当前位置: 仪器信息网 > 行业主题 > >

弹道臼炮装置

仪器信息网弹道臼炮装置专题为您提供2024年最新弹道臼炮装置价格报价、厂家品牌的相关信息, 包括弹道臼炮装置参数、型号等,不管是国产,还是进口品牌的弹道臼炮装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合弹道臼炮装置相关的耗材配件、试剂标物,还有弹道臼炮装置相关的最新资讯、资料,以及弹道臼炮装置相关的解决方案。

弹道臼炮装置相关的资讯

  • 4秒电磁弹射微重力实验装置启动试运行
    7月19日,记者从中国科学院空间应用工程与技术中心获悉,中心研制建设的4秒电磁弹射微重力实验装置已于近日启动试运行。该装置达到了4秒微重力时间、10μg微重力水平、过载加速度不超过5g、实验间隔不大于10分钟的国际先进水平。与传统单程落塔、抛物线飞机等相比,装置在实验效率、实验载荷强度要求、运行成本、不同重力水平模拟等方面具有较大的优势。4秒电磁弹射微重力实验装置。倪思洁摄中国科学院空间应用工程与技术中心电磁技术室副研究员张永康介绍,充分有效的地面验证,是空间科学实验的前提和基础。地基研究能够大幅缩短实验周期、降低实验成本、提升空间实验成功率,是天基研究的重要补充手段。电磁弹射微重力实验装置有效解决了探空火箭、失重飞机、落塔等传统地基微重力设施存在的实验成本高、准备时间长、过载较大等缺点。4秒电磁弹射微重力实验装置采用电磁抛射的方式在地面构建微重力实验环境,即采用电磁弹射系统将实验舱垂直加速到预定速度后释放,实验舱在上抛和下落阶段为科学载荷提供微重力环境。在实验效率方面,传统落塔平均每天仅可以做2-3次实验,抛物线飞机每次可以飞行30架次以上,但实验准备周期约2-3个月。4秒电磁弹射微重力实验装置可以达到每天近百次实验的频率,准备时间1-2天,极大地提高了科学实验的效率。在实验载荷强度要求方面,传统落塔在降落回收阶段,试验舱和实验载荷要承受20g左右的冲击,很大程度上限制了常规科学仪器的使用。在本装置中,实验舱所受的电磁驱动力是全程可控的,无论是微重力、月球重力还是火星重力模拟实验,实验舱的回收加速度都可控制在3g左右,因此常规科学仪器都可以用于实验。在运行成本方面,装置采用储能和电磁驱动技术,装置运行仅消耗电能,单次实验消耗电能仅1度左右,运行成本较低,便于开展大规模的科学实验。张永康介绍,目前正在开展微重力流体物理实验,中国科学院空间应用工程与技术中心正在规划建设20秒电磁弹射微重力实验装置,力争实现微重力时间20秒、载荷500公斤的国际领先指标,构建国际微/低重力实验中心,为空间科学领域的科学家提供高效便捷的地基微/低重力研究平台,并为载人航天、深空探测等国家重大工程提供相关技术验证条件。4秒电磁弹射微重力实验装置效果图。中国科学院空间应用工程与技术中心供图
  • 4秒电磁弹射微重力实验装置启动试运行
    地面也可以做微重力实验了。19日,记者从中国科学院空间应用工程与技术中心获悉,由该中心研制建设的4秒电磁弹射微重力实验装置日前启动试运行。该装置采用电磁抛射的方式在地面构建微重力实验环境,即采用电磁弹射系统将实验舱垂直加速到预定速度后释放,实验舱在上抛和下落阶段为科学载荷提供微重力环境。目前,该装置可以维持的微重力时间可达4秒、微重力达10μg(十万分之一重力加速度)、过载加速度不超过5g(5个重力加速度)、实验间隔不超10分钟。电磁弹射微重力实验装置(4秒)效果图。中国科学院空间应用中心供图“与传统单程落塔、抛物线飞机等相比,该装置在实验效率、实验载荷力学强度要求、运行成本等方面具有较大的优势。”中国科学院空间应用中心副研究员张永康解释,在实验效率方面,传统落塔平均每天仅可以做2-3次实验,抛物线飞机每次可以飞行30架次以上,但实验准备周期约2-3个月,新装置每天可以开展近百次实验,准备时间1-2天,极大地提高了科学实验的效率。同时,在实验载荷强度要求方面,传统落塔在降落回收阶段,试验舱和实验载荷要承受20g(20个重力加速度)左右的冲击,很大程度上限制了常规科学仪器的使用。在新装置中,实验舱所受的电磁驱动力是全程可控的,无论是微重力、月球重力还是火星重力模拟实验,实验舱的回收加速度都可控制在3g(3个重力加速度)左右,因此常规科学仪器都可以用于实验。此外,在运行成本方面,该装置采用储能和电磁驱动技术,运行仅消耗电能,单次实验消耗电能仅1度左右,运行成本较低,便于开展大规模的科学实验。充分有效的地面验证是空间科学实验的前提和基础。地基研究能够大幅缩短实验周期、降低实验成本、提升空间实验成功率,是天基研究的重要补充手段。“电磁弹射微重力实验装置有效解决了探空火箭、失重飞机、落塔等传统地基微重力设施存在的实验成本高、准备时间长、过载较大等缺点。”张永康说。据悉,中国科学院空间应用中心正在规划建设20秒电磁弹射微重力实验装置,力争实现微重力时间20秒、载荷500千克的国际领先水平,构建国际微/低重力实验中心,为空间科学领域的科学家提供高效便捷的地基微/低重力研究平台,并为载人航天、深空探测等国家重大工程提供相关技术验证条件。
  • 微重力大科学装置海淀竣工验收
    近日,中建二局安装公司一项被喻为航天领域“跳楼机”的高科技实验装置项目竣工验收,正式进入核心试验装置安装阶段。“跳楼机”名为4秒电磁弹射微重力实验装置项目,坐落在海淀区中国科学院北京新技术基地内,是国家大科学装置,为亚洲首例、世界第二例工程。该装置采用一种类似于炮弹造型的直线电机驱动实验舱体,通过电机全程控制加速度过程,以“2秒弹射到40米高空再2秒回落”的方式来产生微重力和超重环境,最终实现模拟微重力、月球重力、火星重力等运动模式,为航天大规模空间科学项目提供地基短时微重力实验服务。如此神奇的装置,藏身在一座40米高、占地136平方米的“高塔”里,总用钢量不足千吨。“136平方米约等于一个三室两厅,干了十几年工程,没见过这么小的。”项目经理李长龙介绍,平地竖起一座高塔,看似容易,实际上“麻雀虽小,五脏俱全”。为实现微重力环境,发射装置被包裹在两层六边形钢结构中,内塔钢结构用于连接电机设备,外塔钢结构则是用来控制整体轨道装置的稳定性。与高精尖的国家大科学装置相对应的是2毫米的精度要求,施工难度集中在了钢结构安装环节。一开始,拥有丰富的钢结构项目施工经验的李长龙面对如此之“小”的项目也犯了难。“施工技术与质量标准要求极高,‘零焊接’‘全螺栓’方式,让常规施工方法和工艺难以保证。为了保证整个钢结构体系的分毫不差,所有的现场安装全部采用螺栓与法兰盘栓接形式,仅拇指粗细的高强螺栓就用了1.6万余个。”李长龙介绍,4秒落塔项目钢结构安装过程中,一千多根构件组合成的空间几何体及近千块连接板的平面度、平行度、垂直度、正对距离误差不能超过2毫米,2毫米相当于一枚一元硬币的厚度。为将安装误差控制在2毫米内,项目团队构建了4秒落塔可视化三维模型,对钢结构安装全过程模拟,实现可视化施工,避免与其他专业的冲突与碰撞,有效解决了钢结构安装精度及变形控制这一难点问题。“栓接相比焊接有可调整的空间,人工作业很难保证一次成型,过程中需要不断地调整钢结构位置,才能确保万无一失。”李长龙说,考虑到安装时的紧密性,他们特别制作了0.5毫米和1毫米两种垫片,并在钢结构两端各留出2毫米的空间,确保钢结构之间能够以最小的空隙塞到一起,再用螺栓和垫片对缝隙进行填充。记者了解到,如此高精尖的装置,在安装过程中还采用了最传统的“线坠儿”技术纠偏。整个钢结构安装完成后,在顶部拉出8根0.5毫米的钢丝绳,尾部绑上铅坠,确保自上而下自然垂落,根据结构与钢丝绳的位置进行最后的修正,最终成功地把安装精度控制在2毫米以内。这是继“中国天眼”之后,中建二局安装公司再次助力国家大科学装置成功实现预期目标,该项目的建设经验也将为后续国内千米落井装置的关键技术验证项目提供重要技术支持和施工保障。下一阶段,项目团队将继续与各方密切配合,努力把4秒落塔项目打造成为“中国第一、世界领先”的微重力实验设施,助力国家探索浩瀚宇宙实现新突破。(记者 孙颖 通讯员 王东坡)
  • 海能仪器:“海能杯”迷你马拉松,美丽健康跑
    12追求健康生活,更要活出品质!2016年11月15日, 海能仪器携高新技术开发区8家企业和社团,掀起一场奔跑狂潮! 本次活动同时得到了政府部门大力支持,这不仅是一次企业间交流互动的平台,更是动感、趣味、能量、刺激的大联欢!一番热身之后,各企业选手们整装待发!上午9:30分,第一届“海能杯”迷你马拉松,美丽健康跑,活力开赛!说跑就跑别犹豫、精彩一路相随,和你一起嗨翻青春!“海能杯马拉松”倡导的是一种健康的生活方式,一种阳光向上的人生态度,这不仅是企业所需要的,也是人生所需要的。跑步没有捷径,每一步都是脚踏实地跑出来的。海能军团拒绝惰性与逃避,无论做什么我们都有壮士断腕的决心与勇气!比赛总有输赢,拼搏永无止境!
  • 迫击炮弹三维扫描,推进排爆机器人AI视觉学习
    (图片源于百度百科)出土的报废炮弹,如今能够发挥一项新作用,即作为一项数据资源,用以排爆机器人的研发。排爆机器人,能够代替排爆人员对爆炸装置或武器实施侦察、转移、拆解和销毁,避免不必要的人员伤亡。随着研究深入,排爆机器人愈发智能,研究人员也在不断扩充数据库,使其可以识别更多的爆炸武器、装置等。在此过程中,三维扫描技术发挥了重要作用。高精度三维扫描,为数据库的搭建提供基础通过高精度三维扫描技术,可以准确还原一些武器、装置的三维数据,从而快速得到相对应的数据模型。这些武器、装备不同于别的工业产品,其对于三维扫描仪的精度要求更高。FreeScan UE 扫描炮弹在该项目中,使用FreeScan UE对于因战争原因遗留在各地的报废炮弹进行三维扫描,实现三维建档,留存,补充机器人的识别数据库。在扫描过程中,由于炮弹表面不适贴点,采用12面体标志球(一种磁力标志点)进行标记,以获取准确的数据。- FreeScan UE 扫描的其中一个炮弹的三维数据 -- 炮弹各项具体数值的测量 -通过高精度的三维扫描仪可以快速、准确获取炮弹等的三维数据,使得排爆机器人拥有更加丰富的视觉学习数据,使其更加智能。天远专注于高精度3D视觉检测技术多年,产品拥有计量级精度以及稳定的重复精度,广受业内好评,将持续助力军工领域用品的良好制造、检测以及航空航天、汽车工业等领域的企业实现高效高质的三维检测、逆向设计、检修维护等。
  • 浙江领跑化工装置设备更新!四部门联合部署发起《化工老旧装置淘汰退出和更新改造工作方案》
    受限于20世纪化工装置的设计建设标准和设备制造水平,一些装置设备长期运行后腐蚀老化,安全保障能力下降,应急管理部、工业和信息化部、国务院国资委、市场监管总局近日联合印发了《化工老旧装置淘汰退出和更新改造工作方案》(以下简称《工作方案》),并部署开展相关工作。正文如下:联合部署化工老旧装置淘汰退出和更新改造工作为深入贯彻习近平总书记关于安全生产工作的重要指示精神,认真落实国务院《推动大规模设备更新和消费品以旧换新行动方案》,扎实推进化工和危险化学品安全生产治本攻坚三年行动,进一步提升化工行业本质安全水平,应急管理部、工业和信息化部、国务院国资委、市场监管总局近日联合印发了《化工老旧装置淘汰退出和更新改造工作方案》(以下简称《工作方案》),并部署开展相关工作。当前,我国部分上世纪建设的化工装置设备已运行较长年限,受限于当时设计建设标准和设备制造水平,一些装置设备长期运行后腐蚀老化,安全保障能力下降,加之监测监控设施不完善、安全间距不足等问题,安全风险隐患叠加并进入集中暴露期。《工作方案》以取得危险化学品安全生产许可、安全使用许可的企业为范围,对以上企业中近年来排查确定的老旧装置、压力式液化烃球罐和部分常压可燃、剧毒液体储罐,根据产业政策、安全标准、安全风险等情况明确分类治理要求,实现依法淘汰一批、有序退出一批、改造提升一批。《工作方案》要求各地区、各有关中央企业总部精心组织,明确时间表、路线图,优化政策供给,加强技术支撑和资金保障。相关部门将加大支持力度,强化督导检查,加强政策宣传,及时研究解决推进过程中的问题,确保各项任务保质保量完成。此前5月31日,浙江省台州市也发布了《浙江省石化化工装置设备淘汰退出和更新改造工作方案》,具体方案如下:浙江省石化化工装置设备淘汰退出和更新改造工作方案为贯彻落实国务院《推动大规模设备更新和消费品以旧换新行动方案》《浙江省推动大规模设备更新和消费品以旧换新若干举措》,推动石化化工产业装置设备升级,制定本方案。一、总体要求(一)指导思想。坚持依法依规,统筹安全、排放和能耗标准,结合国家相关政策要求,按强制类和鼓励类两个类别,实施依法淘汰一批不符合产业准入和安全、能耗达不到标准要求的装置设备;有序退出一批安全风险高的老旧装置设备;改造提升一批安全风险较高、能效介于标杆水平和基准水平之间、排放不能稳定达标的装置设备等“三个一批”措施,提升石化化工产业安全、环保和能效水平,有效推动石化化工产业升级。(二)主要目标。2024年,淘汰9套化工装置,退出6套老旧化工装置,淘汰和改造提升517台设备。到2027年,通过标准引领,分类施策,滚动推进装置设备淘汰退出和更新改造,完成强制类装置设备淘汰任务,推动鼓励类装置设备应改尽改。二、工作任务取得危险化学品安全生产、使用、经营许可的企业和非许可化工、医药企业对照以下要求,落实淘汰、有序退出和改造提升任务。(一)依法淘汰一批不符合产业政策和标准的装置设备存在以下情形之一的,应当按要求完成淘汰:1.装置的工艺路线或主体设备列入《产业结构调整指导目录(2024年本)》(国家发展改革委令第7号)淘汰类的。2.装置的工艺路线或主体设备列入《淘汰落后危险化学品安全生产工艺技术设备目录(第一批)》(应急厅〔2020〕38号)、《淘汰落后危险化学品安全生产工艺技术设备目录(第二批)》(应急厅〔2024〕86号)的。3.未经过正规设计,且未开展安全设计诊断的[未经正规设计是指:装置未经法定资质设计单位设计,企业自行设计安装使用;或设计单位不具备相应资质、超资质级别或超业务范围开展项目设计;或以安全设施设计专篇代替初步(或基础)设计、以初步(或基础)设计代替施工图(或详细)设计等]。4.外部安全防护距离不满足国家标准《危险化学品生产装置和储存设施风险基准》(GB 36894)规定的风险基准要求,且无法整改的。5.连续停运5年以上,存在重大隐患且无法整改的。6.装置核心反应器或主要压力容器安全状况等级为4级,累计监控使用时间超过3年且无法对缺陷进行处理的。7.对产品能效低于基准水平的设备和工序,推动企业制定年度改造和淘汰计划,将能效改造提升到基准水平以上,不能按期改造的予以淘汰。(二)有序退出一批安全风险高的装置设备截至2023年底,对于符合下列情况的,各设区市应急管理部门会同有关部门组织辖区内企业(非中央企业)、有关中央企业按照总部要求,按照“一装置一策”“一设备一策”,明确退出路径、责任单位、责任人员、完成时间等,于2029年底前有序退出:1.2022—2023年,根据《危险化学品生产使用企业老旧装置安全风险评估指南(试行)》确定的老旧生产装置,且投产运行30年(含)以上的。2.投产运行25年(含)以上且未规定设计使用年限的压力式液化烃球罐。3.投产运行30年(含)以上的容积3000立方米以上的常压可燃、剧毒液体储罐。属于产业链供应安全保障、社会民生保障需求、国家战略规划要求、“卡脖子”技术等情况,不能按时退出的装置和储罐,应详细说明现状和原因,由企业聘请具有工程设计综合或化工石化医药行业甲级资质的设计单位等第三方机构,开展全面深入的评估,安全风险受控的,按照国家相关要求落实,并应持续强化安全风险管控,加大资金投入,优化监测监控手段,提升数字化智能化管控水平,确保安全运行。(三)改造提升一批在役装置设备1.2022—2023年,根据《危险化学品生产使用企业老旧装置安全风险评估指南(试行)》确定的老旧生产装置中投产运行20年(含)至30年(不含)的,各设区市应急管理部门会同有关部门对辖区内企业(非中央企业)、有关中央企业按照总部要求,逐一开展安全风险评估复核,确定安全风险等级,实施分类安全改造。2.对于已达到设计使用年限、未规定设计使用年限但使用超过20年的压力式液化烃球罐,企业应当严格执行《固定式压力容器安全技术监察规程》中关于年度检查、定期检验和安全评估(合于使用评价)的有关规定。罐区的安全管理应严格执行《化工企业液化烃储罐区安全管理规范》(AQ 3059-2023)。3.对于投用运行不足30年(不含)的容积3000立方米以上的常压可燃、剧毒液体储罐,企业应加强年度检查和定期检验,根据检查检验结果进行隐患治理和改造提升。4.按照《工业重点领域能效标杆水平和基准水平(2023年版)》(发改产业〔2023〕723号)要求,对产品能效介于标杆水平和基准水平之间的设备和工序,依据《炼油单位产品能源消耗限额》(GB 30251)、《乙烯装置单位产品能源消耗限额》(GB 30250)、《甲醇、乙二醇和二甲醚单位产品能源消耗限额》(GB 29436)、《烧碱单位产品能源消耗限额》(GB 21257)、《纯碱单位产品能源消耗限额》(GB 29140)等标准,引导企业应改尽改、应提尽提,鼓励更新改造后达到能效标杆水平。5.依据排放标准,实施生产设施、污染治理设施改造提升。对不能达到《石油炼制工业污染物排放标准》(GB 31570)、《石油化学工业污染物排放标准》(GB 31571)、《合成树脂工业污染物排放标准》(GB 31572)、《无机化学工业污染物排放标准》(GB 31573)、《炼焦化学工业污染物排放标准》(GB 16171)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824)、《挥发性有机物无组织排放控制标准》(GB 37822)、《制药工业大气污染物排放标准》(GB 37823)、《制药工业大气污染物排放标准》(DB 33/310005)等排放标准的,推动企业实施改造提升,将排放稳定达到标准。其他装置设备由企业根据评估情况,参照本方案实施淘汰退出和更新改造。三、时间安排(一)动员部署(2024年6月)。省级层面完成工作部署,各地、各有关中央企业根据本方案要求,结合实际细化措施,进一步明晰目标任务,进行广泛宣传,部署启动相关工作;根据本方案确定的对象范围,进一步摸清底数,分类建立健全淘汰、退出、改造提升的装置、设备台账,确保底数清、情况明。(二)滚动推进(2024年7月至2027年9月)。各地、各有关中央企业组织针对每套装置、设备,制定淘汰、退出、改造提升的具体措施,明确时间表、路线图,加快推进实施。(三)总结巩固(2027年10月至11月)。各地、各有关中央企业总结经验成果,形成总结报告。四、保障措施(一)加强组织领导。省级层面成立工作组,负责统筹推进石化化工装置设备淘汰退出和更新改造工作。各地要高度重视,以石化化工装置设备淘汰退出和更新改造为契机,有效推动产业升级;要结合实际建立健全工作推进机制,加快制定实施方案,认真落实本方案提出的各项目标任务和重点举措。(二)加大支持力度。省发展改革委、省经信厅、省生态环境厅、省应急管理厅、省市场监管局、省国资委、省能源局强化政策支持力度,优化相关项目审批流程、进入化工园区和有关企业考核政策,激励引导石化化工企业主动实施装置设备淘汰退出和更新改造。各地区要融合产业升级、安全环保、技术改造等多方面政策,优化政策供给,多渠道筹集资金。有关中央企业要积极履行央企责任,加强技术支撑和资金保障,支持做好装置设备淘汰退出和更新改造,确保各项任务保质保量完成。(三)强化督导检查。省级层面定期调度工作进展,加强实地督促。各地跟踪督促辖区所有相关企业认真制定实施计划,加强对监控运行装置和设备的检查,强化情况通报,及时宣传推广好经验好做法,对工作不力、进展缓慢的企业,加强跟踪指导服务,并按季度将工作情况报省应急管理厅。本方案自2024年6月1日起施行,执行过程中若遇国家政策调整,按照新规定执行。
  • 大科学装置好事多多,代表委员为何喜忧参半?
    2024年,国家科技基础设施领域有许多值得期待的消息。地下700米,江门中微子实验项目有望建成;海拔5250米,阿里原初引力波探测实验将迎来初光;高空600余公里,中法合作的太空望远镜卫星即将发射、运行……位于北京怀柔的我国第四代同步辐射光源将打出第一束光;位于广东东莞的中国散裂中子源二期工程、先进阿秒激光设施计划开工建设;覆盖全中国的空间环境地基综合监测网子午工程二期即将完成验收……“今年,我们会听到很多好消息。不过,我还是对发展前景非常担忧。”全国人大代表、中国科学院院士、中国科学院高能物理研究所所长王贻芳在接受《中国科学报》采访时直言。装置那么多,怎样体系化布局?目前,我国已经布局建设了不少国家重大科技基础设施,其中30多个已经建成并投入运行。今年,政府工作报告提出,要加快重大科技基础设施体系化布局,推进共性技术平台、中试验证平台建设。“对于前沿基础研究来说,大科学装置是必不可少的工具。它与基础研究的关系不仅仅是简单的促进关系,有时是有和没有的关系。有,你就能做研究;没有,你就做不了研究。”王贻芳说。在他看来,繁荣的表象背后藏有隐忧。“这些年,大家对大科学装置更加重视,却也有了一些不太正确的期望,认为大科学装置可以立刻进行技术转移转化或带来其他实际的价值。”他还发现,这些年国家立项的一些大科学装置,“从严格意义上讲,不是大科学装置,而是大技术装置”。“目前在建、运行的大科学装置项目很多是‘十二五’时期立项的。‘十三五’到‘十四五’时期,国家立项的重大科技基础设施重点集中在技术上,如共性技术平台、中试验证平台等,对基础科学的关注和重视程度越来越低。”王贻芳认为,大科学装置是用来做基础科学研究的设施,而大技术装置则是通过研究装置本身获得技术参数的设施。“未来,我国需要从理念上对大科学装置、大技术装置有所区分,在布局上加以平衡。”同样关注大科学装置体系化布局的,还有全国人大代表、中国科学院院士、中国科学院国家空间科学中心主任王赤。“国家重大科技基础设施数量越来越多、种类也越来越多。现在地方政府、高校都非常重视这方面的布局,这就需要国家进一步加强体系化布局和分类管理。”王赤说。在他看来,对于面向世界科技前沿、面向国家重大需求的设施,建议由国家主导,目标是提升我国原始创新能力,抢占科技制高点;对于探索共性技术的设施,建议由地方政府和企业主导,目标是进一步激发创新活力、发展新质生产力。而且,不同类型设施的运行状况和成果产出的评价也需要分类开展。规模那么大,如何建好用好?大科学装置规模大,经费投入也大。今年全国两会上,不少代表委员都在探讨如何利用大科学装置推动建制化基础科学研究,使大科学装置物尽其用。在王赤看来,我国在大科学装置的建设和运行上都取得了很大进展,但为了更好促进依托大科学装置的建制化基础研究,需要消除一些制约因素。“首先就是要加强顶尖科学家团队的力量。”王赤说,“以往我们以跟跑为主,现在开始并跑、引领,这更加需要顶尖科学家准确识别重大前沿科学方向,把握时代科技脉搏。”王赤认为,顶尖科学家要能够提出世界科技前沿问题,找到国家重大需求背后的科学问题,并用好大科学装置。此外,他表示,无论是大科学装置的建设和运行,还是利用装置开展科学研究,都需要建设、运行、科研队伍更好融合,实现合作和数据开放共享。王赤告诉《中国科学报》,目前国家重大科技基础设施子午工程二期已经基本完成建设和联试任务,正在试运行,预计今年5月完成验收和全部工艺测试。去年,子午工程二期的标志性装置——稻城圆环阵太阳射电成像望远镜建成,观测能力国际领先。为了“早出成果、多出成果,出好成果、出大成果”,中国科学院国家空间科学中心与中国科学院成都分院在成都成立π中心,以充分利用圆环阵太阳射电成像望远镜开展科学研究。“我们以π中心为平台,一方面,组织科研队伍,聚焦空间天气的主责主业,开展太阳射电探测,研究太阳活动对地球空间天气的影响;另一方面,与来自其他装置、科研机构的科学家开展合作,特别是与‘中国天眼’等装置开展联合探测,加强空间天文等学科交叉研究,充分挖掘圆环阵的创新潜力,发挥效能。”王赤说。周期那么长,何以稳住人心?阿里原初引力波探测实验项目建设历时7年,如今即将见到初光。从2014年提出项目计划至今,全国政协委员、项目首席科学家张新民都不敢松一口气。“2017年初,项目开工建设,7年来整个团队成员克服了高原、疫情等带来的重重困难。”张新民说。这7年里,在推进项目建设进度之外,最让他头痛的问题就是“如何留住年轻人”。“大科学项目的特色就是周期长,而周期长带来的最大问题就是年轻人的发展问题。”张新民说。在项目建设过程中,年轻人怎么写文章、发文章,怎么让他们留下来安心做项目,都是张新民需要考虑的问题。每年全国两会期间,张新民都能听到很多“‘帽子’满天飞,应该纠正”的话。他知道,要解决这件事,不那么容易。他只希望,那些暂时还难以减少的“帽子”可以向大科学项目、有组织科研团队的年轻人倾斜一点,让他们能留得下来,保证项目顺利实施。过去的7年,让他感受同样深刻的还有疫情等因素导致项目工期延迟时的煎熬。“大科学装置的管理机制比以前有了很大改善,但是条条框框依然存在。与工程项目不完全一样,大科学项目具有创新性、探索性,很多工作没有任何可借鉴的经验,在探索过程中,存在各种不确定性。”张新民说。他建议,要充分发挥首席科学家和项目经理部在大科学项目中的作用,在经费管理等方面给予他们更大的决定权。如今,阿里原初引力波探测实验项目即将建成,张新民又开始考虑下一步运行所需的经费问题。“建成后,阿里原初引力波探测实验项目将成为国际上北天区唯一的高海拔原初引力波探测装置。我们有专门的经理部统筹管理,也有实力不错的科研团队。但现在有一个问题,就是运行经费。第一年,运行经费问题不大,第二年以后的运行经费我们还要再去申请,到处筹措。”他说。他期望,有一天国家能拨给大科学装置稳定的运行经费,让科学家们可以真正把精力聚焦到科研上。
  • 中国首个大科学装置诞生记
    作者:倪思洁 来源:中国科学报1988年,北京正负电子对撞机建成,张文裕和工程经理谢家麟(右二)、副经理陈森玉(右一)、总工艺师徐绍旺(左一)在储存环隧道里交流。安装完成的北京谱仪。北京正负电子对撞机工程安装完成的储存环。北京正负电子对撞机建设期间,科研人员在北京谱仪上安装主漂移室信号丝。北京正负电子对撞机中控室。“八七工程”停滞后,高能物理学家们一起研究方案调整问题。2006年11月18日凌晨5点多,北京正负电子对撞机经过重大改造后,成功实现电子束在储存环中的积累,科研人员在控制室记录了这一时刻。本版图片由受访者供图“我相信这件事不会错!”1984年10月7日,北京西郊,在中国科学院高能物理研究所(以下简称高能所)举行的北京正负电子对撞机奠基仪式上,邓小平同志如是说。这天,邓小平同志在对撞机的奠基石上培上了第一锹土。时任高能所所长张文裕拉着他的手,激动地说:“我多年的心愿今天终于实现了!”40年后的今天,回想起这场奠基仪式,高能所研究员张闯的眼眶有些湿润:“那一天,很多人等了一辈子。”从20世纪50年代起,中国科学家一直苦于我国没有自己的高能物理加速器,科研工作长期依赖国外数据。他们始终有一个梦想——用自己的加速器做世界最前沿的研究。风云动荡中,这个梦想被七次点燃,又七次熄灭。奠基,代表着他们的梦终于成真。仅用4年时间,中国科学家就以令国际同行惊讶的速度,建成我国首个大科学装置——北京正负电子对撞机。而此后的40年,持续产出的科学成果、日渐壮大的人才队伍、站稳脚跟的中国高能物理,都用事实印证了邓小平同志的话,这件事没有错。1 七“上”七“下”1975年3月,乍暖还寒,春日的气息还不算浓郁。正在辽宁省北票矿务局工作的张闯趁着到北京出差开会的空隙,来到中关村,看望自己的大学老师、清华大学教授张礼。张闯曾在清华大学工程物理系攻读粒子加速器专业,毕业后被分配至煤矿工作,但他与老师一直保持着密切的联系。敲开门,进屋坐下,二人还没寒暄两句,张礼就兴奋地告诉张闯一个消息:“周总理有批示,高能物理要上!”张礼的声音不大,却让张闯为之一震。它像一枚钥匙,打开了张闯心中一扇久闭的大门。事情要从3年前说起。1972年8月18日,张文裕、朱洪元、谢家麟等18位科学家给周总理写了封信。信中,他们诉苦:“高能物理实验几乎是一片空白,高能物理理论研究则全是依靠国外的实验数据。”高能物理研究是认识物质微观结构及其运动规律最前沿的学科,而高能加速器和相应的探测装置是这项前沿研究的重要工具。早在新中国成立后不久,1950年10月,中国科学院的物理学家们就提出要建设粒子加速器,开展核物理实验研究。1953年,世界第一台高能加速器在美国问世,赵忠尧、张文裕、王淦昌等老一辈中国物理学家开始努力推动建造中国的高能加速器。然而,政治风云的变幻与国民经济的兴衰,让这一梦想多次“上马”,又多次“下马”。信中,他们呼吁:“尽快确定发展高能物理的方针政策,同时组织上给以保证,尽快成立高能物理研究所,并划归基础理论研究的主管部门领导。”1972年9月11日,周恩来总理批示:“这件事不能再延迟了。科学院必须把基础科学和理论研究抓起来,同时又要把理论研究与科学实验结合起来。”1973年2月1日,在党和国家领导人的关心下,中国科学院成立了高能所。在张闯心中,那曾是可望而不可即的“殿堂”。两年后,1975年3月,高能所组织科学家经过深入研究,向国务院上报《关于高能加速器预制研究和建造问题的报告》,明确提出要在10年内,建造一台能量为400亿电子伏特的质子同步加速器。在医院病床上,周总理审阅并批准了该报告。此后,高能加速器预制研究工程有了自己的代号——“七五三工程”。“学校已把加速器专业毕业的同学推荐给了高能所,你也在名单里。”张礼告诉张闯。为了满足“七五三工程”需要,高能所开始召集散落在全国各地的相关专业人员。那天,张闯从老师家里走出来时,出差的疲惫一扫而光。此时,路边的树杈还有些光秃,但张闯的心里已经开出了小花,那是他和老师们盼了许久的梦。1976年秋天,科学家满怀信心,重新论证“七五三工程”方案,提出了更宏伟的“八七工程”计划,并得到国家批准。“八七工程”分三步走:第一步,耗资3亿元,建成300亿电子伏特的慢脉冲质子环形加速器;第二步,耗资7亿元,到1987年底建成400亿电子伏特的质子环形加速器;第三步,到20世纪末,建成世界一流的高能加速器。然而,没过多久,我国国民经济调整,紧缩基建,高能质子加速器因属于“国家非急需”而在“下马”之列——这已是该项目的第七次“下马”。得知消息后,张文裕等老一辈科学家和张闯等年轻一辈都心急如焚。1980年5月,张文裕、赵忠尧、朱洪元等39位高能物理学家联名上书,恳求“八七工程”不要“下马”。邓小平同志批示:“此事影响太大,不宜‘下马’。”这一批示给中国科学家们留下了机会。尽管工程陷入停滞,但希望仍在。所有人都开始重新思考更符合国情的加速器方案,奔向第八次希望。2 第八次希望1981年,受“八七工程”停滞问题影响,中美高能物理联合会议未能如期举行。得知消息后,华裔物理学家袁家骝、吴健雄夫妇和李政道都心急如焚,他们向国家领导人建议,立即派专家赴美洽谈。1981年3月,中国科学院派高能所的朱洪元、谢家麟前往美国洽谈。他们与李政道、袁家骝、吴健雄以及美国斯坦福直线加速器中心主任潘诺夫斯基等美国高能物理学家开会,讨论中国高能物理的前景。最终,大家一致认为在中国建造2×22亿电子伏特正负电子对撞机是最好的方案。新的方案,造价只需“八七工程”的三分之一,不仅物理窗口内容丰富,还可以在做高能物理研究的同时,做同步辐射应用研究,实现“一机两用”。然而,当朱洪元、谢家麟把这一方案带回国内,一场激烈的争论开始了。研制对撞机,技术难度和风险很大。正负电子对撞机要让两束极细、高速运行、稀薄的电子束团撞到一起,既要“对得准”,又要“撞得充分”。大家有各种各样的担心:“中国能不能做得了?”“即便研制出来,性能指标是否达标?”“进度如果拖下来,物理窗口关闭了怎么办?”有人还打了个比方:“以当时中国的薄弱基础,要想建成正负电子对撞机,就好比站在铁路站台上,想跳上一列飞驰而来的特快列车。如果跳上了就飞驰向前,如果没有抓住,就粉身碎骨。”1981年9月,中国科学院数理学部主持召开“丰台会议”,专门讨论了3天。与此同时,高能所内部也组织了多次研讨会。每个人都在为国家高能物理的未来谋一条最切合实际的出路。方案一直讨论到1981年底。其间,中国科学院又派当时院内主管部门负责人邓照明和谢家麟、朱洪元一起再赴美国。在李政道等的坚持下,邓照明与中国科学院领导通了电话,经过近一个小时的协商,院领导肯定了正负电子对撞机的方案。1981年12月5日,中国科学院上报了《关于建造北京正负电子对撞机预制研究的报告》。看过报告后,邓小平同志批示:“这项工程已进行到这个程度,不宜中断,他们所提方针,比较切实可行。我赞成加以批准,不再犹豫。”1983年4月,我国正式批准北京正负电子对撞机项目,计划于1988年底建成。此后担任北京正负电子对撞机工程领导小组组长的谷羽曾感慨:“这一批示给中国的高能物理事业注入了生机和活力,把中国的高能加速器从危机中解放出来。”3 跳上“特快列车”1984年10月7日上午10点,北京西郊玉泉路的高能所里,彩旗飘扬。邓小平、杨尚昆、万里、方毅等党和国家领导人以及专程从美国赶来的科学家们聚在这里。大家盼望已久的北京正负电子对撞机终于破土动工。接下来,科学家们要用4年甚至更短的时间,从站台“跳”上国际高能物理这列飞驰的“特快列车”。北京正负电子对撞机由注入器、输运线、储存环、北京谱仪、同步辐射装置等部分组成,工程涉及的专用设备多达上万台,技术复杂、精度要求极高,中国此前从未做过。工程一开始就遇到了关键问题:是全面引进,还是自主研制?作为工程领导小组组长,谷羽带领小组成员认真分析了中国的科技和工业状况,最终决定,除计算机和少数当时中国无力研制的设备以及用量很少、不值得花人力和物力研制的设备、元件、材料外,主要依靠自己的力量设计和研制。为了提供一个极端的粒子对撞环境,北京正负电子对撞机各类设备的技术指标均向极限逼近,其中涉及的高功率微波、高性能磁铁、高稳定电源、超高真空等技术,设计指标几乎都超出当时的技术能力。例如,对撞机要给电子加速,就需要有稳定的微波电磁场,而一种名叫“S波段高功率速调管”的部件就是微波磁场电子系统的“心脏”。当时,国内技术水平最高的S波段高功率速调管,脉冲输出功率能达到15至20兆瓦,但这根本无法满足对撞机工程的需要。于是,高能所科研人员和工厂联手,吸收消化国外上世纪80年代初期全部生产工艺,改造原先的生产线,不仅将速调管的微波功率提升到34兆瓦,还将国产调制器的功率从50兆瓦提升到100至200兆瓦,工作寿命从1000小时提高到10000小时。这一突破不仅满足了对撞机对微波功率源高功率、高稳定度、长寿命的技术要求,也使合肥同步辐射光源、北京自由电子激光、上海自由电子激光等我国“八五”期间的几大加速器工程,都逐步用上了国产的微波功率源和特种波导元件。类似的技术突破在对撞机研制过程中还有很多。为了建成对撞机,我国在真空技术、电磁铁、大功率高稳定度电源等方面都达到更高的技术水平。此外,高能所还于1987年建成我国第一条国际计算机通信线路,成为我国建设“国际信息高速公路”的先驱。1988年10月的一天,时任高能所所长叶铭汉找到负责北京谱仪建造、安装、调试任务的郑志鹏。“近日要开始中美高能会谈了,美方专家正在北京,如果此时能实现正负电子对撞,那将是一个很适当的时间。”叶铭汉说。郑志鹏立刻找到负责亮度检测器的同事们,商量如何区分信号和噪声。经过几个昼夜的连续调试,他们慢慢摸清了装置的“脾气”。1988年10月6日凌晨,当北京正负电子对撞机处于对撞模式时,亮度监测器上显示出正负电子的散射信号,而且计数随时间不断增长;将对撞机从对撞模式调成单束模式后,信号消失。反复多次,终于,大家确认,“对撞了”。大厅里,所有人都高兴得跳了起来,一夜的疲惫烟消云散。得知消息的叶铭汉天刚亮就来到运行室和谱仪大厅,确认正负电子实现对撞的事实。好消息很快传遍整个高能所,又通过媒体传遍全国。1988年10月24日,刚刚过去的一场秋雨使北京舒爽宜人,邓小平同志再次来到高能所。这一天,北京正负电子对撞机宣布建造成功!“过去也好,今天也好,将来也好,中国必须发展自己的高科技,在世界高科技领域占有一席之地。”邓小平同志在建成典礼上说。4年时间,中国科学家真的“跳”上了国际高能物理这列疾驰的列车。“对撞机的成功是中国科技发展的重要里程碑。”诺贝尔物理学奖获得者里克特如是评价。从此,中国大科学计划的时代正式开启。4 “两军相逢勇者胜”1990年,经过一年多的调试,北京正负电子对撞机正式运行。它很快成为中国高能物理基础研究的“宝地”。凭借它产出的数据,中国科学家取得了一批在国际高能物理界有影响的重要研究成果:实现迄今对τ轻子质量的最精确测量;实现20亿至50亿电子伏特能区正负电子对撞强子反应截面(R值)的精确测量;发现“质子-反质子”质量阈值处新共振态;发现新粒子X(1835)……世纪之交,国际高能物理竞争越发激烈,而北京正负电子对撞机已经运行了10年。中国科学家们有了一个新想法:升级!时任高能所所长陈和生一直密切关注国际高能物理前沿的发展。2000年,他主持制定的“中国高能物理和先进加速器发展目标”得到国家科技领导小组原则同意,其中包括对北京正负电子对撞机的重大改造。得知这一消息,美国康奈尔大学的康奈尔正负电子对撞机团队感受到了威胁。他们宣称,将采用“短平快”的方法改造康奈尔正负电子对撞机,预计比改造后的北京正负电子对撞机早两年达到同样的性能指标。这无异于一次“宣战”。“两军相逢勇者胜!”陈和生告诉身边的科研人员。他和国际上的专家反复讨论后发现,康奈尔大学的方案不一定能实现,而中国的设计方案只要努力就一定能做成。大家决定迎难而上,对北京正负电子对撞机改造(BEPCII)方案作出重大调整,采用国际先进的双环方案,计划将北京正负电子对撞机的性能提高100倍,以便在国际竞争中获得主动权。2004年1月,BEPCII正式动工,建设内容包括注入器改造、建造双储存环对撞机、新建北京谱仪III和通用设施改造等。一场激烈的国际竞赛由此展开。除高能所外,中国科学技术大学、中国科学院理化技术研究所、中国科学院合肥物质科学研究院、中国科学院上海硅酸盐研究所、中国科学院上海应用物理研究所等和相关院外科研机构、企业都参与其中,形成建制化的攻关力量。他们用5年时间,将北京正负电子对撞机的亮度和综合性能提高到国际领先水平,工程自主研制设备超过85%。升级后的北京正负电子对撞机实现了微米级高流强束团精确对撞,峰值亮度约为改造前的100倍,加上探测器性能和运行效率的提升,日积分亮度较改造前提高100倍以上。到2009年BEPCII工程完成时,康奈尔大学的对撞机只达到其设计指标的四分之一,不得不停止运行。在那台对撞机上做实验的许多高能物理学家加入了北京谱仪III合作组。“这是中国高能物理实验研究的又一次重大飞跃,为中国在粲物理研究和τ轻子高能研究方面继续在国际上居于领先地位打下了坚实的基础。”李政道如是评价。更高的性能带来更丰硕的科研成果。2013年3月,北京谱仪III合作组宣布发现新的共振结构Zc(3900),这极可能是科学家长期寻找的“四夸克物质”,入选美国《物理》杂志公布的2013年物理学领域十一项重要成果,并位列榜首。自2008年开始运行到2015年6月底,他们还观测到新粒子X(1870)、X(2120)、X(2370)等。在科研过程中,年轻的高能物理研究人员也成长起来,一批批优秀的博士、博士后源源不断地输送到全国各大科研机构、高校,成为中国高能物理发展的新鲜血液。高能所现任所长王贻芳感慨地说:“今天看来,建造北京正负电子对撞机是当时作的最好选择。它让中国高能物理在国际高能物理领域占有一席之地,培养了一支具有国际水平的队伍,也推动了国内其他大科学装置的建设。”时至今日,北京正负电子对撞机的改造仍在进行。“我们正在对加速器部分做改造,把它的亮度再提高3倍,之后,北京正负电子对撞机预计可以运行到2030年左右。”王贻芳说。在很多过来人眼中,北京正负电子对撞机的建设是几代科技工作者接续奋斗的结果,是全国许多单位大力协同取得的成就,也得益于改革开放后的国际合作。在王贻芳看来,北京正负电子对撞机留下的“启示”,包括“高能物理发展要综合考虑前沿科学目标、国家实力与需求、学科自身发展目标来选择装置建造方案”,“要敢于接受国际上的挑战和竞争”,“国内的实验基地始终是巩固和发展国际地位的坚实基础”,“装置建设方案要尽可能兼顾其他学科的需求”,“要坚持自主创新与国际合作相结合”……回顾过去,中国高能物理的起步艰辛而曲折,但科学家们从未失去希望与激情。曾经的挫折与荣光,成就了中国高能物理学家的胆识与气质。他们也为后来者积累了一个极其宝贵的经验——在困顿中坚守,在希望中奋进。(实习生阚宇轩对此文亦有贡献)
  • 蛋白样品在跑胶前要如何处理
    一、蛋白样品制备  之前和大家介绍过细胞和组织蛋白质的提取,当我们做WB的时候,需要对提取好的蛋白样品进行处理:在蛋白样品中加入SDS loading buffer 6X(蛋白上样缓冲液)稀释至1X(如蛋白样品有120ul,则加入SDS loading buffer 6X 600ul),混匀,75-95度加热10-15分钟,使蛋白变性以充分暴露抗原位点。在加热结束后,进行离心,使蛋白样品适当降温,防止PAGE胶被融化。  PS:要测量的蛋白如果是磷酸化形式,一般加热到75度,一般情况可95度加热。市面上买到的SDS loading buffer 有2X的也有5X的,最后稀释至1X即可。  那么为什么我们加入SDS loading buffer呢?主要就是用它的不同成分在电泳中起了关键的作用。  SDS loading buffer 的主要成分及作用:A:0.1%溴酚蓝,作为指示剂,方便观察电泳进行的程度;B:10%甘油,密度大,增加样本的重量,可携带样本沉到底部;C:2%SDS,是一种阴离子表面活性剂,能打断蛋白质的氢键和疏水键,按一定比例和蛋白质分子结合成为复合物,是蛋白质带满负电荷,从而是蛋白带电荷一致,减少电荷对电泳结果的影响;D:巯基乙醇还原剂,使蛋白质的二硫键断开,使得蛋白保持线性结构。  二、蛋白上样  1. 将之前配好的胶固定在电泳装置上,加入1X电泳液  2. 拔出梳子,应该两侧同时用力,缓慢拔出,注意在拔除梳子时防止气泡进入梳孔使其变形,若上样孔有变形,可用适当粗细的针头拨正。  3.加入蛋白样品,一般10孔的梳孔,每孔可以加入20ul -40ul蛋白样品,15孔的梳孔,每孔可以加入10ul -30ul蛋白样品,是用微量注射器加样,平时我们也可以用普通的移液枪加样,尽量让枪头深入梳孔底物,防止蛋白样品飘出,一般在目的蛋白两侧加入等量的marker,如果两侧有空的梳孔,应该加入1X的loading buffer,起“压边”作用,可以使蛋白样品在一条水平线上往下跑。  4.电泳:接上电极,正负极不要弄反,红色对红色,黑色对黑色,初始电压设为90V,当样品跑至分离胶时将电压调至120V,一般在溴酚蓝跑出胶时停止电泳,也可根据目的蛋白的分子量来选择跑的时间,如分子量较大,可以延长电泳时间,使得分子量大的marker跑的分散开,容易判断分子量。  三、注意事项  1.蛋白样品上样量最好相等,不要过多。  2.不要过多重复使用电泳Buffer  3.最佳分辨区在分离胶的2/3  4.电泳后测定的分子量有10%的误差,不可完全信任。有些蛋白质由亚基(如血红蛋白)或两条以上的肽链(α-胰凝乳蛋白酶)组成的,它们在巯基乙醇和SDS的作用下解离成亚基或多条单肽链,SDS-PAGE电泳法测定的只是它们的亚基或是单条肽链的相对分子量,有的蛋白质(如电荷异常或结构异常的蛋白质,带有较大辅基的蛋白质)不能采用该发测相对分子量。  5.如果电泳中出现拖尾,染色带的背景不清晰等现象,可能是SDS不纯引起。
  • AGV呼出气体酒精含量探测器检定装置研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 19%" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " AGV呼出气体酒精含量探测器检定装置 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 联系人 /p /td td width=" 35%" p style=" line-height: 1.75em " 潘义 /p /td td width=" 16%" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 28%" p style=" line-height: 1.75em " 9026427@qq.com /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " 四川中测标物科技有限公司 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 ■可以量产 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □技术转让 □技术入股 □合作开发& nbsp ■其他 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/fa275657-9b17-435f-aca9-b321d2e44db0.jpg" title=" 5-AGV呼出气体酒精含量探测器检定装置.png" width=" 350" height=" 233" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 233px " / /p p style=" line-height: 1.75em " & nbsp & nbsp 特点: 本检定装置以国际标准《ISO 6145-8 气体分析-动态体积法制备校准混合气体 第9部分:饱和法》为理论基础,研制出连续动态产生饱和酒精气体的技术工艺,结合本单位的气体稀释配气相关技术专利,可制备浓度范围为(40~500)& amp #956 mol· mol-1的酒精气体,完全满足《JJG 657-2006 呼出气体酒精含量探测器检定规程》对检定装置的要求,更率先与国际权威标准接轨,依据国际法制计量技术委员会颁布的《OIML R126 Evidential Breath alcohol analyzers》最新版的要求,实现了出口酒精气体温度、湿度的准确控制。检定装置具有清晰友好的人机对话界面,简单易用。 br/ & nbsp & nbsp & nbsp 指标:浓度范围:(40-500)× 10 br/ & nbsp & nbsp & nbsp 扩展不确定度:Urel = 2%, k = 2 br/ & nbsp & nbsp & nbsp 浓度调节时间: & lt 15s br/ & nbsp & nbsp & nbsp 重复性:0.2% br/ & nbsp & nbsp & nbsp 酒精气体温度: 34℃± 0.5℃,相对湿度大于90% /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 呼出气体酒精含量检测仪标准装置是应用于保障呼出气体酒精浓度计量准确性与溯源可靠性的专业设备。近年来随着汽车保有量的迅速增长,饮酒驾驶也逐渐成为当前重要的道路交通危害来源。我国交通执法部门大量采用呼出气体酒精含量检测仪作为判断是否酒驾的执法工具,酒检仪的计量性能是否准确关系到执法的公正性和权威性。研发呼出气体酒精含量检测仪标准装置对保障社会公共及人民生命财产安全具有重要作用,也是经济可持续发展的重要保障。呼出气体酒精含量检测仪标准装置建立以后,可以作为社会公用计量标准开展各类呼出气体酒精含量检测仪的检定校准工作,为社会提供呼出气体酒精浓度检测的溯源服务;也可以作为气体酒精传感器及检测设备的计量性能测试平台,联合各生产企业及科研、计量测试单位开展研发试验,提高气体酒精传感器及检测设备的技术水平。 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 实用新型专利1项 br/ & nbsp & nbsp & nbsp 专利名称:一种呼出气体酒精含量探测器检定装置 br/ & nbsp & nbsp & nbsp 专利号:ZL201320830646.3 /p /td /tr /tbody /table p br/ /p
  • 在线饮料分析 | 圣诞节怎能缺一杯热红酒!
    Merry Christmas没有热红酒的 圣诞是不完整的////耶稣曾说,葡萄酒是我的血液,面包是我的肉,所以葡萄酒和面包在基督教里面是圣餐的搭配。葡萄酒中溶解的氧气 (DO) 具有氧化性,会对酒质产生不利影响。因此,优质葡萄酒生厂商都力求减少氧气的吸入,并在装瓶之前对葡萄酒进行脱气处理。此外,还会调整 CO2 含量,以确保成本效益和稳定质量,并使含汽葡萄酒起泡。为了确保您的产品达到目标气体含量,安东帕用于 监测 CO2 和 DO 含量的在线传感器可以轻松地直接安装到您的生产线中。您将受益于对各种浓度进行准确可靠的监测。——葡萄酒生产葡萄酒生产是将葡萄转变为葡萄酒的一系列工艺过程。在挤压和压榨葡萄期间以及将葡萄汁泵送至发酵罐的过程中通常都会产生 DO。氧气在酒精发酵的最初阶段会被耗尽,而在葡萄酒酿造的后期阶段不需要氧气。因为氧气会降低产品质量,缩短产品保质期,并对葡萄酒香味产生不利影响。——CO2 监测为确保稳定的碳酸化水平,必须测量葡萄酒中的 CO2 浓度。CO2传感器 Carbo 6300 和 Carbo 5100 可轻松检测到与 CO2 目标值的任何偏差,从而可对碳酸化进行在线过程控制。图1:碳酸化的在线过程控制可选择将 CO2 传感器安装在碳酸化和/或脱气装置之后:配备文丘里喷嘴的碳酸化系统该传感器必须安装在溶解路径之后,以防止接触气泡。气液膜接触器该传感器通常直接安装在膜装置之后,因为增加的 CO2 会在接触器中完全溶解。在线脱氮系统 只有安装在脱气罐之后和灌装之前的 Carbo 6300 才能监测到 CO2 含量。Carbo 6300 不受其他溶解气体的影响——DO 监测DO 在线测量可确保整个生产过程中的产品质量,并可识别不需要的 DO 源。在以下工艺单元中需要监测DO含量,氧气吸入(例如:过滤前后)以及脱气之后。——实验室和过程测量相结合过程测量结果(Oxy 5100、Carbo 6300 和 Carbo 5100)与实验室参考值 (CboxQCTM) 相匹配。图2:葡萄酒中测得的溶解 CO2 含量图 2 显示了在不同的 CO2 浓度下,含气葡萄酒的工艺和实验室数据相关性。在使用 N2 脱气的过程中,Carbo 5100 与实验室参考值 (CboxQCTM) 之间的偏差(图3:不同葡萄酒中测得的 DO 含量——测量设置Carbo 6300 (图 4) 是安东帕第一款基于衰减全反射 (ATR) 光谱方法的在线 CO2 传感器。这款传感器采用的专利技术可确保 CO2 测量不受影响。该传感器完全无需维护,且获得 EHEDG EL 类 I 级认证。您还可以选择采用传统 p/T CO2 分析方法的 Carbo 5100。Carbo 5100 设计用于恶劣的环境(在最高 121 °C CIP/SIP 温度条件下,持续最长 30 分钟)。图 4:Carbo 6300(左)和 Carbo 5100(右)Oxy 5100 (图 5) DO 光学传感器可在整个生产过程中实现高精度且无漂移测量。该传感器获得了 EHEDG EL 类 I 级认证,可识别传感器头,包括工厂校正值。在生产管道中使用 N2 进行校准已经过时。Oxy 5100 可估算传感器头的剩余使用寿命,并在需要更换新传感器头时提醒您。可通过 Davis 5(数据记录、可视化和分析)连接至安东帕的实验室系统。图 5:Oxy 5100 溶解氧传感器应用要点压力必须高于饱和压力。如果气泡与传感器接触,测得的值可能不正确。优点准确的 CO2 用量可确保成本效益满足法定要求稳定的产品质量优化 DO 管理,以减少硫化物含量
  • 中药的秘密----红外光谱揭示中药炮制过程的真相
    中药起源悠久,许多中药品种都需要经过炮制,炮制是中药制作中的一个关键工序,会直接影响中药的药效,炮制过程中药物究竟发生了什么变化?现代光谱仪器为您揭示。 地黄因其地下块根为黄白色而得名地黄,其根部为传统中药之一,最早出典于《神农本草经》。依照炮制方法在药材上分为:生地黄和熟地黄。生地黄,性凉味甘苦,功用清热凉血、养阴生津;熟地黄,性温味甘,功用滋阴补血、益精填髓,二者药性及功效不同。因此,生地黄炮制加工成熟地黄,其炮制质量对保证其药性及功效非常重要。“黑如漆,甜如饴”,是熟地黄传统经验,但并没有客观标准量化这一过程。如何有效的控制炮制过程,从而达到最佳的药效呢?河南牧业经济学院樊克锋教授,使用PerkinElmer高性能红外光谱仪,通过测试炮制过程中地黄光谱的变化,揭示了炮制过程的真相。图1 酒炖熟地炮制过程样品粉末颜色变化地黄富含低聚糖类,其中以水苏糖为主。生地经炮制加工成熟地,主要就是低聚糖转化成单糖。谱图变化重点在1200cm-1~900cm-1波段和900cm-1~700 cm-1两个波段,前者主要就是糖的C-O(H)键弯曲振动吸收,后者主要是糖环的不同振动吸收。图2 地黄炮制过程红外光谱图(1200cm-1~900cm-1波段和900cm-1~700 cm-1波段)“甜如饴”,是由于低聚糖水解所得单糖。谱图表现上,1050 cm-1主强峰由单强峰变为1026和1058 cm-1双强峰、831-797-771 cm-1波段的山形峰变817-797-777 cm-1的阶梯峰。“黑如漆”,是由于水解所得的果糖能与氨基酸反应成蛋白黑素。水苏糖水解得到的大部分果糖与地黄所含氨基酸反应生成了蛋白黑素,同时使得果糖的含量减少到与分解所得的葡萄糖含量之比接近1:5,出现了~777cm-1的特征峰。 生地炮制成熟地过程主要就是糖转化过程,而糖分的转化在红外谱图上有明显特征。因此,地黄炮制的过程,不论是地黄生物形态(色味)、药学性质(性味功效)变化,都可以通过红外光谱特征进行判断跟踪,保证地黄达到可靠的药效。表1酒炖熟地炮制过程中红外光谱与化学成分、生物形态及药学性质等变化的相关性分析关于珀金埃尔默:作为全球领先的科研仪器和服务提供商,珀金埃尔默公司致力于为创建更为健康的世界而不懈努力。我们的业务涵盖医学诊断、科研和分析仪器等。我们在全球拥有9000名专业技术人员,时刻准备着为客户提供最优质的服务,帮助客户解决各项科学难题。我们在分析检测、医学成像、信息技术和售后服务方面的专业知识,以及深入的市场洞察力,可协助客户为改善我们的生活环境而不懈探索。2016年,珀金埃尔默年营收达21亿美元,为超过150个国家和地区提供服务,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默公司的信息,请访问珀金埃尔默全新上线的中文官方网站。
  • 盘点我国大科学装置中的那些知名专用研究设施
    1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》。其中提出了要落实《国务院关于国家重大科研基础设施和大型科研仪器向社会开放的意见》这些重大科研基础设施就是常说的大科学装置。随着世界科学技术飞速发展,科学研究的规模不断扩大、内容不断深化,科学研究对其所依赖的实验条件有了更高的要求。大科学装置就是为满足现代科学研究所需的能量更高、密度更大、时间更短、强度更高等极限研究条件而产生的。大科学装置作为国家科学技术水平和综合实力的重要体现,对国家科学技术的发展具有重要的推动力。按不同的应用目的,大科学装置可分为三类:专用研究装置、公共实验平台和公益基础设施。本文特为读者介绍其中的那些知名的专用科研设施。500口径球面射电望远镜(FAST)500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope),简称FAST,位于贵州省黔南布依族苗族自治州平塘县克度镇大窝凼的喀斯特洼坑中,工程为国家重大科技基础设施,“天眼”工程由主动反射面系统、馈源支撑系统、测量与控制系统、接收机与终端及观测基地等几大部分构成。500米口径球面射电望远镜被誉为“中国天眼”,由我国天文学家南仁东先生于1994年提出构想,历时22年建成,于2016年9月25日落成启用。是由中国科学院国家天文台主导建设,具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜。综合性能是著名的射电望远镜阿雷西博的十倍。神光Ⅱ高功率激光实验装置神光Ⅱ高功率激光实验装置(简称神光Ⅱ,包括八路装置和第九路两大部分)是目前国内已经投入正式运行的规模最大的高功率钕玻璃激光实验装置,也是我国目前唯一能够提供开放研究的高功率激光实验装置。它能在十亿分之一秒的瞬间发射出功率相当于全球电网总和数倍的激光束聚集到靶上,形成高温等离子体并引发聚变,进而开展激光与等离子体相互作用物理和惯性约束聚变(ICF)实验研究。自2000年以来,神光Ⅱ以我国激光聚变历史上从未有过的高质量、高稳定、高重复性提供了几十种复杂物理目标和靶型的实验打靶近6 900余次。近年来全年运行平均成功率超过90%,已经大幅超过装置原定70%的技术指标,实现了我国激光驱动器运行水平的重大提升,成为我国大科学工程中高效、稳定运行的范例。大亚湾反应堆中微子实验该设施为基础研究专用设施,依托本设施成立的国际合作组开展了长期的国际合作。主要功能是探测反应堆放出的中微子,计算中微子振荡参数及反应堆能谱。主要技术指标为:中微子探测器靶质量 ≥ 20吨 靶质量精度 0.2%。南京航空航天大学风洞实验群该设施是国内高校最大规模的风洞实验群,现有2.5m×3m单回路连续式低速风洞一座,1m开口非定常低速风洞一座,0.6m×0.6m亚跨超高速风洞一座,Φ0.5m高超声速风洞一座。另外还有多座小口径低湍流度、射流风洞、进气道专用风洞以及各种流动测试设备,完成了大量型号任务的风洞实验和实验技术发展,为飞行器设计专业的学生提供了良好的教学实验条件。同时还有拥有Cluster并行机系统,完成了大量飞行型号的空气动力学数值计算任务。现有实验室面积10000多平方米。 中渔科212中渔科212主要用于长江口及临近水域渔业资源评估、走航式流场分析、渔场形成机制与预测辅助、水文数据及影像实时监测、长江口濒危野生水生动物的救护暂养以及珍稀水生动物后备亲本的暂养。大型高精度衍射光栅刻划系统这款仪器位于长春光电所,其最大刻划面积为400x500mm的平面衍射光栅刻划系统,最大检测口径为400x500mm的光栅衍射波前测量仪、光栅衍射效率测量仪和光栅鬼线强度测量仪。长春光机所是中国光栅的发源地,也是国内研制光谱仪器最早的科研单位之一。2007年,科技部批复同意以长春光机所为依托单位组建“国家光栅制造与应用工程技术研究中心”(简称“国家光栅工程中心”)。船用小型燃气轮机技术实验平台辽宁省船用小型燃气轮机技术重点实验室是在交通运输部“十一五”重点实验室建设项目“轮机系统与船舶新动力实验室—船用燃机与新型动力分实验室”、“211工程”三期重点学科建设项目“船用小型燃气轮机技术及实验平台”和交通运输部“十二五”轮机工程国家重点学科建设项目的基础上建设和发展而成的学科实验室,并于2010年8月被批准组建辽宁省重点实验室。实验室依托于大连海事大学船舶与海洋工程一级学科博士点和轮机工程国家重点学科、动力机械及工程学科及大连海事大学船舶动力工程研究所,已成为基础与前沿课题研究和高层次人才培养的重要基地。300吨级渔业资源调查船科学调查船将主要承担南海海域的渔业资源与环境的常规、专项和应急调查监测、海洋综合调查和研究、涉外海域渔业资源环境调查、双边或多边渔业资源联合调查、负责捕捞技术研究、渔业资源养护等任务,开展复合渔场单鱼种渔业生态特征、高效生态渔具渔法、鱼类洄游规律、渔场形成机制、渔业资源时空变动规律等研究,为南海渔业资源养护与管理、对外谈判、生态环境修复和渔业资源可持续利用等提供支撑平台。 主要技术指标:船长42.8米,型宽8米,型深5.2米,最大航速12.5节,经济航速12节,续航力4000海里,自持力30天,满足近海航区要求。调查船设置3个实验室:综合实验室、海洋生物实验室、渔业声学实验室。新一代厘米-分米波射电日像仪(MUSER)新一代厘米-分米波射电日像仪(MUSER)是国际上首个太阳宽带动态频谱成像系统,由100个抛物面天线组成三螺旋阵列,能对太阳爆发进行类似CT扫描一样的全日面快速频谱成像观测。是国际上首个太阳宽带动态频谱成像系统,实现了在百毫秒量级时间分辨率上同时584通道对太阳的快速连续观测,最高空间分辨率优于2角秒,完成了对太阳爆发初始能量释放区高分辨射电频谱成像观测。“探索一号”海洋综合科学考察船探索一号”,船舶满载排水量为6250T,船长94.45M,型宽17.9M,无限航区,配置DP2动力定位系统,续航能力大于10000海里,自持力超过60天,船艏采用X-BOW造型设计,在我国尚属首例,上层建筑设计为全封闭包围式,提高其耐波性,减少甲板上浪。 “探索一号”还具有充分的深海科考作业能力,建有地质实验室、地球物理实验室、化学实验室、生物实验室、冷冻样品库等十多个实验室,另在甲板面设置2个可拆卸式移动实验室,能同时搭载60名船员、科学家及潜航员。全超导托卡马克核聚变实验装置(EAST)全超导托卡马克核聚变实验装置装置,其运行原理就是在装置的真空室内加入少量氢的同位素氘或氚,通过类似变压器的原理使其产生等离子体,然后提高其密度、温度使其发生聚变反应,反应过程中会产生巨大的能量。2009年,世界上首个全超导非圆截面托卡马克核聚变实验装置(EAST)首轮物理放电实验取得成功,标志着我国站在了世界核聚变研究的前端。2016年2月,中国EAST物理实验获重大突破,实现在国际上电子温度达到5000万度持续时间最长的等离子体放电。2018年11月, EAST实现1亿摄氏度等离子体运行等多项重大突破。天马望远镜天马望远镜作为主力测站先后参加并成功完成了探月工程嫦娥二号、三号卫星的VLBI测定轨任务,大幅提高了VLBI系统的测量能力,为探月系列卫星的VLBI测定轨做出了卓越贡献。今后数年内,将作为主力测站继续参加国家深空探测重大任务。 天马望远镜成功开展谱线、脉冲星和VLBI的射电天文观测。探测到了包括长碳链分子HC7N在内的许多重要分子的发射和一些新的羟基脉泽源,探测到包括北天周期最短毫秒脉冲星在内的一批脉冲星,发现了目前研究热点-银心磁星具有周期跃变现象等,取得重大射电天文观测成果,已实现了对外开放。蛟龙号载人潜水器“蛟龙号”载人潜水器,可运载科学家和工程技术人员进入深海,在海山、洋脊、盆地和热液喷口等复杂海底进行机动、悬停、正确就位和定点坐坡,有效执行海洋地质、海洋地球物理、海洋地球化学、海洋地球环境和海洋生物等科学考察。可搭载海洋仪器设备、传感器在海底进行规范化海试,并获取原位数据。 “蛟龙号”载人潜水器,长、宽、高分别是8.2米、3.0米与3.4米,空重不超过22吨,最大荷载是240公斤,最大速度为每小时25海里,巡航每小时1海里,当前最大下潜深度7062.68米,最大工作设计深度为7000米。大天区面积多目标光纤光谱天文望远镜大天区面积多目标光纤光谱天文望远镜(LAMOST)是一架横卧南北方向的中星仪式反射施密特望远镜。应用主动光学技术控制反射改正板,使它成为大口径兼大视场光学望远镜的世界之最。由于它口径达4米,在曝光1.5小时内可以观测到暗达20.5等的天体。而由于它视场达5°,在焦面上可放置四千根光纤,将遥远天体的光分别传输到多台光谱仪中,同时获得它们的光谱,成为世界上光谱获取率最高的望远镜。它将安放在国家天文台兴隆观测站(右图为效果图),成为我国在大规模光学光谱观测中,在大视场天文学研究上,居于国际领先地位的大科学装置。兰州重离子加速器兰州重离子加速器是中国科学院近代物理研究所负责设计和建造的我国第一台大型重离子加速器系统。它的胜利建成,为我国开辟了中能重离子物理基础研究和应用研究的新领域,标志着我国回旋加速器技术水平进入了国际先进水平,也是激励广大青少年学科学、爱科学、强素质,早成才的生动课堂。HIRFL由离子源、注入器、主加速器、8个实验终端以及束流运输线等主要部分组成,注入器是一台改建的能量常数为69的1.7米扇聚焦回旋加速器,主加速器是一台能量常数为450的大型分离扇回旋加速器。注入器与主加速器联合运行,可以把C到Xe的重离子分别加速到100~10MeV/u的能量。中国散裂中子源散裂中子源是体现一个国家的科技水平、经济水平和工业水平等综合实力的大型科学研究装置。中子散射广泛应用于在物理、化学、生命科学、材料科学技术、资源环境、纳米等学科领域,并有望在如量子调控、蛋白质、高温超导等重要前沿研究方向实现突破。强流质子加速器相关技术的发展也将为一些重要的应用如质子治癌、加速器驱动的次临界洁净核能源系统(ADS)等打下坚实的基础,储备丰富的工程建设和运行经验。散裂中子源的建设不但会对我国工业技术、国防技术的发展起到有力的促进作用,也会带动和提升众多相关产业的技术进步,产生巨大的社会经济效益。
  • 标卓发布HT-60回弹仪检定装置新品
    一、回弹仪检定装置概述回弹仪检定装置和回弹仪弹击拉簧检定仪是国家计量检定规程《混凝土回弹仪》JJG817-2011的专用计量检定装置,供混凝土回弹仪的鉴定部门和生产厂家使用。二、主要技术参数序号项目单位指标1钢砧硬度HRC60±22钢砧重量kg16(+0.3/-0.1)3定位环定位孔中心盖板“100”刻线尺寸mm≤±0.14测量弹击拉簧刚度N/m55 ~ 12005测量弹击拉簧拉伸长度mm75-1406测量弹击锤钩位置,标尺“100”刻线处mm≤±0.17弹击锤起跳位置,标尺刻度0 ~ 1处8测力装置准确度不低于0.3级9位移测量允许误差mm≤±0.0210标尺“100”刻线位置mm≤±0.111砝码 2000gg≤±112指针长度mm20±0.113测力计N1±0.01 三、结构简介1、回弹仪检定装置回弹仪检定器的结构图1和主要零部件名称如图2所示。 图1检定器(1)底座(图中的17);(2)钢砧(图中的1);(3)机壳定位板(图中的7、8组成);(4)综合检定台(图中的2、3、4、5、6、7、8、11、12、13、15、16组成);(5)弹击手柄(图中的14)及手柄Ⅰ、Ⅱ(图中的10、9)。 1.钢砧2.定位环3.定位板Ⅱ4.盖板5.指针滑块6.机壳定位槽7.定位板Ⅰ8.尾盖支架9.手柄Ⅱ10.手柄Ⅰ11.机芯定位槽12.定位按钮13.压紧螺钉14.弹击手柄15.锤夹16.锁紧按钮17.底座 2、弹击拉簧检定仪弹击拉簧检定仪的构造和主要零部件名称如图3所示。检定架(图中的1、4、6、9组成);定位板(图中的2);横架游标(图中的5,可更换附件3中之一件);专用力值砝码(共六个,其中一个为带钩的砝码盘形状)。四、使用说明1、回弹仪检定器(1)机壳定位板可以人工移动,当机壳置于机壳定位槽6后,移动机壳定位板,使其与机壳尾部相碰,顺时针转动手柄Ⅱ9(2个),即可锁紧机壳定位板。(2)机芯就位后,转动弹击手柄14,可使综合检定台移动,机芯便能以钢砧为弹击面进行弹击运动,转动手柄Ⅰ10,即可锁住综合检定台。2、拉簧检定仪(1)拉簧座在定位板2中固定时,应使横架游标5垂直专用尺;(2)用调零螺母4调零时,应以横架游标的上表面为基准线;(3)仪器用砝码符合JJG99-2006 M3等级3、检定各项目的具体操作方法见国家计量检定规程《混凝土回弹仪》JJG817-2011。五、注意事项及保养 1、在使用前应检查活动部位是否灵活,严禁碰击各定位板和随意拆卸零部件;2、各导向槽、导轨、转轴等活动部位应注润滑机油;创新点:1、符合根据最新JJG(苏)59-2006混凝土回弹仪计量检定规程 2、增加了砝码 3、增加主机的长度 4、增加了弹击拉簧标尺的长度 5、申请专利 HT-60回弹仪检定装置
  • 我国大科学装置发展的现状、问题及建议
    大科学装置(large scale scientific facility)是人类发现自然规律、探索未知世界、实现技术变革的大型设施,是取得重大科学突破的保障之一。在中国,大科学装置也常被称为“国家重大科技基础设施”。大科学装置具有推进多学科综合交叉发展、突破高新技术瓶颈的强大支撑能力,是国之重器、科技利器。大科学装置具有明确的科学目标,建设时间长、体量大、投资大,产出是科学知识和技术成果,而不是直接的经济效益。按照不同的应用目的,大科学装置可以被分为专用研究装置、公共实验平台和公益基础设施3种类型。大科学装置已经成为衡量一个国家科技实力和综合国力的重要标志,是维护国家安全、促进经济社会可持续发展必不可少的重要基础设施。中国大科学装置发展基本情况中国大科学装置经历了从无到有、从小到大、从学习模仿到自主创新的过程(图1),在提高国家自主创新能力方面占据重要地位。20世纪80年代,中国以北京正负电子对撞机(BEPC)为标志开始了大科学装置建设的新阶段。之后以中国科学院为主导,陆续建设了一批大科学装置,对促进科技事业和其他各项事业发展起到了积极作用。目前,中国在建和运行的重大科技基础设施项目总量已达57个,数量位居全球前列。中国大科学装置在不同时期呈现出了不同的发展特点。图1 中国大科学装置发展历程1)萌芽期(1949年至改革开放前)。1949年之后,国家主要围绕“两弹一星”的研制工作,布局建设了一些如材料试验堆、点火中子源等研究设施。这些设施虽然不能完全称之为大科学装置,却是大科学装置的萌芽。2)起步期(20世纪80年代初至2000年)。这一阶段布局了10余个大科学装置,主要集中在高能物理学、光学、遥感科学等领域,且主要用于公益科技和专用研究。区域分布上主要以北京地区为主,依托单位基本为中国科学院各个院所。总体来说,此时期大科学装置布局不均衡,发展内容不够全面。3)发展期(2001—2010年)。这一阶段大科学装置呈现出均衡发展趋势,区域分布由北京为主扩展到了中国东部。其中“十一五”期间设施数量呈跨越式增长,共部署了散裂中子源、强磁场等12项大科学装置,覆盖了环境科学、地球科学、粒子物理与核物理、天文学、生命科学等领域,总投资超过60亿元。4)追赶期(2011至现在)。这一阶段中国对大科学装置进行了前瞻部署和系统布局,投入力度持续加大。中国的大科学装置建设无论从数量,还是从投入金额来看,都呈现逐年增加的趋势。在国家发展和改革委员会的规划组织和投资支持下,“十二五”期间,中国启动建设了地球系统数值模拟装置(Earth System Numerical Simulation Facility)、高海拔宇宙线观测站(LHAASO)、高效低碳燃气轮机试验装置等16项重大科技基础设施,总投资超过了100亿元“。十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,按照“成熟一项、启动一项”的原则,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。“十四五”期间,中国拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。党的十八大以来中国大科学装置建设发展特点党的十八大以来,中国大力实施创新驱动发展战略,在大科学装置建设上多点发力。围绕战略导向、前瞻引领、应用支撑、民生改善等方面建设一批大科学装置。北京怀柔高能同步辐射光源(High Energy Photon Source,HEPS)已完成全部土建结构施工;合肥聚变堆主机关键系统综合研究设施(CRAFT)园区已经启用;稳态强磁场、500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)、散裂中子源等一批“国之重器”陆续建成使用;“慧眼”“悟空”“墨子”等科学实验卫星成功发射,“奋斗者”号全海深载人潜水器成功挑战马里亚纳海沟等。总之,近10年来,中国大科学装置建设持续推进,正在加速实现从跟跑、并跑向领跑的转变,为原始创新和关键技术攻关提供更强力的支撑。01 统筹规划、政策支持力度不断加大党的十八大以来,为促进大科学装置健康发展,党中央、国务院及省市等机构不断出台相关政策,从国家层面、省市层面进行战略部署。《国家创新驱动发展战略纲要》《国家重大科技基础设施建设中长期规划(2012—2030年)》《国家重大科技基础设施“十三五”规划》《国家重大科技基础设施管理办法》等政策文件均强调要以大科学装置为核心,打造高端引领的创新增长极,并对中国大科学装置的布局、投资、建设和管理进行了阐述,有效地推动了大科学装置建设与发展。“十四五”时期,《“十四五”国家科技创新规划》明确了“十四五”大科学装置建设重点。北京、上海、安徽作为综合性国家科学中心所在地,围绕科技前沿和国家重大战略需求,在各自的“十四五”规划中明确提出要加强大科学设施布局,跨区域整合创新资源,形成大科学装置集群。《粤港澳大湾区发展规划纲要》提出,大湾区深入实施创新驱动发展战略,深化粤港澳创新合作,加快推进大湾区重大科技基础设施建设。在这些规划、政策的推动下,中国大科学装置规模不断增长,综合效应日益显现。02 世界级大科学装置集群初步成型大科学装置集群在技术突破、科学研究和支撑经济社会发展等方面具有一定优势。北京、上海、合肥、粤港澳等地依托建设综合性国家科学中心,初步形成集群化态势、具有一定国际影响力的大科学装置集群。北京怀柔综合性国家科学中心距核心城区相对较远,重点聚焦基础研究;上海张江综合性国家科学中心紧邻上海市中心,重点推动小而精的应用转化;合肥综合性国家科学中心集中布局一批大科学装置集群和交叉前沿研究平台,侧重于科学发现;粤港澳大湾区综合科学中心依靠深圳、广州、东莞、香港等多点城市构建大科学装置集群。1)怀柔是北京地区大科学装置最为密集的区域。北京怀柔综合性国家科学中心自获批建设以来,在空间科学、物质科学、能源科学等领域布局建设了5个大科学装置(表1),同时集聚了一批前沿交叉研究平台、科教基础设施、重大产业技术开发平台,初步形成了促进重大原始创新成果产出的战略高地。落户于这里的5个大科学装置中,有的抢先“开跑”,也有的正在加速建设。地球系统数值模拟装置、综合极端条件实验装置已投入运行;多模态跨尺度生物医学成像设施工程已于2022年11月竣工;子午工程二期在2023年建设“收官”;高能同步辐射光源预计2025年完成装置建设。这些大科学装置将为北京国际科技创新中心建设提供重要支撑。表1 北京怀柔综合性国家科学中心大装置基本情况2)上海张江基本建成光子大科学装置集群。上海以张江实验室为依托,以重大任务实施、重大平台建设为牵引,先后建设了上海光源一期、国家蛋白质科学研究(上海)设施、硬X射线自由电子激光装置、软X射线自由电子激光装置等一批大科学设施,覆盖了生命科学、光子科学、能源科学、海洋科学等领域。据《2021上海科技进步报告》显示,截至2021年底,上海在建、在用的大科学设施已达到14个,其中已运行的有8个、在建的有6个(表2)。经过多年建设发展,上海张江初步形成了全球光科技领域规模大、种类全、功能强的光子大科学装置集群,为建设张江综合性国家科学中心,实现上海建设具有全球影响力的科技创新中心目标奠定了坚实基础。表2 上海运行、在建设施基本情况3)安徽合肥着力打造世界一流的大科学装置集中区。为更好推进合肥综合性国家科学中心建设,合肥在滨湖科学城布局建设了大科学装置集中区,布局建设8个大科学装置。截至2022年,安徽合肥已建成同步辐射装置、全超导托卡马克、稳态强磁场装置3个大科学装置。2017年9月,稳态强磁场实验装置通过国家验收,标志着中国成为继美国、法国、荷兰、日本之后第5个拥有稳态强磁场的国家。2022年3月,合肥第4个大科学装置——聚变堆主机关键系统综合研究设施(CRAFT)园区正式交付启用(表3)。大科学装置是合肥综合性国家科学中心的重要基石,以大科学装置为基础,提高原始创新能力,支撑综合性国家科学中心高质量发展,打造有国际影响力的创新之都指日可待。表3 合肥运行、在建设施基本情况4)粤港澳大湾区依靠产业发展构建大科学装置集群。加快布局建设大科学装置,是建设粤港澳大湾区综合性国家科学中心科技和产业创新高地的必然选择。粤港澳大湾区综合性国家科学中心的核心大科学装置——中国散裂中子源于2018年8月通过验收工作。作为继英国、美国、日本散裂中子源之后的世界第4台脉冲式散裂中子源,它的建成改变了以往中国科学家只能到国外散裂中子源上申请实验机时的历史。目前,深圳正在规划建设大科学装置集群,加快布局“高精尖”实验室。光明科学城规划建设提速,材料基因组、合成生物研究、脑解析与脑模拟等方面的大科学装置加快建设(表4)。这些重要的大科学装置,未来将为粤港澳大湾区产业升级提供重要保障。表4 大湾区部分设施基本情况03 自主创新设计能力不断增强“十二五”以来,中国大科学装置设计建造由以前的跟跑为主,逐步转到跟跑、并跑的局面,许多装置自主创新设计能力不断增强。从20世纪80年代末,依托于北京正负电子对撞机的第一代同步辐射光源,到安徽合肥光源(第二代)、上海同步辐射光源(第三代),再到北京怀柔高能同步辐射光源(第四代),大装置分辨率、亮度等性能不断提高。同时,怀柔同步辐射光源采用了研究团队自主研制的新型X射线像素阵列探测器样机,实现了加速器、光束线等多个关键技术的创新。北京怀柔的地球系统数值模拟装置是中国研制成功的首个具有自主知识产权的地球系统模拟大科学装置。被誉为“中国天眼”的FAST是世界上最大和最灵敏的单口径射电望远镜,且具有中国自主知识产权。被誉为“人造太阳”的合肥全超导托卡马克核聚变实验装置是中国自行设计研制的世界上第一个全超导非圆截面托卡马克核聚变实验装置。04 集聚人才的“磁石效应”日益凸显人是科技创新中最关键的因素。大科学装置在培养和凝聚人才、促进国际科技合作方面能够发挥独特作用。例如,中国科学院合肥物质科学研究院强磁场中心为王俊峰、张欣、王文超等“哈佛八剑客”提供了施展才华的舞台;上海光源不仅吸引集聚了世界顶尖科学家,也培育了大量经验丰富的大科学装置建设和运营工作人员,支撑着中国光子科学的创新发展。大科学装置在建设和运行过程中,集聚和培养了一大批懂科学、懂工程、懂技术、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以中国散裂中子源为例,中国科学院高能物理研究所在东莞集聚和培养了一支有400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。05 开放共享程度有所增加大科学装置作为推动科技创新的重要平台,具有开放性、国际化特点,其不仅能够向世界展示中国科技水平与经济实力,同时也能够促进全球科学家与中国的合作交流。中国大科学装置正向世界敞开怀抱。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。北京怀柔综合性国家科学中心的综合极端条件实验装置首批5个实验站进入开放运行阶段,2022年1月起正式面向中外用户开放预约使用,截至2022年2月已收到来自国内外团队的50余份申请。江门中微子实验获得国际实物贡献约3000万欧元,共有境外16个国家和地区约300多位科学家参加。自2007年超导托卡马克核聚变实验装置正式投入运行以来,中国科学院等离子体物理研究所已与30多个国家的近100多个研究机构建立了广泛而深入的合作伙伴关系,近年来多次帮助国际合作伙伴建造聚变研究部件。这些都充分表达了中国国际科技合作开放包容的积极态度。高水平的科研成果不断涌现01 突破一批关键核心技术党的十八大以来,中国在大科学装置建设上持续发力,也催生出一批世界级成果,覆盖能源、物理、材料、生命科学等多个前沿交叉和高科技研发领域,提升了基础前沿研究水平和自主创新能力。“中国天眼”实现了跟踪、漂移扫描、运动中扫描等多种观测模式,于2018年4月首次发现距地球约4000光年的毫秒脉冲星。2017年,全超导托卡马克核聚变实验装置首次实现了稳定的101.2s稳态长脉冲高约束等离子体运行,创造了新的世界纪录。2022年5月,中国“墨子号”实现1200km地表量子态传输新纪录,抢占了量子科技创新的制高点。大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率,该结果对中微子物理的未来发展方向起着决定性作用。02 产生一批高水平项目和研究成果截至2021年底,上海光源一期累计提供实验机时388649h,用户累计发表SCI论文近8000篇。国家蛋白质科学研究(上海)设施全年为用户提供科研机时8.27万h,用户发表SCI论文445篇。截至2021年9月,合肥稳态强磁场实验装置共运行了45万多h,依托装置开展了近2700项课题研究、发表学术论文1700余篇,其中一区期刊论文404篇、Nature Index期刊文章接近400篇,推动了中国稳态强磁场下前沿科学研究。散裂中子源的高度开放共享也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关,用户单位及完成课题数逐年增加,自建成投入使用以来,全球注册用户超过3400人,完成课题600多项,有力推动了中国中子散射应用和关键技术的重大发展。03 催生一批新成果和新应用大科学装置产生了一大批重大原创成果,催生了一批战略性产业技术。通过建设若干重大科技成果概念验证中心和中试平台,推动大科学装置衍生技术就地交易、就地转化、就地应用,促进“国之重器”走进日常生活。“中国天眼”在建造过程中突破了很多技术瓶颈,如抗疲劳索网技术在港珠澳大桥工程建设中得到了应用。依托合肥稳态强磁场装置取得了超预期的转化成果,包括催生出多个国家I类创新靶向药物,授权发明专利30余项,孵化出高科技企业4家。国家蛋白质科学研究(上海)设施解析了新冠肺炎病毒结构,有效助力疫情防控和疫苗研发。上海光源助力破解新冠肺炎病毒关键蛋白结构,为抗病毒药物研制提供了必要的基础数据。总之,中国大科学装置正以越来越多世界级创新成果,显示着“国之重器”的巨大能量。中国大科学装置建设发展过程中存在的问题及建议01 现存问题近年来,中国大科学装置在推进科技强国建设、打造战略科技力量中发挥了重要作用,取得了一系列原始创新成果,但因中国大科学装置建设起步较晚,与美国、德国等世界先进国家相比,在建设、管理等方面仍有一定差距,主要存在以下问题。1)后续经费投入仍需充分考虑。大科学装置建成后,还有后续巨大的运营成本,在运行过程中每年仍需要大量的投入,如运行费用、科研费用和改进发展费用等。例如,兰州重离子加速器国家累计投资逾10亿元,每年还需1.1亿元用于运行和维护更新。散裂中子源每年投入进行设备维护,保障运行和开放的经费达到设备建设经费的10%~20%。发达国家经验显示,对于大科学装置后续的科研投入尤其是人员经费,大多要占建设经费的10%~50%。总体来看,中国基础研究投入只占研发经费的5%,而大科学装置建设经费仅占基础研究经费投入的约5%,对比美国这2个数据分别是15%和10%。可见中国大科学装置建设经费投入与发达国家还有一定差距。2)关键部件的自主创新需进一步加强。中国目前在役大科学装置技术水平总体上以跟踪为主,支撑大科学装置建设的很多相关设备从国外采购,关键设备与工艺技术对国外产品依赖严重,存在卡脖子风险。以北京怀柔综合性国家科学中心多模态跨尺度生物医学成像设施为例,设施有价值12亿的仪器装备,其中30%由改造升级而来,30%由中国自主研发制造,其余40%来自国外购买。3)开放合作共享还不足。中国大科学装置建设主要是采取自行建设,建成后依托设施参与国际合作的模式。从国际合作来看,中国在运行的大科学装置中,由国内外共同参与重大科技项目建设的大科学装置占比不足10%,以自身大科学装置为基础参与国际科技项目合作的大科学装置占比约30%。而且在国际形势较为复杂的背景下,大科学装置国际合作和人才引进存在一定困难。02 建议统筹推进大科学装置布局建设,充分发挥大科学装置促进科技创新的重要作用是建设科技强国的必然要求。利用大装置解决国家战略需求中的前瞻性、基础性和战略性问题,突破“卡脖子”技术,是实现高水平科技自立自强,把创新发展主动权牢牢掌握在自己手中的重要举措。面对以上问题,结合中国大科学装置建设、发展的实际情况,提出以下几方面建议。1)拓展大科学装置经费投入来源。据统计,过去10年,大科学装置投资建设基本稳定在每5年160亿元左右,平均每年约32亿元,而且这些费用往往不包括研究经费、人员费、配套经费等。应遵循全生命周期管理理念,在大科学装置申报论证阶段就充分考虑到大科学装置维护、更新和提升所需的资金。明晰国家和地方权责,协调地方政府和社会力量共同参与大科学装置的建设。在中国科学院与国家自然科学基金委员会联合设立“大科学装置科学研究联合基金”支持基础研究的基础上,由企业和政府共同出资设立设施后期保障基金,参与企业在使用设备时可优先考虑或降低收费标准等。2)建立技术联盟,解决大科学装置关键技术卡脖子风险。以大装置常用的仪器仪表为例,目前中国高端仪器仪表产品等的关键核心零部件基本依赖进口,仪器仪表整机厂家存在着核心技术“空心化”问题。高端科研仪器设备市场基本由美国、欧洲、日本的企业控制。美国《化学与工程新闻》杂志公布的2018年度全球仪器公司TOP20排位榜中,有8家是美国公司,7家来自欧洲,5家为日本公司。为降低大科学装置核心零部件对国外产品的依赖度,鼓励具有专项技术的高科技企业、科研院所与高校形成大科学装置技术研发联盟,对相关技术联合攻关,突破大科学装置相关工艺与装备技术难点,实现器件自主研发和国产化。3)利用大科学装置开展更多国际合作。在大科学装置建设运行中,面向国外开放,引入国际合作者,依托这些设施开展联合研究、人员交流、人才培养等,提升中国国际科技合作水平。充分考虑国际科技安全,加强以中国为主的大科学装置的国际合作。同时积极参与国际大科学装置项目,积累建设管理、运行和维护经验等。结论大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技自立自强必备的科技基础设施。面向未来,需前瞻性谋划和系统性布局一些重大的大科学装置,不断夯实国家科技创新的平台基础。依托大科学装置,推动中国在基础研究和原创性、引领性科技攻关方面取得更多、更大的突破,助力实现科技强国的伟大梦想。
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 分析仪器与装置前沿论坛在武汉召开
    仪器信息网讯 2015年5月10日上午,中国化学会第十二届全国分析化学年会之分析仪器与装置前沿论坛在洪山礼堂成功举办,共130余人出席了此次论坛。来自四川大学、武汉大学、厦门大学、北京大学、大连化物所、北京理工大学等单位的知名专家学者参加了此次论坛,并作了精彩的报告。 会议现场   四川大学段忆翔教授作了题为&ldquo 激光诱导击穿光谱(LIBS)分析仪器的研发与展望&rdquo 的报告。据段忆翔介绍,激光诱导击穿光谱(LIBS)技术具有无需样品前处理、快速、多元素分析、远距离探测等特点,广泛应用于石油勘探、地质勘探、材料分析、冶金和燃烧、环境监测、医学与生物治疗、艺术品成分鉴定、军事及国防等领域。在他的带领下,课题组成功研发了便携式激光诱导击穿光谱仪和激光诱导击穿-拉曼光谱分析仪等系列仪器产品,为分析仪器行业的发展做出了很多努力。 四川大学段忆翔教授   武汉大学胡继明教授作了题为&ldquo 激光拉曼光谱:生物医学分析的有力手段-从概念到仪器&rdquo 的报告。据胡继明介绍,从概念向诊断仪器的转变是医学拉曼光谱未来的发展方向,同时拉曼散射光谱在疾病相关的生物样品上的研究已经取得了阶段性的进展。由他带领的课题组目前正在研究拉曼光镊系统及其在生物细胞中的应用,相关研究成果已经发表了学术论文。 武汉大学胡继明教授   厦门大学颜晓梅教授在会议上的报告题目为&ldquo 细胞外囊泡的单颗粒水平多参数定量分析系统&rdquo 。据颜晓梅介绍,目前由她带领的课题组正在研制超高灵敏流式检测装置,并在国际上首次实现了发光能力低于单分子荧光的单个纳米颗粒散射光信号的直接检测,另外,该装置在化学、材料、生命等基础科学和生物制药领域具有重要的应用价值。 厦门大学颜晓梅教授   北京大学刘虎威教授在会议上的报告题目为&ldquo 微萃取技术与敞开式离子化质谱联用实现快速检测&rdquo 。刘虎威在报告中介绍,微萃取技术与敞开式离子化质谱联用在药物、食品、环境分析中有很好的应用前景,对于目标分析物较少的分析,可以省去色谱分离,简化分析过程等优点。另外,兼有样品富集和信号增强功能的基质材料是他今后重点研究方向。 北京大学刘虎威教授   中山大学陈缵光教授的报告题目是&ldquo 微流控芯片系统-斑马鱼胚胎模型对药物复合毒性的研究&rdquo 。 中山大学陈缵光教授   北京理工大学徐伟博士的报告题目是&ldquo 膜电喷雾电离-超高灵敏可直接测量体液中生物标志物的质谱离子源&rdquo 。 北京理工大学徐伟博士   另外,大连化物所侯可勇教授、关亚风教授、李海洋教授、长春应化所牛利教授、赛默飞世尔科技中国有限公司许群博士等也在会议上做了精彩的报告。   相关新闻:中国化学会第十二届全国分析化学年会在武汉召开 撰稿:张葳
  • 高压灭菌器做九管法时如何避免气泡残留在培养基
    大肠菌群细菌多存在于温血动物粪便、人类经常活动的场所以及有粪便污染的地方,人、畜粪便对外界环境的污染是大肠菌群在自然界存在的主要原因。大肠菌群是评价食品卫生质量的重要指标之一。而检测食品中大肠菌群的方法中,国内采用的进出口食品大肠菌群检测方法主要有国家标准,国家标准的三步九管法,即乳糖发酵试验、分离培养、证实试验。 由于大肠菌群指的是具有某些特性的一组与粪便污染有关的细菌,即:需氧及兼性厌氧、在37℃能分解乳糖产酸产气的革兰氏阴性无芽胞杆菌。因此大肠菌群的检测一般都是按照它的定义进行。1.乳糖发酵试验:样品稀释后,选择三个稀释度,每个稀释度接种三管乳糖胆盐发酵管。36±1℃培养48±2h,观察是否产气。2.分离培养:将产气发酵管培养物转种于伊红美蓝琼脂平板上,36±1℃培养18-24h,观察菌落形态。3.证实试验:挑取平板上的可疑菌落,进行革兰氏染色观察。同时接种乳糖发酵管36±1℃培养24±2h,观察产气情况。 在乳糖发酵试验工作中,经常可以看到在发酵倒管内极微少的气泡(有时比小米粒还小),有时可以遇到在初发酵时产酸或沿管壁有缓缓上浮的小气泡。实验表明大肠菌群的产气量,多者可以使发酵倒管全部充满气体,少者可以产生比小米粒还小的气泡。 在试验过程中,会用到高压灭菌器来进行灭菌,九管法灭菌时,大肠菌在高温下会产生气泡,如果用的是ALP高压力灭菌锅,可以通过进入工程师菜单,调整在升温过程中的排气时间,可以有效的排走残留在培养基中的气泡。初始界面灭菌中灭菌结束 培养基中有气泡 目前市面上,高压灭菌器品种繁多,有进口的有国产的高压灭菌器,高压灭菌器产品质量参差不齐。在业内质量口碑最好的当属东南科仪总代理的日本ALP高压灭菌器,日本ALP高压灭菌器具备《进口压力容器生产许可证》、《进出口锅炉压力容器安全性能检验证书》以及高压灭菌器上的压力表和减压阀,送当地计量部门计量后取得计量证书。 ALP高压灭菌器开关轻松简便,电子锁仅在通电时才可开启,避免因断电或关机时意外泄漏未灭菌物质。高压灭菌器可清晰显示所处的状态,如温度、压力、程序及操作过程中的其它相关信息。高压灭菌器脉冲空气净化反复进行,直至压力高于对应温度而产生过饱和蒸汽压保证灭菌效果。ALP高压灭菌器可根据被灭菌物质的情况调整蒸汽排放情况,ALP高压灭菌器具备快速冷却功能可使灭菌后快速降温到80℃以下的安全温度。ALP高压灭菌器通过真空泵及经0.2um的滤膜过滤后的热空气快速干燥样品,使其快速可用。高压灭菌器标配物温探头安装孔,选配物温探头,方便进行内部灭菌效果的验证。ALP高压灭菌器三重脉冲,预真空设备配置强大的真空泵强行排空腔内留存的空气,使饱和蒸汽良好的渗透入灭菌物品中,从而确保充分有效的灭菌效果。 更多详细参数可关注ALP高压灭菌器中国总代理:东南科仪!
  • 蛋白质结构研究大装置安家上海
    园区微晶体结构研究站 园区荧光激发细胞分选仪 海科路园区设施 科研人员研究大分子复合体  7月28日上午,全球生命科学领域首个综合性大科学装置——蛋白质科学研究(上海)设施(以下简称“上海设施”)在上海通过国家验收。中国科学院院长白春礼、上海市市长杨雄、国家发改委副主任林念修等出席验收会。  据介绍,作为国家重大科技基础设施项目之一的上海设施,主要围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业的发展需求,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化。目前已建成用于蛋白质结构研究的9大技术系统。  验收委员会认为,上海设施建成了国际一流的蛋白质科学研究支撑体系,是全球生命科学领域以各种大型科学仪器和先进技术集成为核心的首个综合性大科学装置,其总体指标达到国际先进水平,部分指标达到国际领先水平。  白春礼表示,建设设施不是最终的目的,吸引全国和全世界的优秀科学家来从事高水平科研工作、产出重大科技成果才是应该致力追求的目标。上海设施要成立设施科技委员会和用户委员会,建立科学民主开放的课题遴选制度,不断扩大设施开放共享。  据统计,上海设施2014年5月开放试运行,截至2015年7月,各系统累计运行5万多小时,共执行用户课题500多个 服务60多家单位,以中科院和高校科研机构为主,覆盖北京、上海、香港等地 同时吸引了一批国际药企和国内外优秀科学家开展前沿课题研究。用户使用上海设施的设备和服务做出了一系列重要成果,有多项研究成果发表在Nature、PNAS等高水平国际学术刊物上。
  • 进一步推动大科学装置建设
    科学仪器是人类感知能力的拓展。随着人类探索未知的进程不断推进,科学研究的复杂性、交叉性越来越强,对仪器设备的依赖度随之提高。仪器设备越来越复杂且规模越来越大,逐步发展成大科学装置。大科学装置是科学发展的必然趋势,也是提升国家原始创新能力、催生尖端科研成果的“利器”。自上世纪80年代末的北京正负电子对撞机开始,我国相继建成了一批大科学装置,为科技创新提供了有力支撑。但也要看到目前我们的资金投入还有所不足,“十四五”期间应进一步增加大科学装置的建设经费投入。在具体建设过程中,考虑到大科学装置建设一般需要一定的酝酿期,应注重开展前瞻性的设计和技术预研。在大科学装置的选择方面,既要考虑国内各领域的发展实际,保证一定程度的领域覆盖面,确保重要方向有机会从填补空白逐渐发展到国际并跑;也要有亮点,实现装置国际领先。此外,应进行充分的国际合作,包括评审、评估等。
  • “DNA损伤单分子偏振成像检测装置研制”项目通过验收
    12月9日,中国科学院计划财务局组织专家对生态环境研究中心汪海林研究员承担的“DNA损伤单分子偏振成像检测装置研制”项目进行现场验收。验收组专家听取了项目组的工作报告、使用报告、财务报告、测试组的测试报告,现场检查了实验装置的运行情况,审核了相关档案材料,经提问和讨论,验收专家组认为,该项目完成了任务书规定的各项任务,一致同意通过验收。   研制完成的“DNA损伤单分子偏振成像检测装置”,将高效快速分离和激光诱导荧光检测技术集成为一体,可高灵敏地检测DNA损伤产物 融入荧光偏振成像技术,可提供污染物引起DNA损伤的分子转动和构象等动态信息。   该装置为阐明环境暴露引起的DNA损伤的分子识别、修复及突变机制等环境健康风险评估研究提供了新颖的分析平台,在提高人们的健康卫生水平方面也具有潜在的应用价值。
  • 浙大牵头建世界最大超重力实验装置
    p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c6cdcbc2-bdca-4d09-a9e8-e3b27b531473.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em text-align: center " 上图:离心机ZJU400,迷你版CHIEF /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201901/uepic/8bdc045f-b873-44a8-a63c-0b7568ae106e.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em text-align: center " 下图:陈云敏院士 /p p style=" text-indent: 2em text-align: justify " 最近,浙江大学牵头建设的国家重大科技基础设施——超重力离心模拟与实验装置(CHIEF)项目可行性研究报告获得了国家发展和改革委员会批复。这也是浙江省建设的首个国家重大科技基础设施项目。 /p p style=" text-indent: 2em text-align: justify " 该项目选址杭州余杭区未来科技城,建设时间为5年,占地约89亩,总投入将超过20亿人民币。 /p p style=" text-indent: 2em text-align: justify " 什么是超重力离心模拟与实验装置?它有什么作用? /p p style=" text-indent: 2em text-align: justify " 为了揭开这高大上设备的庐山真面目,钱报记者来到浙大紫金港校区,专访了负责该项目的陈云敏院士团队,并独家参观了实验装置。陈院士是浙大建筑工程学院的教授,也是该项目的首席科学家。 /p p style=" text-indent: 2em text-align: justify " 原来,这套高科技设备具有“压缩时空”的神奇功能,它能让研究人员“跨越时间”,用一天模拟一千年,还能在实验室里“跑高铁”! /p p style=" text-indent: 2em text-align: justify " 什么是超重力 /p p style=" text-indent: 2em text-align: justify " 它能压缩时空,一眼万年 /p p style=" text-indent: 2em text-align: justify " “浙大的这个CHIEF,是‘国家重大科技基础设施’,那是指大型复杂的科学研究装置或系统,是能推动国家科学和技术发展的‘国之重器’。和CHIEF同样级别的装置,还有北京正负电子对撞机、上海光源、天眼FAST射电望远镜等等。”陈云敏院士介绍。 /p p style=" text-indent: 2em text-align: justify " CHIEF项目是“十三五”时期优先建设的10项国家重大科技基础设施项目之一,也是在浙江省建设的首个国家重大科技基础设施项目。 /p p style=" text-indent: 2em text-align: justify " 朱斌教授是该项目的副总工程师,他向记者介绍了和超重力相关的知识。 /p p style=" text-indent: 2em text-align: justify " 地球表面的任何物体都会受到地球重力的作用,人能够站立在地面上,物体会下落,都是重力的原因。 /p p style=" text-indent: 2em text-align: justify " 科学家们把地球上的重力叫做常重力,用1g(重力单位)来表示,大于1个g的就叫超重力。比如航天员乘坐飞船返回地球时,会受到4个g的超重力,相当于承受了4个自己的重量。 /p p style=" text-indent: 2em text-align: justify " 在超重力环境下,会发生一些神奇效应。因为这些神奇效应,科学家们可以完成很多在常重力环境中难以完成的实验。 /p p style=" text-indent: 2em text-align: justify " 首先,超重具有“缩尺”作用。朱斌打了一个比方,“举个例子,想知道100层楼高的房子对地基的影响,那么我们只需要造1层楼高的模型,将它放在100个g的超重力作用下,这时,1层楼对地基的影响效果,就相当于常重力下100层楼对地基影响的效果。这就是缩尺作用。” /p p style=" text-indent: 2em text-align: justify " 超重力场中还存在“缩时”效应,科学家们可以利用这点极大地缩短实验时间。 /p p style=" text-indent: 2em text-align: justify " 陈云敏院士给记者举了一个例子。如果在超重力离心机上搭载土体污染物迁移实验装置,就可以模拟污染物在地下大尺度、长历时的运移。如果在现实中研究污染物的迁移,需要花费几千年,但在超重力场中模拟实验,可能只需要一天的时间,可谓“山中方一日,世上已千年”。 /p p style=" text-indent: 2em text-align: justify " 超重力有什么用 /p p style=" text-indent: 2em text-align: justify " 可以在实验室里“跑高铁” /p p style=" text-indent: 2em text-align: justify " 超重力的“缩时”和“缩尺”等效应,可以让研究者做很多现实中无法操作的实验。而想要产生一个超重力场,就需要超重力离心机。 /p p style=" text-indent: 2em text-align: justify " CHIEF就是这样一个超重力装置。在CHIEF预研阶段,浙大团队就利用超重力,做出了不少成果,比如“高速铁路列车运行动力效应试验系统”。 /p p style=" text-indent: 2em text-align: justify " 这个系统的设计是为了控制高铁在我国东南沿海深厚软土地区运行时的沉降。 /p p style=" text-indent: 2em text-align: justify " 怎么做实验呢?在现实中,不可能真的在东南沿海修一条轨道、造一辆高铁去研究,这需要花费巨大的金钱和时间成本。但是利用超重力环境中的缩尺、缩时等效应,便可以用一个小的模型来模拟现实中高铁的运行,来研究和验证各种方案。 /p p style=" text-indent: 2em text-align: justify " CHIEF预研实验就提供了这样的条件。这个“在实验室里跑高铁”的项目后来入选了2017年度“中国高等学校十大科技进展”。陈云敏院士说,“CHIEF研发出来可极大拓展我们的试验研究能力,做原来没法做的试验。” /p p style=" text-indent: 2em text-align: justify " 该项目选址杭州余杭区未来科技城,建设时间为5年,占地约89亩,总投入将超过20亿人民币。建成后,它将填补我国超大容量超重力装置的空白,成为世界领先、应用范围最广的超重力多学科综合实验平台。 /p p style=" text-indent: 2em text-align: justify " 目前,世界上离心机最大容量为1200g· t(重力加速度× 吨),而CHIEF容量将会达到1900g· t。它是一个构建从瞬态到万年时间尺度、从原子级到千米级空间尺度、从常温常压到高温高压等多相介质运动的实验环境的“大家伙”。 /p p style=" text-indent: 2em text-align: justify " 记者现场探访 /p p style=" text-indent: 2em text-align: justify " 超重力离心机长啥样 /p p style=" text-indent: 2em text-align: justify " 那么,CHIEF到底长什么样子?它是怎样产生超重力场的呢? /p p style=" text-indent: 2em text-align: justify " 此前,浙大已经建成一个“迷你版”装置ZJU400,它在浙大建工实验大厅的地下室。陈云敏院士带钱报记者近距离触摸了这个装置。 /p p style=" text-indent: 2em text-align: justify " 这个圆形地下室占地约50平方米,里面有且仅有一个天平状的机器,并占据了整个房间。陈云敏院士指着机器向记者介绍,这就是ZJU400,它的“手臂”有4.5米长,两个转轴上各搭载了一个边长1米的正方体实验舱,实验舱的最大负荷有3吨。在它转动到一定速度后,实验舱在离心力的作用下,舱内的超重力场就生成了。这是一台离心加速度可达到150倍重力加速度的离心机。 /p p style=" text-indent: 2em text-align: justify " 未来的CHIEF的转臂半径可达9m,实验舱是3m,最大负荷可达32吨,是它的10倍。ZJU400可以说是一个微型CHIEF。 /p p style=" text-indent: 2em text-align: justify " 为什么要把机器放在地下室?这主要是出于安全考虑,“因为离心机上面搭载的吊篮会高速旋转。” /p p style=" text-indent: 2em text-align: justify " “不过,在高速旋转的环境中,人是不能在实验舱内操作实验的。”陈云敏院士解释,实验舱内有机械手臂,它们所有的动作都是在中央控制台的控制下进行的。在这个地下室里面安装了很多传感器,能把检测到的信号和数据传输到控制室。 /p p style=" text-indent: 2em text-align: justify " 既然已经有迷你版,为什么还要建设CHIEF这个如此庞大的超重力离心机呢? /p p style=" text-indent: 2em text-align: justify " “日常生活中,我们用的洗衣机也有很大的离心力,在医学实验里使用的离心机设备的离心力更大,但是它们都有一个缺点:所能负荷的东西少,抗不平衡能力差。”陈云敏院士说,“所以我们研究的核心就是在高速的离心加速度上增加它所能承担的重量。” /p p style=" text-indent: 2em text-align: justify " 早在去年一月份,CHIEF项目建议书就获得了国家发展和改革委员会的批复。在这一年多里,浙大的科学家团队做的是“找茬”的预研工作,在正式开工之前,把可能碰到的技术难题都提出来。 /p p style=" text-indent: 2em text-align: justify " “如果把超重力离心机主机比作一个挑着扁担在转圈的人,那么如何让他不‘晕头转向’,就是在预研阶段要解决的难题。”陈云敏院士说。 /p
  • 走进中国散裂中子源:这个装置挺“卷”
    作者:倪思洁 来源:中国科学报8月中旬,广东东莞。天气时晴时雨,空气潮湿闷热,郁郁葱葱的荔枝林里,我国迄今为止已建成的、单项投资规模最大的大科学工程——中国散裂中子源正在进行暑期停机检修。2018年8月23日,中国散裂中子源项目通过国家验收,正式投入运行。从那时起,这片昔日的荔枝林里,人气就起来了。这里的年均公众参观访问量超1万人次,最火爆的一次线下科普活动中,科研人员半天里就接待了6000人次,前来参观的小汽车一直从中国散裂中子源的大门口排到高速路口。不仅如此,科学界和产业界对中国散裂中子源机时的竞争也很激烈,项目申请书逐年成倍增加,以至于每100份申请书中,只有29份能成功。这台已运行4年的大装置为何如此“火爆”?趁着停机检修,《中国科学报》记者深入实地一探究竟。红的、绿的、蓝的、黄的… … 好看:五彩斑斓的“黑科技”每年,中国散裂中子源都会放“暑假”,停机时间长达一个半月到两个月,这段时间,科研人员要给装置做“保养”。中国散裂中子源是由国家发改委立项支持建设的国家重大科技基础设施,法人单位是中国科学院高能物理研究所。这个装置让中国成为继英国、美国、日本后世界第四个拥有脉冲散裂中子源的国家。散裂中子源常被比作“超级显微镜”,因为它能够用加速器加速质子打到靶上产生的中子,来探索物质微观结构。它的源头——加速器系统,像卧龙一般,藏在地下。地下17米,空调和新风系统让原本湿热的空气变得干爽。沿着亮绿色走道向前,人们能看见一个五彩斑斓的“黑科技”世界。黄色的是可以让粒子“飞奔”起来的漂移管直线加速器系统,蓝色的是可以把粒子聚成一束的四极磁铁,红色的是可以让粒子以15度角“拐弯”的二极磁铁… … 它们先是串成一条长串,之后又围出一个大环。长串部位是直线加速器,环形部位是快循环同步加速器。看似庞大笨重的装备,安装精度要达到10微米到百微米级别,使得自然界微小的物质-质子,能够按要求得到控制并加速。一旦运行起来,每1秒钟,快循环加速器会像旅游大巴一样“接待”25波等待加速的负氢离子。每波负氢离子“上车”后,会转换为质子,并在0.02秒里沿着快循环同步加速器跑约20000圈,直到速度达到0.92倍光速。接着,接近光速的质子束像“微型子弹”一样,冲向重金属靶,金属靶的原子核被撞“碎”,科学家又用特殊装置把“碎片”里不带电的中子降速后,引入一台台谱仪中。谱仪位于离加速器隧道不远的地方,同样五彩斑斓。中国散裂中子源一期共建了3台谱仪,分别是有着绿色外壳的通用粉末衍射仪、小角中子散射仪,以及有着蓝色外壳的多功能反射仪。4年来,中国散裂中子源还与粤港澳大湾区高校、研究机构等合作建设了若干条谱仪,以满足全国及地方研究机构和企业的需求。红的、绿的、蓝的、黄的… … 以靶站为中心,已经建成和正在建设的谱仪向四面伸展,让中国散裂中子源看起来像一朵绽放的七色花。“我们的设备国产化率达到90%以上。”散裂中子源科学中心主任、中国科学院高能物理研究所副所长陈延伟告诉《中国科学报》,全国近百家合作单位完成了装置各项设备的研制与批量生产,许多设备达到国际领先或先进水平。5000、97%、800、122%… … 好用:超级显微镜的“超能力”在中国散裂中子源,科研人员喜欢用数字说话。最让他们自豪的一个数字是“5000”。在这里,时间不按年、月、日算,而是按小时算。“我们每年打靶提供中子束流的时间在5000个小时。”陈延伟说。5000小时,意味着一年8700多小时里,中国散裂中子源大部分时间都在产生中子,开展实验。“国际上的其他三台散裂中子源,英国、日本每年的中子束流时间一般都在4000小时左右。”陈延伟说。另一个让他们自豪的数字是“97%”。“2020年到2021年,我们的实际运行效率超过了97%,这是全球其他散裂中子源都无法达到的效率。”散裂中子源科学中心副主任、中国科学院高能物理研究所研究员王生说,实际运行效率是散裂中子源实际运行时间与计划运行时间的比值。数字越高,说明散裂中子源故障率越低,按计划运行的稳定性更好。在描述中国散裂中子源的运行成效时,他们则喜欢用课题的数量来说明。“4年,中国散裂中子源开放运行8轮,共完成800余项课题,重点支持国家重大需求项目的机时。”陈延伟说。面向国家重大需求,他们完成了航空航天发动机叶片应力测试,对“奋斗者”号焊接工艺进行验证… … 面向世界科技前沿,他们开展了超级钢、分子筛吸附剂、量子材料等研究。面向经济主战场,他们在高性能芯片、电池、材料、应力检测等领域,为钢铁研究总院、国电电力发展股份有限公司、中国石油天然气集团有限公司等高技术企业和研究机构提供了重要支撑。面向人民生命健康,他们在2020年8月成功研制出我国首台具有完全知识产权的硼中子俘获治疗实验装置,并于今年7月底在东莞市人民医院开始安装。好的数据和成果,使用户像滚雪球一般激增。陈延伟介绍,目前,注册用户已超过3800人,2021至2022年度申请课题数同比增长了122%,课题申请的通过率为29%。提功率、优性能、加终端、做交叉… … 好谋:未来的“小目标”日渐激增的机时申请和正在加剧的科技战,让中国散裂中子源的“升级”成为现实需求。早在工程设计之初,科研人员就为装置升级预留了空间。正因如此,未来可以直接在一期工程的基础上升级改造。陈延伟介绍,目前,中国散裂中子源已经完成一期的全部设计指标。2020年2月,打靶束流功率达到100千瓦的设计指标,比原计划提前一年半;2022年2月,打靶束流功率达到125千瓦,超过设计指标25%,并且实现了稳定高效运行,大幅度地提高了装置性能。提升打靶束流功率,会使装置在同等时间里生产出更多中子,进而使实验时间缩短,样品分辨率提高。“就好比白天光线强时拍照,曝光时间会比晚上拍照时短,而且拍出来的照片也会更清晰。”陈延伟解释。科研人员对未来的“小目标”之一,就是将打靶束流功率提升到500千瓦,让中子源变得更“亮”。此外,散裂中子源科学中心副主任梁天骄介绍,中国散裂中子源升级改造后,有望覆盖用户需求的绝大部分领域,满足更多尺度结构和动力学表征,为多学科交叉研究提供更有力的支撑。如今,趁着暑期停机检修,这里的科研人员正在为即将安装的新谱仪和实验终端做前期准备。对于该装置未来的进展,《中国科学报》还将持续关注。中国散裂中子源加速器局部 李子锋摄王生向记者介绍直线加速器工作原理 倪思洁摄蓝色的四级磁铁 倪思洁摄红色的二级磁铁 倪思洁摄中国散裂中子源部分线站与实验终端 李子锋摄
  • 岛津制作所推出新型基因检测装置「GVP-9600」
    - 为食品相关病原菌检查、个性化医疗研究做贡献 &ndash 岛津96孔型基因检测装置「GVP-9600」 日本岛津制作所于近日推出了基于实时PCR法的新型「基因检测装置 GVP-9600」(研究用)。 实时PCR法通过聚合酶连锁反应 (PCR) 扩增部分DNA,实时计测其扩增物发现量。本方法可以准确、快速地进行基因解析,应用于需要早期特定大肠菌O157、诺如病毒等感染源的食品卫生领域,以及在事先判断癌症治疗分子靶向药物等的效果、副作用风险的「个性化医疗・ 诊断」领域中进行的基因变异解析等方面。 岛津新产品GVP-9600具有升降温速度与测光速度快的特点,并且可以使用市售廉价的96孔样品板或8联管作为测定所需的反应容器,因此,实现了快速、低成本的基因检查。 对应绝对定量解析、相对定量解析、SNP解析的丰富多彩的解析软件可日语、汉语、英语表示,以简便的操作实现可靠的解析工作。反应液量可对应至100&mu L,因此具有了高通用性,适于直接PCR检测检体所含痕量病毒、细菌的应用。 【开发背景】 基因解析有2种方法,一种是在以PCR装置进行DNA扩增后,使用电泳装置实施分离分析,分析其尺寸的方法;另一种是实时PCR法,此方法使用实时PCR装置同时进行DNA的扩增和其发现量的分析。 作为岛津应对前一种方法的装置,实现电泳前处理、分离等操作的高速全自动化的微芯片电泳装置MCE-202 MultiNA已于2007年推出,可以快速、简便、高精度地分析DNA/RNA的分离尺寸。另外,岛津公司提供基于独有的「Ampdirect」技术开发的支持PCR的试剂套件,强力抑制蛋白质、多糖类等PCR干扰物质的作用,无需从血液等生物样品提取纯化DNA、RNA,可直接添加在反应液中进行PCR。MultiNA与Ampdirect试剂组件的组合,大幅度地简便了基因检查工作,同时作为获取高重现性数据的工具,广泛应用在人类、植物、家畜等的卫生检查等领域。 岛津公司通过推出基于实时PCR法的新型基因检测装置GVP-9600,将为最尖端的生命科学研究做出新的贡献,包括推进个性化医疗研究的人类SNP解析,基于未分化标记基因发现解析的人类ES细胞未分化・ 分化状态确认的多能性干细胞研究等等。 今后,岛津公司将进一步扩充试剂套件的产品线,提供丰富的产品系列,以满足大学等研究机构以及实施食中毒菌、诺如病毒等食品相关病原菌检测的检查机关等的多样需求。 【本产品特长】 1. 短时间内检测微量病毒、细菌 温控模块的升降温速度快,最快达4℃/秒,并且,采用高性能帕尔贴元件和多根热管式散热器,实现快速稳定的热循环,缩短了PCR时间。使用岛津公司诺如病毒G1&G2检测试剂组件从糞便直接扩增・ 检测诺如病毒基因进行检测时,可在3小时内完成从PCR开始到融解温度(Tm)解析,快速确定有无诺如病毒。反应液量对应5~100&mu L,具有高通用性。 2. 低分析成本与低维持管理成本 不需要使用专用容器,可以使用市售的透明单管、8联管或96孔样品板,降低了分析成本。光源采用白色LED,不必像卤素灯那样必须定期更换,降低了维持管理成本。 3. 充実的软件功能实现可靠的分析 对于获得的数据,可以进行绝对定量、相对定量(相对标准曲线法、比较Ct法)、SNP等各种解析,还对应确认PCR扩增产物的融解曲线解析。软件对应日语、汉语、英语,可数据库管理测定结果,并可自由自在地布局打印每一检体的测定结果。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 王贻芳院士:未来10年应增加大科学装置投入
    全国两会上,全国人大代表、中国科学院院士王贻芳提出,大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技强国必备的科技基础设施,但目前我国大科学装置建设方面存在投入经费占基础研究经费比例偏低的问题,未来十年我国应增加大科学装置建设经费投入,下好先手棋。在接受采访时,王贻芳算了一笔账:“过去十年,大科学装置的建设投资基本稳定在每五年160亿元,平均每年32亿元左右,没有随国民生产总值的增长而增长。即使加上财政部、科技部、国家自然科学基金委和地方政府的研究经费、人员费、配套经费等,我国大科学装置相关经费每年也不会超过60亿元。”“目前我国的基础研究经费只占研发经费的6%,而欧美日等国的这个比例均超过15%。假设所有的大科学装置都属于基础研究,我国大科学装置占全国基础研究的经费比例为4%,远低于欧美日等发达国家约10%的水平。这样我国大科学装置经费占国民生产总值的比重只有不到欧美日等国的1/6。这个比例与大科学装置的作用、意义和成果并不相配。”王贻芳说。为推动我国大科学装置发展,应对未来十年科技发展态势和国际竞争,他提出国家应该增加大科学装置的建设经费投入,并协调地方政府和社会力量参与大科学装置的建设,将其贡献的比例从目前的平均20%左右提高到30%~50%。由于大科学装置建设一般需要5~10年的酝酿期,王贻芳认为,必须提早规划准备,开展前瞻性的设计和技术预研。王贻芳说:“在选择建设大科学装置时,既要保证一定程度的领域覆盖面,确保重要方向有机会从填补空白逐渐发展到国际并跑,也要有亮点,确保装置国际领先,取得有重大国际影响的基础科学重大成果。”同时,在建设中要统筹考虑大科学装置建设规划,确保大科学装置中基础研究项目的数量和规模,避免低水平重复建设。“用于基础研究的大科学装置一定要有充分的国际合作,要积极争取国外的参与和实物贡献,在项目的选择上要做到国际评审,项目的运行效益要有国际评估。”王贻芳说。
  • 顺利贯通!硬X射线自由电子激光装置项目隧道建设取得阶段性进展
    3月5日23点58分,上海硬X射线自由电子激光装置项目4号工作井至3号工作井之间的首条光束线隧道实现基本贯通,东线盾构(束线一号)顺利开始进洞工序,进洞过程顺利,盾构姿态良好。硬X射线自由电子激光装置(SHINE)是上海科技大学作为法人单位、国内迄今为止投资最大的科技基础设施项目,是国家重大科技基础设施建设“十三五”规划优先启动项目,以及上海建设张江综合性国家科学中心的核心内容和重大项目。项目于2018年4月27 日开工建设,计划2025 年建成。本次贯通的光束线隧道连接SHINE项目束线站总体的前端实验大厅和加速器总体的三号工作井,是继主加速器隧道贯通后,建安总体的又一项重要建设进展,标志着项目进入了隧道工程建设的高峰期。按照建设规划,除了已贯通的2条隧道,另外8条隧道预计在2022年内实现贯通。较一般隧道掘进,SHINE工程的隧道对轴线精度和渗水均有极高的要求。“束线一号”盾构机自2021年12月6日始发,春节期间持续掘进。整个过程中隧道轴线精度控制、渗水控制均达到了工程的要求,实现高质量、高速度建设。硬 X 射线自由电子激光科学意义重大,世界主要先进国家都争相建设各自的硬 X 射线自由电子激光装置,以掌握新历史时期的科技发展主动权。SHINE项目的建成将标志着我国拥有最新的高重频硬X 射线自由电子激光光源,可以为物理、化学、生命科学、材料科学、能源科学等多学科提供高分辨成像、超快过程探索、先进结构解析等尖端研究手段,可同时满足面向物质、单分子、超强超短单颗粒成像,以及极端光物理等实验需求。SHINE项目建成后将成为我国唯一、具备世界领先水平的第四代 X 射线光源大科学装置。
  • 【技术知识】减压蒸馏的装置及安装方法
    NO.1蒸馏部分包括蒸馏瓶、克氏蒸馏头、直形冷凝管、真空接引管及接受瓶。在圆底烧瓶上插上克氏蒸馏头,在克氏蒸馏头的侧口处插入温度计,直口处插一根毛细管,直至蒸馏瓶底部,距瓶底1-2mm。毛细管的上端加一节带螺旋夹的橡皮管,用以调节进气量。使抽真空时极少量的空气进入液体呈微小气泡,起到搅拌和汽化中心的作用。防止液体暴沸,使蒸馏平稳发生,毛细管口要很细;若太粗,进入的空气太多,则会把瓶内液体冲至冷凝管,电会使压力难以降低。当蒸馏中需要收集不同的馏分而又不能中断蒸馏时,则可用两尾或多尾接液管(如图4所示)。多尾接液管的几个分支管与接受瓶连接,转动多尾接液管,就可以使不同的馏分进入指定的接受瓶中。接受瓶可选择蒸馏烧瓶或吸滤瓶,但不能使用平底烧瓶或锥形瓶。进行半微量或微量减压蒸馏时,如使用能同时加热的电磁搅拌器搅动液体,就可以防止液体的暴沸,便可不安装毛细管。NO.2抽气部分,实验室里通常使用水泵、循环水真空泵或真空油泵来进行抽气减压。若实验不需要很低的压力时,可使用水泵或循环水真空泵。水泵或循环水真空泵所能达到的最低压力,理论上相当于当时水温下的蒸气压力。例如,水温在25℃、20℃、10℃时,水的蒸气压分别为3167Pa、2338Pa、1227Pa(24mmHg、18mmHg、9mmHg)。在使用水泵或循环水真空泵进行抽气时,应在泵的前端安装安全瓶,以防止负压下降时水流倒吸。停止蒸馏时,应先放气再关泵。若实验需要较低的压力,就需要使用真空油泵来进行抽气,功能好的真空油泵能抽到133.3Pa(1mmHg)以下。真空油泵的好坏决定于其机械结构和真空泵油的质量,如果是蒸馏挥发性较大的有机溶剂,其蒸气被油吸收后,会增加油的蒸气压,影响泵的抽真空效果;如果是酸性的蒸气,还会腐蚀泵的机件;另外,由于水蒸气凝结后会与油形成浓稠的乳浊液,破坏了油泵的正常工作。因此,在真空油泵的使用中,应安装必要的保护装置。NO.3保护和测压装置部分进行减压蒸馏时,为了防止易挥发、酸性有机物或水蒸气等侵入真空油泵,污染真空泵油,腐蚀泵体,降低真空度,就必须在接收瓶与真空油泵之间顺次安装安全瓶、冷却阱、测压计和吸收塔。安全瓶应与真空接引管的支口相连,安全瓶不仅可以防止压力降低或停泵时油(或水)倒吸入接受瓶中造成产品污染,而且还可以防止蒸馏时因突然发生暴沸或冲料现象导致物料进入减压系统。另外,装在安全瓶口上的带旋塞双通管可用于调节系统内部压力或放气。有时,由于系统内部压力的突然变化,会导致泵油倒吸,而安全瓶可以有效地避免泵油冲入气体吸收塔内。冷却阱是用来冷凝被抽出来的沸点较低的馏分,如水蒸气和一些易挥发的物质。冷却阱应置于盛有冷却剂的广口保温瓶(也叫杜瓦瓶)中,冷却剂的选择可视具体情况而定。测压计的作用是指示减压蒸馏系统内部的压力,通常采用水银测压计,一般可分为封闭式和开口式两种。使用时必须注意勿使水或脏物侵入测压计内。水银柱中也不得有小气泡存在。否则,将影响测定压力的准确性。相关仪器A2006减压蒸馏测定仪采用压力传感器和数显压力表组成真空测量显示系统代替水银U型管检测负压,外壳采用钣金材质,安装方便,并配有照明灯、连续可调功率加热炉、加热炉冷却装置。广泛适用于炼油厂、铁路、航运、石油公司及油料商业部门对石油产品的蒸馏测定。适应标准:SH/T 0165
  • 源头消灭地沟油 上海研制油水分离装置
    据有关部门不完全统计,全国每年有二、三百万吨“地沟油”进入食品流通领域,即使政府投入巨额财政监管,仍有部分不法分子用此牟利。今天上海市环境保护工业行业协会与市科学传播学会联合发布了一项通过反复试验并经过环境保护产品质量监督检验总站检测通过的创新科研成果,从源头上遏制“地沟油”流入市场,大大降低了对环境的影响。记者了解到,“地沟油”是一种毒害物质,有强烈的致癌危险。目前上海20余万家餐饮食堂排入地沟的油脂数量巨大。虽然政府投入巨额财政监控,控制了绝大部分“地沟油”,但只要有1%的“地沟油”被不法分子取得,“地沟油”危险就依旧存在。 发布会现场   11月9日,为了从源头上彻底消灭人人喊打的“地沟油”,上海源投环保科技有限公司科技人员经一年多的时间,成功研制出“离子活性氧源头灭油除臭地沟油水分离器”,经上海市环境保护产品质量监督检验总站和市环境保护工业行业协会专家测定,认为这项成果是目前解决“地沟油”的最有效方法,24小时油脂降解率达到了99%。“也就是说,使用了该项技术,地沟油将被全部降解成为亲水物质。”上海市环境保护工业行业协会秘书长赵关良说。   该研发公司总工程师华元琪也表示,该机器可在源头将装置产生的离子生物氧,通过曝气技术强化“地沟油”的氧化,使之产生裂变降解成为酒石酸、甲醇和甲酸等亲水性降解物,最终为水中微生物分解。生物氧在分解油脂的同时,也去除油脂污水池内各种细菌以及由细菌引起的恶臭,有效地改善了排放的水质,也改善了厨房的环境。在已投入该设备进行应用的锦沧文华大酒店里,东方网记者看到,原本油腻不堪的淀油池现在变得非常干净,也没有异味。   “经处理后的油脂污水接近直接排放江河的标准,而且不会存在二次污染,减轻了城市污水处理的压力。”华元琪说:“其实,如果把地沟油通过技术生产成生物柴油也是进行了二次利用,但其中采集、运输、购买生物柴油机器无一不显示其成本的昂贵。”赵关良也表示,目前“地沟油”的监控仍会有漏网之鱼,而这一项科技成果的诞生则是从源头上解决了“地沟油”之后的各类衍生问题,有望切断地沟油回收、再加工、回流餐桌的黑色产业链。   据悉,目前这项设备作为新颖实用技术,已向国家专利局申报专利。目前该装置已在锦沧文华大酒店和杏花楼集团南新雅大酒店试用,经上海市环境保护工业行业协会专家测定,污油去除率达99%。成本方面,每台设备的安装费用为2万—4万元。
  • 果纳半导体“基片承载装置和贴膜设备”专利公布
    天眼查显示,上海果纳半导体技术有限公司“基片承载装置和贴膜设备”专利公布,申请公布日为2024年7月23日,申请公布号为CN118380370A。背景技术半导体加工过程中,在基片部分前道工序完成后,需要直接对基片进行贴膜封装,然后进行存储、运输或直接进入下一步的加工工序。基片贴膜封装需要保证贴膜后的基片表面无气泡,且需要保证基片的水平度。这就对基片的平整度提出了要求,只要保证基片在贴膜前的平整度,才能保证基片贴膜的质量。因此需要一种承载装置,基片放置在其上时,能够被整平。发明内容本发明公开了基片承载装置和贴膜设备,基片承载装置包括第一区域,第一区域设置有第一柔性垫,第一柔性垫包括仅供基片中间区域放置的第一放置面;第二区域,第二区域位于第一区域的外侧,第二区域设置有吸附模块。吸附模块包括第二柔性垫,第二柔性垫具有与第一放置面位于同一高度位置的第二放置面,第二柔性垫上沿厚度方向开设有多个尺寸不同的真空吸附孔;多个尺寸不同的真空吸附孔为第二柔性垫在靠近基片边缘或拐角区域提供大于第二柔性垫其他区域的吸附力。承载装置能对基片进行稳定的吸附,并在吸附过程中整平基片,以提高贴膜质量。
  • 岛津盛装亮相第2届大连国际色谱学术报告会及仪器展览会
    2011年10月8日,大连世界博览广场,色谱界盛会 &ldquo 第二届大连国际色谱学术会议暨仪器展览会&rdquo 隆重地拉开帷幕。此次大会由中科院大连化学物理研究所、中国化学会色谱专业委员会主办,大会含第37届国际高效液相色谱及相关技术会议(HPLC 2011 Dalian) 、第18届全国色谱学术报告会及仪器展览会(18th NSEC)。为期3天的此次会议,吸引了近千名国内外色谱专家、学者参与。全面的分析检测整体解决方案提供者、世界著名综合分析仪器厂家岛津公司作为铂金赞助商,精彩亮相此次盛会。 会议开幕式现场 大会开幕式由中科院大连化物所许国旺研究员主持。大连市副市长曲晓飞先生、中科院大连化物所所长张涛研究员、中科院大连化物所卢佩章院士、中科院大连化物所张玉奎院士、国家自然科学基金会庄乾坤教授、中科院化学所陈义研究员、荷兰阿姆斯特丹大学Peter Schoenmakers教授、中国化学会色谱专业委员会副理事长武杰研究员等出席开幕式。开幕式后,主办方邀请了美国田纳西州大学Georges Guiochon教授、中科院化学所陈义研究员、国家自然科学基金委庄乾坤教授、荷兰莱顿大学Jan van der Greef教授、中科院生态环境研究中心江桂斌院士、日本名古屋大学Yoshinobu Baba教授分别作大会报告。上述著名学者的报告涉及了色谱柱技术最新进展、持久性有机污染物研究面临的挑战及国家自然科学基金在分析化学方面的资助情况等。 与会议同期举办的仪器展览会吸引了60多家国内外仪器公司参展。岛津公司携带最新发展成果,以全新的展台设计盛装亮相。 岛津展览展台 在展馆第36~39展位的岛津展台上,展出了具有世界领先水平的岛津色谱、质谱仪。 岛津公司展出的色谱、质谱仪 此次出展的岛津NexeraLC-30A是满足从常规分析到超快速・ 超高分离分析的所有需求的全能LC,继承了在UFLC以及UFLCXR中培育的超快速分析技术,并通过进一步提高耐压,提升了对应使用长色谱柱的超高分离分析能力。领先世界的耐压(130MPa,0~3mL/min),可使用世界上所有的超快速色谱柱, 卓越的进样重现性(0.25%以下)和低交叉污染(0.0015%以下),造就LCMS的理想前端LC。 出展的岛津全二维气相色谱(GC× GC)是把分离机理不同而又互相独立的两支色谱柱以串联方式结合成二维气相色谱,在这两支色谱柱之间装有一个调制器,起捕集再传送的作用,经第一支色谱柱分离后的每一个馏分,都需先进入调制器,进行聚焦后再以脉冲方式送到第二支色谱柱进行进一步的分离,所有组分从第二支色谱柱进入检测器,信号经数据处理系统处理,得到以柱1保留时间为第一横坐标,柱2保留时间为第二横坐标,信号强度为纵坐标的三维色谱图,或二维轮廓图。使用GCxGC二维色谱容易解决各类干扰问题,分析速度也得以加快。可应用于香精香料、石油化工、食品安全、环境保护、公安刑侦等各种复杂组分的分离分析。 此外,在岛津展台以展板方式介绍了岛津LCMS-IT-TOF Prominence nano。LCMS-IT-TOF是由离子阱和飞行时间质谱串联连接的杂交质谱,它采用了弹道离子提取和压缩离子进样的两个重要专利技术,将离子阱多级质谱的能力和TOF高分辨、高质量精度的特点结合在一起。以展板方式介绍的LCMS-8030是岛津最新推出的新一代超快速串联四极杆液质联用仪。15ms的正负极性切换时间,保证了超快速液相同时分析复杂组分的定量准确性;其独有的UfsweeperTM碰撞池技术,能高效去除子离子,减少交叉污染。 岛津展台所展示的最新分析装置,深深吸引了众多专家用户,他们很有兴趣地打开分析装置观看内部结构,与岛津公司人员热烈讨论切磋,纷纷称赞岛津的新技术。 岛津展台情景 在大会期间, 岛津公司特别邀请的日本专家在学术报告会上做了精彩报告,与听众分享了他们的最新研究成果。 岛津特邀日本专家学术报告 大阪府立大学久本秀明教授在发表中 东京大学北森武彦教授在发表中 岛津公司进行了6篇墙报学术发表,展现了岛津中国的技术人员高水准的研究成果。 岛津的墙报学术发表 在本次大会期间,岛津公司举办了技交会,向专家用户详尽地介绍了岛津公司最新色谱装置的全新应用。 技交会现场 岛津公司市场部的靳松女士向与会者介绍了岛津GC× GC全二维气相色谱仪在复杂样品分析中的最新应用。她通过牛肉萃取物中的PCBs残留分析、汽油分析等实际应用案例,生动地介绍了岛津 GC× GC-qMS 技术优势,优势在于此技术极大提高复杂化合物的分离能力;谱库检索的匹配度高于其它质量分析器; NCI分析的高选择性和高灵敏度,以及可与GPC等联用,祛除样品基质干扰,提高分析的灵敏度等。 随后,岛津公司市场部的邓力先生详尽介绍了岛津Nexera LC-30A超快速液相色谱仪最新应用进展。他特别介绍了岛津全新开发的高通量自动进样器SIL-30ACMP 和小型化柱温箱CTO-30AS。他强调SIL-30ACMP 自动进样器提高了NexeraTM系列的灵活性,加强了NexeraTM作为LC/MS前端在超快速分析领域的应用。 此外,10月9日晚,岛津公司在&ldquo 第二届大连国际色谱学术会议暨仪器展览会&rdquo 期间举办了&ldquo 岛津之夜&rdquo 答谢晚宴。晚宴由岛津公司分析仪器事业部副事业部长曹磊先生主持。300余名国内外色谱专家、学者应邀参加。大会主办方代表中科院大连化物所张玉奎院士、许国旺研究员,以及岛津公司古泽宏二总经理、吴彤彬分析仪器事业部事业部长等出席晚宴并致辞。 晚宴上宾主亲切交谈 为时3天的大连国际色谱会取得了圆满成功,岛津公司在本次大会上从多个层面向与会者展示了公司最新形象。正如古泽宏二总经理在&ldquo 岛津之夜&rdquo 答谢晚宴上的致辞中所述&ldquo 作为色谱仪器及技术的提供商,岛津希望能够给大家的研究工作提供更先进的工具,同时也乐于帮助各位应对色谱应用中的各种挑战!&rdquo 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制