当前位置: 仪器信息网 > 行业主题 > >

质谱片段分析

仪器信息网质谱片段分析专题为您提供2024年最新质谱片段分析价格报价、厂家品牌的相关信息, 包括质谱片段分析参数、型号等,不管是国产,还是进口品牌的质谱片段分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱片段分析相关的耗材配件、试剂标物,还有质谱片段分析相关的最新资讯、资料,以及质谱片段分析相关的解决方案。

质谱片段分析相关的资讯

  • 抗体-药物偶联物自上而下质谱分析新进展
    大家好,本周为大家分享一篇文章,Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody−Drug Conjugates [1],文章的通讯作者是加州大学洛杉矶分校化学与生物化学系的Joseph A. Loo教授。  抗体-药物偶联物(Antibody - drug conjugates, ADC)是一种很有前景的治疗药物,它通过linker为抗体提供高效的细胞毒性有效载荷,以提高其抗肿瘤功效。将linker和有效载荷偶联到抗体上,给ADC带来了额外的异质性,增加了对其全面表征的挑战。自上而下的质谱(TD-MS)技术近年来在单克隆抗体的表征中得到了广泛的应用,与自下而上质谱(BU-MS)和中下质谱(MD-MS)相比,TD-MS具有最简单的样品制备流程和保留单克隆抗体内源性修饰的优势。然而,对于抗体大小的蛋白质和具有显著二硫键组成的蛋白质,TD-MS的断裂效率较低,获得的序列和药物偶联位点信息有限。  为了增加TD-MS的序列信息含量,一种策略是将不包含蛋白质序列N端和C端的内部片段纳入数据分析工作流程中,这种方法已被证明有助于二硫化完整蛋白的TD-MS表征。在这篇文章中,作者发现在TD-MS中分配内部片段将mAb序列覆盖率提高到75%以上,并允许确定链内二硫键连接和各种N-糖基化类型。对于治疗性非特异性赖氨酸连接ADC,几乎60%的假定药物偶联位点被识别。  内部片段可以在不破坏二硫键的情况下进入结构紧密、碎片化效率高度受限的区域,因此有可能大大增强完整单克隆抗体的序列信息。作者对完整的NIST单抗的5个最丰富的电荷态采用了ECD和HCD两种碎片化方法,并将每个电荷态的两种碎片化方法的TD-MS结果结合分析。内部片段的纳入提高了二硫键约束区域的序列覆盖,例如,轻链Cys133和Cys193之间的二硫约束序列几乎完全由内部片段覆盖(图2A),重链的Cys147-Cys203和Cys264-Cys324序列区也是如此(图2B),而这些区域是末端片段难以触及的。CDR的覆盖率从53%增加到60%,这表明纳入内部片段可以更深入地了解这一关键区域。总体来说,轻链的序列覆盖率从54%提高到83%,重链从28%提高到72%,合并后整个NIST单抗的序列覆盖率从36%增加到76%(图1)。重链比轻链的覆盖率提高更为显著,这表明随着蛋白质分子量增大,分配内部片段变得更有价值。  图1. 考虑(A)轻链、(B)重链和(C)全单抗内部片段前后不同序列区域的序列覆盖率,包括非二硫约束序列(Free)、二硫约束序列(SS-constrained)、全序列(Full)和CDR序列(CDR)  图2. (A)轻链和(B)重链的NIST mAb序列覆盖图谱。蛋白质骨架上的蓝色、红色和绿色切割分别代表b/y、c/z和by/cz片段。序列上方的实线表示末端片段序列覆盖率,序列下方的实线表示内部片段序列覆盖率。紫色虚线表示链内二硫键,浅灰色表示受二硫键约束的序列区域,橙色表示互补决定区域(cdr)。  HCD能够在不破坏二硫键的同时仅碎裂蛋白质主干,因此作者在完整的NIST单抗上应用HCD来生成含有完整二硫键的片段,以确定二硫键连接。在每个形成链内二硫键的半胱氨酸上应用-1H的修饰,以表明它们的完整性。对于轻链,52个末端片段和12个内部片段穿过S - S键I, 17个末端片段穿过S - S键II, 6个末端片段穿过两个二硫键,清楚地显示了这两个二硫键的连接模式(图3A)。靠近重链两端的两个二硫键,S - S键I和S - S键IV,被89个末端片段和9个内部片段穿过 而中间的两个二硫键,S−S键II和S−S键III,只有24个内部片段穿过,没有末端片段穿过(图3B,C)。这些结果证明了NIST单抗重链的链内S - S连通性,重要的是,中间的两个S - S键模式只能由内部片段确定。除了确定链内S - S连通性外,分配内部片段也有助于鉴定N糖基化。当纳入内部片段时,额外分配了25个含有G0F的片段,42个含有G1F的片段和34个含有G2F的片段,这表明分析内部片段对N-糖基化鉴定的能力。  图3. (A)轻链、(B)重链、(C)仅含完整NIST单抗内部片段的重链,在每个形成链内二硫键的半胱氨酸上施加一个氢损失后,通过HCD TD-MS生成片段位置图。  内部片段可以确定赖氨酸连接ADC的药物偶联位点。作者采用了类似的方法,将ECD和HCD应用于先前已充分表征的非特异性赖氨酸连接ADC。ADC的TDMS在轻链上仅产生8个与DM1结合的末端片段(图4A)。分配内部片段显著提高了DM1偶联位点的测定。ADC的TD-MS在轻链上产生61个1- dm1结合和15个2 - dm1结合的内部片段,定位了3个偶联位点(K106, K114, K133),并将鉴定的两个偶联位点缩小到4个赖氨酸残基(K153, K160, K170, K175)(图4A)。对于重链也观察到类似的结果。综上所述,对于完整的ADC,仅用末端片段确认了16个偶联位点,而在包含内部片段后,这一数字增加到52个,覆盖了约58%的抗体所有假定的偶联位点。  图4. 由ECD和HCD TDMS生成的完整IgG1-DM1 ADC (A)轻链和(B)重链片段位置图。黑色垂直虚线表示赖氨酸的位置。  在这项工作中,作者首次报道了在完整的NIST单抗和异质赖氨酸连接ADC的TD-MS表征中分析内部片段的好处。内部片段的包含末端片段难以达到的二硫键约束区域,显著增加了完整单克隆抗体的序列覆盖率。重要的PTM信息,包括二硫键模式和N糖基化,可以通过包含内部片段获得。最重要的是,内部片段可以帮助确定高度异质赖氨酸连接ADC的药物偶联位点。  撰稿:夏淑君  编辑:李惠琳  文章引用:Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates
  • 干货科普|浅析基于质谱分析的药物靶点发现方法
    药品与我们的生活密不可分。新药研发一方面关系着全人类的健康需求,另一方面也关系着国家经济与社会的发展需求。 据权威统计,单一药物上市的成本超过十亿美元,整个过程花费约十年的时间,药物筛选的失败率高达97%。但药物筛选是新药研发中至关重要的一步,确定靶标分子及筛选模型是现代新药开发的基础。它主要有两种方式,表型筛选(Phenotypic drug discovery, PDD)和靶点筛选(Target-based drug discovery,TDD)。PDD的起点是一个化合物库或抗体库,用一个和疾病高度相关的临床前模型或者实验来筛选库中的药效,找到达到期望药效的分子再进一步优化和开发。经典的药物表型筛选更多的是基于动物疾病模型的筛选,实验选择遗传背景明确或者来源清楚的动物,例如鸡、猪、狗、猫、鼠、蛙、蛇、猴子、鱼、果蝇、线虫等。TDD则是基于对疾病和靶点机理的理解,针对某一个和疾病机理高度相关的特定的靶点,从而有针对性的设计大分子或小分子药物的研发方式。由于表型筛选无法提供活性化合物作用靶标信息, 因此需要利用化学蛋白组学回溯鉴定那些因与小分子药物直接发生作用而引起功能改变的蛋白质,在分子水平上系统揭示特定蛋白质的功能以及蛋白质与化学小分子的相互作用, 从而准确找到药物的作用靶点。旨在建立药物活性与细胞表型之间的联系,阐明药物的作用机理,一方面探究药物的脱靶效应和耐药性机制, 提高药物发现的效率;另一方面在药物研发的早期阶段预测潜在的副作用和毒性, 从而降低药物研发失败的风险。 化学蛋白质组学研究方法的一般流程是, 先将化学探针或小分子化合物与蛋白质提取液进行共孵育,然后利用亲和层析等方法将这些蛋白质分离,再通过高灵敏度的质谱鉴定, 最后对它们做进一步的生物信息学分析。1. 基于活性的蛋白质谱分析 (activity-based protein profiling, ABPP)ABPP利用基于靶酶活性的特异化学小分子探针 (activity-based probes, ABPs) 来探测功能蛋白质组, 利用活性小分子探针来识别蛋白质靶点。分子探针是指能与特定的靶分子发生特异性相互作用并能被特殊方法所检测的分子。ABP 的设计通常包括两个基本组成部分:“反应基团”和“报告基团” , 一般通过碳链或者聚乙二醇链将二者连接在一起. 反应基团通常是具有独特化学结构的亲电性化学小分子, 能够选择性地与蛋白质组中某一类蛋白酶的活性中心结合, 并与其中执行重要催化功能的亲核性氨基酸发生反应, 从而将探针分子共价地标记在靶标蛋白上。活性分子探针结构示意图2. 药物亲和致靶点稳定性(drug affinity responsive target stability,DARTS)DARTS通过对比药物处理组与DMSO对照组蛋白质酶解片段的差异,找出酶解情况不同的蛋白质,再进行结合特异性分析,找出特异结合的靶标。DARTS实验步骤这种方法的优点是, 仅依靠药物和蛋白直接结合而并不需要对小分子化合物进行修饰, 从而确定出小分子的任意靶点。因此, 可采用小分子稳定其靶蛋白的结构从而导致蛋白酶抵抗, 结合质谱分析法发现未知靶点。DARTS 可将具有生物活性的天然产物提取物在分离之前就用于靶点发现,多用来研究多靶点药理学以及复方中成药物。3.细胞热转变分析(Cellular Thermal Shift Assay,CETSA)CETSA是一种检测细胞内药物与靶蛋白结合效率的实验,其原理是靶蛋白与药物分子结合时通常会变得稳定。即随着温度的升高,蛋白会发生降解;当蛋白结合药物后,相同温度下,未降解蛋白的量会提高,该复合蛋白的热熔曲线会右移。用溶解蛋白质的量作温度的函数可以得到蛋白质的变性曲线,由此可以确定蛋白质的变性温度点或蛋白质的熔点。CETSA实验的样品来源,可以是细胞,也可以是组织样本,检测方法主要有Western blot和MS。该技术能在天然的细胞环境中进行,也无需对目标分子和蛋白进行任何修饰以及标记。CETSA实验步骤目前已证实该技术能识别许多已知的抗癌试剂的靶点,如在细胞裂解液、完整细胞或组织样本中均鉴定出多个药物的作用靶标。然而,CETSA方法不适用于高度不均匀的蛋白质或蛋白质配体结合域的结构展开,并不会诱导蛋白的聚集和变性的情况,如DNA和伴侣蛋白质的结合。有研究将cellular thermal shift assay与质谱联用(MS-CETSA),可以同时监测整个蛋白质组在药物作用下蛋白质稳定性的变化,因此可以鉴定出与药物相互作用的蛋白质,而不需要预先知道药物的作用通路或机制。MS-CETSA流程图4. 有限蛋白水解质谱(Limited Proteolysis-Mass Spectrometry,LiP-MS)LiP-MS不需要对配体进行化学修饰,就可以实现在复杂的生物环境中鉴定药物靶标。实验步骤是用低浓度的非选择性蛋白酶K进行有限的蛋白水解,优先切割蛋白质暴露在外的柔性部分(环或者未折叠部分), 经过变性和胰蛋白酶消化后,通过LC-MS分析肽混合物。基于LiP-MS的小分子图谱靶点的发现在整个药物研发过程中起着至关重要的作用。随着现代分子生物学技术的发展和人类基因组计划的完成,出现了大量可供治疗干预的新型分子靶点,但并不是所有的靶点都能够成为与疾病有关的有效靶点,因此对新型靶点进行发现和验证便成为非常重要的工作。
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, AltemoseN, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙 沃特世科技(上海)有限公司实验中心 氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC® HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。 氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC® 系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT® 质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。 沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。 参考文献 (1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875 (2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61 (3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloproteasecleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554 (4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933. (5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27 (6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217 (7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22. (8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506 (9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167 (10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820 (11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414 (12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40 (13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52. (14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogatingviral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132 (15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem. 2011, 3, 172-177 (16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 进展|糖型解析层面的抗体middle-down质谱分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry。本文的通讯作者是罗氏集团的Tilman Schlothauer和Feng Yang。  治疗性单克隆抗体(mAb)分析中翻译后修饰(PTMs)的表征是一个主要的挑战,单个PTM通常采用bottom-up的方法进行分析,但PTM之间的关联性信息丢失 middle-down方法提供了分辨率、位点特异性和蛋白型异质性的良好平衡,其表征工作流程主要依赖于末端片段离子。内部片段离子的纳入提高了序列覆盖率和PTM分辨率,使其成为一种有前途的方法。先前,糖工程单克隆抗体的研究表明,一组有限的高甘露糖、乙酰氨基葡萄糖和糖基化蛋白型不同程度地影响了PTMs的敏感性质,如脱酰胺和氧化。Asn 325的脱酰胺是一种功能相关PTM,在传统bottom-up方法中由于其较短的肽段和较高的亲水性而经常被忽略,目前没有研究调查Asn 297糖型对Asn 325脱酰胺敏感性的影响。在这篇文章中,作者提出了一种纳入内部片段的middle-down工作流程,在糖型解析层面上评估mAb上Asn 325脱酰胺修饰。  图1. 糖型解析的Asn 325脱酰胺的middle-down分析流程。(A) IdeS酶切后的Fc/2序列,及相关的糖基化(Asn 297)和脱酰胺(Asn 325)位点。(B)工作流程示意图,包括样品制备、RP-LC亚基分离、MS1电荷态选择、四极杆糖型分离、MS2内部片段搜索,以及基于提取的单同位素质量离子色谱(未修饰与修饰)的定量策略。  图2. Asn 325脱酰胺鉴定中内部片段SNKAL的定性评价。未修饰(对照)、热应力样品(8w, 40°C)、HC Asn 325 Asp序列突变体的代表性MS2谱图叠加,以及修饰的内部片段离子SDKAL的模拟单同位素质量。*表示未修饰的SNKAL的+1同位素对修饰的SDKAL的单同位素具有足够的分辨率。  本研究使用标准IgG1单抗(G1m17, Km3)和突变体(HC Asn 325 Asp)。对于热应激,标准单抗在40°C的配方缓冲液中孵育2、4和8周。在IdeS酶切之前,将10%的突变单抗插入标准单抗中,生成加标样品。抗体经IdeS酶切、还原后,用标准RPLC流程分析(图1B) 针对Asn 325脱酰胺位点周围的内部片段离子的覆盖率,作者对HCD碰撞能量和捕获气体参数进行了优化。共分配了覆盖Asn 325的7个内部片段离子,根据片段强度和定量精度,与bottom-up分析确定的目标脱酰胺值相比,选择SNKAL作为Asn 325的代表性特征离子。SNKAL对无应力对照组的特异性通过包含Asp 325的序列突变体(N325D)得到证实,该突变体在未修饰的Asn 325的单同位素质量处没有片段离子(图2)。因此,排除了其他片段离子的中性丢失引起的歧义或重叠。Asn 325对照、Asp 325突变体和分离的糖型(G0F、G1F、G2F)的MS2具有高度可比性。修饰后的单同位素质量和未修饰的Asn 325的第一个同位素之间获得了足够的分辨率(图2)。  使用middle-down MS对所有糖型的相对脱酰胺评估与bottom-up分析确定的水平一致(图3)。与热应力持续时间无关,单个糖型(G0F、G1F和G2F)的middle-down脱酰胺评估没有显著差异(图4)。Asp 325突变体的插入实验证实了middle-down策略评估单个糖型脱酰胺水平差异的能力。由于未修饰的Asn 325单抗和Asp 325单抗之间的糖型相对丰度的差异,与总加标量(10%)相比,蛋白型(糖型% ×脱酰胺%)混合的比例不同。因此,在加标样品中,G0F的脱酰胺率低于10%,而由G1F和G2F的脱酰胺率高于10%(图4)。Middle-down脱酰胺评估的精度取决于糖型丰度和脱酰胺水平,单个样本的相对标准偏差范围为2.8%至16.4% (n = 9),样本间中位相对标准偏差为7.4% (n = 16)。总蛋白型丰度和相对标准偏差显示出明显的相关性,并证明了middle-down方法的敏感性,允许在0.2%的相对丰度下评估蛋白型。  图3. middle-down工作流程对Asn 325脱酰胺定量分析的能力评估。在2w、4w和8w热应力(40°C)下,应力样品bottom-up和middle-down(所有糖型)分析的相关性。数据点表示middle-down分析的技术重复的中位数(n = 9, 3天内重复3次)。误差条显示95%置信区间。CTRL显示n = 3时无应力样品的背景水平。  图4. Asn 325脱酰胺的糖型解析水平的middle-down分析。从2w, 4w和8w热应力样品和10% Asp 325加标样品中提取所有糖型和分离糖型(G0F, G1F, G2F)的相对脱酰胺结果。技术重复的中位数和95%置信区间为n = 9时[G2F在2w (n = 4)和4w (n = 8)时除外]。ns =不显著。*表示假定值范围(* 0.05, ** 0.01, **** 0.0001)。  本文引入了一种新的middle-down策略,通过利用HCD碎片的内部碎片离子来分析单克隆抗体Fc中的PTM动力学,将复杂性降低到Fc/2亚基水平,并保留了相关的蛋白质形态完整性,同时获得了bottom-up方法的分辨率和位点特异性,并成功地证明了IgG1抗体的Fc半乳糖基化变体不会影响热应激下Asn 325脱酰胺的程度。  撰稿:夏淑君  编辑:李惠琳  文章引用:Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry
  • 质谱“跨界”医学 妙用蛋白组学分析——访威斯康星大学麦迪逊分校细胞与再生生物系及化学系葛瑛教授
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯 /strong & nbsp span style=" text-indent: 2em " 2020年,美国质谱学会(American Society for Mass Spectrometry, ASMS)将质谱界内“最高荣誉”之一的Biemann奖章授予了威斯康星大学麦迪逊分校的葛瑛教授 (https://labs.wisc.edu/gelab/),以表彰其应用基于高分辨率质谱的top-down蛋白质组学技术在心脏疾病研究领域所做出的重大贡献。该奖项是对质谱先驱—Klaus Biemann教授的纪念,表彰获奖者个人在其学术生涯的早期就在基础和应用质谱领域获得显著成就,因此该奖项的获得者均为中青年的杰出科学家。 strong Biemann奖章自1997年颁布以来共授予了24位科学家,作为2020年的奖项获得者,葛瑛教授既是该奖项自颁布以来的第七位女性科学家,也是该奖项历史上第三位获得此荣誉的华人学者。 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 葛瑛本科毕业于北京大学化学学院,毕业后赴美国康奈尔大学攻读博士学位。她基于top-down的蛋白质组学研究也起始于博士求学期间,彼时她师从Fred W. McLafferty,后者提出了著名的 strong 麦克拉弗蒂重排反应 /strong ,也被喻为质谱界泰斗。葛瑛在博士毕业后做出了一个与多数科研学者不同的抉择,她决定先加入美国惠氏制药(后并入辉瑞制药公司)从事药物研发工作,这段工作经历需要她与不同研究领域的工作者合作完成研究内容,也让她切身感受到了交叉学科研究模式的可行性和高效性,更为她日后赴任高校开启交叉学科的研究之路“凿”开了一道光。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 葛瑛团队突破了传统化学、生物学和医学的界限,利用高分辨质谱技术和top-down方法开展蛋白质组学研究,并通过新的方法策略获得了对心脏疾病等病理学研究的新颖洞见。仪器信息网近期采访了这位优秀的女性质谱工作者——威斯康星大学的葛瑛教授,与她进行了深入的交谈,探寻她光环加身的科研成果背后有何奥秘。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 450px " src=" https://img1.17img.cn/17img/images/202008/uepic/50b38277-e0d1-4e19-92d0-ffef8ecafdd6.jpg" title=" 葛瑛.jpg" alt=" 葛瑛.jpg" width=" 300" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 威斯康辛大学麦迪逊分校细胞与再生生物系及化学系教授 葛瑛 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 以质谱为中心的技术开发 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 翻译后修饰的蛋白质(PTMs)在许多关键细胞中发挥着重要作用,因此对蛋白质组进行全面的分析,对于解释分子作为一个系统如何相互作用,以及了解细胞系统在健康和疾病中的功能至关重要。当前蛋白质组学的质谱分析主要有bottom-up(自下而上)和top-down(自上而下)两种方法,Bottom-up是传统的手段,它将蛋白质的大片段混合物消化/酶解成小片段的肽后再进行分析,是在蛋白质组学的研究中广泛使用的一种质谱技术,但该方式无法取得与PTMs之间相关联系的信息。而Top-down技术则不再需要酶切的过程,可以直接对完整的蛋白——包括翻译后修饰蛋白以及其它一些大片段蛋白测序,而非仅仅针对多肽,这就使得与翻译后修饰相关的信息能最大程度的保存下来。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于top-down质谱技术的蛋白质组分析是表征完整蛋白质组的新兴手段,它可以对来自于全细胞或组织裂解液的复杂混合物中的完整蛋白进行快速、灵敏的分析,提供一个系统、定量的蛋白质评估。然而,由于蛋白质组的高度复杂性和动态性,蛋白质组学的分析依然面临着巨大的挑战。比如蛋白质难溶于水、新的蛋白分离纯化方法有待探索以及根据top-down获得的数据来确定蛋白特性和有效翻译后修饰蛋白质的计算机工具十分匮乏等。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此葛瑛团队就蛋白质组学分析面临的难题开展了系列研究,首先便是蛋白质溶解度的问题。在蛋白质的分析过程中,为了有效地从细胞或组织中提取蛋白质,提取缓冲液中通常含有表面活性剂,但是传统的表面活性剂与质谱不相容,它们通常存在极大的抑制蛋白质的质谱信号,因此在质谱分析前要先除去表面活性剂。基于此,葛瑛团队创造性地合成了可光降解的表面活性剂Azo,Azo的功能与常规表面活性剂非常相似,但却在表面活性剂分子的中间加入了可以通过简单紫外线照射被破坏的化学键。在进行质谱分析之前,可以通过暴露于光来裂解键,这样Azo就会分裂,仅留下蛋白质分子。葛瑛说到:“Azo能够对整个蛋白质进行有效的质谱分析,开辟了研究膜蛋白质的新道路。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 其次,针对完整蛋白质色谱分离法并不完善的问题,葛瑛团队发展了一种新型的多维色谱法——在线HIC/MS(疏水性相互作用色谱质谱)分析方法,用于在非变性模式下高分辨率分离完整蛋白,展示了该方法在Top-Dwon蛋白质组分析的潜力。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 不仅如此,针对难以使用质谱检测低丰度蛋白质等难题,葛瑛团队研发了新型纳米材料用于富集蛋白质,实现了利用top-down质谱法富集、鉴定、定量和表征完整的磷酸化蛋白。近日,葛瑛教授团队和威斯康星大学麦迪逊分校化学系金松教授团队合作的研究成果发表于自然子刊《自然· 通讯》,团队开发了基于纳米材料的蛋白质组学新方法,将功能化的超顺磁性纳米颗粒(NPs)与自上而下蛋白组学质谱分析结合,在有效地从血清中富集心脏肌钙蛋白I(cTnI)(cTnI是一种心脏疾病的生物标志物)的同时也能很好的去除血清白蛋白。该研究成果将在蛋白组学研究上得到广泛的应用,有助于揭示cTnI的分子指纹图谱,便于精准医疗研究。 a href=" https://www.nature.com/articles/s41467-020-17643-1" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " (原文链接:《Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum span style=" color: rgb(0, 32, 96) text-indent: 2em " 》) /span /span /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,对于top-down数据分析工具开发不足的问题,其团队开发了综合软件工具MASH Explorer软件,实现了不同质谱厂商的数据统一分析,并结合了多种用于反卷积和数据库搜索的算法,以进一步推动top-down蛋白质组学在生物医学研究中的发展。 span style=" color: rgb(0, 32, 96) " (软件免费下载 /span a href=" https://labs.wisc.edu/gelab/MASH_Explorer/index.htm" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " https://labs.wisc.edu/gelab/MASH_Explorer/index.htm /span /a span style=" color: rgb(0, 32, 96) " ) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在不断钻研的基础上,葛瑛团队进一步将其开发的方法应用于生物医学等问题的研究上,比如在正常和患病条件下建立心脏肌丝蛋白修饰的图谱,探究其调节心脏和骨骼肌收缩力的功能结果,以及利用蛋白质组学和代谢组学等综合研究方法评估干细胞疗法治疗心力衰竭的功效,并了解心脏再生过程中的信号传导机制。她在心脏生物学领域取得了重要发现,例如,其团队确定了心肌肌钙蛋白I的磷酸化和肌动蛋白同工型转换是慢性心力衰竭的潜在生物标记。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 跨界要知己知彼 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 从上文不难看出,葛瑛的研究内容不仅跨越了化学、生物学和医学的传统界限,更创造性地将其在生物化学方面的专业知识与医学相结合,获得了对心脏疾病等病理学研究的新颖见解。“科学界越来越多的人认识到,一个领域内真正的突破,很多时候来自于这个领域之外,来自于其它领域科学家的研究成果。也就是人们经常所说的‘跨界’研究。” 葛瑛说道:“从另外一个‘视角’去解决问题,往往能得出意想不到的结果。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 交叉学科很热门,但研究难度也不小。如何克服跨领域探索的挑战?笔者向葛瑛抛去这个问题。结合其自身的经历,在跨领域的学习过程中葛瑛一直积极地、努力地保持着好奇心,在不同的专业领域积蓄知识和力量。葛瑛表示:“随着长期对一个研究方向的不断深入,自然需要不断扩展,我当时进行跨界研究的契机是在加入麦迪逊医学院组建蛋白质中心后,开始有很多机会与生物学家以及医生合作,这就需要我去学习更多的知识,包括阅读其他领域的文献,跨领域沟通研究等等。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “另外,想要真正深入了解一个科研领域,也必须要找到对应的‘圈子’,并且要知己知彼。”葛瑛分享了一段故事:“当我准备利用系统生物学方法深入了解心脏病等研究时,我阅读了上千篇心脏医学的文章,去参加该领域的学术研讨会,不断地扩充我的知识,有一次在一场心脏学会研讨会上,我遇见该领域的一位‘大伽’,并主动上前与他交谈,过程中他提到看过我发表的关于心肌钙蛋白的文章,对我赞誉很高,借那次机会,他推荐了多位医学领域的学者给我认识,也为我后来进行跨界研究提供了资源和平台。这是我认为很重要的一点,跨界,你必须要知己知彼。当然我很幸运能够得到多个领域(质谱,蛋白质组学,色谱 和 心脏学会)的前辈和朋友们的大力支持, 非常感激。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对科学研究来说,跨界是必然的,而当跨界研究的时候找到一个突破口也十分必要。葛瑛的团队是多元化的,既有生物学、化学方向的学生,也有医学方向的学生。围绕课题组的两大主要方向,技术开发和生物医学研究,化学系的学生以发展技术为中心,最终落地到应用上,而生物系的学生以研究一种疾病为中心展开课题。此外,课题组实验室的设置也同样多元化,一层楼里有化学实验室、生物工程实验室和临床实验室,这样的环境也为组内的学生提供了跨界沟通、交流和合作的机会与平台。“我们实验室已经不是单纯的化学实验室或生物实验室,某种意义上我们可以称为‘交叉研究中心’。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 采访的最后,葛瑛也表示,不管从事的是化学研究还是生物学研究,最终都是想要解决生命科学的问题,因此质谱技术也好,生物医学应用也好,团队都希望能更好地实现精准医学,最终造福人类。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: right text-indent: 2em line-height: 1.75em " 采访编辑:万鑫 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 后记: /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 当下时代的科学研究已经不仅仅需要培养“标准型人才”,更多的创新成果和研究领域的成长点都发生在领域的边缘或几个不同领域的交界处,因此,越来越需要像葛瑛这样掌握各种知识的研究学者。与此同时,科研学者如果能够自由发挥,把自己培养成“非标准型人才”,也许更利于将来的创新研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" 点击图片了解葛瑛团队更多内容: a href=" https://labs.wisc.edu/gelab/" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " https://labs.wisc.edu/gelab/ /span /a /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" /span /p p style=" text-align: center" a href=" https://labs.wisc.edu/gelab/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a7c8ff9b-cf8b-40b8-bcf2-b2a9d68a1b5a.jpg" title=" 葛瑛团队.jpg" alt=" 葛瑛团队.jpg" / /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" /span br/ /p
  • NanoTemper助力药企研究STING抑制剂片段筛选
    STING抑制剂片段筛选案例干扰素基因刺激因子(Stimulator of interferon genes, STING)在天然免疫中发挥重要作用,当细胞被病原体(如病毒)感染时,STING可以诱导I型干扰素和促炎性细胞因子的产生,是靶向治疗自身免疫疾病和癌症的潜在靶标蛋白。近年STING相关研究火爆,管线数量激增。目前全球范围内在研的STING靶向药物超过50种。今天给大家介绍的STING抑制剂片段筛选案例是由NanoTemper和药明康德旗下的Crelux公司合作完成的。研究人员生产纯化了带有His-tag的STING蛋白,随后使用Prometheus蛋白稳定性分析仪进行缓冲液优化并使用环二核苷酸cGAMP作为阳性对照进行Thermal shift assay,快速验证了蛋白的结合活性。案例回顾:差示扫描荧光法表征蛋白配体互作,不加染料的那种接下来研究人员使用Dianthus完成了片段化合物库单点筛选及亲和力排序。在使用Dianthus进行筛选时,其中一个分子需要带有荧光。本实验中, 研究人员使用His-tag荧光标记试剂盒对STING蛋白进行了特异性标记,片段终浓度为500μM,结合缓冲液为50 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM DTT, 0.005% TWEEN® 20, 4% DMSO。 STING片段筛选流程下图为单点筛选结果,2213个片段加上阳性及DMSO对照(均重复一次)总共采集了5376个数据点,即14块384孔板。消耗590μg STING蛋白,上机检测时间约8h(Dianthus 33分钟即可完成一块384孔板检测,↓ 文末查看Dianthus上机演示)。紫色线框中的黄色数据点为阳性对照cGAMP,213个阳性化合物响应值CV仅0.25%,检测重复性非常好。最后将单点筛选结果中的162个hits(上图蓝色数据点)进行12个浓度点的梯度稀释检测亲和力。消耗STING蛋白190μg,上机检测时间约3小时。苗头化合物验证基于片段的药物发现 (FBDD) 是药物研发的主流方法之一。但片段分子量低,且与蛋白靶标亲和力低,通常在μM-mM范围,因此对筛选技术的灵敏度有较高的要求。Dianthus基于光谱位移技术(Spectral shift)检测,不依赖于分子量,可检测pM-mM的亲和力。此外,Dianthus检测一个kd仅需1min,单孔上样体积20μl,是您亲和力筛选项目的强大工具!Dianthus产品介绍:全新Dianthus携光谱位移技术横空出世,1分钟击破亲和力筛选难点!wx搜索NanoTemper视频号,查看Dianthus上机操作演示吧!
  • 赛分科技推出抗体分析液相色谱方法包
    抗体是免疫系统中一类重要的蛋白质,它们通过特异性方式来结合抗原。这一特性使之在诊断、治疗、基础研究等方面具有巨大的价值。抗体由四条多肽链构成,两条重链和两条轻链,通过二硫键连接而成。它们通常被糖基化,其中羧基端区域高度保守,而氨基端区域在氨基酸序列上可变,从而产生抗体的特异性和多样性。 在一系列的酶切和化学处理下,抗体分子被裂解为各种片段,通过HPLC分离,结合电泳和质谱等手段,抗体的结构可被了解和鉴定。近日,赛分科技的科学家通过体积排阻色谱、离子交换色谱和反相色谱等多种技术实现抗体异构体、各种抗体碎片的高效分离,可对抗体结构进行可靠的鉴定和验证。此外,为抗体药物的质量控制也提供了有效的监控手段。 一、结构研究 体积排阻色谱法(Zenix&trade SEC) 抗体片段重链和轻链的分离 抗体片段Fc和Fab的分离 离子交换色谱法(Antibodix&trade WCX) 抗体片段Fc和Fab的离子交换色谱法分离 反相色谱法(Bio-C8) Column: Bio-C8 4.6 x 100 (3 &mu m, 300 Å , 4.6 x 100 mm) Mobile Phase A: 0.11% TFA in water Mobile Phase B: 0.09% TFA in ACN Flow: 0.5 mL/min Temperature: 75 oC Detection: UV 280 nm 抗体片段重链和轻链的反相色谱法分离 二、抗体异构体分析 Column: Antibodix&trade WCX NP5 4.6 x 250 mm Mobile phases: A: 20 mM sodium acetate, pH 5.15, B: A + 1 M LiCl Flow rate: 0.8 mL/min Detection: UV 280 nm. 单克隆抗体的稳定性分析 更多信息请参考:http://www.sepax-tech.com.cn/training/Antibody Solution Kit.pdf 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • Eurofins Discovery | 片段药物发现新「组合拳」
    01研究背景Eurofins Discovery是全球领先的早期药物研发服务平台,拥有超过40年的药物发现研究经验。作为业内领导者,Eurofins Discovery为研究者提供包括但不限于药物化学、合成化学、体外药理学、安全性药理学与功效、ADME-Tox(药物吸收、分布、代谢、排泄和毒性研究)以及定制蛋白质和检测服务。Eurofins Discovery支持多种药物发现,如GPCRs(G蛋白偶联受体)、激酶、离子通道、核激素受体以及其他蛋白质和酶。在药物研发领域,GPCR家族因其在细胞信号传导中的重要作用而备受关注。近日,Eurofins Discovery团队利用前沿的生物物理技术--光谱位移(Spectral Shift, SpS),在属于GPCR家族的人类腺苷A2A受体(A2AR)上发现了新拮抗剂片段,为GPCR药物设计提供了新视角。与此同时,该研究也利用了来自NanoTemper公司专利的MST(微量热泳动)、TRIC(温度依赖的荧光强度变化)和nanoDSF技术设计GPCR配体。这项研究不仅为GPCR药物开发提供了新策略,也为基于片段药物发现设计(FBDD)带来了新「组合拳」!02技术亮点基于Eurofins Discovery片段文库和Eurofins CALIXAR专利的去垢剂,利用MST-TRIC和超灵敏光谱位移技术,可以在单剂量实验中,从2342个片段库快速筛选出826个片段,作为第一轮初步Hits筛选。之后,利用MST-TRIC和光谱位移技术进行第二轮Hits确认。利用Echo® MS声滴喷射技术,实现了在384孔板中的纳升级精确分配,确保了数据的稳健性。利用nanoDSF技术作为正交检测手段,进一步确认这些片段Hits的稳定性。最后进行A2AR与参考化合物和片段苗头化合物的分子对接研究(Docking Studies)。点击此处,解锁海报全文 Eurofins Discovery | 片段药物发现新「组合拳」 原创_诺坦普科技(北京)有限公司 (instrument.com.cn)03关于NanoTemperNanoTemper的愿景是致力于创造一个任何疾病都可以被治愈的世界!NanoTemper是全球领先的科学仪器制造商,2008年成立于德国慕尼黑,历经十余载发展,在全球13个国家设立分支机构。卓越的产品和优质的服务使NanoTemper成为全球成千上万的制药公司、学术研究机构及科技公司的首选合作伙伴。Dianthus 高通量筛选平台 可直接在溶液中检测亲和力,无需固定 检测一个Kd仅需1min 标准规格384孔板,单次运行可检测32个Kd 无微流控系统,无需清洗维护 专利技术加持:TRIC(温度依赖的荧光强度变化),Spectral Shift(光谱位移)PR Panta 蛋白稳定性分析仪 高数据质量,超高分辨率,多参数精准表征 天然条件下检测,无需染料标记 检测浓度范围广,低样品消耗量 可同时支持四大技术模块:nanoDSF,DLS,SLS,背反射
  • 【实验视频】使用nanoDSF技术进行片段化合物库筛选
    实验背景Fragment-based drug discovery(FBDD),是先导化合物发现的主流方法之一。它利用核磁共振技术(NMR)、X-射线单晶衍射(X-ray)以及热迁移分析(TSA) 等方法筛选出与靶蛋白有弱相互作用的小分子片段,之后基于其结构信息对活性片段进行优化,进而得到更高活性的先导化合物进行新药的研发。在筛选小分子片段时,NMR能在接近生理条件的溶液中获得结合部位信息以及Kd,但其缺点为只能检测比较小的蛋白,且样品消耗量大。X-ray则需要先制备蛋白晶体,并且蛋白晶体和其在溶液中的构象可能会有差异。此外,这两种方法都需要非常昂贵的设备,通常只能在专用的平台由专业操作人员协助开展实验。TSA(Thermal shift assay)通过检测蛋白的熔解温度Tm变化来进行蛋白结合配体的筛选,其检测速度快,实验门槛低。因此我们可以先使用TSA进行初级筛选,之后结合NMR或X-ray进行验证。TSA的主要技术有染料法以及无标记的nanoDSF技术。在之前的文章中我们已经介绍过这两种技术的原理及对,小编今天将和大家分享荷兰癌症研究所(NKI)的研究人员发表在JoVE实验视频期刊基于nanoDSF技术建立的片段化合物库筛选Protocol。doi:10.3791/62469实验演示实验小贴士使用蛋白纯度大于95%的均一蛋白蛋白检测浓度通常为200μg/ml, 本文中筛选768个化合物片段消耗~12ml蛋白,仅2.5mg需要提前评估DMSO对蛋白的影响,本文中DMSO终浓度为0.2%操作演示实验小结基于此Protocol,研究人员对三种蛋白(癌症高表达蛋白 Hec1,单极纺锤体蛋白激酶1 Mps1及新冠非结构蛋白5,nsp5)进行了DSi-Poised library(768个片段)的筛选。研究人员指出使用搭载nanoDSF技术的Prometheus蛋白稳定性分析仪在进行TSA筛选时有以下优势:1样品消耗量低,要比其他方法少几个数量级2除Tm外,还可同时检测样品的聚集情况。3传统DSF方法,染料可能会干扰蛋白与配体间的结合除了无标记nanoDSF检测模块外,Prometheus蛋白稳定性分析仪还可搭载动态光散射(DLS),静态光散射(SLS)和背反射(Backreflection)模块,只需要10μl样品就可以完成均一性,热稳定性,胶体稳定性的检测。同时我们还提供自动化解决方案,便于客户进行无人值守的高通量筛选。机械臂自动上样NanoTemper用户介绍荷兰癌症研究所(NKI)成立于1913年,是荷兰唯一的专业癌症中心,一直以来也肩负着国际化科学与临床专业知识、发展及培训中心的重要角色。该中心位于阿姆斯特丹,提供荷兰国内最佳的癌症治疗,并曾推动了多项科学突破。(图片来源百度)[1] Ahmad M , Fish A , Molenaar J , et al. Nano-Differential Scanning Fluorimetry for Screening in Fragment-based Lead Discovery[J]. Journal of Visualized Experiments, 2021(171).
  • 知否知否,酶切片段化法有何过人之处?
    p style=" text-align: justify "   你是否也遇到过类似的问题: /p p style=" text-align: justify text-indent: 2em " 今天怎么这么背,每件事情都失算, br/ /p p style=" text-align: justify "   只想用机械打断法做个核酸样本片段化, /p p style=" text-align: justify "   却在转移时把样本混淆了, /p p style=" text-align: justify "   时间有限,样品不少,实验无法按预计完成…… /p p style=" text-align: justify "   谁能告诉我该怎么办? /p p style=" text-align: justify "   放弃曾经(或目前仍为)最主流的二代测序核酸样本片段化方法机械打断法,尝试更便捷、经济、高效的片段化方法新宠酶切法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/26c8626e-26dc-4cc5-833a-02773eaef459.jpg" title=" 01.jpg" alt=" 01.jpg" width=" 392" height=" 259" style=" width: 392px height: 259px " / /p p style=" text-align: justify "    strong 酶切片段化法相较机械打断法有何过人之处? /strong /p p style=" text-align: justify "   一步完成,无需样本转移,不会混淆样本 /p p style=" text-align: justify "   速度更快,需要手动操作的时间更少 /p p style=" text-align: justify "   样品损失少,产率高,文库质量更好、复杂度更高 /p p style=" text-align: justify "   硬件投入低甚至无需硬件投入 /p p style=" text-align: justify "   而相较于市面上其它品牌的酶切打断试剂盒,安捷伦最新推出的 SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒则拥有更多亮点。 /p p style=" text-align: justify "    strong 亮点 1:在文库质量方面具有更高的覆盖率和复杂性 /strong /p p style=" text-align: justify "   SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒在新鲜冷冻和 FFPE 样品中表现出相同或更高的覆盖率(图 1)及更高的复杂性(图 2)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/110508c1-d041-46cc-ac50-069662d70890.jpg" title=" 02.jpg" alt=" 02.jpg" width=" 501" height=" 319" style=" width: 501px height: 319px " / /p p style=" text-align: justify "    span style=" font-size: 14px " 图 1. 与机械剪切工作流程相比,SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒可提供更好的 100x 碱基覆盖率。利用试剂盒或 Covaris 仪器对从新鲜冷冻和 FFPE 样品中提取的 10 ng DNA 进行剪切打断。FF 和 FFPE 1(DIN =2.7,ddCq = 1)为子宫样品。FFPE 2 为喉肿瘤样品(DIN = 2.3,ddCq = 2)。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/7778f9e4-5626-4585-af12-1d3ad8e516c8.jpg" title=" 03.jpg" alt=" 03.jpg" width=" 519" height=" 303" style=" width: 519px height: 303px " / /p p style=" text-align: justify "    span style=" font-size: 14px " 图 2.与机械剪切工作流程相比,SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒可得到更高的文库复杂性( HS文库大小)。利用 SureSelect XT HS 和XT 低起始量酶切片段化试剂盒或 Covaris 仪器对从新鲜冷冻和 FFPE 样品中提取的 10ng DNA 进行剪切打断。FF 和 FFPE 1(DIN= 2.7,ddCq = 1)为子宫样品。FFPE2 为喉肿瘤样品( DIN = 2.3,ddCq = 2 )。 /span /p p style=" text-align: justify "    strong 亮点 2 :简单化一的程序应对广泛样本类型与样本质量 /strong /p p style=" text-align: justify "   SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒一个程序应对各种 CG 含量样本、不同类型样本(血液、新鲜冷冻组织、FFPE样本等),以及不同质量的样本。无需针对不同样本类型或样本质量修改或重新摸索最优程序。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1a8fffd2-b9f6-454b-bba8-6fc2f505eac9.jpg" title=" 04.jpg" alt=" 04.jpg" width=" 459" height=" 300" style=" width: 459px height: 300px " / /p p style=" text-align: justify "    span style=" font-size: 14px " 图 3. SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒对质量不同的 DNA 样品可产生相似的 DNA片段化模式。 /span /p p style=" text-align: justify "    strong 亮点 3:同一程序应对不同起始量样本,无需调校程序 /strong /p p style=" text-align: justify "   SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒一个程序应对从10ng – 200ng大跨度起始量的 DNA 样本。无需根据不同的起始 DNA 量优化和调整实验程序。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/3fb00c0a-8957-445a-933f-a46913a69307.jpg" title=" 05.jpg" alt=" 05.jpg" width=" 462" height=" 273" style=" width: 462px height: 273px " / /p p style=" text-align: justify "    span style=" font-size: 14px " 图 4. SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒针对各种 DNA 起始量,可产生高度一致的 DNA 片段谱。 /span /p p style=" text-align: justify "    strong 亮点 4:对 EDTA 的超强容忍度,无需额外纯化步骤 /strong /p p style=" text-align: justify "   SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒对不同的 DNA 缓冲液条件不敏感,从而省略了其它酶剪切方法所需的纯化或中和步骤。分别保存在 Tris、0.1× TE(10 mmol/LTris、0.1 mmol/L EDTA,pH 7.5)和 1× TE(10 mmol/LTris、1 mmol/L EDTA,pH 7.5)中的 DNA 可以产生高度相似的 DNA 片段谱(图 5)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/5ba1fb35-b470-4f7d-83fd-5786367d0796.jpg" title=" 06.jpg" alt=" 06.jpg" width=" 275" height=" 450" style=" width: 275px height: 450px " / /p p style=" text-align: justify "   span style=" font-size: 14px "  图 5. SureSelectXT HS 和 XT 低起始量酶切片段化试剂盒可用于不同的 DNA 缓冲液,并显示了高度相似的 DNA 片段谱。将从新鲜冷冻组织中提取的 10ng DNA 作为起始样品,分别保存在 Tris、0.1× TE(和 1× TE中。将 DNA 样品进行剪切并用以下方法进行文库制备:A. SureSelectXT HS 和 XT 低起始量酶切片段化试剂盒和 SureSelect XT HS 试剂盒。B. Kapa HyperPlus 试剂盒。B 图显示,保存在 1× TE 中且在没有活化溶液的情况下酶解的 DNA,观察到片段化受到完全抑制(橙色线)。 /span /p p style=" text-align: justify "   SureSelect XT HS 和 XT 低起始量酶切片段化试剂盒的其它亮点还包括从低质量的 FFPE 样本中获得的假阳性数据的量更少,以及更少的 C 到 T 的突变。该试剂盒支持 SureSelect XT HS 和 SureSelect XT 低起始量建库试剂,实现快速的无需机械打断的文库构建。 /p
  • 高分辨质谱平台实现mRNA mapping流程化
    在之前的一篇微信稿中,咱们介绍了mRNA疫苗的质谱表征方法,“Orbitrap 高分辨质谱助力mRNA疫苗表征”,今天小编继续为大家详细拓展mRNA mapping的质谱表征应用。作为一种新的药物形式,mRNA在多个疾病领域具有显着的治疗潜力。进入细胞后,mRNA药物使用内源性细胞机制来表达预编程的蛋白质。这种表达的蛋白质可以实现多种目的,从促进特定的免疫反应到调节或恢复各种代谢过程等[1]。据WHO官网统计,全球目前正在临床试验阶段的mRNA药物已有几十种,应用方向覆盖传染性疾病、罕见病、肿瘤免疫学等。与大多数生物治疗药物一样,序列分析也是mRNA药物的一个关键质量属性(CQA)。经典的检测方法如Sanger测序和二代测序 (NGS)等已被用于核酸链高通量及大规模的测序。然而在生物制品的表征分析中,往往需要正交方法以获取更全面的信息。对于核酸分析,LC-MS 作为Sanger和NGS的正交方法,与传统测序技术相比具有独特的优势:可直接对核酸样品进行分析(无需扩增等处理步骤);更高的检测灵敏度(直接检测低水平的序列变异体或修饰杂质(由于核酸样品与蛋白样品的较大差异,其测序流程的前处理及LC/MS方法也大不相同。核酸仅有4个特定碱基,在组合形式上远小于蛋白序列,因此会有多个重复序列片段,需要酶解成较长的片段(通常大于15nt)以得到可用于序列覆盖的特征片段。此外核酸样品极不稳定,非常容易降解。基于此需求,我们在前处理上需要选择特异性较强的酶,并且减少酶解时间,得到具有漏切位点的较长片段。下图显示了优化后的核酸mapping分析流程,从前处理到液相分离、质谱检测、数据分析的一套完整方案。点击查看大图 No.01# 前 处 理Nuclease T1是一种真菌核酸内切酶,可切割鸟嘌呤残基后的单链RNA,具有较强的特异性,常用于核酸测序应用。但由于核酸内切酶效率很高,酶解时间较难控制,且传统的溶液酶解方法会使核酸酶残留在分析柱上造成污染。基于以上需求,赛默飞推出了一款前处理磁珠RNase T1 Mag Bulk Kit,将Nuclease T1酶固定在磁珠上,通过简单快速的磁铁吸附及可有效控制酶解时间,并去除溶液里的T1酶,该方式可以有效提高实验的重现性并降低酶的干扰(如下图)。有离线及在线两种方式可供选择:a) 将样品配成200 μL体积放于eppendorf管中(如下图a所示),置于酶解仪中震荡孵育(37-50℃, 2000 rmp)5min ,通过磁铁吸附的方式将酶解上清与磁珠分离,再加入1%甲酸终止反应;图a:手动前处理示意图(点击查看大图)b) 采用全自动磁珠纯化仪,反应、分离及纯化均可根据设置好的程序进行自动操作,适用于高通量前处理需求(图b)。图b: 全自动化在线前处理示意图(点击查看大图)反应条件的优化:a. 反应时间:酶解时间控制在5min 内,随着反应时间的增加(30min, 1h, 4h, overnight),序列覆盖度明显降低。对于修饰mRNA(如甲基化修饰),需要增加反应时间至30min.b. 反应温度:37℃与50℃的结果类似No.02# 色 谱 柱色谱分离采用一款专用于核酸分析的色谱柱,Thermo Scientific™ DNAPac™ RP,该色谱柱由球形宽孔径 4 µm 聚合树脂构成,可耐受极端 pH (0-14) 和温度 (5-110°C) 条件,在HPLC 和UHPLC仪器上均可使用,针对寡核苷酸可实现高分辨率和高通量,较小和极大的核酸链均可分辨(如下图A)。图A(点击查看大图)图B显示DNAPac™ RP色谱柱的各类型号,mRNA mapping建议选用2.1*100 mm型号。图B(点击查看大图)
  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • 新开发:应用岛津质谱技术开发生物标志物
    -冠状动脉狭窄症的血液检查方法 - 东京大学医学部附属医院 株式会社岛津制作所 因动脉硬化等而变狭的冠状动脉(注1)在经过置管治疗后,通过心脏置管检查(注2)确认治疗部位是否痊愈的方法现已是标准的检查方法。但是,这种检查对身体的负担大,并且费用昂贵。为此,需要一种能够代替心脏置管检查的简易检查法。 最近,东京大学医学部附属医院循环系统内科・ 普及预防医学讲座特任副教授铃木亨、东京大学大学院医学系研究科循环系统内科学教室原教授永井良三、教授小室一成与株式会社岛津制作所基础技术研究所主任研究员藤本宏隆合作研究,共同开发了基于质谱分析装置(注3)的新血液检查法。在进行冠状动脉置管治疗后再次狭窄的诊断中,可以简便地判断患者是否需要接受心脏置管检查,这是一个可以减轻身体负担、令人期待的新检查方法。本研究开发的成果已经于5月13日(美国东部夏令时间)发表在Clinical Chemistry电子版上。今后,该院争取实现该诊断法的实用化。 本开发获得了厚生劳动科学研究经费、科学研究经费(文部科学省)、尖端研究开发支援(FIRST)计划(日本学术振兴会)、创新体系整备事业(形成尖端融合领域创新基地)计划(文部科学省)的支持。 【发表者】 东京大学医学部附属医院 循环系统内科・ 普及预防医学讲座   特任副教授 铃木亨 株式会社岛津制作所 基础技术研究所 生命科学研究所  主任研究员 藤本宏隆 【研究背景】 对于造成心绞痛的冠状动脉狭窄的治疗通常采用使用支架(注4)或气球导管(注5)的心脏置管治疗(注6)。但是,治疗后经过约半年的时间,约有10~30%的患者在治疗部位再次发生狭窄,称为「再狭窄」。为此,在日本,置管治疗后经过约半年时,通常进行置管检查,确认是否发生再狭窄。此检查对于发生了狭窄的患者来说是非常必要的检查,但检查使用造影剂、使用粗注射针刺血管等,造成患者较大的身体负担,还有放射线辐射问题,并且,费用也比较昂贵。因此,这就需要先进行可简便筛查的血液检查,诊断患者是否需要接受置管检查。 东京大学医学部附属医院循环系统内科・ 普及预防医学讲座的特任副教授铃木亨以及株式会社岛津制作所基础技术研究所生命科学研究所主任研究员藤本宏隆,从2006年开始实施共同研究,使用质谱仪开发基于生物标志物的新诊断法,用于诊断患者是否需要接受置管检查。 世界体外诊断药市场在2012年已经达到524亿美元的规模,今后的年平均增长率预计为7%。2011年的日本市场规模达7,711亿日元规模。 【研究内容】 已经在临床上用作心衰生物标志物(注7)的B型利钠肽(BNP)(注8)是否也可以应用于冠状动脉狭窄诊断?至今尚未明确。B型利钠肽是由32个氨基酸连接而成的肽,但近年来,世界上有报告称在实际的血液中,除32个氨基酸连接的形态之外,好像还存在着其他形态。 研究队伍首先使用MALDI-TOF型质谱仪(注9)调查了患者血液中的BNP形态,结果发现存在由4种形态组成的BNP:除了原本由32个氨基酸组成的BNP之外,还有末端去掉2个氨基酸的片段、去掉3个氨基酸的片段以及去掉4个氨基酸的片段。 使用发生冠状动脉再狭窄的患者血液与未发生冠状动脉再狭窄的患者血液详细分析了这4种BNP,得知了此病状与BNP片段(具体地讲,是末端去掉4个氨基酸的片段与去掉2个氨基酸的片段之比)之间有相关性。增加临床检体的分析数量,进一步进行探讨,并设定截止值(注10),结果可知可以进行再狭窄排除诊断(没有发生再狭窄的诊断),明确了此BNP片段可以作为冠状动脉置管治疗后再狭窄的生物标志物。 根据以往各类的研究报告,造成狭窄的因子有性别差、吸烟、糖尿病、肥胖等。通过此次的统计解析,明确了造成再狭窄发生的因子只有用于狭窄治疗的支架种类和此次判明的BNP片段。 目前,就诊断应用以及未来可否用于预测诊断继续进行追踪调查,争取将研究成果实用化,还原给社会。 【术语解说】 (注1)冠状动脉 如花冠状包围心脏的血管(动脉),向心脏供给氧。 (注2)心脏置管检查 将被称为置管的吸管状细管从手腕或大腿根部的动脉插入到心脏的血管(冠状动脉)或心脏中,注入造影剂,观察冠状动脉的状态或测定心室内压力或观察心脏运动的检查。 (注3)质谱分析仪 将极少量的样品电离,进行分离・ 检测・ 数据解析,获得与化合物质量相关信息的分析仪器。 (注4)支架 金属制成的网状筒,用于使用置管扩张变狭冠状动脉的治疗。近年使用可溶出预防再次发病的药剂的支架。 (注5)气球导管 用于使用置管扩张变狭冠状动脉治疗的「气球」。 (注6)心脏置管治疗 为扩张因动脉硬化等变狭、血液不易流动的冠状动脉,使用置管进行治疗的方法。气球导管扩张变窄部分,或在此部位放置支架的治疗方法已经普及。 (注7)生物标志物 血液、尿等中所含的蛋白质等物质,用于掌握疾病存在、进行程度的指标。 (注8)B型利钠肽(BNP) 从心脏分泌的一种荷尔蒙,当在心衰等心脏承受负担的状态下从心脏(主要是心室)分泌到血液中。 (注9)MALDI-TOF型质谱仪 组合基质辅助激光解吸电离法(MALDI:Matrix Assisted Laser Desorption Ionization)与飞行时间质谱分析法(TOF-MS:Time of Flight Mass Spectrometry)的质量分析装置。MALDI已是生物大分子电离的主要方法,从(株)岛津制作所的田中耕一发明的Soft Laser Desorption(获得2002年诺贝尔化学奖)发展而来。 (注10)截止值 为确定有无疾患而设定的值,以此值为界线改变治疗方案等。 【发表杂志】 杂志名: Clinical Chemistry电子版 刊登时间:5月13日(美国东部夏令时间) 论文题目:Processed B-type natriuretic peptide is a biomarker of postinterventional restenosis in ischemic heart disease 【参照URL】 普及预防医学讲座主页:http://plaza.umin.ac.jp/upm/index.html ≪ 东京大学医学部附属医院 咨询方式≫ ・ 有关本检查方法的咨询 东京大学医学部附属医院 循环系统内科・ 普及预防医学讲座 特任副教授 铃木亨 电话:03-5800-9846(直通)     FAX:03-5800-9847 E-mail:torusuzu-tky@umin.ac.jp・ 有关采访的咨询 东京大学医学部附属医院 公共关系中心 担当:小岩井、渡部 电话:03-5800-9188(直通)     E-mail:pr@adm.h.u-tokyo.ac.jp ≪ 岛津制作所 咨询方式≫ 株式会社岛津制作所 广报室 担当:石川 电话:075-823-1110 E-mail:isikawa@shimadzu.co.jp 参考图1 新开发的诊断方法的概念图 在存在各种物质的血液中,使用抗体只捕捉BNP(免疫沉降法)。BNP除原本的形态(成熟体)外,还存在未成熟体、部分切断的处理体以及翻译后修饰的形态(翻译后修饰体)。这些各种形态的BNP被同一抗体捕获,使用目前已普及的免疫化学方法不能区分检出。但是,如果使用质谱分析仪就可以分别予以检出。 参考图2 新生物标志物的临床有效性 上图表示血管(冠状动脉)内发生狭窄,经置管治疗治疗约半年后,发生再狭窄时与未发生时的情况。 在置管治疗后约半年后进行的置管检查时采集血液,计算从此血液样品中检出的2种BNP片段(末端去掉4个氨基酸的片段与去掉2个氨基酸的片段)的强度比后,调查有与再狭窄和无再狭窄的相关性,结果看见与此强度比的相关性。特别是如果将强度比设定为1.52,则比值大于1.52的患者都未发生再狭窄,这个结果显示出排除诊断的可能性。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
  • 【国产高端质谱】“全自动核酸质谱检测系统” 共筑健康未来
    9月27日,广州禾信仪器股份有限公司(股票代码:688622)于北京(BCEIA 2021)以“立足高端质谱,打造质谱实验室综合解决方案”为主题,隆重发布多款新品。来自全国各地累计300+业内专家、客户以线上线下方式参与了发布会,并对禾信此次发布的新品给予了高度的评价与期望!新品发布 开启无限未来健康永远是人们关心的第一话题,体外诊断的发展经历了从细胞形态学诊断、生化诊断、免疫诊断,现在已经进入到分子诊断的时代。核酸质谱技术的出现解决了传统PCR技术灵敏度、准确性、通量低的问题,同时大大降低了高通量测序开展的技术难度和检测时间。但目前核酸质谱市场上,进口仪器占据96%以上。疫情当前,世界形势变幻莫测,与人民健康相关的高端科学技术及核心部件严重依赖进口,随时存在被“卡脖子”风险。禾信仪器全自动核酸质谱检测系统NucMass 2000应运而生。该系统集结多项专利性创新技术,大大提升了核酸检测质谱性能,具备以下特点:1高分辨较市场同类产品提升20%以上,保证最大反应重数2高精度质量精度较市场同类产品提升50%,判型准确率更高3高灵敏可检测到更低拷贝数量的基因片段信息4宽范围超高分辨率使核酸检测质量范围更宽5高稳定连续测量8小时,每次测量结果满足质量精度要求6高重复连续测量10次,质量偏差更小7高通量8小时完成700样本检测8广应用SNP基因分型、indel、拷贝数分析、DNA甲基化分析、多病毒检测等9低成本反应条件均一,试剂通用,无需荧光标记解决方案全自动核酸质谱检测系统+高精度芯片靶板+自动纳升级点样仪产品应用应用场景一:结直肠癌KRAS基因低频突变解密遗传变异与肿瘤发生发展关系的研究,质谱肿瘤基因突变检测分析具有成本低、高通量、高灵敏度和特异性等显著优势。应用场景二:多呼吸道病毒、多亚型同时检测巧妙的整合PCR技术的高灵敏度以及质谱技术的高精确度,开创了检测精确度高、重复性强、具有高度自动化、标准化特征的全新检测时代。可以对微生物、病毒以及其他单倍体生物方便快捷的进行分子分型、物种鉴定、变异物种发现及归类等全面分析。应用场景三:高血压用药指导检测到1%-3%突变等位基因,在个体化用药、耐药及新药筛选等临床项目中,可以尽早检出突变,帮助临床医生改善治疗方案。禾信仪器秉持“锲而不舍,做中国人的质谱仪器”理念,以高端产品与技术创新为立命之本;将持续加大创新投入和精良制造力度,以市场为导向,不断推出符合客户需求的产品,完善医疗诊断产品线,与客户共筑健康未来!
  • Orbitrap高分辨质谱助力mRNA疫苗表征
    今日看点mRNA疫苗在新冠疫情中得到了广泛关注,Moderna及Pfizer/BioNTech的mRNA疫苗获得FDA的紧急使用授权,掀起新一轮的mRNA疫苗研发热潮。与依靠抗原或减毒病毒刺激免疫系统产生免疫反应的传统疫苗不同,mRNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被翻译为抗原蛋白,从而引发免疫反应。相比传统疫苗,mRNA疫苗成本低、研发灵活性高、生产效率高,且具有相对较高的安全性,应用前景广阔[1]。对于此类新型疫苗,需严格的质量控制以确保产品的安全性尤为重要。其质量属性包括稳定性、完整性、纯度和同质性等。如图1所示,从mRNA构造、体外翻译及转染,到体内免疫,色谱、质谱、qPCR、电泳等多种表征手段被用于质量评估[2]。其中高分辨质谱技术对于mRNA的深入表征(加帽效率、修饰、测序等)、杂质分析(siRNA、DNA、宿主残留蛋白)有着重要应用。图1:mRNA疫苗的质量控制和基于细胞的功能评估的工具(点击查看大图)01mRNA的加帽反应效率评估mRNA前体的加工包括了在其5' 端加上7-甲基鸟苷(m7G),称之为“帽”。这种加帽步骤可增加mRNA稳定性,使其避免被核糖核酸酶降解。加帽步骤会产生多种结构(如图2a),最常见的被称为“Cap0结构”(只含m7G),即鸟嘌呤环上的N-7位置甲基化;而如果下游邻位核苷酸上的核糖也被甲基化,则为“Cap1”,再下游的则为Cap2”(甲基化均发生在核糖的2' 羟基上)。在脱磷酸的过程中,也会产生单磷酸、双磷酸、三磷酸等多种相关杂质。图2a.加帽反应(点击查看大图)Oribitrap高分辨质谱由于其高分辨率、高灵敏度及高质量精度可以准确地对mRNA加帽效率进行评估。全长的mRNA直接通过LC-MS分析往往由于分子量太大而无法得到精确表征,通常会使用RNAse酶切结合磁珠分离的方法获得5’端的加帽短链,如图2b所示[3]。图2b.mRNA分离纯化步骤(点击查看大图)RNAseH酶切及磁珠纯化分离后,所得的5’端mRNA酶解片段经过Orbitrap高分辨质谱分析,结果检测到未加帽组分、加帽1组分及少量在第二个A酶切位点得到的加帽1组分,包括单磷酸、二磷酸及三磷酸修饰杂质,且得到同位素基线分离的高质量谱图(如图3a、3b所示)。图3a.5’端mRNA 酶解片段TIC及质谱图(点击查看大图)图3b.5’端mRNA 酶解片段理论及实测质量(点击查看大图)通过加入内标未加帽三磷酸mRNA,确认了质谱定量方法的可行性及准确性。对各加帽组分及未加帽组分形态进行质谱峰面积定量,从而得到5’加帽比例(图3c)。图3c.质谱非标定量法计算mRNA加帽比例(点击查看大图)MRM方法用于mRNA加帽定量分析质谱MRM方法可用于组织及细胞培养基中的mRNA加帽修饰检测,具有高通量及高灵敏等优势。组织或细胞培养基中的mRNA经过nucleaseP1酶解及磁珠纯化,可得到加帽二核苷酸,(m7)GpppN(m)[4]。对11个帽二核苷酸修饰变异体建立MRM方法(图4a),可实现每种变异体的色谱分离及质谱定量(图4b)。图4a.MRM质谱方法参数(点击查看大图)图4b.11个帽二核苷酸修饰变异体的提取离子流图(点击查看大图)其中,对于m7GpppG及GpppGm形式的同分异构体,在液相及一级质谱上均无法分辨,而m7GpppG的特征子离子m/z635.9可将其区别于GpppGm,从而建立MRM方法定量分析,且方法灵敏度高(图5)。图5:(a)连续稀释的合成帽二核苷酸的峰面积测量;(b)连续稀释的合成帽二核苷酸GpppA的峰面积;(c) m7GpppG和GpppGm子离子信息;(d)连续稀释的合成帽二核苷酸m7GpppG的峰面积;(e)补偿m7GpppG和GpppGm的共享离子.(点击查看大图)该方法可快速准确定量细胞中存在的mRNA帽结构,评估不同的加帽结构形态在不同组织或细胞中的含量变化(图6)。Orbitrap的定量能力可与三重四极杆相媲美,其PRM定量灵敏度高、准确性好,也可用于mRNA帽结构的定量分析中。图6:从小鼠肝脏、活化的CD8T细胞、心脏和大脑分离的mRNA帽二核苷酸的丰度(点击查看大图)02mRNA末端多聚腺苷酸Poly A 尾检测真核mRNA通常在其3' 末端带有一段多聚腺苷酸尾(PolyA tail),根据种类的不同,其长度可能在20到200多个碱基之间变化。PolyA tai会被多聚腺苷酸结合蛋白(poly(A)+ tail-binding protein,PABP)辨识并保护住,因此在mRNA的翻译和稳定性中也起着重要的调节作用。通常是在体外转录过程中直接从编码DNA模板或通过使用polyA聚合酶将最jia长度的polyA添加到mRNA中。PolyA的提纯方法类似5’加帽核酸片段,具体步骤可参考文献[5]。纯化后的polyA通常是含有不同长度腺苷酸的混合物,随着碱基个数的增加,HPLC液相方法的分辨率很难将不同长度的polyA完全分开,而Orbitrap高分辨质谱可以准确对其长度分布进行表征和相对定量。图7a.不同碱基长度的PolyA色谱图(b)理论100-merPloy A质谱解卷积结果(点击查看大图)相比二代测序,高分辨质谱作为互补表征技术,能够快速准确地分析RNA序列,同时对于翻译后修饰的种类、位点及含量进行深入表征。此外,也能对RNA代谢产物进行定性及定量分析。
  • 美国发明用“喷雾解析电离质谱法”快速准确辨识指纹
    想必所有的侦探小说迷都知道,提取和分析指纹真是一桩乏味且冗长的活计。如小说中描写的那样,严谨的法医们挥着小刷子、在指纹上施粉、再粘上胶带……即使对最为耐心细致的人,这都是一个不小的挑战。不过现在,法医们不必再像《犯罪现场鉴证》(CSI)中描绘的那样,为辨识指纹焦头烂额了。只需一个便携式指纹分析器,棘手问题不难迎刃而解。   8月份的《科学》杂志撰文介绍了“喷雾解析电离质谱法”(简称DESI)的文章,这项技术的发明者是来自印第安纳普渡大学的戴米安艾法教授和他的团队。该技术的过人之处在于:不同于传统的光学技术,DESI是一种化学技术。它能够快速、准确地鉴定指纹,易于野外操作,对重叠指纹和罪犯曾接触物体的情况也能了如指掌。   这项技术的工作原理是:在一片极小的指纹区域(约0.15mm×0.15mm)内,喷上带电的甲醇与水的混合物。当这些小液滴与指纹相接触时,它会自动提取指纹中的化学物质,制造出一层液态薄膜。随着该指纹区域内喷洒的液滴的增加,先前形成的液状薄膜就会散开,并吸入光谱仪。此时,光谱仪便开始进行所收集分子的分析。这一过程所耗时间仅为数十秒。   DESI正是通过对指纹上所含分子的辨析来“抓出”真凶的。指纹上的每一个分子都会被光谱仪赋予一个所谓的化学“像素”。这里的“像素”当然和屏幕上的像素意义不同:后者代表一种颜色,而前者则代表着一种分子。指纹由各个指纹片断构成。   DESI是一项基于化学原理的技术。所以,相比视觉技术,它便拥有另一个卓越之处:能够检测留下指纹的人在此之前接触过那些物品。艾法和他的同事们在实验中就曾检验出手指接触过的可卡因、大麻、炸药等物。此外,对于光学技术很难辨析清楚的重叠指纹,DESI也能轻松搞定。   DESI不仅将成为侦探们探案的利器,也极有牵引医生目光的潜力。 因为DESI也同样能够化验指纹上的器官分泌物。这些分泌物虽停留在指纹上,却是身体内部新陈代谢的直接产物。因而,它们又可以被视为是人体健康的风向标之一。或许,我们可以期待有一天医生能够凭着扫描病人的一块皮肤就诊断出病人身上的病症。   现在,艾法团队的成员格拉汗库克斯 (Graham Cooks)已经成功制作出一台内置微型质谱仪的DESI仪器, 这台仪器有医药箱那么大,很适宜于法医随身携带。面对日益强大的指纹分析技术,看来,是惯犯们收敛自己双手的时候了。   (译自《经济学人》)
  • 国产基质辅助激光解吸电离飞行时间质谱系统Clin-TOF-Ⅱ MS与Bruker Biotyper质谱系统在革兰阴性菌的鉴定效能评估
    范欣, 肖盟, 徐志鹏, 张戈,陈欣欣,徐英春. (中国医学科学院 北京协和医学院北京协和医院检验科) 国产基质辅助激光解吸电离飞行时间质谱系统Clin-TOF-Ⅱ MS与Bruker Biotyper质谱系统在革兰阴性菌的鉴定效能评估 [J]. 中华检验医学杂志,2017,40( 1 ): 41-45. DOI: 10.3760/cma.j.issn.1009-9158.2017.01.009 编者按北京毅新博创生物科技有限公司是国内首家自主研发临床质谱的企业,也是第一家国产质谱走出国门走向世界的企业。该公司研发的clin-tof质谱系统是国内第一个通过CFDA认证的质谱系统。本文节选北京协和医院检验科徐英春主任最新发表在《中华检验医学杂志》上的研究论文,该研究验证了国产Clin-TOF质谱系统在革兰阴性菌方面的鉴定能力与Bruker质谱系统相当,都有非常好的鉴定效能。 该研究旨在评估国产基质辅助激光解吸电离飞行时间质谱系统Clin-TOF-Ⅱ型仪器及其搭载的BioExplorer V2.3鉴定数据库(简称Clin-TOF质谱系统)对革兰阴性菌的鉴定效能。共纳入1999至2000年及2014至2016年北京协和医院革兰阴性菌1025株,分属32个属,56个种或种复合体。其中,肠杆菌科细菌覆盖13个菌属;非发酵菌覆盖7个菌属;以及其他12个菌属的少见革兰阴性菌。另外,该研究纳入了临床常用的革兰阴性ATCC标准菌株,包括大肠埃希菌ATCC 8739、ATCC35218、ATCC25922、流感嗜血杆菌ATCC 49247、ATCC 49766、铜绿假单胞菌ATCC 27853。对照方法为Bruker Biotyper质谱系统:Bruker Autoflex Speed型号仪器及其搭载的Biotyper v3.1数据库(简称Bruker质谱系统)。采用直接涂抹法平行使用2套质谱系统对研究纳入菌株进行菌种鉴定。结果显示,Clin-TOF质谱系统准确鉴定率为98.05%(1 005/1 025)。该研究表明国产Clin-TOF质谱系统在鉴定革兰阴性菌方面有临床效能。 1.鉴定准确性Clin-TOF质谱系统临床菌株准确鉴定率为98.05%(1 005/1025)。2.肠肝菌科细菌对于689株肠杆菌科细菌来讲,包括埃希菌属、克雷伯菌属、肠杆菌属、沙雷菌属、枸橼酸杆菌属、变形杆菌属、摩根菌属、沙门菌属、普罗威斯登菌属、柔特勒菌属、多源菌属等,Clin-TOF质谱系统能够准确鉴定98.98%(682/689)的肠杆菌科细菌。3.非发酵菌对于306株非发酵菌,包括假单胞菌属、不动杆菌属、无色杆菌属、窄食单胞菌属、金黄杆菌属、莫拉菌属、产碱杆菌属等,Clin-TOF质谱鉴定系统准确鉴定率达到97.71%(299/306)。4.少见革兰阴性菌该研究纳入的30株少见格兰阴性菌,包括苍白杆菌属、伊金菌属、嗜血杆菌属、气单胞菌属、罗尔斯通菌属、勒克菌属、巴斯德菌属等。Clin-TOF质谱系统准确鉴定率为80%(24/30)。 Clin-tof质谱系统搭载的最新的BioExplorerV2.3数据库是我国自主研发建立的数据库,因此对我国临床病原菌鉴定有一定的针对性。Clin-TOF质谱系统与Bruker质谱系统的鉴定准确率均为98%以上, 国产clin-tof质谱系统在革兰阴性菌方面的鉴定能力与bruker质谱系统相当,都有非常好的鉴定效能。 Clin-TOF质谱系统简介Clin-TOF飞行时间质谱系统由国内首家自主研发临床质谱的企业——北京毅新博创生物科技有限公司生产。该公司的Clin-TOF-Ⅰ质谱系统于2012年即通过了欧盟 CE IVD 认证和美国FDA 认证,2014 年通过中国 CFDA 认证 。Clin-TOF-Ⅱ 临床质谱仪于 2016 年通过欧盟 CE IVD 认证,具有1200mm长度的飞行管,因此,比Clin-TOF-Ⅰ(飞行管长度800mm)具有更高的灵敏度、分辨率和精准度:在蛋白组学、基因组学应用基础上,拓展了微生物组学应用领域,拥有超过370属、2200种、7900株的微生物谱库,可对临床样本或培养后临床样本进行细菌、真菌、分支杆菌鉴定。Clin-TOF临床质谱仪,在蛋白组学研究方面,可进行生物样品的蛋白、多肽及蛋白糖基化修饰检测,是蛋白组学研究的有效技术手段;在基因组学研究方面,直接以核酸片段的分子量为标记,对核酸进行精确的定性定量分析,适用于各种类型的SNP基因型核酸分析实验,可用于肿瘤ctDNA、药物基因、遗传代谢疾病基因检测。Clin-TOF质谱系统是目前应用质谱技术对疾病蛋白质组、基因组、微生物组进行全方位研究的先进技术平台。 Clin-TOF质谱系统特点Clin-TOF飞行时间质谱系统具有功能多样及高通量的特点,可实现蛋白质及多肽检测、核酸检测、微生物检测多种功能,且具有快速检测大样本量标本的特点,该系统适合应用于临床检验项目。不同分析目标要求不同的样品处理及研究方法。疾病蛋白质组研究:样品(体液/组织/细胞)中的蛋白、多肽提取(液相色谱/固相芯片/液相芯片)→质谱检测→软件分析图谱→多肽鉴定→临床模型建立。基因组学研究:样品中的DNA提取→PCR扩增→SAP消化→单碱基延伸→树脂纯化、上样→质谱检测→核酸分型。微生物组学研究:菌种分离→菌种培养→样本提取、上样→质谱检测→微生物谱库检索、鉴定。
  • 环保大比武精彩片段集锦
    环保大比武精彩片段集锦(一)&mdash &mdash 赛前准备篇 公司全动员 各地勤备战 严把质量关 整装齐待发 环保大比武精彩片段集锦(二)&mdash &mdash 领导关注篇 环境监测司魏司长等领导来我公司进行实地调研 魏司长亲自坐镇,指挥大比武现场布置及仪器摆放 万本太总工视察会场 吴晓青部长视察大比武决赛场地及仪器 老领导督查比赛现场 环保大比武精彩片段集锦(三)&mdash &mdash 赛场风采篇 参赛队员入场 部委领导致辞参赛队员代表及裁判员代表宣誓
  • 利用配备EAD的Q-TOF质谱对血清中单抗药物进行自上而下的定性和完整质量的定量
    大家好,本周为大家分享一篇发表在Journal of the Ameican Society for Mass Spectrometry上的文章,Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation1,通讯作者是来自美国宾州葛兰素史克的John F. Kellie博士。  最近,SCIEX开发了一种新的Q-TOF质谱系统,该系统具有允许调节的电子能量,能够将快速ECD作为电子激活解离(EAD)技术的一种操作模式,并能实现灵敏的大蛋白检测和定量。此外,通过采用一种新的trap-and-release特性,促进TOF加速器(Zeno阱)中心离子的空间质量聚焦,提高了碎片离子检测的占空比和信噪比(S/N)。本研究使用这个新型质谱仪器,对从血清中提取的一种生物治疗性单克隆抗体(mAb)进行了LC-MS分析,并进行了完整质量的检测、定量和亚单位表征实验。  样品处理和数据分析的流程如图1所示。简单来说,将研究的治疗性单抗药物注射到恒河猴中,使用自动免疫亲和试剂盒从猴血清中免疫捕获抗体。完整的单抗和还原的轻、重链进行LC-MS分析,并选择重链和轻链进行MS/MS分析和片段离子测定。在SCIEX OS软件中使用完整单抗和还原轻链的MS1数据进行定量。通过ProteoWizard文件转换处理亚基的片段离子数据,然后使用MASH软件套件中的THRASH脱同位素算法进行处理。最后将去卷积质量列表导入ProSight PC进行表征。  图1. 从血清中免疫捕获GSKmAb的LC-MS样品分析及数据处理流程。治疗性单抗轻链的Top-down MS示例数据如图2所示。抗体亚基达到电荷态分辨率 ,通过去卷积计算平均质量为23197 Da。对于碎片离子,实现了同位素分辨率,从中可以确定碎片离子质量(图2C)。在图2B中,使用SCIEX的内部研究软件,MS/MS谱显示了可能匹配的片段的叠加。图2C展示了去卷积后的片段离子的代表性数据。为了确定匹配的片段离子,使用THRASH脱同位素算法生成了高达30000 Da的精确质量。    图2. 从血清中免疫捕获和TCEP还原后GSKmAb轻链的表征分析示例。该Q-TOF仪器同时配备了EAD和CID功能,虽然两种解离方式可以在一次注射中进行,但作者进行了两次单独的注射。一次注射用于ECD MS/MS,第二次注射用于CID MS/MS。亚基的MS/MS覆盖率如图3A所示。ECD和CID结合时,轻链有49%的氨基酸残基被裂解。对于重链(图3B),获得了21%的残基覆盖率。    图3. 使用CID和EAD的组合对(A)轻链和(B)重链的表征结果。在这里,b-和y离子用蓝色钝角表示,c-和z离子用红色直角表示。接着,作者介绍了使用提取离子色谱图累积面积和去卷积质谱图累积面积两种方式的完整抗体定量研究。这里,将不同水平的mAb作为标准物质添加到血清中,建立2 ~ 50 μg/mL范围内的浓度与测定面积的线性关系。选取了两个电荷态的离子提取色谱和去卷积质量峰进行面积的累积(图4A, B)。MS数据显示,定量下限时(LLOQ=2 μg/mL),观察到完整的单抗电荷态分布的S/N约为4。对于定量上限(HLOQ=50μg/mL),观察到的S/N约为50(图4C, D)。在这里,校准曲线显示出良好的线性响应(所有数据的r2≥ 0.97),完整单抗定量的准确度和精密度值在15%以内。    图4. 完整单抗定量示例数据,使用基于XICs和去卷积数据的两种不同的定量方法。  本文介绍了自上而下的数据处理工作流程,这对于从MS/MS数据中获取信息至关重要。在XIC或去卷积质量水平上的生物分子定量也得到了证明,并表明这两种方法都足以从血清中测定单抗浓度。最后,作者预期这类能够实现完整蛋白质表征的多功能质谱系统将被更广泛地用于生物样本分析。  撰稿:夏淑君  编辑:李惠琳  文章引用:Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation
  • 全球质谱市场分析及前景预测
    质谱是一种被用于鉴别样品中各种化学成分的分析技术,同时也被用于样品中特定化学组分的定量。目前,质谱已成为分析实验室中研究化合物生物和化学性质的一种很常用技术,其中在生命科学领域,质谱主要用于蛋白质的测序和表征,如鉴定疾病中的关键蛋白并定量、改变表型及识别诊断标志物以便于治疗。   得益于临床诊断的广泛应用,MALDI-TOF发展最快   根据技术划分,目前的质谱技术包括气相色谱-质谱(GC-MS)、液相色谱-质谱(LC-MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)、三重四极杆液相色谱-质谱,四极杆飞行时间液相色谱-质谱、电感耦合等离子体质谱等。其中,MALDI-TOF是全球质谱市场中发展速度最快的细分市场,这主要得益于该技术在临床诊断领域中日益广泛的应用。   使用频繁&成本降低,制药成为质谱最大应用领域   按照应用划分,质谱的应用领域包括制药、环境监测、食品和饮料检测、生物技术、工业化学等。其中,制药行业是全球质谱市场中最大的应用市场,这是因为质谱在药物安全方面使用日益频繁,同时还降低了药物发现相关过程中的成本。   北美市场规模最大,亚洲市场增速最快   从地理区域角度来看,北美地区占据了全球质谱市场的主导地位,这是因为该地区的生物技术和生物医学领域的政府投资不断增加,而且蛋白质组学领域研发力度加大也推动了该地区质谱技术的发展,美国是该地区最大的质谱技术市场,加拿大其次。法国、德国、意大利、西班牙和英国占据了欧洲地区的主要市场份额。然而,亚洲市场在未来五年预计将成为全球质谱市场中增速最高的地区,因为很多企业在该地区设立生产工厂和研究中心,并且质谱制造商为促进质谱技术参与发起的展会日渐增多,这也为亚洲质谱市场的快速发展做出了贡献;日本、中国和印度预计将成为亚洲地区增长最快的质谱市场。   剖析:全球质谱市场中驱动力、制约因素   近来,全球质谱市场的主要驱动力包括生命科学研究领域的政府投入加大、医药行业的研发投入提升,同时人们对食品和饮料安全问题的日益关注也推动了全球质谱市场的增长。此外,质谱技术不断进步也刺激了终端用户的采用。   然而,仪器的高成本成为了全球质谱市场增长的关键制约因素,同时质谱操作技术人员的缺失也妨碍了全球质谱市场的增速。   主流制造商兼并整合成全球质谱市场发展趋势   全球质谱市场中的主要参与者包括丹纳赫、安捷伦、沃特世、赛默飞、布鲁克、珀金埃尔默、岛津、日本电子、日本理学、Bio-Rad等,这些主流质谱制造商之间的兼并整合日渐频繁,这将成为全球质谱市场的主要发展趋势。 编译:刘玉兰
  • 质谱进行微生物鉴定的优劣分析
    伴随着医学技术的迅猛发展,质谱技术快速走进人们的生活,特别是在医学中的应用越来越广泛,质谱技术在临床中快速鉴定细菌的成果颇为显著。近年来,全国各大检验室大力引进前沿的检测技术,主要针对微生物领域进行精准检测,质谱技术检测具有操作步骤简单、程序自动化和结果准确率高的优点,能够有效对微生物进行鉴定,此外,质谱技术具有高通量、高灵敏度和高特异性,基于此特点,该技术应用在临床微生物检测上,取得了惊人的效果。总而言之,质谱时代已经到来,打破了传统的微生物鉴定局限,为我国的医疗临床事业作出了巨大的贡献。一、质谱技术的应用原理及优势大量实验研究结果显示,质谱技术的工作原理很复杂,主要是对被检测的标本离子质荷比进行详细测定,采用标本与激光辐射基质混合点相结合形成结晶的方式,力争将标本通过基质分子吸附的方式将其电离,形成完全不相同的带电离子。同时,在带电离子的动能加速下,快速形成聚焦,从而进入质谱技术分析仪器科学分析。在微生物的检验中,质谱技术在一定程度上具有明显的优势,其主要优点在于检验时对标本的要求很低,不像传统的检验需要将标本进行分离甚至是提纯,质谱技术可以直接进行点样。与此同时,质谱技术检验微生物的准确性非常高且操作方便快捷。二、质谱技术在鉴定检测中的具体应用(一)细菌鉴定检测质谱技术应用于临床检验时可以对原始的样本进行检测,也可以对已经分离的纯菌落进行检测。实践证明,临床检验标本时采用质谱技术进行检测,其标本可以是原始样本,还可以是通过相关技术已经分离的纯菌落。临床上,质谱技术在对革兰氏阳性、阴性细菌进行检验鉴定时,其检验结果的准备性很高,但是,同样的标本采用原始检验方法进行对比,其结果相差很明显。在用原始方法与质谱检验方法检验革兰氏细菌的结果对比中,质谱技术检验结果明显比原始技术检验结果准确度高,同时采用质谱技术检验获取结果的时间更短,二者检验结果的差值在统计学上具有一定的存在意义。除此之外,质谱技术在细菌鉴定检测中还有一个特殊的优势,即能够将相同或相近的菌株准确区分开,从而快速鉴定出多种细菌的不同类型、各自的属性及种类等,最主要的是其准确率相当高,能够达到90%-95%左右,此外,在细菌鉴定中还有发现新型病原菌的可能。(二)真菌鉴定检测针对于真菌鉴定检验,质谱技术检验结果对比传统技术具有很高的精准率。在二者的真菌鉴定检测结果中,质谱技术检验结果要明显比传统检验方法更准确,且检测时常较短,其检验结果存在较大的差异性,在统计学上具有重要的存在意义。分析结果表明,因为真菌本身很干燥,不轻易挑选菌落,这种情形能够导致靶点涂菌分布不均匀,再加上检验人员如果在涂菌时涂得过薄,最后影响结晶不能完好形成,基于此特点,原始方法鉴定真菌,其鉴定检测结果与真实结果差异是非常大的。(三)药物敏感性检测临床上,质谱技术还可以对药物的敏感性进行检测,其检测结果具有极高的准确率,而且针对于药物敏感性的检测,质谱技术检验结果用时要比传统技术短很多,可以大幅度降低技术人员的劳动成本。质谱技术与传统技术在药物敏感性的检测中,除了在检测时间和检测结果上有很大的差异性外,在检测范围上也有所不同。传统技术检验范围具有一定的局限性,能够检测极少数的细菌,而质谱技术恰恰相反,可检测的范围十分广泛,且具有检测人工成本低和资源节约的作用。三、质谱技术的发展前景临床上,血液感染时一种十分严重且常见的感染性疾病,该疾病经常需要使用抗生素来治疗,但是由于抗生素使用的不规范,加上不间断的侵入性治疗方案陆续实施,导致每年因血液感染的发病机率持续升高,引起了医学界的高度关注。在过去应用传统的方法检验临床数据时,血培养鉴定结果经常需要很长的时间,进而严重影响治疗的最佳时间,因此,质谱技术应用在微生物检验上,解决了以往医疗上的大难题。大量的临床数据研究结果指出,根据目前的医疗科学技术能够把血液中的致病细菌大量提取出来,然后应用质谱技术检验细菌,对比之前的平板培养技术,其结果更加精准且耗时短。专家指出,有相关学者利用常规技术和质谱技术鉴定血培养结果,得出针对于血培养结果的鉴定还是质谱技术更准确、更快速,且具有明显的统计学意义。四、质谱技术存在的缺陷目前,在现代微生物检验技术中,质谱技术有着诸多优势,对比传统的检测技术,最明显的优势就是检验结果精准且用时很短,同时具有操作简单便捷、程序自动化的特点,但是在临床大量的实际检验中,质谱技术还是存在一定的缺陷,值得相关人员去大力研究。临床上,质谱技术是无法精准检验结构较为特殊的微生物菌种,例如罕见的菌种、新出现的菌种、复杂混合的菌种或与图谱极为相似的菌种,在检验结果上存在着一定误差。质谱技术检验细菌出现这种结果的原因是目前已有的数据库并不完善,现有数据库中已有的标准菌株图谱是有限的,质谱技术的数据库还需要持续不断的完善,因此在微生物鉴定的结果中会产生一定的差异,更无法对新型菌种和特殊菌种进行准确鉴定。除此之外,由于质谱技术刚刚在国内兴起,是一项新型高新技术,在微生物鉴定过程中要求技术人员的操作能力比较强,因技术员的相关知识匮乏、器械不充足或检验手法不熟练等因素都有可能对检验结果形成一定的差异,导致结果不准确。同时,质谱技术检验微生物是一种新型的技术方法,检验时需要采购相应的仪器,价格高昂的检验仪器导致市场推广难以进行。近年来,科学技术的高速发展有效推动了我国社会的进步,其中,作为重要的鉴定技术之一,微生物鉴定技术可以帮助医疗人员进一步实现对于病原微生物的合理理解与充分认识,基于此,医疗工作者在临床过程中可以进一步结合相关结果对于患者的健康情况进行全面分析,对于后续治疗方案的合理制定具有良好的促进意义。近年来,在科学技术的引导下,质谱技术在我国临床微生物鉴定工作中展现出了良好的应用价值,从而受到了广大医疗行业从业者的高度关注。总的来看,与传统微生物鉴定技术相比,质谱技术具有良好的应用优势,可以进一步提升微生物鉴定工作的效率与准确性,然而,该技术仍存在一定的发展空间,因此,为了更好地应用该技术为医疗行业服务,相关研究人员仍需结合大量临床实践合理做好对于质谱技术的探索与改良。
  • 岛津成像质谱显微镜应用专题丨药物类
    药物分子定位递送多模式成像精准示踪研究 癌症是威胁人类生命与健康的重大疾病,药物治疗(化疗)是治疗癌症的有效手段之一。为进一步提高疗效、降低毒副作用,抗癌药物的定位递送和精确释放成为抗癌药物研发的重要内容。然而,如何实时在线精准示踪抗癌药物的递送过程、靶向释药过程以及生物分布与代谢是迫切需要分析科学解决的难点和核心问题。质谱成像技术是基于质谱发展起来的用于样本定性和定量检测的新型分子成像技术,其通过扫描样本,可高灵敏、高分辨地获得待测样本中目标分子的精准时空分布,为药物的递送过程、靶向释药过程以及生物分布提供重要信息。本研究工作利用荧光成像和质谱成像相结合的多模式成像分析技术成功实现了实时精准示踪靶向结直肠的新型前药定位递送、释放、分布与代谢的全过程,见图1。 图1 利用多模式成像技术实现靶向结直肠的新型前药实时精准示踪 1.新型的偶氮基前药AP-N=N-Cy的构建本研究工作设计合成了一种新型的偶氮基前药AP-N=N-Cy,该偶氮基前药由前体药物分子(AP)通过多功能的偶氮苯基团与近红外荧光团(Cy)相连接而成。研究结果表明:该偶氮基前药不仅可作为对偶氮还原酶响应的近红外探针以实时示踪药物递送过程,而且还可作为抗癌药物分子(AdP)的递送平台。在偶氮还原酶存在的情况下,AP-N=N-Cy中的多功能偶氮苯基会发生断裂进而释放AdP和Cy,其偶氮苯基团充当了开启Cy荧光的开关,它的引入使得该偶氮基前药具有了独特的荧光开-关特性(图2)。 基于偶氮还原酶会特异性地在结肠中分泌,该偶氮基前药实现了在结肠中特异性的定位递送与靶向释放。该偶氮基前药可以口服,并且在到达结肠前具有高稳定性和低毒性。鉴于抗癌药物分子释放与荧光开启过程的同步性,可利用荧光成像和质谱成像相结合的多模式成像技术对抗癌药物分子在体外、离体和体内的递送进行精确示踪。 图2 偶氮基前药AP-N=N-Cy的构建和释药机理 2. iMScope TRIO 成像质谱显微镜测试条件取健康昆明雄性小鼠,随机分为两组并禁食12小时,分别用前药AP-N=N-Cy(0.1 mL,2 mg / kg)和PBS(0.1 mL)进行灌胃,在灌胃12小时后处死、解剖,取胃、小肠、盲肠、结直肠、肾脏、心脏、肺、肝和脾脏组织并进行冷冻切片,切片厚度为15 μm。将所得组织切片放置在ITO导电载玻片上(100Ω/ m2,日本大阪松浪玻璃)。使用基质喷涂仪iMLayer(Shimadzu,Kyoto,日本)将基质α-氰基-4-羟基肉桂酸升华于组织切片表面后,使用成像质谱显微镜iMScope TRIO(Shimadzu,Kyoto,日本)对上述组织切片进行成像分析。质谱条件如下:正离子模式,采集范围m/z 150-500;激光直径10 μm;步长40μm;激光强度35。 3. 基于iMScope TRIO 成像质谱显微镜的组织成像研究利用iMScope TRIO成像质谱显微镜在分子水平上对AdP和Cy在不同组织中的生物分布进行精确分析。如图3所示,仅在前药AP-N=N-Cy灌胃的小鼠盲、结肠部位检测到AdP(MS / MS片段,m/z 476.16)和Cy(MS / MS片段,m/z 369.17)的特征信号,而给药组小鼠其余器官,包括胃、小肠、肾脏、心脏、肺、肝和脾脏等中并未能检测出药物分子AdP的分布,表明前药AP-N=N-Cy仅在小鼠结直肠中释放活性药物AdP和探针分子,且Cy和AdP在分子水平上显示出优异的同步性,使得探针分子Cy的信号可以有效地代表药物分子AdP的组织分布。图3 前药AP-N=N-Cy灌胃12 h后在小鼠组织中的质谱成像分析图 a)盲肠 b) 结肠 c) 其余器官(叠加图) 本文相关内容由中国科学院兰州化学物理研究所赵晓博博士生提供,详细研究内容已正式发表于Analytical Chemistry, 2020, 92: 9039-9047。 文献题目《Precisely Traceable Drug Delivery of Azoreductase-Responsive Prodrug for Colon Targeting via Multimodal Imaging》 使用仪器岛津iMScope TRIO 作者Xiao-bo Zhao,1,2 Wei Ha,1 Kun Gao,3 Yan-ping Shi1* 1、CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People’s Republic of China, Email: shiyp@licp.cas.cn2、University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China3、College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
  • 岛津携最新应用亮相“2018年度北京质谱年会”
    “2018年北京质谱年会”于2018年3月30日在北京蟹岛三点钟会议室隆重召开。本次会议是由北京理化分析测试技术学会主办,北京质谱学会、北京质谱中心协办,岛津公司等知名仪器公司金牌赞助的盛会。会议举办了大会报告、学术沙龙、质谱技术及应用培训等多种形式的活动。大会现场传真 清华大学教授,北京质谱学会张新荣理事长主持此次会议。他在开幕式中特别鸣谢理化分析测试学会举办此次会议,同时也感谢赞助商大力赞助本次会议。并说到北京质谱年会每年举办一次,今年主要围绕着“生命与健康”的主题召开会议,感谢多位院士专家莅临此次会议,期待更深入的学术探讨与合作。清华大学教授,北京质谱学会张新荣理事长主持此次会议 北京质谱中心汪福意主任为大会送出美好祝福并致辞。他首先对到场来宾表示衷心的感谢,并表示非常荣幸能举办此次会议,北京质谱中心是成立于1998年的大型科学技术中心,一直推进着北京市乃至全国的质谱技术和发展。他说到非常高兴能和同行们一起交流,切磋最新的质谱应用技术,讨论最新的质谱发展。最后他预祝大会圆满成功。北京质谱中心汪福意主任为大会送出美好祝福并致辞 接下来举行的大会报告分为专题报告和新技术报告,专题报告由清华大学张新荣教授主持。国家纳米科学中心、中国科学院高能物理研究所赵宇亮院士做了题为“纳米生物效应分析及其医学应用”的报告。他在报告中说到纳米材料已经走出实验室,应用于各行各业。报告主要介绍了纳米颗粒对生命体系的影响,即纳米的生物学效应。接着他指出了纳米技术的分析方法存在着瓶颈,其中包括体外,体内,细胞内与蛋白质结合纳米颗粒等分析方法。他还对纳米毒理学效应的医学应用以及在分析方法上的挑战与展望做了详细的介绍。国家纳米科学中心、中国科学院高能物理研究所赵宇亮院士做了题为“纳米生物效应分析及其医学应用”的报告 天坛医院康熙雄教授做了题为“质谱技术在检验诊断中的优势”的报告。他在报告中指出,精准医学时代具有多样化、精细化、获取间接信息的特点。质谱检测技术在临床检验中具有多指标检测、灵敏度高、特异性强等优势。质谱在医学检验中的应用有:微生物鉴定、临床免疫学检验、临床生物化学检验、分子生物诊断与研究等。质谱法检测与免疫分析、常规色谱法等相比,具有高通量、特异性检测、方法建立灵活、准确度好、快速等优势。天坛医院康熙雄教授做了题为“质谱技术在检验诊断中的优势”的报告 岛津企业管理(中国)有限公司分析测试仪器市场部尹宏瑞经理和韩美英博士也为大会带来了精彩的报告。岛津企业管理(中国)有限公司分析测试仪器市场部尹宏瑞经理做了题为“纳米导向限制性酶解联合微流量LC/MS平台对单克隆抗体的高灵敏度检测”的报告。他在报告中指出利用质谱法(LC-MS/MS)测定血清或血浆中的治疗性单克隆抗体药物,被越来越多地用于临床前、临床和治疗阶段的药代动力学研究。但是在前处理步骤的酶解过程中,常规方法酶解得到的多肽片段种类数量众多,组分较复杂,大大减弱了检测灵敏度。岛津独有的nSMOL 技术可在近生理条件下,完成对抗体药物Fab 区域的选择性酶解,不仅能够保证获得特异性的抗体序列片段,而且大大降低了样品的复杂性,缩短样品前处理时间,提高了检测灵敏度。此外,利用岛津具有高灵敏度、良好稳定性、用户友好等特点的半微量液质Nexera Mikros,可以达到在灵敏度与分析通量之间的平衡,较常规半微量LC-MS/MS灵敏度可提升一个数量级。在曲妥珠单抗检测中,方法线性范围宽、灵敏度高、数据重现性好。该方法及检测平台普遍适用于单抗药物检测,Nexera Mikros系统也适用于其他痕量检测分析。岛津企业管理(中国)有限公司分析测试仪器市场部尹宏瑞经理做了题为“纳米导向限制性酶解联合微流量LC/MS平台对单克隆抗体的高灵敏度检测”的报告 岛津企业管理(中国)有限公司分析测试仪器市场部韩美英博士做了题为“成像质谱显微镜: 提供更多可能性”的报告。她在报告中指出成像质谱显微镜(iMScope TRIO)是光学与成像质谱分析完美融合的岛津独有技术,拥有领先世界水平的5 μm高空间分辨率,可进行多级质谱结构分析。质谱成像技术作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。报告交流十分热烈。岛津企业管理(中国)有限公司分析测试仪器市场部韩美英博士做了题为“成像质谱显微镜: 提供更多可能性”的报告 报告现场讨论十分热烈关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • 沃特世出席第三届全国质谱分析学术报告会,展示最新质谱技术
    由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的第三届全国质谱分析学术报告会于12月8日至11日在厦门成功召开。本次会议以“高速发展中的中国质谱分析”为主题,吸引了来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加。该会议旨在促进中国质谱分析技术的快速发展,展示中国在该领域取得的成绩及增进同行间的学术交流,全国质谱分析学术报告会已成功举办两届,本次的会议内容包括:新仪器新技术、离子源、蛋白与代谢组学、质谱在精准医学中的应用、环境与食品安全分析、无机质谱、质谱成像、有机/生物质谱新方法、青年论坛。作为深耕质谱技术几十载的行业领导者,沃特世公司全方位参与了此次会议,并展示了一系列质谱分析技术领域的最新成果,包括三重四极杆质谱、高分辨质谱以及离子淌度技术等,引起了众多参会者的高度关注和浓厚兴趣。其中,作为Xevo家族最新成员的Xevo TQ-XS,以其极高的灵敏度和整体创新设计已先后荣获ACCSI“2016科学仪器行业优秀新产品”和分析测试百科AnTop奖殊荣。Waters Xevo TQ-XS三重四极杆质谱仪值得一提的是,今年恰逢沃特世推出全球第一台行波离子淌度质谱(IMS)10周年、全球第一台商品化QTof 20周年。从第一台淌度质谱SYNAPT HDMS,到新型淌度质谱VION IMS QTof,淌度质谱已不再神秘,可以应用到每一个实验室的常规分析中,帮助研究人员更有把握地进行分析物的探索、鉴定和定量。会议现场,沃特世公司特意设置了离子淌度知识答题活动,吸引了众多与会者踊跃参与。沃特世展台现场人头攒动,离子淌度答题活动气氛热烈在分会报告上,沃特世公司应用科学家殷薛飞博士作了题为“原位电离质谱技术及其在生物分析中的应用”的报告,详细介绍了沃特世独有的REIMS技术及无损的DESI技术在生物分析中的应用,包括微生物鉴定、质谱成像、药物分布等。原位电离质谱技术是近年来发展迅速的质谱离子化技术,因其无需复杂样品前处理即可实时进行样品分析的优点被广泛应用于快速检测。REIMS技术及无损的DESI技术是两类非常有用的原位电离质谱技术,已被广泛应用于生物科学、食品、制药等行业。沃特世公司应用科学家殷薛飞博士报告现场此外,为了鼓励和表彰本次会议的青年论坛优秀报告和墙报,会议特设“优秀青年报告奖”和“优秀墙报奖”。沃特世公司质谱产品市场发展总监舒放先生为获得“优秀墙报奖”的诸位作者颁奖,并表示:“沃特世非常荣幸能够赞助此次优秀墙报评选活动。作为质谱分析领域的领导者,沃特世将在未来继续大力支持中国质谱领域的创新发展和各项工作,加大与业内专家学者的学术交流,共同促进中国质谱事业的发展。”“优秀墙报奖”颁奖现场(左二为沃特世公司质谱产品市场发展总监舒放先生)关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制