佐米曲坦

仪器信息网佐米曲坦专题为您提供2024年最新佐米曲坦价格报价、厂家品牌的相关信息, 包括佐米曲坦参数、型号等,不管是国产,还是进口品牌的佐米曲坦您都可以在这里找到。 除此之外,仪器信息网还免费为您整合佐米曲坦相关的耗材配件、试剂标物,还有佐米曲坦相关的最新资讯、资料,以及佐米曲坦相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

佐米曲坦相关的资料

佐米曲坦相关的论坛

  • 70.3 大鼠血浆佐米曲普坦的HPLC测定方法学研究

    70.3 大鼠血浆佐米曲普坦的HPLC测定方法学研究

    【作者】 蔡佳; 蒋新国; 陈钧; 熊志刚; 金樑; 【Author】 CAI Jia,JIANG Xin-guo~*,CHEN Jun,XIONG Zhi-gang,JIN Liang(Department of Pharmaceutics,School of Pharmacy,Fudan University,Shanghai 200032,China) 【机构】 复旦大学药学院药剂学教研室; 复旦大学药学院药剂学教研室 上海200032; 上海200032; 【摘要】 目的建立大鼠血浆中佐米曲普坦的高效液相测定方法,并研究大鼠不同途径给药后的药动学。方法采用甲基叔丁基醚为溶剂,提取药物。以0.05%三乙胺(用磷酸调至pH 2.70)-乙腈(92∶8)为流动相,色谱柱为Dikma Diamonsil C18柱(4.6 mm×200 mm,5μm),流速1.2 mL.min-1,荧光检测的激发波长225 nm,发射波长360 nm。结果佐米曲普坦在2.5~1 000μg.L-1内线性关系良好(r=0.999 7)。高、中、低3种浓度的提取回收率分别为90.10%,91.75%,86.79%,方法回收率分别为103.55%,94.49%,98.79%,日内和日间RSD均小于4%,最低检测限为1μg.L-1。计算出灌胃、静注、鼻腔给药途径主要药动学参数分别为:t1/2(2.03±0.88)h,ρmax(144±28)μg.L-1,tmax(0.85±0.14)h,AUC0~t(442±110)μg.h.L-1;t1/2(1.40±0.12)h,ρmax(567±55)μg.L-1,AUC0~t(1 075±128)μg.h.L-1;t1/2(1.48±0.23)h,ρmax(304±34)μg.L-1,tmax(0.65±0.14)h,AUC0~t(685±43)μg.h.L-1。结论该方法操作简单、快速、准确、重现性好,适用于大鼠血浆中佐米曲普坦浓度的检测及其药动学研究。 【关键词】 佐米曲普坦; 高效液相色谱法; 药动学;http://ng1.17img.cn/bbsfiles/images/2012/09/201209022115_388005_1838299_3.jpg

  • 顶空法做水中三氯甲烷四氯化碳做不出标曲

    用的是Thermo 的GC色谱仪按照国标GBT 5750.8 方法做,从同一瓶三氯甲烷四氯化碳混标出来的标准系列5个点(0.2—5 ppb),线性为,0.91;达不到0.99孵化池40℃平衡了1小时,进样量0.3mL,色谱条件和标准一样,出来的峰型很好顶空瓶120℃加热了2h,密封垫圈也用煮沸的水洗过晾干衬管换下来清洗过,柱子应该是没问题的milli-Q超纯水机出来的水检出很高的三氯甲烷四氯化碳响应,故换用了市售屈臣氏蒸馏水(低检出),煮沸的水四氯化碳响应反而变高怎么才能把这个标曲做出来?已经弄了4次了,最好一次是0.91,最坏一次完全没线性。而且空白略高

  • 长期抽取小龙潭池子里的水加工米线

    “黑林铺班庄村的一个米线加工作坊,抽取洗衣服、洗菜池子里的水加工米线,销往市区。那个池子甚至有人在里面洗脚,十分恶心。”“这家米线作坊已存在多年,长期抽取小龙潭池子里的水加工米线。很多村民都在这个池子里洗菜、洗衣服,甚至一些小孩子还会把脏东西丢入水池里。”“不仅如此,里面生产米线的人也不注重卫生。”质监执法人员介绍,这家作坊已纳入小作坊监管,每季度均会对产品抽样进行检测,第一季度抽检合格,但第二季度抽检时发现米线含硫且微生物超标。不过问题是,在对作坊进行检查时,执法人员并没有发现添加剂,硫从何而来存在很大疑问。 目前,质监部门已经作出处罚决定,对该米线作坊作出5万元的罚款。针对米线中检测出含有硫的情况,质监部门已经与五华警方经侦大队对接,移交警方调查处理。就这种情况,只是作出5万元的罚款,这种处理方式真叫人汗颜,你说说你是怎么看待的。

佐米曲坦相关的方案

佐米曲坦相关的资讯

  • 论碳纳米材料产业化的“三部曲”
    p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px line-height: 1.75em " 碳纳米材料作为新型材料界的“红人”,具有高端应用与复合应用的双重优势;其突出的力学、电学和化学性能引发了国内外持久的研究热潮,被誉为推动传统产业创新转型和升级换代的重要推手。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 近期,中国粉体网联合江苏省纳米技术产业创新中心、中国科学院苏州纳米技术与纳米仿生研究所主办了以“碳纳米材料产业化”为主题的“2018低维碳纳米材料制备及应用技术交流会”。综合来看,碳纳米材料要实现产业化需要走这三步。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 第一步:料要成材 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 以石墨烯为例,大规模制备高质量石墨烯是其应用的基础,石墨烯原料主要为鳞片石墨,目前制备的方法有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法等。具体对比如下: /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_135974_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2018低维碳纳米材料制备及应用技术交流会上,来自北卡罗莱纳州中央大学的戴贵平教授为我们带来一种新鲜的研究思路:采用三聚氰胺作为原料制备三维石墨烯与氮沉积碳纳米管复合材料。因为三聚氰胺里既有N原子又有C原子,可以同时提供实验所需的氮源和碳源。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 第二步:材要成器 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 第二步是实现石墨烯等碳纳米材料产业化最为关键的一步,是联通材料与应用的纽带。石墨烯的表面状态非常稳定,亲油性和亲水性都很差,不能有效地与复合材料基体进行复合,并且易形成团聚体。因此,对石墨烯进行表面改性以及分散尤其重要。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_038265_newsimg_news.jpg" width=" 400" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 石墨烯的分散方法 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 除了了解分散方法,分散结果的表征也尤为重要,常用的表征方法主要有测量沉降速度、测量堆积密度、采用浊度计、测量Zeta 电位以及测量粒度分布,其中粒度分布的测量已为人们所熟知。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 用激光粒度仪测量粉末的粒度分布来表征分散性,主要是应用光的散射原理和仪器的光学结构,计算机事先计算出了仪器测量范围内各种直径粒子对应的散射光能分布,通过适当的数值计算,得到与之相应的粒度分布。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 通常颗粒的平均粒径越小,表明颗粒分散性越好,即没有或只有少量软团聚,该方法可以用来检验各种方法的分散效果。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " br/ /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " 第三步:器要成用 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 碳纳米材料应用广泛,以石墨烯为例,石墨烯的复合材料是石墨烯应用领域中的重要研究方向,其根据复合材料的不同主要分为以下几类: /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 1、“石墨烯+涂料” /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 石墨烯同时具备优异的导电性和防腐蚀性能,因此可以用于导电涂料和防腐涂料。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_256561_newsimg_news.jpg" width=" 400" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 14px color: rgb(127, 127, 127) " 石墨烯防腐涂料“迷宫效应”示意图 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2018低维碳纳米材料制备及应用技术交流会上,青岛德通纳米于锦女士(代萧小月博士)介绍了石墨烯的化学以及物理分散方法以及应用于防腐涂料的实际案例。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 2、“石墨烯+新能源汽车” /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 石墨烯复合材料可替代金属或玻璃钢用于汽车壳体,具有质量轻,强度高,可设计性强的特点。除此之外,还可用于新能源汽车的储能材料: /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_264687_newsimg_news.jpg" width=" 400" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 来自中国科学院苏州纳米技术与纳米仿生研究所刘立伟研究员介绍的高质量薄层石墨烯薄膜可用于锂电电芯正极导电浆料、锂电前驱体材料制备导电浆料以及锂电铝箔涂炭浆料。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 常州大学的马昕教授分析了锂电池及原材料的发展现状及趋势,并介绍了低维碳纳米材料作为锂电池导电剂的多项优势以及新研发的硅负极材料。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 3、“石墨烯+导热材料” /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 石墨烯是一种超级新型纳米材料,具有超高强度、超高导热系数,通过工艺处理可以得到性能良好的碳基导热膜。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 2em white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/09/113102_281555_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 中国科学院宁波材料技术与工程研究所林正得提出将石墨烯附着到海绵等多孔结构的材料,得到的三维石墨烯材料的导热率会大幅度提高,而且成本较低。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 中国科学院过程工程研究所崔彦斌研究员将石墨烯加到环氧树脂中,通过大大提高导热率制备出碳基导热膜,而且相比于国外市场的导热膜,具有价格低的优势。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal text-align: center line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " ?? /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 综述: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 2em white-space: normal line-height: 1.75em " span style=" font-size: 16px " 一个材料的兴起必然要经过三个阶段:料要成材;材要成器;器要成用。石墨烯产业目前尚处于技术概念期,要真正进入产品导入期和市场扩张期,还有相当长的一段时间。但是从“书架”走向“货架”已成必然,让我们共同期待碳纳米材料即将带给我们的崭新未来! /span /p
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn

佐米曲坦相关的仪器

  • ZEISSMICURA特点工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,蔡司MICURA正是针对这一全新需求定制的解决方案。小型化与高精度工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,MICURA正是针对这一全新需求定制的解决方案。MICURA采用蔡司VASTXTgold扫描探头与navigator技术,可在主动式扫描时获得微米级的测量精度。它尤其适于测量用于光学和电子产品的结构复杂的小型工件。尽管采用紧凑型设计,系统却具备500x500x500毫米的测量能力——性能远超同类产品。精准的高速扫描蔡司VASTXTgold探头具有高速扫描功能,除可在极短时间测定几何特征外,还可精准测量及评定形状误差如圆度、平面度等特性。探针最小直径仅为0.3毫米。自动测量速度蔡司MICURA采用VASTnavigator技术。该技术可在确保测量精度的前提下自动调节理想的测量速度,从而显著缩短测量时间。在测量精度要求较高的区域,蔡司MICURA的移动速度放缓。当轮廓简单或精度需求较低时,移动的速度更快。VASTnavigator技术还通过切线逼近扫描、螺旋扫描和测针快速动态校准等功能进一步缩短测量时间。操作与人体工学蔡司MICURA的控制面板进行了全新设计。用户可在不使用计算机的情况下,借助一台显示器和两个摇杆进行控制和编程。系统操作简便,即使没有丰富测量机使用经验的用户也可迅速上手。花岗岩台面前侧的台架可将控制面板和工具与测量区域隔离。计算机辅助精度修正:由动态惯性效应引起的测量误差会自动得到补偿工业陶瓷导轨和大型轴承座可将外界环境的影响降低四面环抱的蔡司气浮轴承确保更好的稳定性和测量精度蔡司MICURA同时配备两个工件温度传感器可实现测量力的高效控制,适用于敏感材料控制柜、软件、探头和其他组件均来自蔡司,彼此完美适配
    留言咨询
  • MICURA树立了蔡司紧凑型三坐标测量机的标杆。尽管尺寸较小,但在测量精度方面毫不逊色。MICURA配备蔡司VAST XT gold扫描探头与navigator技术。小型化与高精度工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,MICURA正是针对这一全新需求定制的解决方案。MICURA采用蔡司VAST XT gold扫描探头与navigator技术, 可在主动式扫描时获得微米级的测量精度。它尤其适于测量用于光学和电子产品的结构复杂的小型工件。尽管采用紧凑型设计,系统却具备500 x 500 x 500毫米的测量能力——性能远超同类产品。精确的高速扫描蔡司VAST XT gold探头具有高速扫描功能,除可在短时间测定几何特征外,还可精确测量及评定形状误差如圆度、平面度等特性。探针较小直径仅为0.3毫米。速扫描:VAST navigatorMICURA可速获取较为精确的测量结果。navigator技术是为蔡司所研发的高速高精度扫描技术。智能优化参数设定以确保测量的精确性。得益于切线逼近扫描、螺旋扫描和测针快速动态校准等功能,可进一步缩短测量时间。计算机辅助精度修正(CAA)MICURA可实现对测量机动态误差的有效补偿,从而确保即便于高速扫描过程中仍可获得理想的测量精度。操作与人体工学全新设计控制面板,配备LCD显示屏及双手柄控制面板,使用方便快捷。 成熟的设计 工业陶瓷导轨和大型轴承座可将外界环境的影响降至较低四面环抱的蔡司气浮轴承确保更好的稳定性和测量精度蔡司MICURA同时配备工件温度传感器可实现测量力的高效控制,适用于敏感材料控制柜、软件、探头和其他组件均来自蔡司,彼此完美适配典型应用 轴承类等高精密机加工零部件公差要求小的活塞和轴类部件人工关节齿轮光学元件
    留言咨询
  • MICURA树立了蔡司紧凑型三坐标测量机的标杆。尽管尺寸较小,但在测量精度方面毫不逊色。MICURA配备蔡司VAST XT gold扫描探头与navigator技术。小型化与高精度工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,MICURA正是针对这一全新需求定制的解决方案。MICURA采用蔡司VAST XT gold扫描探头与navigator技术, 可在主动式扫描时获得微米级的测量精度。它尤其适于测量用于光学和电子产品的结构复杂的小型工件。尽管采用紧凑型设计,系统却具备500 x 500 x 500毫米的测量能力——性能远超同类产品。精确的高速扫描蔡司VAST XT gold探头具有高速扫描功能,除可在短时间测定几何特征外,还可精确测量及评定形状误差如圆度、平面度等特性。探针较小直径仅为0.3毫米。速扫描:VAST navigatorMICURA可速获取较为精确的测量结果。navigator技术是为蔡司所研发的高速高精度扫描技术。智能优化参数设定以确保测量的精确性。得益于切线逼近扫描、螺旋扫描和测针快速动态校准等功能,可进一步缩短测量时间。计算机辅助精度修正(CAA)MICURA可实现对测量机动态误差的有效补偿,从而确保即便于高速扫描过程中仍可获得理想的测量精度。操作与人体工学全新设计控制面板,配备LCD显示屏及双手柄控制面板,使用方便快捷。 成熟的设计 工业陶瓷导轨和大型轴承座可将外界环境的影响降至较低四面环抱的蔡司气浮轴承确保更好的稳定性和测量精度蔡司MICURA同时配备工件温度传感器可实现测量力的高效控制,适用于敏感材料控制柜、软件、探头和其他组件均来自蔡司,彼此完美适配典型应用 轴承类等高精密机加工零部件公差要求小的活塞和轴类部件人工关节齿轮光学元件
    留言咨询

佐米曲坦相关的耗材

  • 中镜科仪 坐标镀碳支持膜 (铜.镍.金坐标镀碳支持膜)
    坐标普通碳支持膜的载网是带标记的,方便您找到需要观察的样品。F1坐标载网和F2坐标载网是不同规格标记(F1坐标网见图1,F2坐标网见图2)。图1 F1坐标图2 F2坐标 碳膜为两层支持膜结构,可以采用不同规格的载网做载体。从空间结构来讲,从下到上依次为载网,方华膜和碳膜,如下图它是在一层有机方华膜上再覆盖一层碳膜。由于碳层具有较强的导电以及导热性,弥补了无碳方华膜的荷电效应以及热效应,增强了膜整体的稳定性,适合大多数纳米材料和生物样品的一般形貌观察。普通碳支持膜是针对常规检测20-50nm尺度样品的理想产品,是初次使用或筛查样品的最基本选择。如下图是纳米材料和生物样品在中低倍下的TEM照片,图像清晰,背底影响较小。支持膜的厚度,由对样品提供的承载强度和自身产生的背底干扰共同决定。如果膜厚度大,对样品的承载能力强,但会导致背底噪音增强;如果膜厚度小,图像质量高,但容易引起支持膜破裂。膜总厚度:10-20 nm产品编号产品名称规格/数量间距肋宽孔径BZ10021F1b100目F1坐标碳支持膜50枚/盒25040210BZ10021F1a100目F1坐标碳支持膜100枚/盒25040210
  • 曲安奈德益康唑乳膏中曲安奈德和硝酸益康唑含量的分离,色谱柱COSMOSIL C8-MS
    曲安奈德益康唑乳膏中曲安奈德和硝酸益康唑含量的分离,色谱柱COSMOSIL C8-MS 关键词:曲安奈德益康唑乳膏,曲安奈德,硝酸益康唑,2010年药典,辛烷基硅烷键合硅胶 2010年中国药典标准:曲安奈德益康和硝酸益康唑色谱条件:照高效液相色谱法(附录Ⅴ D)测定,用辛烷基硅烷键合硅胶为填充剂;以溶解在乙腈-异丙醇-水-85%磷酸中的己烷磺酸钠为流动相A,以溶解在甲醇-水-85%磷酸中的己烷磺酸钠为流动相B,进行梯度洗脱;柱温为40℃;检测波长为227nm。曲安奈德峰与硝酸益康唑峰的分离度应符合要求。(中国药典二部P269) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • 三唑类分子印迹固相萃取柱
    农药残留类三唑类分子印迹固相萃取柱目前,通用 QuEChERS 方法只能应用于基质中 15 种三唑类农药的提取净化,对于存在基质增强 效应的一些基质,必须联用 GPC 才能消除;而采用分子印迹柱可实现 20 种三唑类农药的分离、净化、 富集,且不需要复杂过程。 检测项目:三唑酮、氟菌唑、多效唑、三唑醇、烯效唑、环丙唑醇、腈菌唑、糠菌唑、氟环唑、 四氟醚唑、戊唑醇、苄氯三唑醇、腈苯唑、联苯三唑醇、己唑醇、叶菌唑、戊菌唑、烯唑醇、丙环唑、 苯醚甲环唑。 适用样品:粮谷类、水果、蔬菜、坚果、茶叶、人参、三七(干)、啤酒花等。 检测结果:葡萄基质中的 21 种三唑农药进行添加回收实验,除氟喹唑、亚胺唑回收率过低外,其 余 19 种农药回收率均在 60.6% ~ 121.5% 之间,RSD 为 1.1% ~ 19.3%。

佐米曲坦相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制