苯甲酰基吡啶

仪器信息网苯甲酰基吡啶专题为您提供2024年最新苯甲酰基吡啶价格报价、厂家品牌的相关信息, 包括苯甲酰基吡啶参数、型号等,不管是国产,还是进口品牌的苯甲酰基吡啶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯甲酰基吡啶相关的耗材配件、试剂标物,还有苯甲酰基吡啶相关的最新资讯、资料,以及苯甲酰基吡啶相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

苯甲酰基吡啶相关的资料

苯甲酰基吡啶相关的论坛

苯甲酰基吡啶相关的方案

  • 参考GBT30933-2014化妆品中防晒剂二乙氨基羟苯甲酰基苯甲酸己酯的测定
    使用C18柱TSKgel ODS-100V(4.6 mm I.D.×25 cm,5μm)对二乙氨基羟苯甲酰基苯甲酸己酯标准品进行定量分析,其浓度-峰面积的校正曲线优异,可满足GBT30933-2014化妆品中防晒剂二乙氨基羟苯甲酰基苯甲酸己酯的测定高效液相色谱法中的测试要求。
  • 化妆品中丁基甲氧基二苯甲酰基甲烷的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • 化妆品中丁基甲氧基二苯甲酰基甲烷的快速分离
    流动相体系简单,于液相系统更加友好。15种防晒剂实现了完全分离,尤其改善了在 传统HPLC方法上分离度不够的苯基苯并咪 唑磺酸、二苯酮、对氨基苯甲酸三种防晒剂 的分离。 Empower 3色谱管理软件,具有完美的法 规依从性,能够快速得到分离度的定量的标 准曲线。

苯甲酰基吡啶相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • “双十一”远慕ELISA试剂盒促销了
    “双十一”远慕ELISA试剂盒促销了,一下是相关详情,欢迎新老客户前来洽谈!活动截止时间:2014年11月4日-2014年11月15日Elisa试剂盒组织结构:1、 血清:操作过程中避免任何细胞刺激。使用不含热原和内毒素的试管。收集血液后,1000×g离心10分钟将血红细胞迅速小心地分离。2、 血浆:EDTA、柠檬酸盐、肝素血浆可用于检测。1000×g离心30分钟去除颗粒。3、 细胞上清液:1000×g离心10分钟去除颗粒和聚合物。4、 组织匀浆:将组织加入适量生理盐水捣碎。1000×g离心10分钟,取上清液。5、 保存:如果样品不立即使用,应将其分成小部分-70℃保存,避免反复冷冻。尽可能的不要使用溶血或高血脂血。如果血清中大量颗粒,检测前先离心或过滤。不要在37℃或更高的温度加热解冻。应在室温下解冻并确保样品均匀地充分解冻。人皮质酮/肾上腺酮(CORT)ELISA试剂盒96T/48T人前列腺素E2(PGE2)ELISA试剂盒96T/48T人神经特异性烯醇化酶(NSE)ELISA试剂盒96T/48T人细胞间粘附分子2(ICAM-2/CD102)ELISA试剂盒96T/48T人细胞间粘附分子3(ICAM-3/CD50)ELISA试剂盒96T/48T人纤溶酶原激活物抑制因子1(PAI-1)ELISA试剂盒96T/48TCAS:569-83-5 XanthohumolCAS:274675-25-1 黄腐酚D XanthohumolDCAS:647853-82-5 三叶甙2’’-乙酸酯 Trilobatin2' ' -acetateCAS:60-81-1 根皮苷 PhlorizinCAS:4192-90-9 三叶甙 Trilobatin人纤溶酶原激活物抑制因子(PAI)ELISA试剂盒 96T/48T人磷脂酶A2(PL-A2)ELISA试剂盒96T/48T人6酮前列腺素(6-K-PG)ELISA试剂盒96T/48T人载脂蛋白A1(apo-A1)ELISA试剂盒96T/48T人载脂蛋白B100(apo-B100)ELISA试剂盒96T/48T人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒96T/48T人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒96T/48T人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒96T/48TCAS:80787-59-3 1-羟基-6-铁屎米酮 1-Hydroxycanthin-6-oneCAS:80557-12-6 灰叶酸 GrifolicacidCAS:329975-47-5 3,4-Secocucurbita-4,24-diene-3,26,29-trioicacid人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒96T/48T人可溶性P选择素(sP-selectin)ELISA试剂盒96T/48T人S100蛋白(S-100)ELISA试剂盒96T/48T人S100B蛋白(S-100B)ELISA试剂盒96T/48T人白介素1(IL-1)ELISA试剂盒96T/48T人白介素17(IL-17)ELISA试剂盒96T/48TCAS:50-89-5 beta-胸苷 ThymidineCAS:84745-95-9 毛萼乙素 EriocalyxinBCAS:28593-92-2 咖啡酸二十二酯 DocosylcaffeateCAS:1159579-44-8 AlstonicacidACAS:115334-05-9 二氢尼洛替星 Dihydroniloticin人白介素1β (IL-1β)ELISA试剂盒96T/48T人白三烯B4(LTB4) ELISA试剂盒96T/48T人白血病抑制因子受体(LIFR)ELISA试剂盒96T/48T人表皮生长因子(EGF)ELISA试剂盒96T/48T人肠脂肪酸结合蛋白(iFABP)ELISA试剂盒96T/48TCAS:60796-64-7 去甲布拉易林 NorbraylinCAS:26585-14-8 1-乙基-4-甲氧基-9H-吡啶并[3,4-B]吲哚 CrenatineCAS:442-51-3 通关藤苷F HarmineCAS:928151-78-4 通关藤苷F TenacissosideF人端粒酶(TE)ELISA试剂盒96T/48T人基质金属蛋白酶5(MMP-5)ELISA试剂盒96T/48T人角化细胞生长因子(KGF)ELISA试剂盒96T/48T人血小板衍生生长因子BB(PDGF-BB)ELISA试剂盒96T/48T人中期因子(MK)ELISA试剂盒96T/48T人CXC趋化因子配体16(CXCL16)ELISA试剂盒96T/48TCAS:480-10-4 紫云英苷 AstragalinCAS:1432075-68-7 7-Geranyloxy-5-methoxycoumarinCAS:89915-39-9 BETA-咔啉-1-丙酸CAS:96850-29-2 MaoecrystalB人CXC趋化因子受体3(CXCR3)ELISA试剂盒96T/48T人基质细胞衍生因子1a(SDF-1a/CXCL12)ELISA试剂盒96T/48T人淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒96T/48T人白介素27(IL-27)ELISA试剂盒96T/48T人白介素23(IL-23)ELISA试剂盒96T/48T人第八因子相关抗原(FⅧAg)ELISA试剂盒96T/48TCAS:304642-94-2 旱生香茶菜素G XerophilusinGCAS:2239-24-9 千层塔烯二醇山芝烯二醇 SerratenediolCAS:3984-73-4 乌药环戊烯二酮甲醚 MethyllinderoneCAS:1228175-65-2 8-Geranyloxy-5,7-dimethoxycoumarinCAS:210108-87-5 2,5,14-三乙酰氧基-3-苯甲酰基氧基-8,15-二羟基-7-异丁酰氧基-9-烟酰氧基-6(17),11E-麻风树属二烯 2,5,14-Triacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxy-9-nicotinoyloxyjatropha-6(17),11E-diene人P53(P53)ELISA试剂盒96T/48T人环磷酸鸟苷(cGMP)ELISA试剂盒96T/48T人巨噬细胞移动抑制因子(MIF)ELISA试剂盒96T/48T人β淀粉样蛋白1-40(Aβ1-40)ELISA试剂盒96T/48T人组织因子途径抑制物(TFPI)ELISA试剂盒96T/48T人心肌转录因子GATA4 ELISA试剂盒96T/48TCAS:981-15-7 臭椿酮 AilanthoneCAS:60796-65-8 5,7,8-三甲氧基香豆素CAS:1782-79-2 乌药环戊烯二酮 LinderoneCAS:82467-50-3 戈米辛M R(+)-GomisinM1人干扰素诱导蛋白10(IP-10/CXCL10)ELISA试剂盒96T/48T人胰高血糖素样肽1(GLP-1)ELISA试剂盒96T/48T人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒96T/48T人脑肠肽(BGP/Gehrelin)ELISA试剂盒96T/48T人可溶性凋亡相关因子(sFAS/Apo-1)ELISA试剂盒96T/48T人抗利尿激素/血管加压素/精氨酸加压素(ADH/VP/AVP)ELISA试剂盒96T/48TCAS:210108-89-7 2,5,7,14-四乙酰氧基-3-苯甲酰基氧基-8,15-二羟基-9-烟酰氧基-6(17),11E-麻
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0

苯甲酰基吡啶相关的仪器

  • AQ4BW1 移动实验室水质毒性分析仪 近年来环保、卫生疾控以及自来水行业对水质检测需求日益增强,赛默飞世尔科技为您提供AQ4700 水质综合毒性分析仪,一种简单、快速的生物毒性检测方法。可广泛应用于环境污染、紧急事故、安检、常规检测及分析研究等目的毒性分析。 该系统利用发光细菌进行生物毒性检测,与传统的鱼类、藻类、水蚤等生物检测系统相比,发光细菌法操作简便、快速、灵敏、可检测多种样品的综合生物毒性。此方法符合国际标准ISO11348 的规定,测试结果准确可靠。功能特点ISO 测试模式、基本测试模式、RLU 测试模式(该模式可进行ATP 检测)对各类重金属、有机物等化学试剂响应灵敏附加重要水质参数检测能力,为毒性检测提供全面解决方案仪器轻便小巧,配有便携箱,可适应野外操作市场与应用各级环境监测部门和疾病预防控制中心作为应急监测项目对污水处理中的进出水、食品加工用水、地表水、沉淀物毒性的检测药厂快速检测抗菌素科研高校进行生物毒性的实验研究方法简介发光细菌是一类可以自身发出蓝绿色光的细菌(与萤火虫的发光相类似),且发光强度持续、稳定,一旦遭遇到外界不利因素,如遇到有毒的物质,就会很“敏感”地反应,几乎立即影响到它的发光,通常是发光受到抑制,抑制的程度跟所受到的毒物的浓度及其毒性大小相关。发光受抑制的程度可以很方便地用光电传感器检测出来,从而推算出样品毒性大小。技术参数国家标准可检测指标污水综合排放标准(GB 8978-96)第一类污染物:总汞,总镉,总铅,总镍,六价铬;第二类污染物:总铜,总锌,总锰,总硒, 苯酚,间- 甲酚,2,4- 二氯酚,挥发酚,甲醛,苯胺类钢铁工业水污染物(GB 13456-2012)总铁,总锌,总铜,六价铬,总铬,总铅,总镍,总镉,总汞纺织染整工业水污染(GB 4287-2012)苯胺类,六价铬炼焦化学工业污染物(GB 16171-2012)挥发酚发酵类制药工业水污染物(GB 21903-2008)急性毒性(HgCl2 毒性当量),总锌化学合成类制药工业水污染物(GB 21904-2008)急性毒性(HgCl2 毒性当量),总铜,总锌,挥发酚,总汞,总镉,六价铬,总铅,总镍,苯胺类混装制剂类制药工业水污染物(GB 21908-2008)急性毒性(HgCl22 毒性当量)提取类制药工业水污染物(GB 21905-2008)急性毒性(HgCl2 毒性当量)生物工程类制药工业水污染物排放标准(GB 21907-2008)挥发酚,甲醛,乙腈,急性毒性(HgCl2 毒性当量)未计入国家排放标准物质水溶性有机溶剂乙腈,甲醇,乙醇,丙酮,乙醚,四氢呋喃,异丙醇,苯酚,二甲亚砜,乙酰丙酮,乙酸乙酯,正丁醇,甲醛,吡啶,乙酸甲酯,乙二醇,水合肼,N’N- 二甲基甲酰胺,1- 甲基-2- 吡咯烷酮,N’N- 二甲基乙酰胺重金属化合物钴离子,三价铁离子,二价锰离子,锌离子,镍离子,四价硒离子苯胺类苯胺,邻甲基苯胺,对甲基苯胺,邻硝基苯胺,对硝基苯胺苯酚类苯酚,对硝基苯酚,间硝基苯酚,邻硝基苯酚,对氯苯酚,邻氯苯酚,2,4- 二氯苯酚,对甲苯酚,间甲苯酚环境温度5℃ -40℃环境湿度10%-90%(25℃)最快检测时间5 min连续工作时间≥ 8h数据保存功能涵盖三种测量模式,每种测量模式能够存储1000组测量数据预警提示功能自动提示样品是否超标可测光谱范围320nm-1000nm测量范围0-65535 RLU仪器重量约258g(含电池)外形尺寸202×78×30(mm)电源电压干电池供电(3V)数据线接口USB 接口
    留言咨询
  • 详细介绍 ZR-3950型环境空气有机物采样器,主要应用于采集环境空气中多环芳烃类、吡啶类、有机农药类、氯代苯类、喹啉类、硝基苯类、多氯联苯类等半挥发性有机物(SVOC)样品,同时也适用于垃圾焚烧发电厂等区域环境空气中二噁英成分的采样。 执行标准HJ/647-2013 《环境空气和废气 气相和颗粒物中多环芳烃的测定高效液相色谱法》GBT 15439-1995《环境空气 苯并芘测定 高效液相色谱法》 HJ 77.2-2008 《环境空气和废气 二噁英类的测定 同位素稀释高分辨气象色谱-高分辨质谱法》HJ/691-2014 《环境空气 半挥发性有机物采样技术导则(SVOCS)》征求意见稿 《工作场所空气有毒物质测定 第148部分:二噁英类化合物》征求意见稿 《环境空气 气相和颗粒物中 多氯联苯混合物的测定气相色谱法》 技术特点同时采集环境空气中存在的颗粒物态、气态和气溶胶状态的VOCS和SVOCS;分体化设计,专用铝合金和硼硅酸盐玻璃吸附剂套筒,拆装、运输方便;采样前、后套筒全程密封避光保存,防止吸附剂污染和样品挥发损失;流量范围覆盖大流量(225L/min)、超大流量(800L/min)以及苯并芘采样流量(1130L/min);优良散热性能,环境温度过高时不会热保护;采用进口无刷风机,自动恒流采样,负载能力强,低噪音;内置GPRS模块,远程查看仪器采样状态及采样数据。内置蓝牙模块,可选配蓝牙打印机进行数据打印;体积小巧,重量轻,可折叠支架 ;具备按体积和时间两种采样功能,支持定时采样和立即采样功能;专业结构设计,具有防雨防尘功能,可在雨雪天气、扬尘环境下工作;数字化测定,自动计算累计体积和标况体积;自动测量和显示环境温度、湿度、大气压等参数,可选配风速风向传感器;过载自动保护功能,仪器采样出现异常状况时,停机保护;来电重启功能,采样过程中掉电,上电后继续采样,并记录掉电数据;高亮彩色触摸屏、宽温工作,操作方便,人机交互好;内置大容量存储器,长期保存采样数据及掉电数据; 可通过U盘进行数据导出及程序升级。
    留言咨询
  • 中文名称:1-(4-甲氧基苯酰基)-2-吡咯烷酮 L-(4-甲氧基苯甲酰基)-2-吡咯烷酮 1-(4-甲氧基苯甲酰基)-2-吡咯烷酮英文名称: AniracetamCAS:72432-10-1分子式:C12H13NO3分子量:219.23700含量:99%外观:白色粉末包装:25kg/桶用途:益智
    留言咨询

苯甲酰基吡啶相关的耗材

  • 2-(2-吡啶基)乙基硅胶
    保留机理:阴离子交换 样品基质相容性:有机或含水溶液 ? 极其适用于萃取在所有 pH 水平保持带电荷的强碱性化合物的弱阴离子交换剂 与诸如 pKa 为 9-10 的 -NH2 (丙胺基)等常规的弱阴离子交换固相萃取相不同,需要 pH ≤ 7 的环境来质子化或离子化固定相,以便于分析物的保留。通常通过增大 pH 至 11 实现固相萃取相的中和来进行洗脱。 2-(2-吡啶基)-乙基硅胶的 pKa 约为 6。因此可在 pH ≥ 7 时进行洗脱。该特性对于萃取在高 pH 环境下不稳定(如水解)的分析物非常重要,而当使用传统的弱阴离子交换剂进行洗脱时通常需要这样的高 pH 环境。 它是从组织中萃取酰基-辅酶 A 酯的理想选择。 需要更多的信息请参阅:Minkler, P.E., Kerner, J., Ingalls, S.T., Hoppel, C.L., Novel isolation procedure for short-, medium-, and long-chain acyl-coenzyme A esters from tissue, Analytical Biochemistry 376 (2008) 275–276
  • 用于吡啶的活性炭A/B管
    特点? ? 低本底:使用进口优等活性炭,吡啶检出限0.2mg85%with吡啶。? ? 超低含水率:在140℃烘干超1h,含水率不高于0.1%。 Use for? ? 工作场所空气有毒物质测定 杂环化合物 GBZ/T 160.75 3-2007 吡啶 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒
  • 用于吡啶的活性炭A/B管
    特点? ? 低本底:使用进口优等活性炭,吡啶检出限0.2mg/m3@1.5L空气样品。? ? 高解析效率:经碱化后,解析效率会有所降低,但依然能85%with吡啶。? ? 超低含水率:在140℃烘干超1h,含水率不高于0.1%。 Use for? ? 工作场所空气有毒物质测定 杂环化合物 GBZ/T 160.75 3-2007 吡啶 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒

苯甲酰基吡啶相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制