比勒取样探头

仪器信息网比勒取样探头专题为您提供2024年最新比勒取样探头价格报价、厂家品牌的相关信息, 包括比勒取样探头参数、型号等,不管是国产,还是进口品牌的比勒取样探头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合比勒取样探头相关的耗材配件、试剂标物,还有比勒取样探头相关的最新资讯、资料,以及比勒取样探头相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

比勒取样探头相关的厂商

  • 合作热线:17775990825湖南绿麓仪器有限公司技术开发团队成员均从事CEMS行业均10年以上,能熟练地进行软硬件开发和技术管理。公司所生产的产品,其应用范围涵盖电厂、水泥、石油、化工、冶金、钢铁、垃圾焚烧厂、污水处理厂、食品厂、生物制药、检测部门、高校、科研院所等特殊行业及各工业应用场所。目前,公司与国外多家知名分析仪器公司(Siemens、ABB、SICK、FujiElectric、HACH)都有密切合作,并在此基础上根据现场应用情况,结合国外现行先进技术,潜心研发并推出了CEMS烟气在线监测系统、CEMS分析仪,CEMS粉尘仪,CEMS湿度仪,CEMS氮氧化物转化炉,CEMS温压流一体机,CEMS便携式烟尘仪,CEMS取样探头,CEMS取样伴热管线,高温取样伴热管线,CEMS皮托管流速计,矩阵式流量计,CEMS皮托管,CEMS差压变送器,CEMS温度变送器,CEMS压力变送器,超低烟气粉尘仪,CEMS压缩机冷凝器,半导体(电子式)冷凝器,CEMS取样泵,抽气泵,真空泵,采样泵,采样泵转换支架、CEMS蠕动泵,CEMS电磁阀,取样电磁阀,截止阀,调节阀,三通阀,减压阀,调压阀,CEMS氧传感器,氧传感器支架,CEMS探头过滤器,镍(钛)合金过滤器,不锈钢(金属网)过滤器,探头滤芯,CEMS保护过滤器,排水保护过滤器,微雾过滤器,减压过滤器,二级过滤器,阻水过滤器,安全过滤器,粒子过滤器,膜式过滤器,气溶胶过滤器,疏水过滤器,疏水滤膜,CEMS冷腔,CEMS热交换管,CEMS汽水分离器,分水器,CEMS四氟管,蠕动泵管,CEMS气体接头,螺帽,密封压环,CEMS取样探杆,CEMS法兰套筒,CEMS信号隔离器,CEMS开关电源等多种监测产品(可用于废气,废水,固体废物)。
    留言咨询
  • 南京乐透思环保科技有限公司位于江苏省南京市南大科学园,是一家正在快速成长的技术型企业。乐透思致力于环境治理的技术开发与服务,主营业务为工业废水处理、市政污水处理、养殖废水处理、自然环境水体的生态修复、各类污染土壤的修复。 公司建有江苏省院士工作站,工作站由中国科学院院士、南京大学化学系郭子教授领衔的专家团队组成,为公司提供基础研究与应用开发支撑。同时乐透思还与南京大学还共同创建了“南京大学-乐透思环境生物技术联合研究中心”,是以环境生物技术开发为导向的高等研究机构,由南大生命科学学院副院长董磊教授担任中心主任。公司自主开发的用于水体无机污染物处理的LOTUSEP系列产品目前已广泛应用于国内蓄电池、电子、电镀等行业,如天能集团、超威集团、瑞声科技集团、闽华集团等。BARMS高效微生物处理技术是联合研究中心的一项代表性技术成果,能显著提升污水生化处理效率,剩余污泥可减少70%以上,并有效降低能耗。目前BARMS技术已应用于国内化工、医药、市政污水等行业,如龙翔集团、祥云集团、宁波城投集团、河北建设、桑德环境等,并在雄安新区河道坑塘治理中得到应用,受到了客户的广泛赞誉。
    留言咨询
  • 道勤科技是一家专业致力于提供水文地质、岩土工程仪器设备及专业技术服务的全方面解决方案供应商。 作为瑞士Solexperts和美国Seametrics的中国独家代理商,我们专业的技术团队均接受过设备生产厂家的专业服务培训,在保障用户基本的设备使用需求的同时,更可以给出全面专业的定制化解决方案,为用户提供优选计划,节省成本投入。 水文监测类主要产品包含: 美国Seametrics压力式水位计、美国Seametrics水位水温电导率三参数探头;美国Seametrics多参数水质记录仪; 美国Seametrics单参数水质传感器系列:1、PH/OPR氧化还原电位温度探头;2、溶解氧温度探头、3;浊度探头;4、溴化物探头; 瑞士Solexperts地下水分层试验采样系统(双PACKER系统);瑞士Solexperts地下水单孔多层监测系统(PMPS系统)道勤科技网址:www.dogaintech.com
    留言咨询

比勒取样探头相关的仪器

  • 取样探头 400-831-3106
    简介Flownamics于1996年开发了FISP取样探头。FISP取样探头能够从发酵罐和生物反应器中提取无菌无细胞样品,FISP允许将在线样品直接转移到各种取样系统(Seg-Flow)、分析仪(如生物化学和HPLC系统)和馏分收集器中进行离线分析。FISP由316不锈钢制成,配有管状微孔膜,有多种尺寸(6、12、19和25mm端口)以适应实验室、中试或工业规模的容器。FISP探头还可用于液下补料/无菌培养基添加:设置简单快速:取消了过程中的高压灭菌试剂步骤消除接触有害挥发性物质的风险0.2μm陶瓷膜提供无菌屏障产品规格D系列FISP探头适用于19和25mm端口适合发酵罐/生物反应器侧端口死体积:约0.24至0.44ml可用于产品开发到生产GMP已验证兼容SIP和CIP浸入深度:90和115mm标准膜孔径:0.2μm原料膜孔径:0.45、0.75、1.0、5.0、25.0和75.0μm可定制孔径F系列FISP探头适用于8、12和19mm端口适合发酵罐/生物反应器顶部端口死体积:约0.24至0.44ml可与接头一起使用可高温高压灭菌与Kleenpak连接器兼容浸没深度:120、200、310和410mm标准膜孔径:0.2μm原料膜孔径:0.45、0.75、1.0、5.0、25.0和75.0μm可定制孔径FISP的特点用于在线或离线分析的无菌(0.2μm过滤器)无细胞取样实现一致和准确的取样,减少冲洗时间可用于需氧或厌氧细菌、酵母、真菌、藻类、昆虫和哺乳动物细胞培养可用于液下补料/无菌培养基添加标准膜0.2μm其他常用孔径:0.45、0.75、1.0、5.0、25.0、75.0μm(可定制孔径)适配Seg-Flow采样系统接口Dip Tubes 含细胞取样探头对于需要细胞样本的分析,Flownamics可提供一系列不锈钢探头。这些探头可高压灭菌,可与玻璃、不锈钢和一次性反应器或袋子一起使用。产品规格长度200, 350, and 450mm内径0.8mm(0.032英寸)外径6mm(0.24英寸)优势可安装在PG13.5端口可根据需求定制改装其他大小的端口易于维护无需操作员培训可用于发酵和细胞培养可将反应器连接到各种采样系统(Seg-Flow)和分析设备最大限度地减少死体积和清洗要求
    留言咨询
  • 产品介绍:GS4210-Ex-N 烟气采样探头(防爆型)是华电智控根据防爆的气体监测场合的需求自主研发的一款防爆型采样探头,探头自带精细过滤功能,防止后续气路堵塞,自带加热功能,防止冷凝。该产品已获得防爆合格证,可以有效应用在石油化工、喷涂、橡胶、医药、印刷包装等气体检测的防爆监测场合。规格参数:1. 采样温度:600℃ Max2. 采样压力:0.4~3BarMax.3. 环境温度:-20℃~40℃4. 探头加热温度:120~180℃5. 过滤精度:5um6. 探头加热电源:220VAC 50Hz/ 400W7. 预热时间:小于45min8. 防爆等级:ⅡC T4性能特点:1. 探头自带精细过滤功能,防止气路堵塞。2. 过滤器及滤芯均采用耐腐蚀材质制成,可满足腐蚀气体监测的使用条件;3. 内置加热单元,加热温度可调,有效防止气体冷凝;4. 维护工作量低,无需使用专业工具即可更换滤芯;5. 独特的内部结构设计,体积小,重量轻,且有效减少取样过程中的死体积;6. 内含反吹控制装置,可有效对探杆和探头过滤器进行反吹,避免堵塞,减少日常维护。
    留言咨询
  • 浸入式光纤探头 400-860-5168转1451
    描述SIM-6122系列浸入式光纤探头,采用Y型光纤结构,芯径/芯数/长度/接头类型等可按实际需求来定制。探头端采用专门设计的反射头,可作为一个小型的比色皿对液体进行实时取样。该系列探头通常与光谱仪和光源搭配,常用于水质或生化在线检测中实时测量液体的吸光度。应用领域水质在线检测生化在线检测特点 多种光程的反射头可供选择光纤芯径、长度、芯数、接头类型等均可定制技术参数型号SIM-6122-0615SIM-6122-0620芯径600μm芯数2材质抗紫外石英光纤传输波长范围200-1100nm合束端L10.75m1m分束端L20.75m1m工作温度-30~150度反射头(可选)液体厚度2mm,光程4mm液体厚度5mm,光程10mm液体厚度10mm,光程20mm结构示意图
    留言咨询

比勒取样探头相关的资讯

  • 梅特勒托利多第四代光纤探头全新上市
    梅特勒托利多推出第四代光学界面全新设计的AgX光纤探头DS系列。DS系列性能优异,使用方便,能灵活与ReactIR™ 和MonARC™ 系统连接,在化学反应体系中进行原位测量,提供有价值的信息帮助化学家进行定量和定性分析。   DS系列卤化银 (AgX) 光纤探头有以下优点:   • 无需光路调准,即插即用   • 可选钻石和硅,氧化锆或者硫化锌ATR传感器   • 配合用户需求,提供多种尺寸   • 适用于多种化学反应条件,低温、高压、气相等   • 整合RTD监测器进行原位实时温度测量   更多信息,请登入www.mt.com/autochem   梅特勒托利多中国
  • 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 【作者按】形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、边缘效应、电位衬度等是形成扫描电镜表面形貌像的几个重要衬度信息。对这些衬度信息的接收离不开探头。本文将就扫描电镜两种主要探头的构造、工作原理及其接收的样品信息进行详细探讨。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " 一、二次电子探头 /span /h1 p style=" text-align: justify text-indent: 2em " 目前教科书的观点认为:二次电子探头接收的样品表面信息主要是二次电子。真实情况是否如此呢? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.1二次电子图像所拥有的特性 /strong /span /p p style=" text-align: justify text-indent: 2em " A) 二次电子能量很低(低于50ev),从样品表面溢出的深度浅,在样品中的扩散范围小。适合用于表现样品表面形貌像的极细小细节(小于10nm)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/3edeb286-6abb-4bf7-8b3a-008c9ab1551f.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " B)二次电子能量低,在样品表面的溢出量容易受到静电场(荷电)的影响,出现图像局部或全部异常变亮、磨平、变暗并伴随图像畸变的现象,即样品图像的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/fb564107-ab21-4b67-9812-18699dec50be.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " C)二次电子的产额受平面斜率影响较大,边缘处产额最高,形成所谓的二次电子衬度及边缘效应。这些衬度信息会形成信息的假象,也有助于分辨某些特殊的样品信息。 /p p style=" text-align: justify text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/51c0d3a0-49ba-412e-96ee-f789a068425d.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " D) 二次电子图像的Z衬度一般表现较差。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/9d2c7e97-f6a9-4de1-b054-9b8e5101f0f5.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.2二次电子探头的组成及工作原理 /strong /span /p p style=" text-align: justify text-indent: 2em " 二次电子能量弱(低于50ev),要想获取二次电子信息就必须采用高灵敏探头。利用敏感度极强的荧光材料接收弱信号,再以光电倍增管对弱信号做百万倍的放大,将能量极弱的二次电子信息转化为能被电子线路处理的电子信息。 /p p style=" text-align: justify text-indent: 2em " 这种设计是目前解决这一难题的最佳方案。二次电子探头的基本构造正是以这个思路为基础来设计。 /p p style=" text-align: justify text-indent: 2em " strong 1.2.1 Everhart-Thornley探测器的结构组成 /strong /p p style=" text-align: justify text-indent: 2em " 由金属网收集极、闪烁体、光导管、光电倍增管和前置放大电路组成的探测器被称为Everhart-Thornley探测器。一直以来都是各厂家用于接收二次电子的主流探测器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/2f6dd144-afab-427d-99c2-96f6565bc641.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.2.2 Everhart-Thornley探测器的工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 位于探头最前端的收集极是由金属网构成,其上加有200V的正偏压以捕获更多的二次电子。进入收集极的二次电子由加载在闪烁体金属铝膜上的10KV电压加速在闪烁体上产生一定数量的光子。由闪烁体产生的光子经过光导管的全反射进入光电倍增管阴极,在阴极上转换成电子。这些电子由打拿极的不断倍增,经阳极输出高增益低噪音的电信号。该信号由紧贴阳极的前置放大器放大后,从探测器输出。 /p p style=" text-align: justify text-indent: 2em " 探测器本身无法将到达探测器的高能量背散射电子从低能量的二次电子中分离,但通过改变收集极偏压可以将低能量的二次电子给阻绝在探头外面。其接收的信息特性完全取决于到达探头的信息组成,如果信息中二次电子含量大则图像偏向于二次电子的图像特性,如果背散射电子含量大则结果偏向于背散射电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " 将探头的收集极变成负偏压,则我们可以获得偏向于背散射电子的图像。但是图像信号衰减较多,图像质量较差。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 1.3二次电子探头的位置与成像特性 /span /strong /p p style=" text-align: justify text-indent: 2em " 高分辨场发射扫描电镜中,二次电子探头(ET探头)往往被置于仪器的两个位置:镜筒及样品仓。虽然各电镜厂家探头的具体位置有差异,但其结构是基本一致。探头位置不同,获取的图像性质差异也非常大。下面就以日立冷场电镜S-4800二次电子探头的位置设计为例来加以说明。 /p p style=" text-align: justify text-indent: 2em " strong 1.3.1& nbsp S-4800二次电子探头的位置设计 /strong /p p style=" text-align: justify text-indent: 2em " 在冷场扫描电镜S-4800中标配了两个二次电子探头。这两个探头的结构和性能完全一致,仅仅在电镜中安装的位置有所差异。一个位于样品仓,另一个位于物镜的上方。 /p p style=" text-align: justify text-indent: 2em " 如下图所示: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6b4fc92d-a161-48eb-938a-cdc27b8be3a5.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.3.2 上、下探头的工作过程及获取图像的特性 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.1上探头接收的样品信息 /span /p p style=" text-align: justify text-indent: 2em " 扫描电镜EXB系统的结构是在物镜磁场(B)上方正对着上探头设计一个电场(E)。该电场的作用是将物镜磁场吸上来的背散射电子、二次电子混合信息中能量较弱的二次电子分离出来,推向上探头。这个过程如同碾米机进行米、糠分离时吹风机的作用一样。故上探头获取信息是较为纯正的二次电子。背散射电子也可以通过位于物镜内的电极板转换成二次电子被上探头接收,通过调节电极板上加载的电压来选择到达上探头的信息特性。这种间接接收的背散射电子有其一定的特点,但损耗大,大部分情况下信号量不足。 /p p style=" text-align: justify text-indent: 2em " 下面组图为上探头接收的四种信息特性。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/312e9fc9-364e-47b7-aa0f-f4a6759f8a69.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6ccf7e3c-4ea6-4df7-a35f-702c3461675e.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.2上探头的工作过程 /span /p p style=" text-align: justify text-indent: 2em " 高能电子束轰击样品产生各种电子信息被物镜磁场吸收送往物镜上方。工作距离越小被物镜俘获的样品电子信息越多,其中二次电子和背散射电子是呈现扫描电镜表面形貌信息的主要信号源,将被拿出来单独讨论。 /p p style=" text-align: justify text-indent: 2em " 二次电子和背散射电子混合信息被物镜磁场送到位于物镜上方的电场,能量弱的二次电子受电场影响从混合信息中被分离出来并推送到位于物镜上方的上探头,背散射电子由于能量较强,电场对其影响较小,将穿过电场轰击位于电场上方的电极板,产生间接二次电子也会被上探头接收到,但其含量较小不是主要信息。 /p p style=" text-align: justify text-indent: 2em " 位于物镜中的电极板通过调整加载电压来选择进入物镜的信息类型。低角度(LA)背散射电子可由电极板转换成二次电子被上探头接收,形成所谓间接的LA背散射电子像。 /p p style=" text-align: justify text-indent: 2em " 电极板加载+50V电压,将吸收低角度的二次电子和背散射电子,抑制低角度电子信息进入镜筒(U)。 /p p style=" text-align: justify text-indent: 2em " 电极板加载0V,将由其转化成二次电子的低角度背散射电子和低角度二次电子信息都送入镜筒。上探头接收的是各种角度二次电子和低角度背散射电子的混合信息。其混合比例将随着电极板电压的降低,背散射信息逐渐增多(U,LA0)。 /p p style=" text-align: justify text-indent: 2em " -150V时,二次电子被全部压制,此时上探头接收到的是纯的低角度背散射电子所激发的二次电子信息(U,LA100)。 /p p style=" text-align: justify text-indent: 2em " 位于镜筒内的能量过滤器,会将二次电子以及低角度背散射电子所形成的二次电子给抑制,此时上探头或顶探头接收的是高角度背散射电子信息(U,HA)。 /p p style=" text-align: justify text-indent: 2em " 图像特性:Z衬度充分,其他都不足。由于高角度背散射电子产额少,对样品及束流的要求都较高。目前在束流较低的冷场扫描电镜中取消这个功能,只在束流较高的regulus8200系列冷场电镜中保留顶探头设计。但适用的样品并不多。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/54aea59e-1225-4703-a62d-324fa54bf35c.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.3下探头的位置及其图像特性 /span /p p style=" text-align: justify text-indent: 2em " & nbsp 下探头位于场发射扫描电镜样品仓位置。示意图如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/17380253-5429-4944-af61-5caa22457c69.jpg" title=" 11.png" alt=" 11.png" / /p p style=" text-align: justify text-indent: 2em " 下探头位于样品仓中,因此也称样品仓探头。它与样品之间没有任何阻碍物,激发出来的样品信息可以不受影响的到达该探头。下探头本身不能对到达探头的背散射电子信号加以甄别,其图像特性取决于到达探头的信息特征。二次电子居多,就偏向二次电子的图像特性;背散射电子居多,则偏向于背散射电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 样品仓探头接收的样品信息以低角度信息为主,背散射电子含量占主导。对样品信息的接收效果取决于探头与样品之间形成的固体角,样品的位置十分关键,存在一个最佳工作距离。各厂家的最佳工作距离各不相同,日立电镜是15mm。下探头位于样品的侧向,图像特性:形貌衬度好,立体感强;荷电影响小;Z衬度好;细节易受信号扩散影响,高倍清晰度不足,10纳米以下细节很难分辨。& nbsp /p p style=" text-align: justify text-indent: 2em " 不同厂家的样品仓探头位置不同,因此最佳工作距离以及探头、电子束、样品之间的夹角都会略有不同。形成的图像在空间感及高分辨能力上存在差异。样品仓真空度也是样品仓探头分辨力的主要影响因素之一。 /p p style=" text-align: justify text-indent: 2em " 日立冷场扫描电镜下探头的成像实例: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b5917c9d-9e59-41fb-82c6-4c3fd3475cab.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/decfd495-8ec1-490e-b6e8-c6735f4f5ad9.jpg" title=" 13.png" alt=" 13.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.4上、下探头的图像特性对比实例 /span /p p style=" text-align: justify text-indent: 2em " 上、下探头结构一致,仅仅由于安装位置不同导致其成像特性也不一样,充分掌握这些差异将有利于你选择正确的测试条件。下面将通过几组对照图来加以阐述: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c911ae27-5aac-4936-a791-5f3f37126870.jpg" title=" 14.png" alt=" 14.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7388deb2-be2f-472d-9c96-52b873fb089c.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/169e28be-1208-4ae4-ace5-96820e80cb8b.jpg" title=" 16.png" alt=" 16.png" / /p p style=" text-align: justify text-indent: 2em " 从以上各组对照图可以清晰看到,上探头二次电子信息特征极为强烈,而下探头偏重背散射信息。这些特点使得该两种探头获得的样品信息差异较大,各自都有适合的样品及所表现的样品信息。在各自适用的范围内对方都无可替代。 /p p style=" text-align: justify text-indent: 2em " 根据个人多年的测试经验,下探头获取的样品信息虽然在10纳米细节观察上有所欠缺,但获取的信息更为充分。本着初始图像以信息量是否充分为主的原则,15mm工作距离选用下探头测试,常常被用做扫描电镜测试时的初始条件。以该条件下获取的形貌像为参考,依据样品的信息需求以及对上、下探头成像特性的正确认识,再做进一步调整。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " 二、背散射电子探头 /span /h1 p style=" text-align: justify text-indent: 2em " strong 2.1背散射电子的图像特性 /strong /p p style=" text-align: justify text-indent: 2em " 高能电子束受样品原子核及核外电子云的库仑势影响,发生弹性和非弹性散射后溢出样品表面,形成样品背散射电子。其特点是:能量大(与入射电子相当),产额受样品原子序数、密度以及晶体材料的晶体结构及晶粒取向影响较大,是形成样品Z衬度和晶粒取向衬度信息的主要信号源。 /p p style=" text-align: justify text-indent: 2em " 背散射电子按信号溢出角分为高角度和低角度两种类型。 /p p style=" text-align: justify text-indent: 2em " 高角度背散射电子的Z衬度更为明显,但整体产额很低,仅在束流较大的场发射扫描电镜上配置了接收该信息的探头。探头位于镜筒中物镜的正上方(或称T),适用样品并不多。扫描电镜日常采集的主要是低角度背散射电子。 /p p style=" text-align: justify text-indent: 2em " 高角度背散射电子相较于低角度背散射电子,Z衬度更为明显,但其产额较低。由于该信息最佳接收位置在样品正上方,探头、样品以及入射电子束在一条线上,故空间形貌较差。低角度背散射电子Z衬度略弱,但产额大,形貌像更好。 /p p style=" text-align: justify text-indent: 2em " 要充分接收低角度背散射电子信息,探头需要与样品形成一定角度。相对于高角度背散射电子,低角度背散射电子形成的图像空间感好,表面形态及细节信息较充分,但Z衬度略差,不如高角度背散射电子明显。以下是分别以二次电子和高、低角度背散射电子为主所形成的形貌像比较。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/cf857ded-2b46-4cfa-b30e-df25d2f6cbcb.jpg" title=" 17.png" alt=" 17.png" / /p p style=" text-align: center text-indent: 0em " strong style=" text-align: center text-indent: 0em " 碳复合金颗粒的二次电子、高角度背散射电子、低角度背散射电子对照 & nbsp & nbsp & nbsp /strong span style=" text-align: center text-indent: 0em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 2.2背散射电子探头的构造及工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 环形半导体背散射电子探头是最经典的背散射电子探头。该探头采用环状硅基材料做成,构造形式是半导体面垒肖特基结二极管或p-n结二极管,如下图: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c6983a61-7f15-42c3-849e-c0b3f78c0f4f.jpg" title=" 18.png" alt=" 18.png" / /p p style=" text-align: center text-indent: 0em " strong 图片节选自《微分析物理及其应用》 丁泽军 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp 背散射电子在硅基探测器中激发大量的电子-空穴对。同样加速电压下,电子-空穴对的产量和背散射电子强度形成一定的对应关系。并由此形成对应的电信号,经处理后在显示器形成样品的背散射电子图像(Z衬度像或晶粒取向衬度像)。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp 硅基材料形成电子-空穴对,需要信号激发源有一定的能量(肖特基结对5KV以下电子有大增益,P-N结对10KV电子才有大增益),能量较小的二次电子很难在该探头上产生信息,故探头形成的图像带有强烈的背散射电子图像特性。 /p p style=" text-align: justify text-indent: 2em " 为了获取低能量的背散射电子信息,背散射电子探头改用YAG晶体或在探头上做一层薄膜如FEI的CBS,这些改变都对探头获取低能量背散射电子有利,形成的图像细节更丰富。但探头灵敏了,干扰也会增多,Z衬度也会减弱。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/a6b2de85-8984-486a-8940-122ff5311cf1.jpg" title=" 19.png" alt=" 19.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 2.3各种探头接收背散射电子信息的结果对比 /span /strong /p p style=" text-align: justify text-indent: 2em " 传统硅基P- N结背散射电子探头对加速电压的要求高(10KV以上),它获取的背散射电子信息不易受低能量信息的干扰。Z衬度分明,荷电影响极小,但图像的细节呆板,表面细节信息缺失严重,较高倍时图像的清晰度差。 /p p style=" text-align: justify text-indent: 2em " 钨灯丝扫描电镜,电子枪本征亮度差,要获得高质量形貌像所需的电子束发射亮度,加速电压必须在10KV以上。P-N结背散射电子探头正好与其互相匹配,故被广泛使用。 /p p style=" text-align: justify text-indent: 2em " 场发射扫描电镜本征亮度大,低加速电压下进行高分辨形貌像测试是常态,P-N结背散射电子探头与其匹配度差。而CBS和YAG探头的功能和样品仓探头比起来Z衬度优势并不明显,二次电子的接收效果又不如,个人认为完全可以用样品仓探头来完美的替代背散射电子探头。 /p p style=" text-align: justify text-indent: 2em " 如前所述,二次电子探头也能接收大量背散射电子。它所获取的图像性质取决于到达探头的信息组成,如果背散射电子信息居多,它就偏向背散射电子的图像特征,二次电子居多就偏向二次电子图像特征。二次电子探头适合在不同加速电压(几百伏到30KV)下获取背散射电子图像。 /p p style=" text-align: justify text-indent: 2em " 低加速电压有利于取得是浅表层信息;高加速电压有利于取得较深层信息。探头的适用范围越广,测试条件的选择越充分,获取的样品信息越完整。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/de1afe4f-f593-4e4e-88d0-92b7ec8a573e.jpg" title=" 20.png" alt=" 20.png" / /p p style=" text-align: justify text-indent: 2em " 背散射探头通过电子-空穴对的转移来传递信息,运行速度较二次电子探头(光电转换)慢很多。在进行聚焦、像散、对中操作时,图像对操作的反应滞后严重,须在慢速下调整。整个操作麻烦,精确的高倍调整更为困难。 /p p style=" text-align: justify text-indent: 2em " 背散射电子探头往往置于样品与物镜之间,推进推出操作麻烦且易引发探头和样品间碰撞,对探头造成损伤。对该位置的占有,也会给后期分析设备安装带来麻烦。随着能谱仪、EBSD性能的突飞猛进,背散射电子探头对成分及结构组成分析的作用大大衰减,且成本不低,信息量少,使用率低。 /p p style=" text-align: justify text-indent: 2em " 个人观点:背散射探头连鸡肋都算不上,基本可以抛弃。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 探头是扫描电镜获取样品表面形貌信息的关键部件。其性能高低对形成样品高质量、高分辨的表面形貌像至关重要。 /p p style=" text-align: justify text-indent: 2em " 探头主要有两大类:二次电子探头、背散射电子探头。传统的观点认为:二次电子探头主要用来接收样品的二次电子信息,背散射电子探头接收的是背散射电子信息。 /p p style=" text-align: justify text-indent: 2em " 实践经验告诉我们这个观点并不正确。二次电子探头的图像性质取决于到达探头的信息组成。到达探头的信息以背散射电子信息为主则图像倾向背散射电子图像特性,二次电子信息为主则是二次电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " 高分辨场发射扫描电镜常规设计有两个二次电子探头,分别位于样品仓和镜筒内部。不同位置的探头获取样品表面形貌信息的组成差异很大。镜筒内探头获取的基本都是二次电子信息,样品仓探头则是以背散射电子为主的混合信息。 /p p style=" text-align: justify text-indent: 2em " 改变工作距离对探头获取样品信息的影响极大,工作距离越小越有利于上探头获取样品的二次电子信息,大工作距离有利于样品仓探头获取样品的混合信息。 /p p style=" text-align: justify text-indent: 2em " 工作距离对样品仓探头接收样品信息的影响并不是越大越好,而是有一个最佳工作位置。最佳工作位置设计的越合理,你获取的样品信息也就会越丰富。 /p p style=" text-align: justify text-indent: 2em " 传统的半导体背散射电子探头由于需要较大的激发能,故能量较弱的二次电子很难在探头上产生信号,该探头获取的背散射电子图像较为纯净。早期的硅基P-N结半导体背散射探头激发能要求较高(10KV)所以它形成的图像呆板,细节分辨差,表面信息少,但Z衬度强烈,不易受荷电影响。 /p p style=" text-align: justify text-indent: 2em " 高加速电压对充分获取样品表面信息不利,为了提高探头获取表面信息的能力,出现许多低电压背散射探头(CBS\YAG)。但个人认为:低电压背散射电子探头的成像效果不如样品仓探头来的细腻,设计合理的样品仓探头完全可以替代背散射探头的功能。 /p p style=" text-align: justify text-indent: 2em " 要掌握好仪器设备,对各功能部件的充分认识是基础。希望通过本文,能和大家一起对扫描电镜的信息接收系统有个重新认识。对探头以及工作距离的正确选择必定会为你带来更为丰富的样品信息。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月& nbsp span style=" text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 span style=" text-indent: 2em " & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 75px height: 115px " src=" https://img1.17img.cn/17img/images/202003/uepic/741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" title=" 扫描电镜的探头新解-林中清.jpg" alt=" 扫描电镜的探头新解-林中清.jpg" width=" 75" height=" 115" border=" 0" vspace=" 0" / 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) text-decoration: underline " strong /strong /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(下)——安徽大学林中清32载经验谈(10)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " strong 【作者按】 /strong 前文【 a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" strong span style=" font-family: 宋体, SimSun font-size: 16px color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上) /span /strong /a 】我们通过实例展示并探讨了:工作距离与探头的不同组合与样品表面形貌像的分辨力之间存在怎样的关系,列表对比了不同工作距离和探头组合的优缺点。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 本文将进一步以实例来展现并探讨,正确的工作距离和探头的选择,将会对扫描电镜的测试结果和状态的维持产生怎样的影响。给大家在进行扫描电镜测试工作时,对于工作距离及探头的选择,提供一定参考。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px " 一、工作距离和探头的选择与表面形貌像的形成 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如前面一再强调,形成扫描电镜表面形貌像的基础在于反映表面形貌高低差异的形貌衬度。形成形貌衬度的因素,取决于探头对样品信号的接收角度,而形成这个接收角度的主要因素,依据样品特性及信息需求的不同分为两个层面。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 第一个层面:低倍,观察的样品表面形貌起伏较大(大于20纳米)。要表达这类信息,需要相应的形貌衬度也较大。只有在探头、样品和电子束之间存在一定角度,所形成的形貌衬度才能充分展现这种位置上的差异。 strong 此时样品仓探头(L)将作为接收样品信息的主体 /strong 。不同的形貌衬度,要求这三者之间形成的最佳接收角不同,需要进行不停的调整。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 实际操作时,由于探头和电子束中轴位置是固定的,因此这个角度的改变就落实在样品位置的调整上。工作距离和样品台倾斜角的改变是进行这个角度大范围调整的唯二之法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 第二个层面:高倍,观察区域缩小,样品表面起伏减弱,形貌高低位置的差异也将削弱,样品电子信息的溢出角度所形成的形貌衬度足以呈现样品表面高分辨形貌特征。因观察的细节小,小于10纳米,信息扩散对这些细节的干扰将左右最终结果。用小工作距离、镜筒内探头来获取充分的二次电子信息是最佳方案,此时形成高分辨表面形貌像的关键点在于 strong 镜筒内探头(U)能否充分获取样品的低角度电子信息 /strong 。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 在扫描电镜的实际测试过程中,所要获取的样品表面形貌信息,绝大部分都落实在第一个层面中。因此充分利用样品仓探头来形成样品的表面形貌像,就应当成为日常测试工作的主要选择。以此为基础,依据样品所表现出的特性及所需获取的样品信息,来改变测试条件,将会使得测试工作真真做到有的放矢,获取的样品信息也更充分。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 十分可惜,由于认识上的偏差,对工作距离和探头的选择思路往往与此背道而驰。将小工作距离做为获取高分辨像的唯一途径,进而推广为常规测试条件,这容易形成样品信息不充分、假象多、压缩样品操作空间、增加镜筒污染和样品损伤几率的结果。这些事例都将在本文中给予充分的体现。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 要使表面形貌像含有充足的样品信息,关键是如何调控样品仓探头(L)和镜筒内探头(U)对样品信息的获取。而这个调控工作的关键点又在于工作距离的选择 /span /strong span style=" font-family: 宋体, SimSun font-size: 16px " 。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下面将以工作距离的改变为主轴,从表面形貌像的信息量、样品荷电的应对、磁性材料的观察这几个方面来探讨不同的工作距离和探头选择究竟能带来怎样的测试结果。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1& nbsp 工作距离的改变与表面形貌像的获取 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 利用扫描电镜对样品的表面形貌进行观察,其过程和我们对日常事物的观察并无不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 要充分观察一个物体,在这个物体与眼睛离开一定距离时,获取的信息最多。太远,无法分辨;太近,虽然看的细致,但往往只能观察到局部,获取的信息精细但贫乏。即所谓鼠目寸光,可明察秋毫,也容易以偏概全、以点代面。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 获取一个物体信息的过程都始于全貌观察。由整体到局部、远观到近考。近考是以远观为基础,而物体的大部分信息都是在一定距离下从各种不同角度去观察来获得。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 对于扫描电镜来说也是如此:探头如同人的眼睛,工作距离就如同物体所处的观察位置。大量的样品信息都应当在一个特定的工作距离上,从侧面(样品仓探头)和顶部(镜筒内探头)来获取。少量的细节信息( strong & lt 10nm /strong )需要靠近样品,用镜筒内探头,小工作距离来观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 这个特定的工作距离各电镜厂家都不相同,个人认为日立冷场扫描电镜是15mm。下面将从各种不同工作距离获取的信息对比开始,用实例来展示各种工作距离和探头组合的优劣,同时分享我在测试时对其选择的流程,供大家参考。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.1图像的清晰度和辨析度 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 清晰度:是指影像上各细部纹理及其边界的清晰程度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 辨析度:是指影像上各细部纹理及其边界的分辨程度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 瑞利判据:一个爱里斑中心与另一个爱里斑的第一级暗环重合时, 刚好能分辨出是两个像。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 依据瑞利判据,图像辨析度要求的是图像足够清晰而并不追求绝对清晰。在获取扫描电镜图像时常常发现,图像的高清晰并不一定带来高分辨。许多高清晰的图像其细节分辨并不好,而某些图像虽然清晰度较差,但并不影响对微小的细节信息进行分辨。辨析度高才能带来高分辨能力,这种情况在对不同放大倍率和采用不同测试条件获取的表面形貌像进行对比时会经常出现,前面有充分的实例给予展示。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 193px " src=" https://img1.17img.cn/17img/images/202007/uepic/74932b14-2635-4e9f-9673-707661babbbf.jpg" title=" 扫描电镜工作距离与探头的选择1.png" alt=" 扫描电镜工作距离与探头的选择1.png" width=" 395" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 186px " src=" https://img1.17img.cn/17img/images/202007/uepic/3d61fa9f-335d-4a6c-bbbf-6fdb80bff7c4.jpg" title=" 扫描电镜工作距离与探头的选择2.png" alt=" 扫描电镜工作距离与探头的选择2.png" width=" 395" height=" 186" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 关于扫描电镜图像的清晰度与辨析度,以后还有专文探讨。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.2样品仓探头的最佳工作距离 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 各电镜厂家的样品仓探头位置设计不同,因此它们的最佳工作距离也不相同,日立冷场电镜在15mm。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如上篇的实例所示:样品仓探头在工作距离小于8mm时接收到的样品信息较少,小于4mm基本接收不到样品信息。大于8mm接收到的样品信息逐渐增多,15mm达到最佳的成像效果,大于15mm接收效果及图像立体感缓慢减弱。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 236px " src=" https://img1.17img.cn/17img/images/202007/uepic/b4abd10c-402d-4db3-825b-afe30e288b80.jpg" title=" 扫描电镜工作距离与探头的选择3.png" alt=" 扫描电镜工作距离与探头的选择3.png" width=" 395" height=" 236" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 依据样品仓探头对样品信息的接收效果,可将工作距离大于8mm称“大工作距离”,小于4mm称为“小工作距离”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 小工作距离下,对样品信息的接收局限在镜筒内探头,接收到的样品信息较为单调。虽有利于在高倍时呈现小于10nm的样品细节信息,但不利于全面获取样品的表面信息。故将样品至于样品仓探头的最佳工作距离就十分必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头位置设计的越合理,利用探头组合来改变表面形貌像中SE2:BSE的比值和信息接收角度的范围就越大,同时样品的可操控范围也越大。这将使得图像中的各种衬度信息更能得到充分的展现,形貌像的信息内容也越多。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下面将从图像的分辨能力、信息量、倍率变化范围以及样品操控等几个方面来对比大、小工作距离测试的优劣。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " A)大工作距离与图像细节的分辨能力 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 对于图像细节分辨力,目前在认识上存在一种简单的单调思维方式。所谓简单的单调思维方式就是用部分代替整体。如某测试条件在高倍时对极细小的细节拥有非常好的测试效果,就想当然的认为在低倍时也会拥有非常好的测试结果。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 实际情况往往并非如此,高倍有好的细节分辨力,不代表这个测试条件就一定能在低倍获得良好的结果。这在上篇有充分的展示,本文将再以一个实例来介入该问题的探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 二氧化硅介孔样品。选择小工作距离、镜筒探头这组测试条件有利于对孔道信息的展现。但是否在低倍观察二氧化硅颗粒的整体信息时,也有同样的表现?请看以下这一组图片: /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 546px " src=" https://img1.17img.cn/17img/images/202007/uepic/6242e319-3fc5-4cfa-9265-f8cab4995494.jpg" title=" 扫描电镜工作距离与探头的选择4.png" alt=" 扫描电镜工作距离与探头的选择4.png" width=" 395" height=" 546" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 上述实例可以看到,图像分辨力的主要影响因素是动态变化的。随着样品特性以及信息需求的变化,形成形貌像的主导因素也会发生改变。因此测试条件也应随之变更,否则将无法获得充分的样品信息和图像的高分辨力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 不少样品表面形貌细节的高分辨观察并不需要用小工作距离来进行。在大工作距离下就可以获取非常优异的高分辨像,且高分辨像的空间伸展更加充分。如下图:& nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 395px height: 264px " src=" https://img1.17img.cn/17img/images/202007/uepic/6a4a204e-120c-43f4-83ce-37a47487776c.jpg" title=" 扫描电镜工作距离与探头的选择5.png" alt=" 扫描电镜工作距离与探头的选择5.png" width=" 395" height=" 264" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun text-align: justify text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 仪器性能优异,即便是介孔样品的介孔信息,在大工作距离下采用镜筒内探头或混合探头,该信息也并非无法观察。但因上探头的接收效果变差,图像整体清晰度及信号量有所减弱,但介孔却可被明确分辨,且能保证一定的图像质量。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 539px " src=" https://img1.17img.cn/17img/images/202007/uepic/17ae15f9-81ab-4e92-8e5c-5b4df1f6d027.jpg" title=" 扫描电镜工作距离与探头的选择6_看图王.png" alt=" 扫描电镜工作距离与探头的选择6_看图王.png" width=" 395" height=" 539" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " B)大工作距离获取的图像,空间信息更充分 /span /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 301px " src=" https://img1.17img.cn/17img/images/202007/uepic/bc5317f4-233a-496d-95ba-0fb5e2424ad9.jpg" title=" 扫描电镜工作距离与探头的选择7.png" alt=" 扫描电镜工作距离与探头的选择7.png" width=" 395" height=" 301" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 高分子膜和二氧化硅小球,左图采用大工作距离,下探头从侧向接收样品信息,图像的形貌衬度充分,空间立体感强烈,信息更丰富。右图小工作距离,只能是镜筒内探头从顶部接收样品信息,形貌衬度薄弱。图像如同被压扁,空间信息贫乏,整体分辨力不足。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " C)大工作距离有较大的倍率变化空间 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 采用大工作距离测试,获得图像的倍率变化空间大。有利于在原位从低倍到高倍进行倍率的大范围改变,获取样品的信息更全面,形成的样品信息系统性更为优异。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 336px " src=" https://img1.17img.cn/17img/images/202007/uepic/2a84df37-7a41-498a-af58-38005c84c34c.jpg" title=" 扫描电镜工作距离与探头的选择8.png" alt=" 扫描电镜工作距离与探头的选择8.png" width=" 395" height=" 336" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 小工作距离的起始倍率较高,对低倍获取样品的全貌有所限制,特别是应对那些体积较大的样品。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " D)大工作距离有利于样品做大范围移动 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 工作距离越大样品的可移动范围也越大,越有利于我们从多个侧面来对样品进行观察。特别是对空间差异较小的样品,大角度的倾斜,可改变探头获取样品信息的角度,将有利于充分展现样品的空间形态,减少误判。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 212px " src=" https://img1.17img.cn/17img/images/202007/uepic/6b060682-9fe3-4a92-bcd3-caad054258a4.jpg" title=" 扫描电镜工作距离与探头的选择9.png" alt=" 扫描电镜工作距离与探头的选择9.png" width=" 395" height=" 212" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 以上多个实例,充分展示大工作距离测试所带来的强大优势,下面将对大工作距离、样品仓探头组合做重点探究。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.3大工作距离、样品仓探头组合的测试优势 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头在大工作距离测试时,如同从侧上方观察样品,获取的样品表面形貌衬度要远大于从样品顶部采用镜筒内探头所获取的结果。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 形成表面形貌像的优点:空间信息丰富,立体感强,样品信息更充分,可减少假象的形成,低倍时图像的分辨能力强,Z衬度更优异,受荷电影响极小。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/0adc0222-c481-4f28-b16b-2c48174c697e.jpg" title=" 扫描电镜工作距离与探头的选择10.png" alt=" 扫描电镜工作距离与探头的选择10.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/f57a85d1-c7fd-4ee6-9c89-080d03abda74.jpg" title=" 扫描电镜工作距离与探头的选择11.png" alt=" 扫描电镜工作距离与探头的选择11.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头(下探头)获取的图像形态对工作距离、样品倾斜角度、加速电压的改变都比较敏感,这为充分获取样品信息提供足够的保障,可以多维度展现样品的形貌特征。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " A)工作距离的改变对下、上探头接收样品信息的影响 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/90c24635-fbff-4738-8b75-e7266d0ce577.jpg" title=" 扫描电镜工作距离与探头的选择12.png" alt=" 扫描电镜工作距离与探头的选择12.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a76b631c-75f0-4fe5-8b91-d4cb2b251d97.jpg" title=" 扫描电镜工作距离与探头的选择13.png" alt=" 扫描电镜工作距离与探头的选择13.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " B)样品倾斜对下、上探头接收样品信息的影响 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/7a00753c-32a0-4541-9a54-31ebcb1df725.jpg" title=" 扫描电镜工作距离与探头的选择14.png" alt=" 扫描电镜工作距离与探头的选择14.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/041513de-536d-41ce-9892-254c4612bbe9.jpg" title=" 扫描电镜工作距离与探头的选择15.png" alt=" 扫描电镜工作距离与探头的选择15.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/85154b75-b112-4a41-b918-0adf46978691.jpg" title=" 扫描电镜工作距离与探头的选择16.png" alt=" 扫描电镜工作距离与探头的选择16.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " C)加速电压的变化对上、下探头接收样品信息的影响 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2c486494-f5cf-49e0-8105-9654120bd323.jpg" title=" 扫描电镜工作距离与探头的选择17.png" alt=" 扫描电镜工作距离与探头的选择17.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.4& nbsp 大工作距离、样品仓探头组合的测试劣势 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下探头位于样品侧上方,直接面对的是低角度电子信息。低角度位置上分布的主要是背散射电子,故以下探头为主形成的表面形貌像,容易受背散射电子在样品中扩散的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 结果是:高倍图像的清晰度不足,十纳米以下的细节容易被掩盖,随着镜筒内探头被添加进来,此现象所改善。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头对以二次电子为主导的电位衬度及二次电子衬度信息的展现较差。具体实例如下: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/23d449e2-83bf-48f6-83fe-1848a196b968.jpg" title=" 扫描电镜工作距离与探头的选择18.png" alt=" 扫描电镜工作距离与探头的选择18.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/45799b39-6caa-4e64-afc4-ad88cad42370.jpg" title=" 扫描电镜工作距离与探头的选择19.png" alt=" 扫描电镜工作距离与探头的选择19.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.5大工作距离测试有利于材料的缺陷分析 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 通过对以上大工作距离下各种探头组合的优、缺点展示可见:无论哪种组合都有局限,很难用一种条件包打天下。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 大工作距离条件下,可轻松切换上、下探头,对比不同探头获取的不同样品讯息,可得到单一探头组合所无法展现的异常现像,这将有利于对材料进行缺陷分析。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如:在大工作距离条件下,切换上、下探头,获取样品表面的电位衬度不同。通过对比因不同的电位衬度所展现的图像形态差异,可以得到样品表面局部被污染或氧化的信息。下面是两个我遇到的非常成功案列。 /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun font-size: 16px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/d203ac91-933a-4634-bc34-aba2b70f6678.jpg" title=" 扫描电镜工作距离与探头的选择20.png" alt=" 扫描电镜工作距离与探头的选择20.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.2工作距离和探头的选择与样品荷电的应对 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品荷电现象指的是:样品中由于电荷累积形成荷电场,该荷电场对样品表面信息的正常溢出产生影响,在形貌像上叠加形成异常亮、异常暗或细节磨平的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " & nbsp & nbsp 不同能量的电子信息受到荷电场的影响程度也会不一样。能量弱小的二次电子极容易被荷电场所影响,使得由其为主形成的表面形貌像上,荷电现象显得较为严重。如果减少二次电子的含量,表面形貌像上的荷电现象将会减轻。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 采用混合探头进行测试时,加大工作距离可减少形貌像中二次电子信息的含量,有效改善荷电的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/98dc7be3-89b7-4746-b791-20c77add4ded.jpg" title=" 扫描电镜工作距离与探头的选择21.png" alt=" 扫描电镜工作距离与探头的选择21.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下探头接收的主要是背散射电子。应对样品荷电,大工作距离下单选下探头常常是一个极其有效的方法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ee2e6d7a-1c62-4111-8aa3-a7b13975e33b.jpg" title=" 扫描电镜工作距离与探头的选择22.png" alt=" 扫描电镜工作距离与探头的选择22.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品的荷电现象及应对方式,后面将有专文加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.3磁性样品的观察 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 物质的磁性来自核外轨道电子自旋。因此严格来说,所有物质都带有一定磁性,都可被称为:磁性材料。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 原子核外都是成对电子,电子之间的磁矩相互抵消,所以无论物质进不进入磁场都对外不显露磁性,称“反磁性”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 原子核外有不成对电子,不成对电子在热扰动影响下杂乱排列,形成原子或分子间磁矩相互抵消。进入磁场后,不成对电子受磁场作用克服热扰动的影响,按磁场方向有序排列,对外表现出磁性。取消外加磁场,不成对电子在热扰动影响下又进入杂乱排列状态,显现的磁性消失,这就是“顺磁性”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 将不成对电子换成“磁畴”,所谓“磁畴”指的是多个同方向电子的集合,这类物质进入磁场后表现出的磁性非常强。外加磁场达到一定值,撤除磁场,热扰动无法使磁畴恢复无序状态,形成极强的磁滞现象。这就是“铁磁性”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 高分辨扫描电镜为了使镜筒内探头获取更多的样品表面电子信息,物镜磁场对样品仓做一定量的泄露,称“半内透镜物镜”设计。这种类型的物镜,当具有“顺磁”或“铁磁”等性质的样品靠近时,会被物镜的漏磁磁化并吸入物镜,污染镜筒并干扰磁透镜的磁场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 采用大工作距离观察,在样品远离物镜达到一定值以后,这种影响将会减弱直至消失,镜筒也很难被其污染。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 顺磁及铁磁性物质的表面细节都比较粗大,用样品仓探头在大工作距离条件下获取的表面信息往往更优异也更充分。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如果扫描电镜在大工作距离上有强大的成像能力,可轻松获取高质量的几十万倍高分辨形貌像,则对这些材料的表面形貌测试将不会受到任何限制。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 关于物质的磁性及磁性物质的区分,以及在扫描电镜测试时该如何应对,这些都将在下一篇经验谈中有详细探讨。 /span /p p style=" text-align:center" strong span style=" font-family: 宋体, SimSun font-size: 16px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/de374333-8a9e-44df-a56b-15ef53770d09.jpg" title=" 扫描电镜工作距离与探头的选择23.png" alt=" 扫描电镜工作距离与探头的选择23.png" / /span /strong /p p style=" text-align:center" strong span style=" font-family: 宋体, SimSun font-size: 16px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/257f0ab6-4546-4706-a3b8-b2ce7ba015a4.jpg" title=" 扫描电镜工作距离与探头的选择24.png" alt=" 扫描电镜工作距离与探头的选择24.png" / /span /strong /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) " 二、大、小工作距离对样品热损伤的影响 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 大工作距离,电子束的离散度较大,会使得电子束能量也发生较大程度的离散,对样品的热损伤也会减少。应对容易被热损伤的样品,采用大工作距离测试也是重要方式之一。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6d474a4f-8cd6-424b-bc86-8378e70bd334.jpg" title=" 扫描电镜工作距离与探头的选择25.png" alt=" 扫描电镜工作距离与探头的选择25.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) " 三、大工作距离与仪器状态的维持 /span /h1 p br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 没有好的仪器状态,仪器调整的再优异都无济于事。要保持良好的仪器状态,维持样品仓、镜筒环境的真空是基础。由于清洁镜筒极为困难,故对其环境的维持也最为关键。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 镜筒污染除了物质的磁性质,还来自以下两个方面: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 1. 样品中含有的各种挥发物。因此扫描电镜测试对样品的要求是:样品尺寸尽可能的小,固定样品所用的胶体尽可能少,样品表面尽可能地处理干净、干燥。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 2. 电子束从样品表面轰击出来的各种极性或非极性物质,这类物质在镜筒表面的吸附性超强。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 减少镜筒污染,控制样品是一方面,更关键的是将样品远离物镜。样品靠镜筒越近,进入镜筒的污染物会成倍增加,更不用说那些所谓的磁性物质。无论那种类型物镜,长期在小工作距离下测试,仪器状态都无法得到保证。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 本人的S-4800使用十几年了,测试量很饱满,长期坚持大工作距离测试,同时对样品严格控制,因此从09年仪器安装至今,灯丝未更换、仪器也从未做过专门的大保养,但却一直都能保持极佳的工作状态。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下面以一组拍摄于2019年,用各种低电压、大工作距等较差的测试条件,拍摄的碳球高分辨图像来结束本章节。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/36ce59dc-a082-44a5-88fa-d060a32c294f.jpg" title=" 扫描电镜工作距离与探头的选择26.png" alt=" 扫描电镜工作距离与探头的选择26.png" / /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/844c4116-35ce-491a-8fab-009e54f4e3d4.jpg" title=" 扫描电镜工作距离与探头的选择27.png" alt=" 扫描电镜工作距离与探头的选择27.png" / /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/b8494443-4a3c-451c-bbbf-da813c4e2337.jpg" title=" 扫描电镜工作距离与探头的选择28.png" alt=" 扫描电镜工作距离与探头的选择28.png" / /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e4c326c7-d26c-464f-b986-51f56c1082f7.jpg" title=" 扫描电镜工作距离与探头的选择29.png" alt=" 扫描电镜工作距离与探头的选择29.png" / /strong /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun font-size: 16px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) " 四、结束语 /span /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头和镜筒内探头是从不同角度来获取样品信息。它们获取样品信息的侧重点不同,所适合应对的样品及展现的样品信息特征也不一样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 镜筒内探头获取的样品信息以二次电子为主,对尺寸小于20nm的样品细节影响小,故图像清晰度高,二次电子衬度及边缘效应充分,电位衬度明显。但由于是从顶部通过物镜来获取样品信息,形貌衬度不足,使得其对于较粗大的样品细节(20nm以上)信息获取效果不佳,荷电应对能力差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头获取的样品信息是背散射电子和二次电子的混合信息,背散射电子为主导。由于背散射电子的影响,高倍图像清晰度不足,对20nm以下的样品细节分辨影响较大,几纳米的样品细节几乎无法分辨。但该探头从样品的侧上方获取样品信息,形貌衬度及Z衬度充足。对低倍下观察表面起伏较大的细节信息(大于20nm)有极其明显的优势。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 改变工作距离的主要目地就是为了调控样品仓探头和镜筒内探头对样品表面信息的接收,形成最佳的效果。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 工作距离越小,越有利于镜筒内探头对样品信息的获取。过小的工作距离,样品仓探头接收不到样品信息,整个表面形貌像的特征都由镜筒内探头来决定。有利于展现10纳米以下的细节,但低倍时图像效果差,信息类型较为单一。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 大工作距离有利于样品仓探头对样品表面信息的接收,同时也能兼顾镜筒内探头接收样品信息。两个探头信息的合理组合,将使获取的形貌像内容更加充实。各种衬度信息的组合越合理,获取的样品信息越丰富,形貌分析的手段更多样,形成的表面形貌假象也越少。大工作距离测试的缺点是镜筒探头接收效果不佳,10纳米以下细节质量退化较严重。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 加大工作距离会使得电子束的离散度增加,从而降低样品热损伤的程度。但对图像清晰度有影响,超过一定值(过度)也会影响到图像细节分辨。该影响也会遵循适度性的原则,不同样品、不同的形貌细节,影响程度不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 在工作距离与探头的选择中,工作距离的选择是基础。只有工作距离合适了,探头的作用才能发挥出来。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 扫描电镜的每次测试都会有一个初始工作距离的选择,个人认为这个值应满足以下条件:1. 样品信息尽可能丰富,能为后续调整指明方向;2. 样品的操作空间尽可能大,使得样品能够充分移动;3. 图像的信息尽可能多,使得后续调整更容易;4. 尽可能兼顾样品分析;5. 离物镜尽可能远,保护镜筒,远离样品磁性及污染物的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 对日立的冷场扫描电镜来说这个工作距离应该是15mm。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 加速电压、束流、工作距离、探头这四个测试条件的正确选择是获取高质量扫描电镜测试结果的基础。在工作距离和探头的选择上,目前存在的曲解极其严重,不利于充分获取样品信息。希望本文能给大家提供一个全新的视野。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 参考书籍: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《微分析物理及其应用》 丁泽军等 2009年1月& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《自然辩证法》 恩格斯 于光远等译 1984年10月& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《显微传》 章效峰 2015年10月& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 日立S-4800冷场发射扫描电镜操作基础和应用介绍& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 北京天美高新科学仪器有限公司& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 85px height: 131px " src=" https://img1.17img.cn/17img/images/202007/uepic/4d9b5e9c-3ce3-4651-9e2d-ceb0eb6b94de.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 85" height=" 131" border=" 0" vspace=" 0" / 作者简介: /span /strong span style=" font-family: 宋体, SimSun text-indent: 2em " 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp /span strong span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun text-indent: 2em " 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " 易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /a /span /strong /span /p

比勒取样探头相关的方案

  • 质构仪有哪些探头
    质构仪常规探头: 1.柱形探头可以有不同材质如不锈钢、树脂、铝合金等等,尺寸由2mm-100mm,可测弹性、硬度、延展性、回复性和坚实性等参数; 2. 针形探头可测量样品表皮硬度、穿刺强度等参数 3. 锥形探头可测量样品硬度、稠度等流变特性 4. 球形探头可测量薯片酥脆性、肉类弹性。。根据测试需求、样品不同等不同因素,又有许多特殊多功能探头,如轻型切刀、面团拉伸、精细刀具、检测钳口等等
  • PH计如何选择合适的探头?酸度计如何选择合适的电极?
    PH如何使用大家都知道,接上电源线,接上电极(探头)线,再将电极(探头)放入溶液中就可以了,但是,往往有很多人发现测量的数据和实际的数据有出入,就是仪表不准确的问题,而出现仪表不准确的问题往往和我们电极(探头)的选用有很大的关系,目前市场上的PH电极(探头)有上百种型号,而这些型号都是根据不同的工况条件而专门研制出来的,我们现实的工况条件也有很多种,如:污水、纯水、高纯水......,面对这么多的电极(探头)型号和这么复杂的工况条件,如何选择正确的电极(探头)是决定仪表测量是否准确的关键,此方案综合了各类工况和各种电极(探头)型号,方便大家在选择PH电极(探头)时,能够做到尽可能的准确。
  • 基于光纤耦合显微探头的光致发光/拉曼测量方案
    光致发光和拉曼光谱是材料研究的重要技术手段,但样品可能具有多种形状和大小,或不易移动。采用光纤耦合、能够适合特殊样品的光学探头进行探测显得尤为重要。由Superhead光纤耦合的探头、iHR光谱仪及CCD探测器组成的模块化光致发光、拉曼测量系统,可进行在线、远程的光致发光和拉曼分析测量,大大拓展了测量系统的灵活性。

比勒取样探头相关的资料

比勒取样探头相关的试剂

比勒取样探头相关的论坛

  • 基于近红外光谱技术废液COD在线取样探头

    【题名】:基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术废液COD在线取样探头【期刊】:【年、卷、期、起止页码】:【全文链接】:https://t.cnki.net/kcms/detail?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0wzqlbSih4xtm_4ubDWzyvYLQGAwB5QSMlqbwhlcsJYoOQUAd2h1apz8V1LEq2eX_&uniplatform=NZKPT

  • 【求助】REF探头和BSE探头问题

    我们用的设备是JEOL,JSM-IT100。但是背散射探头坏了,现在客户反应我们的二次电子探头拍不出第三方(BSE)的效果- -。实际就是PC塑胶件表面的空洞,二次电子由于边缘放电效应导致边缘发光。客户反应BSE探头立体感更强(实际上SE探头更强...但是毕竟客户投诉)需要我们更换。我们想知道JEOL的REF探头(二次电子探头探测背散射电子)能否代替BSE探头?此时图像的明暗是导电性的强弱还是原子的相对原子质量大小影响?dalao们有REF的介绍吗?最好是和BSE的对比,感谢!

  • pH计探头更换----你们用的啥?

    最近pH 计反应有点慢,斜率有点低,果断换了一根pH计探头。新的探头果然不一样,反应迅速,斜率正常。长江后浪推前浪,一代新头压旧头。一直使用的是梅特勒的FE20K,个人感觉还蛮好用的。大家实验室都使用的是什么类型的pH计及探头?

比勒取样探头相关的耗材

  • 842312051491 赛默飞光谱配件 毛细管取样探头
    842312051491Sampling Probe to Capillary Sleeving毛细管取样探头842312051501Sampling Probe取样探头842312051551Internal Standards Kit内标套装842312051591Duo -Radial Plasma View periscope window垂直等离子观测窗942339397003Chiller (115V 60Hz)制冷机842318051001Cetac U-5000AT USN 220/240Volts超声波雾化器942347004002Cetac ASX-260 Autosampler自动取样器842347003961Tray for Cetac ASX-260 Autosampler自动进样器托盘942347003901CETAC Rack 21 Position21位样品架942347004151CETAC 50ml Poly Standard Rack Tubes(500)50mL架装样品管942347003911CETAC Rack 24 Position24位样品架942347004111CETAC 30ml Poly Tubes (500) for Rack 2430mL样品管942347003921CETAC Rack 40 Position40位样品架942347004161CETAC 20ML POLYTUBES (500) FOR RACK 4020mL样品管942347003931CETAC Rack 60 Position60位样品架942347004131CETAC 14ml Poly Tubes (1000) for Rack 6014mL样品管942347003941CETAC Rack 90 Position90位样品架942347004141CETAC 8ml Poly Tubes (1000) for Rack 908mL样品管842318050001Basic Vapour System简易氢化物系统842318050101Enhanced Vapour System氢化物增强系统842312051611Replacement Plumbing Kit Enhanced Vapour氢化物增强替换泵组件
  • 842312051501 赛默飞光谱配件 取样探头
    842312051501Sampling Probe取样探头842312051551Internal Standards Kit内标套装842312051591Duo -Radial Plasma View periscope window垂直等离子观测窗942339397003Chiller (115V 60Hz)制冷机842318051001Cetac U-5000AT USN 220/240Volts超声波雾化器942347004002Cetac ASX-260 Autosampler自动取样器842347003961Tray for Cetac ASX-260 Autosampler自动进样器托盘942347003901CETAC Rack 21 Position21位样品架942347004151CETAC 50ml Poly Standard Rack Tubes(500)50mL架装样品管942347003911CETAC Rack 24 Position24位样品架942347004111CETAC 30ml Poly Tubes (500) for Rack 2430mL样品管942347003921CETAC Rack 40 Position40位样品架942347004161CETAC 20ML POLYTUBES (500) FOR RACK 4020mL样品管942347003931CETAC Rack 60 Position60位样品架942347004131CETAC 14ml Poly Tubes (1000) for Rack 6014mL样品管942347003941CETAC Rack 90 Position90位样品架942347004141CETAC 8ml Poly Tubes (1000) for Rack 908mL样品管842318050001Basic Vapour System简易氢化物系统842318050101Enhanced Vapour System氢化物增强系统842312051611Replacement Plumbing Kit Enhanced Vapour氢化物增强替换泵组件842313050001iCAP Software UpgradeICP软件更新组件
  • 光纤探头
    光纤探头和耦合器订货信息:光纤探头说明组件包组成部件号荧光液体光纤探头组件包括两个具有黑色石英基座的不锈钢液体探头,其角度使背散射最小化。10 和 20 毫米的光程9910104500荧光固体光纤探头组件包括不锈钢固体样品探头,该探头以 30 度角入射方式最大程度减小了背散射光激发的影响7910043200
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制