阳离子蓝

仪器信息网阳离子蓝专题为您提供2024年最新阳离子蓝价格报价、厂家品牌的相关信息, 包括阳离子蓝参数、型号等,不管是国产,还是进口品牌的阳离子蓝您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阳离子蓝相关的耗材配件、试剂标物,还有阳离子蓝相关的最新资讯、资料,以及阳离子蓝相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

阳离子蓝相关的资料

阳离子蓝相关的论坛

  • 英蓝技术之九:英蓝阳离子消除

    英蓝技术之九:英蓝阳离子消除当样品中的阳离子浓度过高,或存在过渡金属干扰时(如电镀液样品),可采用英蓝阳离子消除技术将其在线置换为H+离子或Li+离子(避免酸化样品)。当阳离子与弱酸根配对存在时,采用英蓝技术处理尤其重要。

  • 【讨论】阳离子聚丙稀酰胺的测定方法

    阳离子型聚丙烯酰胺(CPAM)是一类重要水溶性聚合物,作为絮凝剂、增稠剂,被广泛应用于选煤、冶金、石油开采、印染和纺织等行业[1]。而做为阳离子聚合物的一个重要参数,阳离子度的大小直接影响阳离子聚合物的应用性能,阳离子度的有效测定方法也就是必须解决的问题。目前阳离子度的测定方法报导很多,如AgNO3法[2]、元素分析法[3]等,然而有着过程繁杂或成本较高等问题。本文通过反相微乳法合成阳离子聚丙烯酰胺,采用胶体滴定法测定聚合物阳离子度,从不同角度分析了对阳离子度测试准确性的影响因素,为以后实验室测定聚合物阳离子度提供了一种准确而有效的方法。1 实验部分1.1 实验原料及仪器环己烷,A.R. 丙烯酰胺,聚合纯 DMC,聚合纯 乳化剂,C.P. 引发剂,C.P. 氮气,高纯 PAMPSNa,A.R. 溴代十六烷基吡啶,A.R. 甲苯胺蓝(T.B.),A.R. 红外光谱仪(BIO PADFTS165型)。1.2 实验方法将一定浓度的单体溶液、环己烷和乳化剂混溶,搅拌至混合液澄清透亮,然后将其倒入装有搅拌器、温度计和导气管的四口瓶中,通N2排氧30min后,加引发剂恒温反应。反应3h后取样,用丙酮、乙醇洗涤、沉淀,40℃下真空干燥,得聚合物产品。1.3 红外分析用红外光谱仪,采用KBr压片法对高聚物进行分析。1.4 阳离子度的测定阳离子度的测定采用胶体滴定法。用称量纸称取干燥恒重后的阳离子聚丙烯酰胺(准确至0.0001g)于250mL称量瓶中,加入100mL蒸馏水。搅拌至溶解后,调节pH,加入T.B.指示剂,用已配制好的PAMPSNa标准溶液滴定。当溶液颜色由蓝色变为赤紫色时即为滴定终点。至少做三组平行,取其平均值为PAMPSNa的消耗体积,记为V1 同时做空白实验,所消耗PAMPSNa的体积记为V0.阳离子度计算公式为:Am=207.5C(V-V0)1000m×100%.式中:Am为阳离子聚丙烯酰胺的阳离子度 C为PAMPSNa的摩尔浓度,mol/L V为滴定时消耗的PAMPSNa体积,mL V0为空白时消耗的PAMP SNa体积,mL m为样品的质量,g 207.5为阳离子链节的相对分子质量。2 结果与讨论2.1 红外分析图1、图2分别显示了CPAM均聚物与共聚物的FTIR谱图。其中波数在1660cm-1左右的吸收峰为共聚物中酰胺基的特征吸收峰,而波数在1730cm-1附近的强吸收峰为共聚物中DMC基团的特征吸收峰。因此,FTIR分析证实了共聚物中DMC和AM链节的存在。2.2 影响胶体滴定分析的因素2.2.1 pH值的影响用质量分数为1%的HCl和1%的NaOH溶液调节溶液的pH值,以0.000417mol/L的PAMP SNa标准溶液滴定,其消耗量与溶液pH值的关系如图3所示。由图3可看出,试样溶液的pH值在1~3和9~10时PAMPSNa的消耗量稳定 而在3~9时消耗量变化较大。这主要是因为胶体滴定法是利用胶体离子间的反应,只有在正负胶体相互完全解离的状态下其反应才会很好。而阳离子型聚电解质在酸性条件下才有利于解离。为此,滴定操作应选在pH=2~3时进行。2.2.2 T.B.指示剂加入量的影响胶体滴定如同酸碱中和一样,为了使终点敏锐,溶液颜色不可太深,指示剂的加入量应固定并以少为好,通常加入1~2滴即可。但是在胶体滴定过程中,由于正负胶体离子间的反应生成白色沉淀,此沉淀吸收包埋指示剂,使变色物消失,难以呈现异染现象,终点不易判断。因此当白色沉淀出现后,应及时补加1~2滴指示剂。2.2.3 滴定速度的影响在高分子滴定中,由于结构的复杂性,滴定速度也会影响滴定的准确度,见表1.由表1可看出,当滴定速度增大时,测试值偏离实际值更大。这是由于高聚物结构的复杂性的缘故。相对分子质量大而且具有多分散性,分子的形状、高分子溶液的混合熵以及聚集态的复杂性使得高聚物间的反应分子链被包裹,使测试值偏小,误差较大。可看到当滴定速度慢时可达到较好的效果。2.2.4 溶液浓度的影响实验表明,无论是滴定试剂还是被测试样,溶液的浓度均不易过高 浓度高会使反应生成的沉淀增多,体系变得较为混浊,而且生成的沉淀还会吸附指示剂,使指示剂的颜色在终点时变化不敏锐,甚至不出现颜色的突变,妨碍终点的判断,故溶液浓度不宜太大。实验发现,当溶液浓度在0.001~0.005mol/L范围时,指示剂变色敏锐,终止时易于判断。2.2.5 产品中残余的乳化剂的影响在微乳液聚合中,除了单体,还有油相、乳化剂。最后制出聚合物时如果不能将它们洗净,产物得不到很好的纯化,油相、乳化剂的存在将干扰其后的分析工作。残余乳化剂对阳离子度的影响见表2.由表2可看出,将乳化剂抽提后,滴定结果与给出值比较接近。首先,这是由于乳化剂的存在使得在滴定过程中指示剂受影响而使终点变色不明显。其次,称量时由于多余的乳化剂而存在大的误差,使最终计算结果失真。因此,在对聚合后的产品进行分析时,必须使产品洗涤干净。实验中我们采用抽提法取得了很好的结果。3 结论本文采用反相微乳液聚合方法合成了阳离子聚丙烯酰胺,并用胶体滴定法测试聚合物的阳离子度,结果表明:对于微乳液合成的阳离子产品,阳离子度在测试前应抽提干净 测定时pH应在2~3之间,控制滴定速度应小于0.02mL/s,指示剂量为1~2滴,在溶液变色前需再补加1滴,这样指示变化会很明显。

阳离子蓝相关的方案

阳离子蓝相关的资讯

  • 地表水中可溶性阳离子知多少?离子色谱IC-16显身手
    导读地表水是人类生活用水的重要来源之一,也是各国水资源的主要组成部分。近年来,随着工业化进程加快,过度取水和工、农业废水的排放,导致地表水受到不同程度的污染。水中可溶性阳离子(K+、NH4+、Ca2+、Mg2+等)在一定程度上反映水质,并与人民健康息息相关。为了保护自然环境,保障人体健康,亟需对地表水中可溶性阳离子进行定量分析。相对于传统方法(化学法和原子吸收法等),离子色谱法(简称IC法)无论在方法检出限、分析速度、测定范围等方面都表现出明显的优势,已成为水质中可溶性阳离子测定的重要手段。今天,我们带来离子色谱检测方案,一起来看看吧。 水中可溶性阳离子超标的危害水质中可溶性阳离子浓度会影响水体硬度,它不仅会干扰基础的新陈代谢还会诱发疾病。比如高钾、钠离子浓度过高,将会使体液失去平衡,对于肾功能不好的人有一定危害。高钙摄入能影响铁、锌、镁、磷的生物利用率,并引发肾结石、奶碱综合症等疾病;过量镁摄入,可能发生心脏完全传导阻滞或心搏停止等。 IC法测定水中可溶性阳离子相关法规随着环保监管的日趋严格,水质中可溶性阳离子的检测日益得到重视。目前我国采用离子色谱法分析水质阳离子的常见标准见下表。其中,《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》涉及最常见的6种可溶性阳离子(Li+、Na+、K+、NH4+、Ca2+、Mg2+)。 可溶性阳离子测定,岛津IC-16显身手岛津Essentia IC-16离子色谱仪配置阳离子抑制器,可快速高效对地表水中6种可溶性阳离子进行测定,轻松应对《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》中阳离子检测标准的要求。 l 分析条件 l 对照品色谱图按上述分析条件进行测定,对照品色谱图如图1所示。图1. 对照品溶液色谱图(1 µg/mL) l 校准曲线将对照品溶液按照上述分析条件进行测定,使用外标法定量。校准曲线见图2,线性方程、相关系数见表1。 表1. 6种水溶性阳离子校准曲线(1/C)图2. 6种水溶性阳离子校准曲线 l 实际样品取供试品溶液进样5 μL进行测定,以外标法计算供试品含量,色谱图见图3,定量结果如表2所示。图3. 样品色谱图 表2. 供试品溶液测试结果注:N.D. 表示未检出。 结语岛津Essentia IC-16离子色谱仪性能稳定,灵敏度高,配置阳离子膜抑制器CS-1000可轻松应对《HJ 812-2016水质 可溶性阳离子的测定 离子色谱法》检测标准的要求,快速、便捷的实现地表水中6种水溶性阳离子的测定。地表水安全监测刻不容缓,岛津为您的健康安全保驾护航。 本文内容非商业广告,仅供专业人士参考。
  • 北化徐福建团队:阳离子光敏剂烷基链长度对活性氧抗菌机制的影响
    近日,北京化工大学材料科学与工程学院徐福建教授团队和济宁医学院的李敬博士在Adv. Mater.上发表了题为“Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms”的研究论文。阳离子光敏剂与带负电荷的细菌和真菌具有良好的结合能力,在抗菌光动力疗法(aPDT)中应用广泛。然而,阳离子光敏剂对病原菌,尤其是真菌与哺乳动物细胞不具有选择性,往往会存在生物安全性的问题。同时,由于缺乏对相同光敏剂的系统性研究,目前尚不清楚细菌的哪些生物活性分子位点是光动力的有效损伤位点。因此,以小檗碱(BBR)为光敏剂核心,设计并合成了一系列具有不同烷基链长度的阳离子聚集诱导发光(AIE)衍生物(CABs),用于灵活调节阳离子光敏剂对细胞活性物质的选择性。BBR核心可以有效地产生活性氧(ROS),并在生理环境中实现高性能的aPDT。通过精确调节烷基链长度,实现了CABs在细菌、真菌和哺乳动物细胞中的不同结合、定位和光动力杀伤效果。研究发现,aPDT更有效的损伤位点是细胞内活性物质(DNA和蛋白质),而不是细菌膜。中等长度烷基链的CABs在光照下能有效地杀死革兰氏阴性菌和真菌,同时仍然保持良好的生物安全性。通过HOMO-LUMO实验证明烷基链长度的改变并不会改变核心BBR的AIE性能,但是随着烷基链的增长,CABs更容易形成分子间聚集体。与此同时,随着烷基链的增长,CABs与细菌的结合速率与结合量增加。CAB-8光照时的抗菌性能提升更明显。进一步的激光共聚焦定位实验证明,烷基链长调控CABs在细菌内的定位,CAB-8进入细菌,CAB-10卡在膜上。通过分子动力学模拟实验发现,CAB-10比CAB-8要克服更大的自由能,导致CAB-10卡在细菌膜上。透射电镜冷冻切片证明,CABs的定位调控杀伤,CAB-8损伤菌内活性物质,CAB-10损伤细菌膜上。进一步通过液质联用、DNA彗星实验以及β-半乳糖苷酶检测证明:CAB-10(膜上)膜损伤程度大于CAB-8(膜内),CAB-8(膜内)对DNA、酶损伤程度大于CAB-10(膜上)。随着烷基链的增加,CABs进入真菌的能力增强:CAB-10>CAB-8 CAB-6。同时,烷基链越长,CABs进入哺乳动物细胞的能力越强,具体表现为CAB-10的细胞毒性远大于CAB-8和CAB-6。综上所述,CAB-8可以很好的平衡光动力杀菌和生物相容性,具有高效杀菌性和生物安全性。该研究通过烷基链的定位调控,解决了阳离子光动力抗菌材料对细菌、真菌、哺乳动物细胞不具有选择性造成的生物安全问题,同时证明了相对于细菌膜来说,细菌内部的活性物质是光动力更为有效的氧化位点。本研究有望为构建具有良好选择性的高性能阳离子光敏剂提供系统的理论和研究指导。北京化工大学材料科学与工程学院博士生郑良和博士生朱艺文为本文的共同第一作者。材料科学与工程学院徐福建教授和俞丙然教授、济宁医学院的李敬博士为本文的通讯作者。北京化工大学为第一完成单位。本研究工作得到了国家重点研发计划,国家自然科学基金,和北京市优秀青年科技人才计划的资助。
  • 离子色谱抑制还是非抑制,可能没你想的那么简单——阳离子篇
    在上一篇文章“离子色谱抑制还是非抑制,可能没你想的那么简单——阴离子篇”中我们向大家介绍了离子色谱使用中抑制还是非抑制的一个原则。• 原则 阴离子分析一定要抑制 阳离子分析抑制不抑制,看情况并且我们也从原理上剖析了为什么阴离子分析一定要抑制,那么我们今天这篇文章就是跟大家讨论一下阳离子抑制的问题。 ▼ 为什么阳离子分析要看情况使用抑制器?在进行阳离子分析时,目前使用的淋洗液主要为硝酸和甲磺酸,与阴离子抑制器的功能正好相反,阳离子抑制器的作用是使用OH-取代流路中的阴离子,同样,我们以NaCl为待测物、HNO3-为淋洗液举例说明。假设NaCl浓度为cSample,淋洗液浓度为cEluent,Λ为摩尔电导率。 ▼ 如果不使用抑制器 所以,在非抑制检测阳离子时,如果软件不进行校正,得到的色谱图是一个负峰。 ▼ 经过抑制器后 由此可以看出,在进行阳离子检测时,如果使用抑制器,基线可以从421 cEluent降至约为0,但是同时峰高也从300 cSample降为248 cSample,即降低背景电导率的同时,也降低了检测的灵敏度。因此,对于阳离子的检测是否需要抑制,各厂家出现了不同意见,有的厂家采用了抑制的方法,而有的厂家采用了非抑制的方法,那么到底怎么样做好呢?可能这才是大家最终关心的问题,别急,我们一起来讨论一下。 采用抑制的方法检测阳离子的时候有一个难以绕过的问题就是NH4+和胺类物质的检测,因为阳离子抑制时用以替换流路中阴离子的OH-会和NH4+或胺反应,生成弱电离的物质,对于弱电离的物质,电导检测器的检测效果并不是非常理想,因此在使用抑制器检测NH4+和胺类物质的时候,我们无法在大范围内得到线性的检测结果,但是偏偏NH4+还是一个经常需要检测的常规阳离子。 既然不能抑制,那么怎样解决我们在上一篇文章中提到的离子检测中信号峰容易被基线噪音淹没的问题呢?我们可以换个角度考虑问题,既然不能采用降低背景电导率从而降低噪音的方式来提高检测灵敏度,那么我们从检测器硬件入手呢? 瑞士万通自创立之初便专注于电化学领域的研究,76年来一直在电化学领域深耕细作,旗下的自动电位滴定仪、卡尔费休水分仪、伏安极谱仪和电化学工作站等电化学产品在世界范围内广受赞誉。瑞士万通离子色谱系统配备的电导检测器,采用DSP数字式信号采集技术,在0~15000μS/cm范围内,电子噪音所以,在阳离子的分析过程中,只要离子色谱的检测器硬件做得好,使用非抑制的方法,既可以获得不亚于抑制法的检出限,又可以在胺类检测中获得良好的线性,可以说是两者兼顾。那么,分析阳离子,你知道怎么选了吗? 如果您想了解更多关于离子色谱抑制的问题,欢迎您留言或拨打热线电话400-604-0088向我们咨询!

阳离子蓝相关的仪器

  • 产品概述FAAS 8000ICS 在线阴阳离子监测系统采用撞击式气体吸收技术结合离子色谱分析方法,实现了多点采样、气体自动吸收富集、在线质量控制等全自动在线监测功能,解决了洁净室AMC监测过程中人员投入大、数据监测频率低、数据反馈不及时等问题;可应用于半导体厂区气态分子污染物(AMC)中酸性物质(MA)、碱性物质(MB)污染物的在线监测。性能优势数据可靠系统实现了自动远距离采样、自动富集吸收、自动质量控制、自动分析、数据自动上传全流程自动化。避免人工误差引入,数据准确可靠。灵敏度高大体积进样浓缩,大幅提高系统检测能力,检出限可达亚ppt级,缩短系统运行周期。FAAS 8000ICS 测试部分阴阳离子的检出限监测面广单套系统最多可配置32个点位的样品采集;系统通过真空泵远距离采样,可覆盖300m范围内样品的在线监测。设计合规系统管路及阀组采用洁净的聚四氟乙烯材料设计,满足SEMI F57中相关析出杂质的控制要求。 吸收高效在线双吸收模块设计,有利于节约样品分析时间,数据输出更快更高效!应用领域FAAS 8000ICS 在线阴阳离子监测系统主要应用于洁净室环境空气中水溶性酸碱性污染物的在线监测,可扩展至大气中离子污染物的检测。
    留言咨询
  • 阳离子交换量(CEC)是指土壤胶体所吸附的各种阳离子的总量常作为评价土壤保肥能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据,它反映土壤的负电荷总量和表征土壤的化学性质,该实验前处理过程繁琐,耗时耗力,效率低。CEC400阳离子交换量前处理系统依据国家标准方法,将阳离子交换量前处理过程实现自动化,既节省时间,又提高了效率。 主要特点与优点 产品自动化设计,自动加液、淋洗、抽滤、排废,整个过程无需人工值守采用一键开始与暂停操作,可实现单路单控,实验过程掌控灵活采用桨式搅拌及旋转式清洗,置换效果更好并避免出现土壤挂壁的现象采用高性能电磁阀、加液泵、真空泵,提高了仪器使用寿命产品外壳采用奥氏体不锈钢,喷涂防指纹涂层,提高防腐性能外置壁挂式控制器,方便灵活,简单快捷横屏面板,安卓风格界面,操作简约且人性化技术指标样品处理数量4个测定样品重量≤5g自动加乙酸铵体积≤150mL/次自动加乙醇体积≤150mL/次电机自动搅拌,搅拌时间可任意设置自动抽滤,抽滤时间、抽滤次数可任意设置自动清洗,清洗次数可设置抽滤瓶体积500mL额定功率320W输入电压AC 220 V±10% 50Hz/60Hz外形尺寸外形尺寸:604*358*672
    留言咨询
  • 产品特点便于集成, 操作简单根据电厂用户研发的完整水质检测系统。 哈希公司可提供各式各样的产品供用户选择,以期这些产品能互相匹配,形成一个灵活的解决方案,满足您的独特需求。 哈希所采用的综合性方法,能在设计、安装、培训、维护和操作等各环节中全面节省您的时间。 我们的阳离子电导率系统有如下特点:节省设计时间同一个产品平台意味着你在寻找设计文件或规格配置时所花的时间更少。 同时能让您创建和重用最佳的设计模板。符合 ISO 7888 和 ASTM D 1125标准。便于安装可互换组件、通用的操作界面,并有相同的哈希的技术团队支持,能使安装更快,更简便。简化培训单一的平台能最大限度地减少产品培训时间,从而更快地掌握新系统的使用。简化了维护和操作采用常见的菜单指南,减少了特殊性;对维护和校准过程提供了逐步操作指导。 系统维护量低,配有长效树脂,耗尽时会给出可见指示。工作原理由于pH与氢离子浓度的对数成比例,若在低电导率的条件下采用标准电位法(玻璃电极+参比电极)测量pH,很难测量准确。这要求仪器频繁进行校准以补偿测量过程中发生的变化(液接电位,玻璃膜损耗等)。相比之下,在这种条件的电导率测量则非常可靠和准确,因为电导率与杂质的浓度成直接比例关系,并且几乎不需要维护。因此,通过样品的pH和电导率间的关系,可以采用测量电导的方式来精确测量pH。测量原理是通过将样品流过阳离子树脂,从而将盐转换为酸的形式,通过酸和其相应的盐的电导率的关系(3倍左右),来测量原始调节池内电导率。但如果样品含杂质(通常以盐的形式存在),则不能采用该计算方式。 尺寸 技术指标订购信息
    留言咨询

阳离子蓝相关的耗材

  • 阳离子试剂盒部件5064-8206
    产品信息: 订购信息: 阳离子试剂盒组成单位部件号阳离子试剂盒 5064-8206阳离子缓冲液250 mL5064-8203CE 用超纯水500 mL5062-8578未涂渍熔融石英毛细管,扩展光程鼓泡因子(3),内径为 50 μm,长度为 56 cm2/包G1600-61232阳离子测试混合标样25 mL5064-8205注:下列用于安捷伦毛细管电泳系统的部件应单独订购:内径为 50 μm 的扩展光程毛细管的准直接口(部件号 G1600-60230),适用于 1600 HP3D CE50 μm 内径扩展光程毛细管的准直接口(部件号 G7100-60230),适用于 7100 CE
  • 安捷伦 阳离子试剂盒 试剂盒
    阳离子试剂盒 阳离子试剂盒为您提供分析无机阳离子和小分子有机阳离子所需的一切。它专门设计用于分离各种不同基质中的碱金属离子、碱土金属离子和烷基胺。每个试剂盒包含阳离子缓冲液、未涂渍熔融石英毛细管、阳离子标样、CE 级水以及分析方法和大部分常见应用,包括检测限和重现性数据。我们开发的阳离子试剂盒和分离方法非常适合于安捷伦的CE 系统,并支持其高度自动化功能。该方法非常容易操作,可实现准确的定量分析。订货信息:阳离子试剂盒组成单位部件号阳离子试剂盒—5064-8206阳离子缓冲液250 mL5064-8203CE 用超纯水500 mL5062-8578未涂渍熔融石英毛细管,扩展光程鼓泡因子(3),2/包G1600-61232内径为50μm,长度为 56 cm阳离子测试混合标样25 mL5064-8205注:下列用于安捷伦毛细管电泳系统的部件应单独订购:内径为50 μm 的扩展光程毛细管的准直接口(部件号G1600-60230),适用于1600 HP3D CE50 μm 内径扩展光程毛细管的准直接口(部件号G7100-60230),适用于7100 CE
  • Dionex IonPac CS12 阳离子交换柱 044001
    Dionex IonPac CS12 阳离子交换柱利用 Scientific? Dionex IonPac CS12 阳离子交换柱对常见无机阳离子和烷醇胺进行快速等度分离并获取稳健、可靠的结果。 这是一款高容量阳离子交换柱,专为通过使用甲磺酸或硫酸淋洗液对多种样品基质中的锂、钠、铵、钾、镁和钙进行快速等度分离而设计。 不过,新款 Thermo Scientific? Dionex? IonPac? CS12A 柱性能更佳,是进行无机阳离子分析的推荐色谱柱描述对常见无机阳离子进行快速等度分离 Dionex IonPac CS12 阳离子交换柱对多种样品基质(包括饮用水、发电厂水、土壤浸出物、酸解产物、化学添加剂、化学加工溶液、洗涤液和电镀槽)中的阳离子进行快速等度分离。 不过,Dionex IonPac CS12A 柱在对多种基质中的无机阳离子和铵离子进行快速分析时性能更佳,是这些应用的推荐色谱柱。 该款色谱柱兼容有机溶剂(不包括乙醇),以增强分析物溶解度,优化柱选择性,或者便于有效的柱清洁提供多种规格,实现应用灵活性4x250 mm、2x250 mm 分析柱4x50 mm、2x50 mm 保护柱更长的 250 mm 柱,实现更复杂样品基质的更高分辨率分离更小柱内径,提高质量灵敏度,节省洗脱液和试剂,并且降低运行成本Dionex IonPac CS12 阳离子交换柱订货信息:分析柱IonPac CS12 Analytical Column (2 x 250 mm)044019IonPac CS12 Analytical Column (4 x 250 mm)044001保护柱IonPac CG12 Guard Column (4 x 50 mm)044002IonPac CG12 Guard Column (2 x 50 mm)044020The IonPac? CS12 is a high-capacity, cation-exchange column designed for the fast, isocratic separation of lithium, sodium, ammonium, potassium, magnesium, and calcium using methanesulfonic or sulfuric acid eluents in diverse sample matrices. The CS12A column provides improved performance and is the recommended column for inorganic cation analysis.Use the CS12 for fast analysis of the common inorganic cations.The CS12 column can be used for alkanolamines.The CS12A column provides improved performance for fast analysis of inorganic cations.Simplified Reagent-Free? IC operation is provided by the EG40 or EG50 Eluent Generator, or the RFC-30 Controller, which requires only a deionized water source to produce methanesulfonic acid eluent.Sample matrices include environmental waters, power plant waters treated with ammonium, morpholine or ethanolamine, chemical additives, chemical process solutions, scrubber solutions, plating baths, and industrial solvents.The CS12 is designed for fast, isocratic separation with suppressed conductivity detection. The common inorganic cations can easily be determined in diverse sample matrices, including drinking water, power plant waters, soil extracts, acid digests, chemical additives, chemical process solutions, scrubber solutions, and plating baths. Use the CS12A with the EG40 Eluent Generator or EG50 Eluent Generator for simplified methanesulfonic acid eluent preparation. Use the Cation Atlas? Electrolytic Suppressor, CAES?, (up to 25 μeq/column) with the CS12 column.IonPac CS12 Cation-Exchange Column SpecificationsDimensionsIonPac CS12 Analytical Column:2 × 250 mm and 4 × 250 mmIonPac CG12 Guard Column:2 × 50 mm and 4 × 50 mmMaximum operating pressure4000 psi (27 MPa)Mobile phase compatibilityAcidic eluents 0–100% HPLC solvent compatible. Alcohols should be avoided.Substrate characteristicsBead Diameter: 8.0 μmCross-Linking (%DVB): 55%Macroporous Dimensions Pore Size: 60 ?Surface Area: 300 m2/gFunctional group characteristicsIon-Exchange Group: Carboxylic acidSurface Characteristics: HydrophobicCapacity0.7 meq (2 × 250 mm analytical column)2.8 meq (4 × 250 mm analytical column)Column constructionPEEK with 10-32 threaded ferrule-style end fittings.All components are nonmetallic.Fast Separation of Group I and II Cations and Ammonium on the IonPac? CS12. Determination of Trace-Level Ammonium Using the IonPac? CS12.Product Data SheetsIonPac CS12 Cation Exchange Column Data SheetIonPac CS12 Analytical Column ManualApplication NotesAN 106: Ion Chromatography in the Pharmaceutical Industry

阳离子蓝相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制