签署了第二期JDP协议合 作开发用于半导体制造的纳米计量解决方案。不仅如此, Park Systems(中文名称:帕克原子力显微镜)还完成了对Molecular Vista的股权投资, Molecular Vista作为一家AFM的生产商,该公司主要聚焦于基于光诱导力显微镜的纳米红外技术(IR PiFM)进行AFM红外联用的定量可视化研究工作,从而实现分子水平上探测和解析物质的红外光谱特征。 Park Systems(中文名称:帕克原子力显微镜)总部设在韩国首尔。自成立以来,以不可忽视的实力全球化扩张,如今 Park Systems(中文名称:帕克原子力显微镜)已成为用于工业、研究和学术纳米尺度研究的原子力显微镜(AFM)工具的首要供应商。在全球范围内应用广泛的技术研究所促进了许多领先的原子力显微镜技术的发展,包括 True Non-Contact (非接触)技术、SmartScan操作软件、可用于纳米力学分析和电气模式的PinPoint模式 最近 Park Systems(中文名称:帕克原子力显微镜)还推出了用于纳米级光刻的智能Litho。 Park Systems(中文名称:帕克原子力显微镜)是第一家具有里程碑意义的原子力显微镜制造公司。其基于挠性的扫描系统带来了新水平的准确性、分辨率和样品处理技术。2024年, Park Systems(中文名称:帕克原子力显微镜)将扩大并搬迁公司总部,以推进公司的运营和技术发展。 Park Systems(中文名称:帕克原子力显微镜)将为科学和工业实验室引入一种具有人工智能和机器人智能化的全新全自动化原子力显微镜 ,敬请期待! 关于 Park Systems(中文名称:帕克原子力显微镜)帕克原子力显微镜是全球第一个推出商业原子力显微镜产品的上市公司。Park(帕克)公司成立30多年来,始终致力于纳米领域的形貌&力学测量和半导体先进制成工艺的计量的新技术新产品的开发。Park(帕克)独有的技术是将XY和Z扫描器分离,实现探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,快速成像还可以大大提高测试效率,降低实验测试成本。Park(帕克)公司成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park(帕克)公司的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。为了给客户提供高效便捷的售后服务, Park(帕克)公司在中国区建立有售后服务中心并配有备件仓库。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制