牛蛋氨生长素

仪器信息网牛蛋氨生长素专题为您提供2024年最新牛蛋氨生长素价格报价、厂家品牌的相关信息, 包括牛蛋氨生长素参数、型号等,不管是国产,还是进口品牌的牛蛋氨生长素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合牛蛋氨生长素相关的耗材配件、试剂标物,还有牛蛋氨生长素相关的最新资讯、资料,以及牛蛋氨生长素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

牛蛋氨生长素相关的资料

牛蛋氨生长素相关的论坛

  • 新人求问安捷伦1260液相色谱生长素脱落酸和赤霉素

    液相条件采用甲醇:1%冰乙酸=60:40 流速0.8 波长254nm柱温35,这个条件测生长素和脱落酸的标样都非常好,但是测赤霉素不出峰,调整过流动相甲醇的比例分别为70 80之后还是不出峰,后来打技术电话说是波长问题,但是调到210nm时又出现基线不稳的现象,调到254nm基线就又稳了,这到底是什么原因呢?还是我应该选择别的液相条件重新测呢?

  • 牛奶中尿素氮检测的意义

    牛奶中尿素氮检测的意义

    自20世纪90年代中期以来,欧美等奶业发达国家将牛奶中尿素氮(MUN)含量的检测作为牛群改良计划(DHI)中必备的检测项目。最近几年来,随着中国奶牛集约化水平不断提高,以奶牛生产性能测定(DHI)和牛场管理软件为代表的先进的管理手段应用而生。应用DHI对整个牛群的产奶量、胎次、乳脂、乳蛋白、尿素氮、酮病、体细胞等进行测试,并导入相应的软件中进行分析,为牛场提供数字化的DHI报告,为牛场的饲养管理提供有效帮助。虽然DHI报告中乳尿素氮(MUN)作为重要的检测指标,但从全国来看,参测DHI的牧场不到20%,大多数牧场仍然没有尿素氮的数据。所以,开发一种方便快捷的尿素氮测定仪显得尤为迫切。那么牛奶中的尿素氮又是怎么产生的呢?奶牛日粮营养一般由蛋白和能量构成,日粮蛋白分为瘤胃降解蛋白(RDP)和瘤胃非降解蛋白(RUP)。瘤胃降解蛋白经瘤胃细菌水解为肽和氨基酸。氨基酸进一步降解为有机酸、二氧化碳和氨,氨能被瘤胃细菌利用合成蛋白质[sup][/sup]。如果瘤胃中RDP含量过高,生成氨过量或释放的速度太快,瘤胃细菌则无法及时有效地利用所有生成的氨。而氨是有毒的,过量的氨通过瘤胃壁进入血液,随着血液循环到达肝脏形成尿素,尿素是无毒的,通过尿液排出或再通过唾液循环至瘤胃。在这个过程中,尿素很容易扩散至体组织及体液当中,包括血液和奶。血液中的尿素氮(BUN)很容易释放到奶中,所以MUN与BUN的浓度高度相关,可以通过测定MUN来评估BUN。另外,在这一过程中,需要有足够的碳水化合物奶提供足够的能量,才能有效的合成瘤胃微生物蛋白。瘤胃中如果氨浓度过高,会导致瘤胃PH升高,增加瘤胃对氨的吸收率。结果,肝脏转化更多的氨为尿素,同时BUN和MUN水平也会相应升高。BUN不仅受粗蛋白摄入量影响,而且还受蛋白降解率影响。影响BUN的因素同样也影响MUN,如干物质采食量、能量摄入量、饮水量、肝脏及肾脏功能和奶产量。BUN在采食后变化较大,一般在采食后4-6H最高,在饲喂前BUN水平最低,而MUN相对稳定。通常在挤奶结束时,校正的奶样其MUN浓度非常接近BUN浓度。由于奶样较容易获得,因此通常以测定MUN来估计BUN。另外一条途径是瘤胃非降解蛋白(RUP)过量,其分解产生大量的氨基酸,而过量的氨基酸会转化为尿素。一部分尿素随着唾液循环回到瘤胃,另一部分通过尿液排出体外。这个过程中也有一部分自由扩散到奶中。因此,MUN既来源于瘤胃降解蛋白,也有一小部分可能来源于瘤胃非降解蛋白,通过测定MUN可以监控牛群瘤胃氮代谢的效率。MUN既然作为DHI检测中一项必检指标那么检测MUN的意义何在呢?我会从以下几个方面阐述一下检测牛奶中尿素氮含量对牛群的意义和影响。[b](1)乳尿素氮(MUN)可反映奶牛的营养状况[/b]营养因素是影响乳尿素氮(MUN)的主要因素。研究表明,乳尿素氮(MUN)与奶牛日粮蛋白质呈正相关,与能量水平呈负相关,当日粮粗蛋白(CP)水平的差异小于1.0%时,可对乳尿素氮(MUN)产生显著影响。[b](2)预测尿液中氮(UN)排泄水平[/b]当奶牛日粮中氮摄入量(NI)高于需要时,过量的氮不能被奶牛吸收而要被排出体外,成为奶牛行业中对环境最大的氮污染源。由此可知,确定奶牛的氮的排泄量的采取措施治理奶牛场污染的前提条件。奶牛氮的排出主要有三个途径,一是尿液中氮(UN),二是粪便中氮(FN),三是乳中的氮(MN),其中尿液中的氮(UN)对环境的影响最大,采用全尿液的方法估测尿液中氮(UN)排泄量,费时费力,难以得到广泛应用。所以,通过测定乳尿素氮(MUN)来预测尿液中氮的排泄水平,有着非常重要的现实意义。日粮中粗蛋白(CP)含量是决定尿液中氮(UN)的主要因素。Burgos研究表明,奶牛日粮中蛋白含量从15%提高到21%,尿液中氮(UN)含量直线上升。Castillo等研究表明,氮摄入量(NI)超过400g/d时,摄入量增加51%,尿液中氮(UN)排泄量增加273%,400g/d是氮摄入量(NI)的一个临界点,在这个点的前后,氮的排除有着显著的差异。氮摄入量(NI)低于400g/d时,奶牛体内过多的氮主要通过粪便排出。而当氮摄入量(NI)大于400g/d时,尿液排泄成为主要的排泄途径。英国奶牛营养体系中,氮摄入量(NI)为400g/d是整个泌乳期平均产奶量20-25kg/d的奶牛蛋白质的最佳需要量,此时蛋白质的利用效果也最高。[b][b](3)用于监控奶牛繁殖性能[/b][/b]国内外文献研究表明,乳尿素氮(MUN)和繁殖率之间存在着显著的负相关性。Guo等对713个奶牛场10271头奶牛的数据进行分析,发现了乳尿素氮(MUN)与一次受胎率呈负相关,乳尿素氮(MUN)升高10mg/dL,受胎率降低2%-4%[sup][/sup]。Arunvipas等从加拿大375个奶牛场的繁殖数据分析得出,乳尿素氮(MUN)从10mg/dL升高到20mg/dL时,一次配种受胎率降低了13.9%。Butler等研究表明,高产奶牛血浆尿素氮(PUN)高于19mg/dL或乳尿素氮(MUN)高于17mg/dL,可导致繁殖率降低。也有研究表明,人工受精当天血清尿素氮(SUN)的浓度超过20mg/dL,受胎率就会降低。Carlsson等认为乳尿素氮(MUN)值低于7mg/dL或者高于17.6mg/dL才会有副作用。也有学者并未发现较高的乳尿素氮(MUN)或血清尿素氮(SUN)与低繁殖率之间的关系。这可能与检测的仪器不同,方法不同所产生的误差有一定的关系。下面是用电化学方法检测的乳尿素氮数值:[align=center][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709291123_01_2862195_3.jpg[/img][/align][align=left]Canfield等研究表明,体内过高的尿素氮对精子、卵子和胚胎有毒害作用,可导致繁殖率降低。Bulter等研究表明,乳尿素氮(MUN)影响受胎率的机理可能是,体内过多的尿素氮将使子宫内环境的PH值降低,减少前列腺素的产生,影响子宫内液体的尿素,以及微量元素镁、钾、磷和锌的浓度,使促黄体素和卵巢受体结合,进一步导致孕酮浓度和繁殖力的下降。[/align][align=left][/align][align=left]众多流行病学调查结果表明,奶牛日粮中蛋白质水平在奶牛繁殖性能方面有着重要作用,增加奶牛日粮可降解蛋白质水平,可提高血液及乳尿素氮(MUN)水平,而尿素氮浓度超过一定水平后就会对奶牛受胎产生不利影响。近几年来,很多研究揭示了这种流行病学背后的病理生理学原因,主要因为高产奶牛肝脏代谢负荷大,脱氨基反应消耗了大量的能量,加重了能量负平衡。蛋白分解代谢的直接副产物可能导致卵母细胞和胚胎中毒。改变了子宫液的离子组成,妨碍排卵后子宫PH值的自然增加。影响子宫内膜组织分泌前列腺素。影响精子活力。以上原因可能导致奶牛受胎率降低。[/align][align=left][/align][align=left]怎样可以快速检测牛奶中尿素氮呢?目前世界上对于尿素氮的检测大多都是采用仪器分析完成的,通用的方法有采用红外线和湿化学两种仪器方法。尿素是牛奶中含量很小但非常重要的指标,每100升的典型牛奶中有3600克的脂肪、3200克的蛋白却仅有12克的尿素,如此小的含量使得对它的准确检测比对脂肪或蛋白的准确检测要困难得多。[/align][align=left]另外尿素氮检测有许多需要注意的地方。由于MUN浓度与瘤胃中氨浓度密切相关,而MUN浓度在早晨和晚间会有较大差异。这也取决于各个牧场的饲喂体系。如果我们发现早晚MUN的差异较大,则建议增加饲喂次数,利用DHI测试体系还可以观察到不同挤奶次数间MUN的差异。就奶牛日粮的蛋白质-能量平衡而言,目前还有许多牧场的饲养管理尚有值得改进的地方。总之,牛奶尿素氮是牧场经营管理的一项重要指标,只有通过对它进行检测、分析和应用,才能利用它来提高牛场的经营效益、增加收入。[/align]

牛蛋氨生长素相关的方案

牛蛋氨生长素相关的资讯

  • Nature发表!单颗粒冷冻电镜技术助力中国科学家阐明生长素极性运输的分子机制
    近日,浙江大学团队联合湖北大学,实现了植物生长素极性运输研究的重大突破,让植物向性这一百年科学难题的关键一环得以解决,为生长素极性运输的进一步调控打下基础。 近日,相关论文发布在 Nature 上。担任共同通讯作者的浙江大学医学院生物物理系长聘副教授/附属第四医院双聘教授郭江涛 表示:“对于弄清楚 PIN 蛋白(pin-formed protein)介导生长素转运的分子机制,学界早已翘首以盼,而该工作终于揭晓这一机制。这为开发基于结构靶向 PIN 家族蛋白的新型小分子抑制剂奠定了基础。这些抑制剂既能作为工具,去研究生长素的极性运输机理;也可作为农业除草剂,助力于作物改良。”图 | 浙江大学研究团队主要成员合影。前排左起:郭逸蓉、张素芬、张艳、苏楠楠、竺爱琴、杨帆 ;后排左起:周晨羽、叶繁、郑绍建、郭江涛 、常圣海同时,作为共同作者单位的湖北大学,也借此迎来该校第一篇 Nature 论文。审稿人评价称:本文报道了一个重要的结构,为植物生长素运输提供了新的研究思路;这些发现是开创性的,真正为 PIN 蛋白的功能提供了新的见解,从而为研究打开了许多新的途径。此外,PIN 蛋白与胆汁酸/钠转运蛋白的结构也存在有趣的相似性,这可能有助于更好地理解 PIN 蛋白的起源及其转运机制。另据悉,通过比对拟南芥其他生长素转运蛋白序列,课题组发现生长素转运位点是保守的,这种保守性也会延伸到其他的植物物种中。因此,可以认为此次研究结论,也能被推广到其他植物中。近日,相关论文以《拟南芥生长素转运蛋白 PIN3 的结构与机制》(Structures and mechanisms of the Arabidopsis auxin transporter PIN3 )为题发表在 Nature 上[1]。图 | 相关论文(来源:Nature)共同通讯作者分别为郭江涛 、浙江大学医学院生物物理学系研究员杨帆 、以及湖北大学生命科学学院&省部共建生物催化与酶工程国家重点实验室吴姗 教授。郭江涛 团队的博士后苏楠楠、杨帆 课题组的博士生竺爱琴、以及吴姗 团队的博士生陶鑫为论文共同一作。PIN 蛋白在拟南芥中介导生长素极性运输机制据介绍,生长素对植物的生长发育起核心调控作用。一般来讲,低浓度的生长素促进生长,高浓度的生长素抑制生长。生长素主要合成部位是在芽、幼嫩的叶和发育中的种子,然后被运输到作用部位。其中,生长素调控植物生长发育与其在植物各个组织中的不对称分布有着密切的关系。而这种不对称分布,主要由于在细胞与细胞之间的生长素运输具有一定的方向性,这也被称为生长素极性运输(Polar Auxin Transport,PAT)。那么,PIN 蛋白缘何能导致植物具有向光性?植物的向光性,是指植物受到单侧光的刺激而引起的生理弯曲现象。而植物体内生长素的不对称分布,和这种向光性息息相关。生长素在植物体内运输有两条途径:一是通过韧皮部完成长距离运输的非极性运输;二是需要转运蛋白参与的单方向极性运输。其中,对于生长素的不对称分布,极性运输起着关键作用。PIN 蛋白可以将生长素转运至细胞外。PIN 蛋白在细胞膜上的极性定位,决定着植物体内生长素极性分布,从而会导致植物的向光性。至于为何要采用拟南芥作为研究对象?郭江涛 表示,拟南芥作为模式植物,其基因组已于 2000 年由国际拟南芥基因组合作联盟完成测序,是第一个实现全序列分析的植物基因组。目前,人们已在 30 多种植物中鉴定出了不同数量的 PIN 基因。作为模式植物,拟南芥中有 8 个 PIN 蛋白成员(PIN1-PIN8)。学界在这方面的生物学功能研究,也比针对植物其他物种的研究更透彻,这能帮助该团队更好地认识 PIN 蛋白的生化、生理以及遗传等特征。同时,鉴于本研究旨在研究植物生长素的极性运输机制,因此其选择拟南芥为研究对象。据介绍,生长素极性运输主要依赖于三种膜定位转运体:AUX/LAX 家族蛋白、 PIN-FORMED 家族蛋白和 ABCB 家族蛋白。通过调控这些家族蛋白,植物可以调节生长素的极性运输和分布。研究发现,拟南芥 PIN 与 ABCB 蛋白可以共同定位。而通过酵母双杂交和免疫共沉淀的实验表明,PIN 和 ABCB 蛋白存在直接的物理互作。PIN蛋白在极性胚胎发育和器官形成等需要定向生长素极性运输的过程中其决定作用,而 ABCB 则在顶端组织生长素转运及长距离运输中起重要作用,二者在调控生长素的转运上具有一定的独立性。AUX 蛋白为生长素转入蛋白,PIN 蛋白为生长素外排蛋白。它们通过协同工作,一起维持植物体生长素平衡。(来源:郭江涛 课题组)解析三个高分辨率冷冻电镜结构本研究最开始且关键的一环是课题选择,首先通过大量的文献调研,课题组确定了研究对象——PIN 蛋白。PIN 蛋白是生长素转运蛋白,在植物的生长素极性运输方面发挥了巨大作用。因此,研究人员希望通过结构生物学的手段解释PIN蛋白介导的生长素极性运输的分子机制。而拟南芥 PIN 蛋白家族被分为两个亚家族,一类是定位在质膜上的 long PINs (PIN1–PIN4、PIN6 和 PIN7),另一类是定位在内质网上的 short PINs (PIN5 和 PIN8),这两大家族通过共同工作,一起维持着植物生长素的内稳态。研究中,该团队首先对 7 个 AtPINs (AtPIN1–5, AtPIN7–8)进行表达纯化筛选,最终选择 AtPIN3 作为研究对象。原因在于,AtPIN3 与其他 long AtPINs 有至少 54% 的序列同源性,可作为 PIN 家族结构和功能分析的模型。随后,通过哺乳动物细胞 HEK293 外源表达系统、对 PIN 蛋白进行过表达并纯化后,课题组得到了均一且稳定的蛋白样品。借助单颗粒冷冻电镜技术,该团队解析了三个高分辨率冷冻电镜结构,分别处于三种状态:PIN 蛋白未结合底物状态、底物 IAA 结合状态以及抑制剂 NPA 结合状态。接下来是功能实验验证阶段。研究团队建立了体外放射性 3H-IAA 转运实验体系,针对底物 IAA 与抑制剂 NPA 结合位点突变体的生长素转运活性和抑制活性,进行相关的测试。随后又通过表面等离子体共振技术,测试底物 IAA 与抑制剂 NPA 结合位点突变体分别与 IAA 和 NPA 的结合能力。然后,通过功能实验的多重验证,课题组阐明了 PIN 转运蛋白对 IAA 的识别和转运机制,以及抑制剂 NPA 抑制生长素转运的分子机制。最终解释了 PIN 蛋白介导的生长素极性运输的分子机制。(来源:郭江涛 课题组)将探索开发新型农药除草剂在整个研究过程中,研究人员遇到了很多困难。AtPIN3 二聚体的分子量仅为 140 kd,蛋白颗粒取向优势严重,从结构上来看几乎只有跨膜区,这对冷冻电镜数据处理带来了极大的挑战。郭江涛 表示:“从拿到均一稳定的蛋白样品到拿到较好的密度图,经历了大半年的时间。我们通过尝试改善蛋白颗粒的取向优势问题,采用不同的电镜数据处理方法,总结经验,最终得到高分辨率结构。”AtPIN3 与底物 IAA 复合物结构的解析,同样是本研究的一大难点。由于 IAA 与 AtPIN3 亲和力相对较弱,研究团队在前后多次对 AtPIN3 与 IAA 的复合物样品进行单颗粒冷冻电镜数据收集,但是 IAA 的密度一直不是很清晰,这让其无法准确判断 IAA 与 AtPIN3 准确的结合模式。后来,通过提高样品中 IAA 的浓度、更换蛋白样品缓冲液体系、更换冷冻电镜样品载网、制样条件、以及改善样品进孔问题,课题组终于成功拿到复合物高分辨结构。(来源:郭江涛 课题组)通过功能实验对 IAA 和 NPA 的作用机制进行验证也是本研究的难点之一。建立一个准确有效的检测生长素转运的实验体系,对他们来说是一个全新的尝试,经过不断摸索学习总结,最终也成功建立了放射性 3H-IAA 外排实验体系。“从最开始的困难重重到最后柳暗花明的整个研究过程中,我们认识到做研究要有决心,有破釜沉舟的勇气,始终要有把工作做到极致的信念,有做世界最一流工作的信念。”郭江涛 总结称。后续,其计划以 PIN 蛋白为靶点筛选新型小分子抑制剂,并通过体外放射性 3H-IAA 转运实验体系对小分子进行功能验证,也将通过冷冻电镜技术手段解析复合物结构,并在此基础上对筛选的小分子化合物进行优化,进而开发新型除草剂农药。
  • 生物传感器监测植物生长
    日前,德国拜罗伊特大学和图宾根马克斯普朗克发育生物学研究所科学家开发出一种新型传感器,可以实时显示植物细胞中生长素的空间分布,并可快速检测环境变化对植物生长的影响。这种传感器为研究人员打开了观察植物内部运作的全新视角。相关研究成果发表在最近的《自然》杂志上。  无论是种子的胚胎发育、根系生长,还是植物对阳光方向的反应,生长素都具有协调植物对外界刺激反应的功能。为了触发对外部刺激的反应,它必须存在于所需的细胞组织中。迄今为止,人们还无法在细胞分辨率上直接确定生长素的时空分布。  此次,研究人员开发出一种新型基因编码的生物传感器,可将植物体内生长素的分布定量可视化。其特殊之处在于,它是一种植物经改造后可自己产生的人造蛋白质,而不必经由外部引入。他们利用这种传感器实时观察了细胞组织需要生长素的时空间分布动态过程。  在开发这种生物传感器时,研究人员发现大肠杆菌中有一种蛋白质可与两种荧光蛋白偶联,并在这些配对蛋白非常接近时发生荧光共振能量转移(FRET)。这种蛋白可与氨基酸色氨酸结合,但与生长素的结合要差得多。他们希望通过基因改造,使其能更好地与生长素结合,并使其FRET效应只在蛋白质与生长素结合时发生。  研究人员对植物进行了基因改造,使其在某种刺激下可在细胞组织中产生满足这些要求的蛋白质。于是,新型生物传感器诞生了:强烈的荧光信号表明了细胞组织中生长素的位置,提供了细胞内生长素分布的精确“快照”,且不会对生长素控制过程造成永久影响。  “传感器的发展是一个漫长的过程,在这个过程中,我们已经获得了关于蛋白质如何被选择性地改变以结合特定小分子的基本见解。”拜罗伊特大学蛋白质设计学教授比尔特哈克说,“预计在未来几年,新的生物传感器将发现更多关于植物内部运作以及它们对外界刺激反应的新见解。”
  • 智云达研发的新产品——豆芽氨氮速测盒上市啦!
    豆芽作为芽苗菜中的一种,由于营养价值丰富,食用方便,烹调方法多样,集美容药用功效于一身,一直颇受广大消费者的亲睐。但是近来市场上频频曝光的“毒豆芽”事件,一度让消费者闻豆芽而色变。一些不法商贩在豆芽培育过程中违规使用铵盐、氨水类化肥,从而使得豆芽中含有大量的氨氮。北京智云达科技有限公司最新研发生产的豆芽氨氮速测盒上市了,本试剂盒适用于豆芽中氨氮的快速检测。 市场上销售的那些越是看似白净、粗壮且无根的豆芽越可能存安全隐患。一般正常培育豆芽要2-3天的时间,这样生产的豆芽一是浪费人力、物力和时间,同时自然生长的豆芽卖相不美观。铵盐、氨水类化肥含有大量的氨氮,作为化肥能促进植物生长,一些不法商贩为了加快豆芽生长,让豆芽卖相好看,为了一己私利违禁添加铵盐、氮水类化肥。 此试剂盒适合豆芽中氨氮测定,小包装方便携带,适合家庭、个人使用,且操作步骤简便,结果易于分辨。将显色管与色阶卡进行比较,即可读出豆芽中氨氮的含量。如果样品中氨氮含量≥50mg/kg,则样品为阳性样品,说明豆芽培育过程中使用了铵盐类化肥。 这些氨氮类物质在人体堆积对人体健康有潜在影响。氨氮可以在一定条件下转化成亚硝酸盐,亚硝酸盐对人体的危害大家早已心知肚明,如果长期饮用,亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。 北京智云达科技有限公司作为食品安全检测专家,为解决百姓身边的食品安全问题义不容辞。公司多年来已研发生产出200余种食品安全快速检测产品,包括仪器、试剂盒、试纸、胶体金卡等。为了百姓能吃上放心的食品,北京智云达科技有限公司接下来还会不断推出更便捷、更快速、更安全快速的食品安全检测产品! 豆芽氨氮速测盒

牛蛋氨生长素相关的仪器

  • TMS9008 系列植物生长箱是专门为植物培养、植物生理学研究、病理学研究、遗传学研究、引种驯化研究、种子发芽研究、分子生物学研究、植物的组织或幼苗培养、藻类植物培养、植物光反应研究、光合作用研究、昆虫基因组分析、基因突变测序、病理研究、生理研究、行为研究等研究开发的集温度、湿度、光照、二氧化碳一体的培养箱,满足实验对温场的稳定性和精度要求,提供实验需要的温场环境,远程 PC 端控制具有符合国家标准、高精度、高稳定性、高使用灵活性的特点“植物生长,培养”—最好的气候箱• 专业为植物生长、培养设计、具有适宜的温湿度以及足够的空间荧光灯与白织灯组合光源,最佳模拟太阳光• 采用独特的风道设计,确保箱体内部风力和温湿度分布均匀,不会吹倒植物幼苗或吹散种子,适合植物和种子发芽培养等控温精准• 温度控制精准,精度达±0.1℃,箱体内温度均匀性为±0.5℃,具有独特的空气弥散装置,可提供低速缓慢流动的垂直气流,避免器皿表面凝露,防止染菌全面优化• 一箱多用设计,灯箱可轻松更换,并可作为普通光照培养箱光照强度 10 ~ 100% 可调• 每层隔板可推拉方便样品取放,配有湿度控制器,在 15 ~ 30℃下,湿度控制范围可达 40%-95%RHTMS9008 系列植物生长箱 技术参数 内腔: 430 喷涂内腔内部(隔层): 不锈钢冲孔搁板,260 至 460:2 块;800 至 2000:3 块顶置灯箱:260 至 460:2 块;800 至2000:3 块箱体外壳:碳钢喷塑插头:可选移动:带可锁定的移动脚轮控制软件: 专有 PID 软件,液晶屏操作保温材料:聚氨酯保温材料 制冷:国际一线品牌元件、专有工艺电气:一线品牌元件型号尺寸 / 说明 260 320 460 800 1000 2000 内腔 430 喷涂 体积 L 260 320 460 800 1000 2000 宽度 (W) mm 700 700 700 850 1400 1400 高度 (H) mm 665 845 1135 1235 940 1235 深度 (D) mm 560 560 560 760 760 1060 不锈钢冲孔搁板(标准配置) 数量 2 2 2 3 3 3 顶置灯箱 数量 2 2 2 3 3 3 每块隔板的最大载重量 kg 20 20 20 20 20 20 外部碳钢喷塑 宽度 (W) mm 850 850 850 1000 1550 1550 高度 (H) mm 1360 1480 1870 1970 1680 1970 深度 (D) mm 750 750 750 950 950 1250 详细数据 制冷功率 W 400 400 500 800 850 1500 加热功率 W 400 450 450 900 950 1300 温度范围 @20℃(开灯) ℃ 10~45 温度范围 @20℃(关灯) ℃ 4~45 温度波动度 ±℃ 0.1~0.3 湿度范围 %RH 40~95 湿度波动度 ±%RH 3~5 光照强度 LUX 10000~38000 电源要求 220V16A 220V16A 220V16A 220V16A 220V20A 220V20A 订单型号:TMS9008 植物生长箱 TMS9008- 260 TMS9008- 320 TMS9008- 460 TMS9008- 800 TMS9008- 1000 TMS9008- 2000 选件(选装件) RS232/485 通讯接口、通讯线 针式打印机、喷雾式加湿装置、除湿装置、二氧化碳控制模块 灯箱、组合光源、三色光源、荧光灯、白织灯、高压纳灯、金属卤素灯、陶瓷金属卤素灯、LED 灯、搁板式固定灯箱 昆虫防飞装置、温湿度记录仪 附件 高低温保护、漏电保护、声音报警 可视显示、24 小时实时程序运行模式 说明书、搁板及塔扣
    留言咨询
  • 淄博-泰安-莱芜汇康养殖用臭氧发生器作用一是可以连续不断的给养殖棚内杀菌、消毒,净化空气的作用非常明显。另外让畜禽定时喝用臭氧消毒过的臭氧水:可以改变畜禽的肠道微生态环境,促使畜禽类健康生长。臭氧在杀菌消毒,漂白,除臭、去污、分解化学污染物的过程中还原成氧或生成水,不产生二次污染。 如果养殖户能掌握好臭氧在养殖过程中的具体应用技术,可以减少抗生素之类药物的投入,降低生产成本提高产品质量。 困扰养殖业多年来的防病技术难点是疾病多发传播的两个渠道:一是由饮水进入消化道;二是呼吸道由空气流动引发的疾病传播。畜禽养殖生产最关键的预防瘟疫和病害的措施是不断地给鸡喂抗生素和注射疫苗。这些措施看起来无可非议,但是,却忽视了饲养过程中由于无时不刻地对场内空气进行杀菌、消毒、净化。使受到各种细菌病毒污染的空气会随时引发病害。喂药不但增加生产成本,过多的抗生素在鸡体内通过积累反过来危害鸡的健康生长,如侏儒症。过多地使用化学药物会损害了蛋鸡的吸钙机能。蛋鸡的吸钙机能一时受损即使增加含钙饲料也收效甚微,软壳蛋不可避免地还要产出。以食品卫生方面来看,携带生长素和抗生素的鸡肉给人类身体造成危害的报道也经常见诸报端,让生活质量要求越来越高的消费者留下忧心的感觉,影响鸡肉的市场销售。养鸡生产过程中不给鸡喂抗生素等药物难以避免瘟疫疾病带来的损失,喂了抗生素等药物又影响了产品质量,实在处于两难状态。 淄博-泰安-莱芜汇康养殖用臭氧发生器作用:正是从净化空气和饮水入手,从这两个疾病根源进行消毒杀菌处理,改善畜禽体内胃肠环境,减少空气中传染的各种疾病,连续杀灭病原微生物,防止病原微生物传播,畜禽活氧消毒解决了传统养殖技术高药物残留弊端,使无风险生产与食品安全同时兼顾起来。畜禽活氧消毒解决了养殖户最担心的畜禽病死问题,安全、绿色、节能、环保的空气净化系统消毒杀菌不留死角;畜禽活氧消毒彻底解决了高风险养殖,让养殖户轻松致富。 去过养殖棚内的人都知道,棚内胺臭味熏天,熏得连眼睛都睁不开,时间长了直流眼泪。短时间待在里面都受不了,何况畜禽天天在这种恶劣环境中生长,怎能不得病?夏天还好点,可以开窗透一下气。可到了冬天,好不容易升上来的温度,如果用换气扇通风,热气都排走了,想要保持室内温度必须多添煤烧锅炉,这样就增加了费用。换气扇工作时,风量过大过冷,也会加大畜禽患流感的机率,得病后还得给畜禽喂药,增加了养殖户的成本。另外我们吃了含有大量药物残留的畜禽后,抵抗力就会大大降低,影响身体健康! 畜禽养殖臭氧发生器:使用三个月,养殖棚内的氨味明显减小了,球虫病也没了。用料比以前是1:1.85,使用了养殖仪之后用料比是1:1.71.。用料比和其他养殖户相同的情况下,用了活氧消毒仪的鸡都比其他养殖户的鸡重,畜禽活氧消毒仪可以有效祛除净化圈舍中的胺气、硫化氢气体及冬季煤炉取暖产生的氧化硫、一氧化碳等有毒气体,明显改善养殖环境;畜禽养殖臭氧发生器:消毒不留死角,可以有效杀灭大肠杆菌,葡萄球菌、乙肝病毒等各类细菌病毒,达到有效遏制禽类瘟疫病害发生的作用。
    留言咨询
  • 刚从动物身上挤出来的奶是温的,不能在常温下放置太长的时间,因为时间长了会使牛奶中的致病菌急速增长,从而导致牛奶的变质。那要如何进行储存和运输呢?这时候新型牛奶制冷罐就派上了很大用场,新型牛奶制冷罐由一个奶罐和一个压缩机组成,将牛奶倒入制冷压缩机可以起到降低温度以及杀菌的作用,牛奶在4度左右的情况下进行储存就没有问题了。新型牛奶制冷罐适用于牛奶,血液,血浆,酒类等各种液态料的杀菌、冷冻、冷藏和储存等,乳品保鲜设备可以使原液保持在完美状态,防止细菌繁殖产生。乳品保鲜设备可应用于茶餐厅设备、蛋糕房设备、咖啡店设备、面包房设备、饮品店设备、西餐店设备、中餐店设备、酒厂设备、调料加工厂设备、果蔬加工厂设备、冷冻食品厂设备、肉制品加工厂设备、休闲食品厂设备等。优质乳品储藏罐制冷压缩机组选用高性能、节电型的全封闭式压缩机,装有可靠的保护器,不会因过载或系统故障而烧坏电机。优质乳品储藏罐保温层采用聚氨酯发泡新工艺,绝热性能好。罐体选用优质不锈钢材料制作,带有自动清洗装置及搅拌装置。设备性能非常稳定,故障率很低,操作简单,使用寿命长。牛奶制冷罐是牧场机械化挤奶的主要配套设备,适用于手工挤奶的牧场和收奶站以及乳品厂冷却集贮鲜奶。主要用于冷却、贮存鲜奶,也可冷却、贮存其它液体物料。 聚氨酯保温保鲜机直壁大面积冷却,通过全自动控制系统,可一步到位观察操作,使被冷原奶迅速降至所需温度并续保恒温。聚氨酯保温保鲜机防止细菌繁殖产生,保持原乳处于A级乳状态。
    留言咨询

牛蛋氨生长素相关的耗材

  • 科研用BD Vacutainer P800血浆蛋白保存系统
    BD Vacutainer P800血浆蛋白保存系统标准化收集和保存血浆即刻保存代谢相关生物活性肽的活性稳定-GLP-1(胰高血糖素样肽-1)-Glucagon(胰高血糖素)-GIP(肠抑胃肽)-Ghrelin(胃促生长素)
  • Kyoritsu氨氮测试包专业水质处理检测氨氮
    Kyoritsu氨氮测试包专业水质处理检测氨氮 氨氮对水生物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢,组织损伤,降低氧在组织间的输送。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。急性氨氮中毒危害为:水生物表现亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。 深圳市方源仪器有限公司提供Kyoritsu氨氮测试包专业水质处理检测氨氮产品,该产品由一根根装有检测氨氮试剂的PE材质比色管盒装,只需加入几滴待检测液体与比色管内的试剂发生反应。后产生的颜色变化再对照比色卡上的颜色即可得知该液体氨氮含量值(周)。如图所示: Kyoritsu氨氮测试包专业水质处理检测氨氮型号WAK-NH4(C)WAK-NH4测试参数高浓度氨氮氨氮测试范围0-0.4-0.8-1.6-4-8-16以上mg/l0.16-0.4-0.8-1.6-4/8mg/l测试时间30s测试次数50次/包产品图示 Kyoritsu氨氮测试包专业水质处理检测氨氮运用领域:工程管理—原物料品管,残留量检查,一般用水/循环用水/锅炉用水等管理。排水管理—最终放流水确认,污水处理设施运转管理,设备验收,异常处理,异常早期发现,操作指导,取缔。用水检查—自来水/工业水/地下水检查,自来水塔清洗消毒确认检查,紧急灾害,野外活动等等饮用水安全的确认检查,牧场农畜等饮用水检查。养殖管理—养殖渔业水质检查,取水口检查,观赏鱼/水族馆水质检查,活鱼搬运/递送管理。环境调查—河川湖泊水质调查,污水分布,残留调查,污染源追踪,酸雨调查,温泉水调查,海洋环境调查。教研机构—中小学环境教育,大专院校实习器材,科学实验,研究专案,食品检查。农业应用—水耕栽培营养液管理,农业用水检查。其他应用—大型精密仪器分析事前确认,毒性检查,调查研究,电解水检查(周) 中国代理商:深圳市方源仪器有限公司
  • 牛血清白蛋白手性色谱柱检查R-甲氨蝶呤 ES-BSA
    牛血清白蛋白手性色谱柱检查R-甲氨蝶呤 ES-BSA 关键词:甲氨蝶呤,牛血清白蛋白,(R)-甲氨蝶呤,抗肿瘤药,北京绿百草 2010年中国药典:检查甲氨蝶呤中的R构型。照高效液相色谱法(附录 V D)试验,用牛血清白蛋白建和硅胶为填充剂,以正丙醇-磷酸盐缓冲液为流动相,检查波长为302nm。出峰顺利为S-甲氨蝶呤和R-甲氨蝶呤,分离度大于3.0。(药典二部 P149) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn

牛蛋氨生长素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制