对称引达省

仪器信息网对称引达省专题为您提供2024年最新对称引达省价格报价、厂家品牌的相关信息, 包括对称引达省参数、型号等,不管是国产,还是进口品牌的对称引达省您都可以在这里找到。 除此之外,仪器信息网还免费为您整合对称引达省相关的耗材配件、试剂标物,还有对称引达省相关的最新资讯、资料,以及对称引达省相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

对称引达省相关的资料

对称引达省相关的论坛

  • 【讨论】图谱对称因子

    做对照品的图谱时,发现走出来的图谱对称引资只有0.4左右,请问对照品的对称因子有什么办法可以改进的嘛?一般对称因子有什么要求嘛?

  • 粗钢丝绳拉伸检测时夹持方法创新--灌铅编丝法改为轴对称锚夹法

    与钢丝绳研发及检测的网友共勉,致力于钢丝绳整绳拉伸破断检测时夹持方法创新。粗钢丝绳检测时通常采用灌铅编丝法两端夹持(国外有灌树脂),该法可行但非常繁琐,且不环保!拆丝改变了钢丝绳的轴对称!且有局部应力集中!锚具夹持法是不改变钢丝绳轴对称结构的情况下利用锥型夹片与锚具自锚来夹持钢丝绳的!可以做到不滑丝!夹持方便,效率高!唯一的是合理设计锚夹具内径,锥度和应力释放锥角度!下面附件是我对32mm直径6*19s-IWRc钢丝绳(zS)检测曲线图和试验图片,提供给钢丝绳有兴趣的网友探讨和研究!

  • 【求助】求教震动的对称方式

    红外的相关资料中,有一句话叫:发生相互作用的振动必须属于同样的对称方式。这里的对称指的是简单的对称振动与不对称振动么?好比说,对称伸缩只能与对称伸缩或弯曲发生作用的意思?对称伸缩则不能与不对称伸缩或不对称弯曲发生作用?

对称引达省相关的方案

对称引达省相关的资讯

  • 拖尾因子、对称因子、不对称因子三者间的关系
    相信小伙伴们在日常测试中会发现,评价色谱峰的峰形对称性,有拖尾因子、对称因子、不对称因子三种参数。而目前使用的分析软件,ChemStation工作站中的对称因子,Empower工作站中的USP拖尾因子,Chameleon工作站中并没有对称因子参数,是以不对称度评价的。这三种参数的关系是什么,有什么区别,今天小编就和大家聊一下。理想条件下,色谱峰应该具有高斯型的特征:式中,χ等于(t-tR)/σ,t是时间,σ=W/4,y是峰高。色谱图中的真实峰通常会稍稍偏离对称的高斯峰形,通常会或多或少带一点拖尾。如下图所示: 拖尾因子:Tailing factor常用Tf表示,以峰高5%处计算。不对称因子:Asymmetry factor常用As表示,以峰高10%处计算。对称因子:Symmetry factor常用S表示,与不对称因子As互为倒数关系。As和Tf值的关系大概可以表达为:As≈1+1.5(Tf-1)所以一般来说As的值在一定程度上大于Tf的值。峰形随着不对称因子(As)和拖尾因子(Tf)而变化。当As或者Tf=1.0时,对应的是一个完美的对称色谱峰,在这种情况下,两个色谱峰可以很好地彼此分开。然而,随着峰拖尾的程度加重,它们之间的分离也变得糟糕。多数情况下峰拖尾的程度并不是很严重(Tf欧洲药典(EP)和英国药典(BP)规定进行有关物质或含量测定时,除另有规定外,色谱图中定量用对照品溶液的色谱峰对称因子应为0.8~1.5。美国药典(USP)中出现了对某些化合物拖尾因子要求不大于2.0。日本药典(JP)中没有具体规定拖尾因子的范围。从各国药典对拖尾因子范围的约束来看,拖尾因子并没有一个数值范围的确定标准,在实际的色谱实验中需要具体问题具体分析。
  • 打破对称!卵母细胞如何脱颖而出?
    在哺乳动物和果蝇中,雌性多细胞雌性生殖细胞包囊(Female germline cyst)中只有一个细胞会成为卵母细胞,但是这颗卵母细胞是如何打破对称性从中脱颖而出的还不得而知。为了揭开这一问题的答案,英国剑桥大学D. St. Johnston研究组与D. Nashchekin(第一作者)合作在Science发文题为Symmetry breaking in the female germline cyst,发现微管负极稳定蛋白Patronin/CAMSAP通过标记果蝇中的卵母细胞,促使生殖细胞打破对称性从而特化形成卵母细胞的具体分子机制。在许多生物中并非所有的雌性生殖细胞都会变成卵母细胞,一部分细胞会变成辅助细胞为卵母细胞提供物料和营养支持【1】。举例来说,小鼠卵巢中一个生殖细胞包囊中包含约30个细胞,其中只有一小部分细胞会变成卵母细胞,大多数的细胞会作为营养细胞(Nurse cells)经历细胞凋亡,将胞质的内容物通过环管(Ring canals)输送卵母细胞(图1)【2, 3】。在果蝇中,生殖细胞包囊形成于生殖腺,包囊具有三个区域。生殖干细胞产生成囊细胞(Cystoblast),成囊细胞在不完全的胞质分裂的情况下分裂四次,产生一个包含16个生殖细胞组成的包囊,这些生殖细胞通过环管相连接(图2)。卵母细胞的选择依赖于非中心体组织中心(noncentrosomal microtubule organizing center,ncMTOC)在未来的卵母细胞中组织一个具有极性微管网络指导动力蛋白(Dynein)依赖的细胞命运决定因子的运输。但是这颗卵母细胞是如何脱颖而出获得命中注定的卵母细胞命运呢?为了揭开这一问题的答案,作者们将目光集中在了Patronin以及其脊椎动物同源蛋白CAMSAPs上。该蛋白是微管负极结合蛋白,是 ncMTOCs非常关键的组分【4,5】。作者们在patronin突变体中检测了卵母细胞标记物的分布,发现突变体中卵母细胞标记物的累积显著地降低。限定表达在区域3中卵母细胞中的联会复合体蛋白C(3)G也在patronin突变体中也显著降低。这些结果说明Patronin对于卵母细胞的决定非常关键。为了对Patronin在生殖腺包囊中的定位进行检测,作者们对内源荧光标记的Patronin-Kate品系进行成像,发现Patronin在2a区域时开始在单独的一个细胞中表达,早于既定卵母细胞标记物的表达,该信号会持续累积在此单个细胞中到区域2b-3,发育到该时期时会在细胞中形成点状信号,最终此细胞发育成为卵母细胞。但是作者们发现patronin的mRNA并不会定位在包囊之中,因此这种不对称的分布依赖于Patronin蛋白而非mRNA的定位或者新蛋白的合成。另外作者们发现动力蛋白在patronin突变体中的定位在推定的卵母细胞中,该结果说明Patronin的缺失会破坏前体卵母细胞中MTOC的形成,从而导致极化的微管网络形成的缺失。通过检测微管正极末端追踪蛋白EB1-GFP对包囊中的MTOC进行可视化观察,作者们发现EB1-GFP信号与Patronin的信号在相同的细胞中共定位。同样,EB1-GFP的不对称定位在patronin突变体的包囊中会消失,此时EB1-GFP的分布模式会相对比较均质。随后,作者们想知道中心体是否对Patronin MTOC的形成是否有一定的贡献,为此对中心体蛋白Asterless与Patronin的共定位进行了探究。作者们发现Patronin与Asterless只有小部分共定位,大部分的Patronin信号都在中心体聚集体的之外,该结果说明Patronin形成的MTOCs是非中心体依赖的。目前,Patronin成为了未来卵母细胞最早的标记物。那么提出了一个新的问题即Patronin是如何富集在卵母细胞中从而打破包囊中细胞的对称性的。其中一个可能的机制是对称性打破依赖于融合体(Fusome)的不对称继承【6】。融合体在区域1的有丝分裂过程中就出现了不对称分布,因此母细胞会比子代细胞继承更多的组分,四环管时期两个细胞中的一个会具有比其他细胞更多融合体。为了验证这一想法,作者们使用融合体标记物Hts检测该观点。Patronin与融合体共定位于早期2a区域,但在包囊向区域3发展时信号会集中在一个细胞之中。因此,该结果说明Patronin的最初定位由融合体决定于早期2a区域,随后被某些机制进一步将此不对称性进行扩大。进一步地,作者们想要探究其中可能的扩大机制。Spectraplakin蛋白Shot引起了作者们的注意,因为该蛋白定位融合体上并且与卵母细胞的特化相关【7】。作者们发现在shot突变体中,Patronin不能在一个细胞中累积并且也不能形成点状信号,而且也不能与融合体相互作用。因此,Shot对于招募Patronin到融合体上是非常关键的,从而能够将融合体不对称信号带给Patronin从而交给细胞命运决定过程进行解码。由此,作者们得到了一个卵母细胞命运决定的工作模型,该模型被称为“四步走”模型(图3),第一步,在包囊形成过程中融合体的不对称性促使一个细胞中继承更多的融合体内容物;第二步,在区域2a,Patronin通过Shot蛋白被招募到融合体上,形成一个微微极化的微管网络结构;第三步,包囊中其他细胞通过动力蛋白将Patronin蛋白结合的微管蛋白运输到预卵母细胞之中;第四步,形成一个正反馈循环通路,动力蛋白运输更多的Patronin以及微管蛋白到卵母细胞中,进一步扩大微管的极性,从而促进动力蛋白运输更多的卵母细胞命运决定因子进入该细胞之中。通过该不对称性建立并逐渐扩展的方式,卵母细胞从包囊中“脱颖而出”。Patronin是CAMSAP家族中保守的成员,这说明该机制可能具有一定的保守性,虽然在哺乳动物中未发现融合体的存在,但是微管依赖的细胞器通过细胞环管运输已被证明在小鼠卵母细胞分化中发挥重要作用。这一发现对于卵母细胞命运建立提供了新的思考。原文链接:http://doi.org/10.1126/science.abj3125
  • LHAASO最新实验验证爱因斯坦相对论时空对称的正确性
    爱因斯坦的相对论认为,宇宙中物质运动最快的速度是光速,这一限制有没有可能被打破?这个问题可以通过洛伦兹对称性的破缺来检验。近日,位于我国四川稻城的高海拔宇宙线实验LHAASO合作组利用其观测的高能伽马射线事例,对洛伦兹对称性进行了检验。实验结果将洛伦兹对称性的破缺能量标度提高了约10倍,这是迄今对此类洛伦兹对称性的最严格检验,并再次验证了爱因斯坦相对论时空对称的正确性。  洛伦兹对称性和相对论有何关系?爱因斯坦的相对论是现代物理学的基石,相对论原理要求物理规律具有洛伦兹对称性。自爱因斯坦提出相对论后的100多年时间里,洛伦兹对称性的正确性经历了无数的实验检验。然而,描述引力的广义相对论和描述微观世界规律的量子力学之间存在难以调和的矛盾。理论物理学家为了把广义相对论和量子力学统一起来而不懈努力,提出了弦论、圈量子引力理论等不同理论。这些理论预言洛伦兹对称性在很高的能量下有可能被破坏,这意味着在高能量下相对论可能需要被修正。因此,在实验上寻找洛伦兹对称性破坏的迹象就成为检验相对论、寻找更基本物理规律的“突破口”。  然而,根据这些理论的推断,洛伦兹对称性破坏只有在所谓的普朗克能标下才显著,这个能标高达1019 GeV。对于人工加速器只能达到大约104 GeV能量的今天,在实验室里这种破坏产生的效应非常微弱,需要极高的实验精确度才可能被测量到,因而难以探测。而在天体活动中存在非常高能的过程,例如,宇宙中存在能量远远高于人造加速器能够加速的能量的粒子,洛伦兹对称性破坏在这些高能粒子上的表现会更加显著,也更易探测。又如,尽管从天体源发射的粒子带有非常微弱的洛伦兹对称性破坏效应,但经过长距离传播的累积而变得更易探测。因而天体物理观测便成为寻找洛伦兹对称性破坏的天然实验室。  位于我国四川稻城的高海拔大型宇宙线实验LHAASO是我国自主设计建造运行的宇宙线观测实验。2021年,LHAASO尚未建设完成,便探测到目前人类已知最高能量的伽马射线光子,能量达到1.4拍电子伏,刷新这项记录的同时,也为探索基本物理规律、严格检验洛伦兹对称性正确性提供了机会。  在LHAASO观测中,洛伦兹对称性破坏会造成高能量的光子不再稳定,能够快速衰变为一对正负电子对或者衰变到3个伽马光子。换句话说,高能量的光子在飞往地球的旅程中自动消失了。对于我们在地球上的观测者来说,即使天体源已经发出了能量更高的光子,我们测量到这个天体的光子能谱也在这个特定的能量忽然截断了。而LHAASO的观测数据显示,目前的伽马射线谱到拍电子伏以上都是一直向高能延续的,未发现任何高能伽马事例“神秘”消失的现象,表明洛伦兹对称性在接近普朗克能标下仍是正确的。  该研究由中国科学院高能物理研究所研究员毕效军与紫金山天文台研究员张毅、袁强合作,带领博士研究生高林青、陈恩生、赵世平等共同完成。相关研究成果以Exploring the Lorentz Invariance Violation from Ultra-high-energy Gamma Rays Observed by LHAASO为题,发表在《物理评论快报》上。  论文链接

对称引达省相关的仪器

  • TacticID-N Plus 是一款现场即用的手持式拉曼光谱仪,专门为执法人员对危险成瘾品、药物、切削剂及其前体进行非接触式法医分析而设计。具有直观的工作流程和触摸屏,可以通过不透明和透明的包装对样品进行无损分析。其能够将样品威胁级别明确显示给用户,例如安全人员、应急服务部门(如执法部门)、海关和边防人员以及炸弹处理小组和危险物品处理小组,使他们能够在尽可能避免接触样品的情况下迅速采取行动。TacticID-N Plus 利用了经实验室验证的拉曼光谱,用户可以实时识别非法物质,而不会损害样品或证据链的完整性。TacticID-N Plus 用户可以定期更新库内信息,以持续保持最新的识别能力,先于新出现的危险成瘾品。 增强检测附件:选配的TacPacTM附件可以简单、准确识别海洛因和其他传统技术手段难以检测的危险成瘾品。 采用先进可靠的表面增强拉曼光谱技术(SERS),可对海洛因、芬太尼和其他稀释/残留危险成瘾品进行现场快速分析识别,为执法人员提供了一个全新有效的工具来打击危险成瘾品犯罪。应用:危险成瘾品、麻醉剂等管制品无损鉴定未知粉末,液体和凝胶的分析稀释危险成瘾品、切削剂、制毒前体鉴定
    留言咨询
  • 非对称流动场场流分离仪,简称:AF4,是用一个没有固定相的、空心的、扁平的分离通道代替了传统的凝胶渗透色谱柱,同时在垂直于样品流的方向上施加一个分离力,从而实现对样品的分离。由于没有固定相填料,AF4具有非常强大的分离能力,尺寸和分子量的分离范围远远超过凝胶渗透色谱仪,非常适合超大分子量样品、超大体积样品的分离与分析。此外,对于不溶解的纳米材料样品,AF4也可以按照体积/尺寸进行精确分离与分析,并且可以与元素质谱仪、ICP光谱仪、激光粒度仪、X射线仪器等联用,从而扩展了对纳米材料和许多传统上不太好分析的样品的分析,如:粘土颗粒、腐殖酸、海水/淡水沉积物等等,生物类样品,如:组织细胞、蛋白质、病毒、血液及其替代品等等,也是非常适合用AF4分析的样品。我公司授权代理的德国POSTNOVA公司AF2000系列非对称流动场场流分离仪器分为:AF 2000常温非对称流动场场流分离仪;AF 2000-MT中温非对称流动场场流分离仪;AF 2000-HT高温非对称流动场场流分离仪。postnova的AF4/HF5仪器,由于样品输送泵、样品聚集泵和交叉流泵都是自己生产的,可以实现多泵联调联动,不仅大大提高了垂直方向的分离力、全系统的分离能力,而且还可以很方便地实现在线浓缩:通过延长样品聚集时间、同时加大样品进样量或进样次数,即可实现对超低浓度的痕量样品的分析,这对于超大分子量样品分析、环境领域的痕量组分分析都是极其有力的工具,也是独一无二的技术!那种采用交叉流调节器的技术与我们相比,就太原始了,分离效果也差很多,再加上其采用手动调节样品聚集,效果就更差了。样品都平铺在场流分离通道盒的底壁上,根本分不开。在线浓缩,使得用户无需对样品进行复杂的前处理,而只要保证本底干净——流动相必须尽可能纯净,就可以了,从而大大简化了分析测试,同时又保持了样品的原貌、保证分析测试结果真实可靠。目前,实际使用过的最低检测浓度,是5ppb。
    留言咨询
  • Panlab 自我管理箱Self Administration Box是一套完整地研究药物成瘾、奖惩行为的实验箱体,箱体以斯金纳箱(Skinner Box)为基础,增加了自我管理模块(主要包括自动控制的静脉注射泵部件连接套装、压杆开关、声光电刺激等),构建了完成药物成瘾实验或自我管理箱的基本元素。药物成瘾实验的成功,不仅取决于实验设计,还取决于动物环境的因素。一款好的药物成瘾箱让动物更快地融入测试环境,放松地学习实验细节和自然地表现出本能需要。 技术指标(型号:LE1002/LE1005)箱体底座尺寸:400x360x35mm小鼠操作箱体尺寸:200x200x250mm大鼠操作箱体尺寸:250x250x250mm大鼠、小鼠箱体转化可通过拆卸配件简单实现箱体材质:不锈钢、铝合金、甲基丙烯酸酯电脑软件控制箱体数量:1-8个,最多可升级到16个箱体数据线连接箱体到电脑,不需要PCI卡在斯金纳箱的基础上增配输液泵、控制器等相关部件
    留言咨询

对称引达省相关的耗材

  • 雷达脉冲发生器
    雷达脉冲发生器是专业为雷达应用而设计的雷达脉冲信号源,雷达脉冲源,它可产生10KV,10KHz以及120ps上升时间的脉冲,这种高重复频率的超短脉冲非常适合雷达研发应用。雷达脉冲发生器,雷达脉冲信号源,雷达脉冲源全固态设计,TTL触发输入后,可提供超快的千伏高压激励。输出为高达12KV的50欧姆负载,并能够承受开路,短路和电弧负载。雷达脉冲发生器,雷达脉冲信号源,雷达信号源的波形具有快速的上升沿时间,10%-90%波形的上升时间小于120ps. 它具有类似指数衰减的下降曲线,半幅脉宽越位500ps.也可指定输出网络,以获得进一步降低的输出脉宽。雷达脉冲发生器可产生10kv的300ps的脉冲, 脉冲输出时序抖动10ps rms.输出波形具有高度重复精度,脉冲与脉冲的振幅抖动1%.雷达脉冲发生器的控制单元包括未处理技术的诊断模块和内部重复频率和触发延迟器。 雷达脉冲发生器的配件包括100欧姆的差分对用于驱动200欧姆,24KV左右的天线。雷达脉冲发生器具有良好的不匹配负载能力,非常适合脉冲发射应用,包括宽带时域雷达,EMC测试和EMP模拟。雷达脉冲发生器的结构易于扩展到16通道或更多通道用于驱动相控阵天线。
  • 美国ATI TDA-4B标准粒子发生器
    美国ATI TDA-4B标准粒子发生器美国ATI高效过滤器完整性检测仪 / 高效过滤器泄露检测仪 / 洁净房粉尘仪/ DOP发生器/ DOP检测仪ATI TDA-4B GeneratorTDA-4B是美国ATI公司最新的Laskin Nozzle发生器,TDA-4B在操作中需要清洁的、干燥的压缩空气来产生多分散次微米级的气溶胶。TDA-4B有6个Laskin Nozzle,当输出压力为20PSIG,流量是810cfm,气溶胶的浓度大致在100微克/升。三个调节阀将允许使用1-6个喷嘴,提供范围比较广的气溶胶浓度。TDA-4B应该使用在流量小于8100cfm的系统中。是工作台、负压过滤系统、生物安全柜、小的或者是便携移动的洁净房,高效过滤器安装的有效的检测手段。 可使用的流量范围50~8,100cfm (1.4-229m2min) 发生浓度10ug/L:流量8,100cfm(约230m2/min时) 100ug/L:流量810cfm(约23m2/min时) 测试精度100ug/L:流量810cfm(约23m2/min时) 发生粒子PAO、DOP、多分散发生方法1-6Laskin Nozzles 压缩气体3-18cfm (85-510L/min) 20psi (0.14Mpa) 电源不需要外形尺寸约280x230x250mm 重量约7.3kg**适用20psi(0.14Mpa)的压力时注:不建议采用ATI 4B气溶胶发生器 TDA-4B Aerosol Generator TDA-4B气溶胶发生器/悬浮粒子发生器/产尘仪 美国ATI TDA-4B 气溶胶发生器
  • 美国ATI TDA-4B悬浮粒子发生器
    TDA-4B是美国ATI公司最新的Laskin Nozzle发生器,TDA-4B在操作中需要清洁的、干燥的压缩空气来产生多分散次微米级的气溶胶。TDA-4B有6个Laskin Nozzle,当输出压力为20PSIG,流量是810cfm,气溶胶的浓度大致在100微克/升。三个调节阀将允许使用1-6个喷嘴,提供范围比较广的气溶胶浓度。TDA-4B应该使用在流量小于8100cfm的系统中。是工作台、负压过滤系统、生物安全柜、小的或者是便携移动的洁净房,高效过滤器安装的有效的检测手段。 可使用的流量范围50~8,100cfm (1.4-229m2min) 发生浓度10ug/L:流量8,100cfm(约230m2/min时) 100ug/L:流量810cfm(约23m2/min时) 测试精度100ug/L:流量810cfm(约23m2/min时) 发生粒子PAO、DOP、多分散发生方法1-6Laskin Nozzles 压缩气体3-18cfm (85-510L/min) 20psi (0.14Mpa) 电源不需要外形尺寸约280x230x250mm 重量约7.3kg

对称引达省相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制