当前位置: 仪器信息网 > 行业主题 > >

波前测试系统

仪器信息网波前测试系统专题为您提供2024年最新波前测试系统价格报价、厂家品牌的相关信息, 包括波前测试系统参数、型号等,不管是国产,还是进口品牌的波前测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波前测试系统相关的耗材配件、试剂标物,还有波前测试系统相关的最新资讯、资料,以及波前测试系统相关的解决方案。

波前测试系统相关的资讯

  • 波前检测技术和晶体加工技术取得重要进展
    日前,中科院高能所多学科中心光学团队基于北京同步辐射装置BSRF和晶体实验室实现了衍射极限水平的波前检测和晶体加工技术。高能同步辐射光源HEPS光束线建设的又一项关键技术取得了突破性进展。大块硅单晶体是硬X射线单色器及谱仪的核心光学元件,而晶体的表面形貌起伏、加工破坏层和晶格应力等诸多因素都会对X射线波前产生严重影响,从而破坏相干性和衍射极限聚焦。对于前几代同步光源,由于光束相干尺寸小,即使是高相干要求的纳米探针或者相干散射束线,也只要求晶体能够挑选出较小的局部范围保持波前即可。而作为衍射极限水平的第四代同步辐射光源,HEPS的相干尺寸较三代光源高出约2个量级,要求全光束范围里获得完美波前,这对晶体的加工能力提出了严峻的挑战,是国际上第四代光源共同面临的技术挑战之一。该团队在X射线晶体实验室已开发的晶体加工工序基础上,通过引入一种新的柔性化学机械抛光方法,实现了全光束口径近厘米范围内超高精度波前保持的晶体加工。同时,该团队还创新性地提出了双刃波前检测的方法,解决了相干性不足、稳定性不足以及入射波前畸变几项关键问题,在第一代同步辐射光源上实现了衍射极限水平的波前检测,为波前保持的晶体加工工艺探索提供了高精度检测手段。2022年7月BSRF专用光期间,该团队在1B3B测试束线上,验证了自研双刃波前检测装置的性能,并利用该装置以日本进口国际前沿水平的“晶格无扰乱”晶体作为参照样品,开展了自研晶体和参照晶体的波前检测对比实验。结果显示,在晶体上50μm横向空间分辨率下,该装置的单次扫描斜率检测精度达到25~50 nrad RMS,波前高度检测精度高达1.5pm RMS;自研晶体波前精度达到60~100 nrad RMS,与参照样品(70~100 nrad RMS)基本处于同一水平,满足HEPS光束线指标要求。团队成员承担PAPS光学系统、HEPS测试束线和光学设计系统等多个项目任务。接下来,团队还将进一步优化实验条件,提升波前检测能力,完善晶体加工工艺。图1 晶体双刃波前检测实验图2双刃法单次扫描波前检测误差25.8nrad 1.5 pm RMS图3 自研柔性化学机械抛光晶体,波前精度61.7nrad 6.0pm RMS图4 日本进口“晶格无扰乱”晶体,波前精度73.2nrad 7.8pm RMS图5 团队现场合影
  • 波前检测技术和晶体加工技术取得重要进展
    日前,中科院高能所多学科中心光学团队基于北京同步辐射装置BSRF和晶体实验室实现了衍射极限水平的波前检测和晶体加工技术。高能同步辐射光源HEPS光束线建设的又一项关键技术取得了突破性进展。大块硅单晶体是硬X射线单色器及谱仪的核心光学元件,而晶体的表面形貌起伏、加工破坏层和晶格应力等诸多因素都会对X射线波前产生严重影响,从而破坏相干性和衍射极限聚焦。对于前几代同步光源,由于光束相干尺寸小,即使是高相干要求的纳米探针或者相干散射束线,也只要求晶体能够挑选出较小的局部范围保持波前即可。而作为衍射极限水平的第四代同步辐射光源,HEPS的相干尺寸较三代光源高出约2个量级,要求全光束范围里获得完美波前,这对晶体的加工能力提出了严峻的挑战,是国际上第四代光源共同面临的技术挑战之一。该团队在X射线晶体实验室已开发的晶体加工工序基础上,通过引入一种新的柔性化学机械抛光方法,实现了全光束口径近厘米范围内超高精度波前保持的晶体加工。同时,该团队还创新性地提出了双刃波前检测的方法,解决了相干性不足、稳定性不足以及入射波前畸变几项关键问题,在第一代同步辐射光源上实现了衍射极限水平的波前检测,为波前保持的晶体加工工艺探索提供了高精度检测手段。2022年7月BSRF专用光期间,该团队在1B3B测试束线上,验证了自研双刃波前检测装置的性能,并利用该装置以日本进口国际前沿水平的“晶格无扰乱”晶体作为参照样品,开展了自研晶体和参照晶体的波前检测对比实验。结果显示,在晶体上50μm横向空间分辨率下,该装置的单次扫描斜率检测精度达到25~50 nrad RMS,波前高度检测精度高达1.5pm RMS;自研晶体波前精度达到60~100 nrad RMS,与参照样品(70~100 nrad RMS)基本处于同一水平,满足HEPS光束线指标要求。团队成员承担PAPS光学系统、HEPS测试束线和光学设计系统等多个项目任务。接下来,团队还将进一步优化实验条件,提升波前检测能力,完善晶体加工工艺。图1 晶体双刃波前检测实验图2双刃法单次扫描波前检测误差25.8nrad 1.5 pm RMS图3 自研柔性化学机械抛光晶体,波前精度61.7nrad 6.0pm RMS图4 日本进口“晶格无扰乱”晶体,波前精度73.2nrad 7.8pm RMS图5 团队现场合影
  • 谁来挑战我,一款您不可错过的波前传感器
    〖导读〗目前,国际通用的波前传感器主要是四波横向剪切干涉类型的波前传感器,这款波前传感器采用的是国际名企--法国Phasics的专利技术,并在实际应用中得到广大科研工作者的一致认可! 四波横向剪切干涉类型的波前传感器采用的是法国Phasics对传统的夏克-哈特曼波前传感器的改进的专利技术: 四波横向剪切干涉和夏克-哈特曼技术的区别:PHASICS:SID4SH区别技术四波横向剪切干涉夏克-哈特曼是对夏克-哈特曼技术的改进,PHASICS全球售出超过300个探测器。强度采用傅里叶变换方法,测量对强度变化不敏感由于需要测量焦点位置,测量对强度变化灵敏关于测量精度,波前测量不依赖于强度水平。使用方便界面直观,利用针孔进行对准安装困难,需要精密的调节台SID4 产品使用方便。取样SID4-HR达300x400测量点64x6测量点(微透镜数量)SID4-HR具有很高的分辨率。这使得测量更可靠,也更稳定。数值孔径 NA:0.5NA:0.1SID4-HR动态范围更高。空间分辨率29.6μm115μmSID4-HR具有更好的空间分辨率。重复性2nm RMSλ/200( 5nm @1053 nm)更好的重复率,更稳定。获取频率10fps7.5fps分析速度快照明SID4的技术可以消色差。系统对不同波长和带宽响应一致。无需对每个波长进行校准。夏克-哈特曼技术基于微透镜,其特性依赖于波长(由于玻璃色散)。仪器需要对每个波长校正。PHASICS更灵活:可以测试宽波段,而不需要额外校准。Phasics波前传感器与传统哈特曼波前传感器测量结果对比: Phasics公司波前传感器具有高分辨率、消色差测量 、高动态范围 、高灵敏度、设计简洁紧凑、高性价比、测量可重复性高等优良特性 ,可广泛应用于光传输变换中波前特性分析中。谁来挑战我,法国Phasics公司的波前传感器,一款您不可错过的波前传感器:为了能让广大科研工作者更加直观的了解法国Phasics公司的波前传感器,我们瞬渺团队将出席4月14-16日在南京展览中心举办的---2017年中国(南京)国际教育装备暨科教技术展览会。届时,将展出该款波前传感器,瞬渺团队的技术工程师和销售精英亲临现场,为广大科研工作者全面解析法国Phasics公司的波前传感器!瞬渺团队对于瞬渺人来说,客户的支持是对我们团队最大的认可,面对日益激烈的国内市场,瞬渺将一直秉持客户为先的团队理念,为广大科研工作者带来专业的技术和售后支持!2017年4月14-16日,瞬渺团队将亲临南京-展览中心381展位(靠近交流会一区),届时,欢迎您前来咨询!
  • 上海屹尧摸索出应对消费品安全改进法案的微波前处理方案
    近期中国玩具业大规模召回事件屡次发生,据悉,2007年美国CPSC共召回88起,数量约1800 万件的我国产含铅超标产品,2008年8月14日签署了《2008消费品安全改进法案》(H.R. 4040),其中明确规定了儿童产品中铅和邻苯二甲酸酯的含量要求,这一方案的实施成为玩具出口新壁垒,中国玩具业应如何面对?答案毫无疑问关键是加强自身产品的检测力度,建立良好的内部监控系统,实现简便、快速、精确的定量分析铅与邻苯二甲酸酯具有非常重要的实际意义。 基于此,我们公司协同合作实验室和部分客户对玩具类产品中铅和邻苯二甲酸酯进行了微波前处理和后续分析检测的研究。用微波消解处理玩具类样品用于铅的测定,根据样品的性质我们实验了HCl、 HNO3、 HF、H2O2 等多种酸消解体系考察对玩具类样品的消解情况,并摸索出了一套优化的实验方案,该方法的平均回收率为93.6%-108.3%,RSD为1.9%-4.5%。用微波萃取处理玩具类样品用于邻苯二甲酸酯的测定,对萃取溶剂、微波萃取时间和微波萃取温度选做了考察,摸索出了优化的实验方案,该方法平均回收率为91.6%-103.3%,RSD为2.5%-4.8%。以上实验皆取得了满意的结果,满足企业及检测机构的要求。 如果需要具体的应用方法,请拨打电话:021-54427057 / 54427605 / 54426558转市场部马小姐咨询,或发Email至marketing@eu-chem.com索取。
  • 自适应光学波前传感的理想选择—sCMOS 相机
    自适应光学波前传感的理想选择—sCMOS 相机牛津仪器 Andor sCMOS 相机作为自适应光学波前传感的优选设备,拥有高度并行的像素读出产生的高帧频,结合短曝光条件下的低噪声和高量子效率能够获得最佳信噪比图像。在本次技术说明中,我们比较了Andor sCMOS 系列中三款特别适合波前传感的相机: Marana 4.2B-6(具有CoaXpress接口) Zyla 4.2 PLUS(具有CameraLink接口) Balor 17F(具有CoaXpress接口)下表总结了每款相机的关键性能参数。表1 用于波前传感的三款 Andor sCMOS 相机的关键成像参数在第1部分中,我们将详细分析潜在的帧频性能,尤其是 ROI 模式下帧频的提升。在第2部分中,我们将比较三款相机相对“延迟”特性,这是自适应光学应用的一个重要考虑因素,因为它决定了图像在软件中的准备时间,以便作为闭环可变形镜像系统的一部分进行处理。Part 1 | sCMOS 帧频高速帧频性能对于波前传感至关重要,使用(ROI)子阵列能够实现每秒数百帧的图像采集。作为波前传感备选的成像探测器,表2显示了上述三款 sCMOS 相机在不同 ROI 阵列尺寸上的帧频。表 2 的关键成像参数(可用选项): 卷帘快门曝光模式 重叠(100%占空比)模式 16位(全动态范围)模式 中心 ROI 成像 CoaXpress(CXP)接口(Marana 和 Balor) CameraLink(CL)接口(Zyla)表2 三款 Andor sCMOS 相机在不同 ROI 阵列尺寸上的帧频 请注意,在比较 Marana 和 Zyla(均为2048 x 2048阵列)时,尽管 Zyla 能够实现更快的帧频,但 Zyla 是使用前照式芯片,通过在每个像素上使用微透镜来实现高量子效率。Marana 使用背照式芯片,在没有微透镜的情况下可实现高达95%的量子效率。此外,如果 Zyla 的 ROI 没有在垂直方向上居中,帧频将会降低(降低到原来的2倍),而对于Marana 和 Balor,ROI 可在任何区域,帧频的降低可以忽略不计。Part 2 | “延迟”比较科学成像相机用作波前传感器的一个关键考虑因素是“延迟”。由于波前传感成像是 AO 配置闭环系统的一部分,因此软件必须快速采集图像以进行实时处理,以便它能够持续地通知变形镜系统如何在到达科学探测器的过程中对入射波前进行重塑和展平。比较波前传感器相机,我们需要清楚地了解曝光、传感器读出和任何图像传输耗时相关的相对时间。在成像的时序流程中,对于“延迟”的定义可能存在一些主观的变化。为了在当前的比较研究中实现标准化,我们将考虑从曝光开始到软件处理该曝光时间内的完整图像/ROI 的整个端到端时间。我们还将通过假设曝光时间为 10 毫秒(帧频达到100 fps)进行标准化。但是请注意,我们比较的三款相机,这 10 毫秒的曝光对应于不同的 ROI 阵列大小和相应的视野。图 1 和图 2 为 Zyla 4.2 PLUS 与 Marana 4.2B-6 进行比较的时序示意图。sCMOS 相机之间的“延迟”区别如下:Zyla 必须先将整个 ROI 阵列(10 毫秒)读出到组装图像的相机 FPGA,然后再通过 CameraLink 接口传输图像,这里又需要10 ms。由于这些过程是按序发生而不是同时进行的,因此整个端到端处理接近曝光(10 ms)+ 读出(10 ms)+ 通过 CameraLink 的数据传输(10 ms)= 30 ms。注意,Zyla图像必须首先在 FPGA上组装的原因是其复杂的传感器读出,这涉及到同时读出阵列的两半,从中间行开始,向外分别移动到顶部和底部行。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。 Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机 PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Balor 未在所示的图中具体表示,但具有与 Marana 相似的单向传感器读出架构,区别在于 Balor 通过同时读取每组 4 行的数据来提高速度。因此,如果 Balor 定义了 ROI 阵列,其结果是曝光时间为 10 ms(相应的读数为10 ms),那么 Balor 的整个端到端过程也将近似于曝光时间(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。因此,相对于 Zyla 固有的“延迟”, Marana 和 Balor 的“延迟”减少了。然而,如第 1 节所示,Zyla 4.2 PLUS 相对于Marana 4.2B-6 可能具有更高的帧速。在为您的装置选择最合适的波前传感成像相机时,应在确切的实验要求范围内考虑这两个因素。图 1 和图 2 的关键成像参数(可用选项): 曝光时间/读出时间 — 10毫秒(需要选择ROI) 卷帘快门曝光模式图1 Zyla4.2 PLUS:表示曝光、读出和图像传输(通过 CameraLink接口)的计时示意图图2 Marana 4.2B-6:表示曝光、同时读出/图像传输(通过Coaxress 接口)的计时示意图。Balor 的实验数据接近Marana 4.2B-6
  • “一米新真空太阳望远镜多层共轭自适应光学系统”投入使用
    在国家自然科学基金的支持下,中国科学院光电技术研究所联合云南天文台成功研制国家重大科研仪器“一米新真空太阳望远镜多层共轭自适应光学系统”并投入使用,实现了大视场自适应光学技术从原理方法创新到实际仪器应用的跨越。   2月2日至3日,该仪器技术指标现场测试会在云南天文台抚仙湖太阳观测基地召开。测试专家组经现场技术指标测试后认为,该仪器各项技术指标达到了资助项目计划书的要求,可以对太阳目标长时间稳定闭环工作,在大气相干长度r0优于10cm@500nm情况下,可见光波段成像分辨力优于0.2″,校正视场大于1′。   “一米新真空太阳望远镜多层共轭自适应光学系统”是光电所联合云南天文台申请的国家自然科学基金国家重大科研仪器研制项目(自由申请)。该项目瞄准空间天气预报重大需求和太阳物理科学前沿研究,针对云南天文台一米新真空太阳望远镜(New Vacuum Solar Telescope,NVST)研制一套多层共轭自适应光学(Multi-Conjugate Adaptive Optics, MCAO)系统,对太阳大气进行大视场、高分辨成像和光谱观测。   该仪器基于研究提出的新型MCAO架构,采用3块变形镜、2个大视场多视线波前传感器以及2套波前实时处理机,实现了在角分量级视场内对大气湍流波前像差的有效补偿。目前,该仪器已与NVST后端科学仪器对接进行常规观测,为太阳风暴的预警预报和太阳物理科学研究持续提供高质量的光谱和成像数据。
  • 我国自主研制的高功率微波测试系统达国际水平
    日前,中科院合肥物质科学研究院等离子体所依靠自主创新,经过近两年的努力,成功研制了具有国际先进水平的稳态高功率微波测试系统,其频率为4.6GHz,平均功率为250KW,并圆满完成了测试实验。4.6GHz 250KW 测试系统  实验结果表明,等离子体所自主研制的该套稳态高功率微波测试系统,其测试功率达到了稳态的250KW(平均功率密度为14.78KW/cm2),这在C频段(4-8GHz)内达到了世界先进水平。美国麻省理工学院的同类系统最高参数为250KW,但其脉冲长度仅为5秒 国内同类系统的平均功率仅几十千瓦。  其测试功能比国外的同类系统更加先进,它不仅可以测试速调管,还可以测试各种驻波情况下(包括满功率全反射条件下)的高功率微波器件,而国外同类系统只能测试处于匹配条件下的微波器件。参与测试实验的美、德专家组成员对该测试系统给予了高度评价,称其非常优秀(Excellent)。此外,国外的该类成套系统价格非常昂贵,如美国新大陆公司4.6GHz单套测试系统的报价近四千万元,而等离子体所自主研制的测试系统造价远低于其报价。  稳态高功率微波测试系统是开展托卡马克低杂波电流驱动实验研究的必要平台,但在国际上只被美、欧、俄、日等发达国家的速调管制造商和少数研究机构所拥有,且其相关技术均保密。等离子体所依靠自主创新成功研制出该系统,使得我国稳态高功率微波测试系统的研制及测试达到国际先进水平。同时,该系统成为国际高功率微波器件测试的平台,为等离子体所进一步广泛深入地参与国际合作奠定了坚实的基础。实验成功后,德国AFT(Advanced Ferrite Technology 德国先进铁氧体科技公司)公司专家Arnold当场表达了进一步与等离子体所开展合作的意愿。250KW满功率稳态运行  更重要的是,该系统的成功研制为EAST国家大科学工程(二期)辅助加热项目子系统——4.6GHz/4MW低杂波系统的建设积累了经验。并且,该套系统的工作频率为4.6GHz,这与国际热核聚变实验堆(ITER)计划的低杂波系统频率5GHz非常接近,因此,该系统的成功研制将为ITER低杂波系统的研制提供重要的技术和人才储备。  成功研制该套系统的低杂波课题组是一支由十几位中青年科技人员组成的团队,包括三名研究员、三名副研究员及九名中初级科研人员和两名高级工,团队中有12位35岁以下的青年人才。该系统的研制让课题组成员得到了进一步的磨练和提高。美国CPI(Communications & Power Industries美国通讯电力工业公司)公司总工程师Steve对该团队能力称赞不已,并与课题组探讨团队的人才培养机制。  该团队同时承担着高功率测试系统研制及实验、4.6GHz/4MW低杂波系统研制、2.45GHz低杂波系统升级、EAST及HT-7实验等多项繁重科研任务,为保证每一项科研任务都优质完成,课题组成员克服人手不足等多方面困难,坚持奉献精神,为科研事业付出了艰辛的努力。实验人员现场讨论
  • 新污染物之POPs:分析测试方法与解决方案探讨
    POPs是英文(Persistent Organic Pollutants)的缩写,中文名称为“持久性有机污染物”,它是一类具有长期残留性、生物累积性、半挥发性和高毒性,并通过各种环境介质能够长距离迁移对人类健康和环境具有严重危害的天然的或人工合成的有机污染物。与常规污染物不同,持久性有机污染物对人类健康和自然环境危害更大:在自然环境中滞留时间长,极难降解,毒性极强,能导致全球性的传播;被生物体摄入后不易分解,并沿着食物链浓缩放大,对人类和动物危害巨大。很多持久性有机污染物不仅具有致癌、致畸、致突变性,而且还具有内分泌干扰作用。2001年,国际社会通过《关于持久性有机污染物的斯德哥尔摩公约》(以下简称《公约》),至2004年正式生效,距今已19年。《公约》控制对象持续增加,从2001年首批控制的12种(类)到今年已增至34种(类),由最初的氯代POPs逐步转向溴代和氟代POPs。目前,对POPs判定、筛查、替代、减排、处置等全过程的科技支撑十分重要,其中,多介质环境中POPs物质的快速筛查与检测方法等是目前急需的技术。为了促进对POPs检测分析方法和在实际应用中解决方案的沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议。在27日下午,以“POPs的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。点击图片报名7月27日下午日程安排:07月27日POPs的检验检测14:00--14:30有机污染物质谱分析技术马强中国检验检疫科学研究院 副所长14:30--15:00液质联用技术在新污染物中的应用邝江濛赛默飞世尔科技(中国)有限公司 高级应用工程师15:00--15:30微波前处理在环境新污染检测中的应用梅枝意安东帕(上海)商贸有限公司 应用支持专家15:30--16:00基于全二维气相色谱-质谱的大气中新污染物的筛查高丽荣中国科学院生态环境研究中心 研究员16:00--16:30水中POPs分析的难点与解决方案高松吉林大学 研究员16:30--17:00水体中全氟化合物的分析测试方法杨文龙国家环境分析测试中心 高级工程师嘉宾简介:马强 副所长中国检验检疫科学研究院马强,博士,研究员,中国检验检疫科学研究院首席专家、青年英才,工业与消费品安全研究所副所长,国家市场监督管理总局科技创新委员会安全与风险防控技术分委会委员,国际标准化组织化妆品技术委员会分析工作组(ISO/TC217/WG3)委员,国际标准化组织纺织品技术委员会成分与化学分析工作组(ISO/TC38/WG22)委员,全国仪器分析测试标准化技术委员会(SAC/TC481)委员,全国食品直接接触材料及制品标准化技术委员会(SAC/TC397)委员,全国香料香精化妆品标准化技术委员会化妆品分技术委员会(SAC/TC257/SC2)委员,中国分析测试协会青年学术委员会委员,中国仪器仪表学会分析仪器分会质谱仪器专家组委员,中国食品工业协会食品接触材料专业委员会委员,中国材料与试验团体标准委员会委员,中国认证认可协会检验检测智库专家,中华中医药学会中药化学分会常务委员,中国中药协会精准中药专业委员会委员,国家标准技术评估专家,《Journal of Analysis and Testing》《分析试验室》《分析测试学报》《中国无机分析化学》青年编委,《日用化学工业》《化学试剂》《香料香精化妆品》编委;主持国家重点研发计划课题、国家自然科学基金面上项目及青年科学基金项目、国家留学回国人员科技活动择优资助优秀类项目、国家公益性行业科研专项、国家市场监督管理总局科技计划项目、北京市自然科学基金面上项目等科研项目10余项,制定发布国家标准和行业标准80项,在Analytical Chemistry等国内外学术期刊发表论文240余篇,参编英文论著1部(Wiley出版)、中文论著12部,作为第一发明人授权发明专利57件,荣获中国分析测试协会科学技术奖一等奖、中国商业联合会科学技术奖一等奖、北京市科学技术奖二等奖等省部级或社会科技奖励近20项,先后20余次在美国质谱年会、国际质谱大会、国际液相分离及相关技术学术会议、中国化学会学术年会等国内外学术会议上作报告。邝江濛 高级应用工程师赛默飞世尔科技(中国)有限公司邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。梅枝意 应用支持专家安东帕(上海)商贸有限公司梅枝意, 药物化学硕士 ,安东帕(中国)有限公司 微波化学应用专员,从事样品前处理工作近6年,主要负责微波前处理设备的技术支持和方法开发,在特殊应用支持和培训方面有丰富的经验。高丽荣 研究员中国科学院生态环境研究中心2006年在中科学院生态环境研究中心获得博士学位,现为中国科学院生态环境研究中心研究员。长期从事新型有机污染物的分析方法和环境行为研究工作,建立了多维色谱分离分析复杂POPs的分析方法,方法获得国际同行的高度认可。开展了大气中有机污染物的非靶标筛查,识别出多种新型高风险有机化合物。多次作为负责人参加联合国环境规划署组织的POPs分析国际比对,比对结果优秀。编写了我国履行关于持久性有机污染物斯德哥尔摩公约成效评估监测报告,已提交联合国环境规划署。已发表SCI论文100余篇,授权发明专利2项,研制标准参考物质2项,编制生态环境部监测标准一项,获得国家环境保护科技二等奖获得者(排名3),主持国家重点研发计划课题、863计划项目课题、国家自然基金重大研究计划培育项目、国家自然基金面上项目、中国科学院知识创新工程重要方向项目等。高松 研究员吉林大学博士,研究员,吉林大学新能源与环境学院暨地下水资源与环境教育部重点实验室,环境工程专业,主要从事环境污染物分析技术研究与应用。主持国家省部级科研项目20余项,发表论文30余篇,国家发明专利授权8项。其中2项专利实现成果的产品转化及推广应用,即针阱微萃取,主要用于环境、地质、石化、食品、医药等领域的快速、应急、实时监测,负责起草1项基于针阱微萃取技术的水质检测吉林省地方标准(DB22/T)。曾获教育部科技进步二等奖,吉林省第三届专利金奖,吉林省科学技术二等奖,吉林大学实验技术成果一、二等奖等奖项。杨文龙 高级工程师国家环境分析测试中心杨文龙,国家环境分析测试中心污染调查评估研究室职员,高级工程师。主要从事多环境介质中传统和新污染物的分析测试技术、污染状况调查及质量保证与质量控制体系研究。先后参与完成国家重大科学仪器设备开发专项、国家重点基础研究发展计划(973计划)、环保公益性行业科研专项等多个科研项目。参与制订十余项环境保护行业标准。全国土壤及地下水污染状况调查专项质控专家。中国履行《蒙特利尔议定书》消耗臭氧层物质监测专家委员会委员。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/ 诚邀您的参与!
  • 解决方案 | 谱育科技超级微波 + ICP-MS,支持土壤重金属检测方法标准
    近日,生态环境部发布了《土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿)》国家环境保护标准,首次规定了测定土壤和沉积物种21种金属元素总量的电感耦合等离子体质谱方法。该标准的出台,填补了我国在土壤重金属分析领域微波消解+ICP-MS法的空缺。我国土壤环境调查、土壤环境监测的样品多、检测分析批量大、检测元素含量低,现有的土壤重金属分析环境国标方法(原子吸收法和原子荧光法)已不能有效满足检测需求。电感耦合等离子体质谱法具有检出限低、线性范围宽、多种元素同时测定等优点,是土壤中元素测试的最佳利器。全自动超级微波化学工作站ICP-MS适用范围:土壤和沉积物中银、砷、钡等21 种金属元素的测定所需设备仪器:ICP-MS、微波消解及一般常用仪器谱育科技 土壤重金属检测解决方案谱育科技结合EXPEC 780/790 全自动石墨/超级微波消解系统、SUPEC 7000 ICP-MS,全新推出土壤重金属分析解决方案。方案完全符合新标准要求,为土壤中金属总量检测提供支撑。01 EXPEC 790系列超级微波化学工作站超级微波化学工作站全自动超级微波化学工作站超级微波,土壤样品的前处理利器,采用直接耦合的微波激励和波导设计,创新的全自动预加压、超高温高压、急速水冷等技术,全面提升微波消解效率及操作便捷性。参考征求意见稿中7.4.1土壤样品的微波前处理消解方法,称取土壤样品0.1g,加入适量盐酸、硝酸,使用EXPEC 790按照以下升温程序进行消解,冷却降温,然后经过氢氟酸、高氯酸赶酸后,得到澄清液体,待测。或优化微波消解参数后,可使用耐HF进样系统,直接进样分析。02SUPEC 7000系列电感耦合等离子体质谱仪此仪器是谱育科技在“国家重大科学仪器设备开发专项”支持下研制的ICP-MS系列产品,具有自激发式全固态ICP离子源、AGOD氩气在线稀释、超强耐受离子接口、分布式碰撞池干扰消除等核心技术。仪器分析速度更快、灵敏度更高、运行成本更低、维护更简单,是可大批量稳定运行的痕量元素检测手段,让土壤检测应用更为简便。03 SUPEC 7020系列全自动重金属分析系统系统通过全自动工作站软件和智能进样系统,完成全自动石墨/微波消解 与 ICP-MS 分析方法的联用。针对土壤样品实现了加酸、消解、定容、样品转移的自动化,“一键式”消解+分析仪器联用,降低人为误差,结果平行性更好。应用案例参照《土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿)》方法,使用EXPEC 790进行土壤(GSS-27)微波消解,硝酸定容后,使用SUPEC 7000测定样品中21种金属元素的总量。测定值与标准土壤认证值如下表所示,测量结果与标准值一致,准确度良好。
  • 中科院“LAMOST激光信标系统”通过验收
    p style="text-indent: 2em text-align: justify "近日,位于河北兴隆国家天文台的“LAMOST激光信标系统”项目通过中科院条财局组织的专家验收,该项目在中科院重大科技基础设施项目的支持下,由南京天文光学技术研究所李国平团队和福建物构所林文雄团队共同合作完成。br/ 林文雄团队研制的绿光激光器作为LAMOST的核心部件——激光信标,在12公里附近产生一颗处于望远镜中心视场的7等左右的激光星,通过对大气分子的瑞利散射光波前进行采样,获 得望远镜的面形数据并传递给促动器,实现了望远镜的主动光学校正。br/ 在激光器研制过程中,为了克服超长激光谐振腔的光学畸变问题,创新性采用时序控制及4f像传递技术,突破了一般工业用途激光器20 ns脉宽的瓶颈,研制出65 ns脉宽的激光器。为了使激光器能够适应-30℃~+40℃的环境温度,一方面采用热膨胀系数较低的材料作为激光器底板,并且通过合理的光学设计使激光谐振腔处于稳腔状态;另一方面,自主研发出自适应光学调整架,能够利用自身形变抵消环境温度变化引起的应力,保证了激光谐振腔在环境温度变化时的稳定性。这些技术为实现7等激光星以及精确测量瑞利散射光波前提供了有力的保障,相关的研究工作申请了专利3件,其中授权专利2件,发表文章1篇。br/ 激光器各项指标均优于合同指标:激光功率33 W,功率稳定性为0.7%;重复频率12 kHz;脉冲宽度65 ns;光束质量M2 = 1.3。验收总结会上,激光器稳定的性能指标得到了专家组的一致好评,由激光器产生的人工信标大大缩短了主动光学的校正时间,提高了LAMOST的巡天效率,为我国自主研制用于大气校正的激光导星系统提供了重要技术储备。/p
  • 签售全国首套直流高压输变电工程环境测试系统
    2010年12月13日,北京信测签售全国首套直流高压输变电工程环境测试系统。填补了国内此项空白。
  • 402万!中国气象局气象探测中心采购多波段雷达协同观测试验及数据融合应用系统
    近日,中国政府采购网发布多波段雷达协同观测试验及数据融合应用系统(一期) 招标项目公告,预算402万元。潜在投标人需于2022年06月09日09点00分(北京时间)前递交投标文件。项目详细信息如下:采购单位:中国气象局气象探测中心项目编号:ZQC-H22059项目名称:多波段雷达协同观测试验及数据融合应用系统(一期)预算金额:402.0000000 万元(人民币)采购需求:多波段雷达协同控制和数据融合示范应用平台的建设内容主要包括协同控制系统和数据融合系统建设。协同控制系统包括雷达状态管理分系统、协同策略判定及下发分系统、协同全过程展示分系统、系统仿真模拟分系统和协同知识库5个部分。数据融合系统包括数据质控分系统、产品融合与监测告警分系统、分析评估分系统和数据展示分系统4个部分。协同控制系统与数据融合系统是紧密相连、密不可分的,数据融合系统识别的强对流天气发生的时间、位置等信息为协同控制的扫描模式智能切换提供依据;协同控制获得更加全面的天气过程三维精细化结构数据,为精细化精准化产品的生成提供支撑。系统平台建设完成后不仅可以在国家级部署和使用,还可以推广部署于具备多波段雷达协同观测能力的省/市运行,使平台具备灵活的拓展能力和适应性。本项目(不接受)联合体投标。
  • 哈希产品真给力 汇舸系统有实力——汇舸船舶废气洗涤系统首航测试成功
    2019年1月20日,上海汇舸环保科技有限公司(以下简称上海汇舸)为新加坡Eastern Pacific Shipping(以下简称EPS)公司建造的首台套船舶废气洗涤系统实船测试成功,各项数据指标完全满足国际海事组织海洋环境保护委员会第68次会议259次决议的法案要求。此次试航船舶信息:船名:Mount Faber,船型:180K 好望角型散货船,船籍:利比里亚,船级社:NK。首试成功的船舶废气洗涤系统是上海汇舸在全资引进澳大利亚水处理公司CONTIOCEAN成熟脱硫技术的基础上,自主开发、自行研制的COUS/COIS/COBOS多机集气式废气洗涤系统之一的COUS系统,COUS/COIS/COBOS多机集气式废气洗涤系统均已经获得挪威-德国船级社、英国劳氏船级社、美国船级社、法国船级社的认证。该洗涤系统中水质监测仪表采用了全套哈希公司的脱硫废水监测产品,精于水质、准于分析,有力保障了此次实船航行的成功测试。具体产品配置如下表:据悉,这是上海汇舸为EPS船东建造的16台套船舶废气洗涤系统中的第一台套,也是上海汇舸船舶废气洗涤系统的第一次试航,首次试航即取得成功,充分说明上海汇舸在脱硫技术、产品建造、系统调试、运营管理等方面的强大实力。而且,哈希公司也会一直以优质的水质产品监测方案支持汇舸公司的洗涤系统,支持国际海事组织关于船舶尾气硫含量控制政策的贯彻实施!
  • 聚焦样品前处理——海能参加2018年浙江省样品前处理技术创新大会
    近年来,随着国家检测标准的日益严格,样品中待检物含量越来越低,这对样品前处理技术提出了更高的要求。作为样品检测中广泛存在的环节,样品前处理水平直接关系着实验室整体效率的提高,同时,前处理设备的自动化效率也直接影响着实验室的人力成本。12月28日,2018年浙江省样品前处理技术创新大会于浙江省杭州市海外海国际酒店举办,海能仪器携微波前处理技术参会。 大会分为样品前处理技术前沿,样品前处理设备研究进展,实验室前处理技术,实验室管理等一系列创新性专项主题,内容涉及土壤,水,气体,食品,质检等多个领域。多位国内外前处理专家学者、检测实验室及高校院所等技术负责人来到现场,为大家分享前处理技术前沿话题及研究进展,共同探讨应用难题。现场设有新设备、新产品、新技术展示交流区域,为科技工作者与科学仪器厂商提供了良好的沟通交流机会。大家现场对接前处理技术需求,科普新产品、新技术,氛围浓厚。海能仪器为大家带来了TANK PLUS高通量微波消解仪、T960全自动滴定仪及相关应用方案,以供参考体验。 TANK PLUS高通量微波消解仪拥有精准的温度/压力测控及先进的双磁控管变频微波加热等技术,能够有效提高样品的消解能力;二十多项苛刻的安全保障机制保证了实验人员的操作安全;同时,智能化的UI设计和云服务等功能,给科技工作者带来了舒适的操作体验,可广泛应用于多个领域:● 环境地矿● 食品药品● 卫生疾控● 石油化工● 材料冶金● 教学科研…… TANK PLUS高通量微波消解仪希望今后海能的前处理产品及应用方案能为土壤、食品、药品等领域的科技工作者们提供更多的参考和帮助!追求客户极致体验的道路永无止境,面对行业提出的高要求、新挑战,我们会化压力为动力,用更为优质的产品和服务回报用户!
  • 莱伯泰科SPE 1000全自动固相萃取系统助力有机样品前处理高效进行
    p  strong仪器信息网讯/strong 样品前处理在仪器分析过程中是一个既耗时又极易引进误差的步骤,样品前处理的好坏直接影响仪器分析的最终结果。因此, 改善和优化样品前处理的方法和技术对于提高仪器分析的测试效率来说至关重要。/pp  作为有机样品前处理的一种方式,传统手动固相萃取容易使实验人员受到有机溶剂的伤害,并且在操作中容易出现误差,造成平行性较差,而且处理大量样品时效率相对较低。/pp  莱伯泰科SPE 1000全自动固相萃取系统具备多重优势:可自动完成固相萃取柱的活化、样品过柱、清洗、氮气干燥、洗脱等操作,处理样品量大,自动化程度高,整套系统密封环保。多种通道数可选,最多可升级至8通道同时运行,提高实验效率支持有序进样和随机采样过程,多种样品架和样品盘可选 单向流路设计,流路总体积小于2mL,减少了系统的交叉污染及残留问题 双路套针结构,移液、上样、清洗流路分别独立,外部柱密封针可避免密封不严或损害移液针,有效避免了系统的交叉污染问题 既可处理常规样品,又可处理大体积水样,满足数十位样品连续处理,通量大… … /pp  更多详情请查看视频:/ppscript src="https://p.bokecc.com/player?vid=9B667F557A8598109C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/script/p
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 安东帕微波家族又添新将
    一个系统,无限可能Multiwave 5000隆重上市精*准的痕量元素分析从卓越的样品制备开始。即使采用最*佳分析设备,样品制备仍是获得可靠测量值的关键因素。安东帕全新微波化学反应平台Multiwave 5000 的开发融入了40多年的样品制备经验,以满足当今实验室化学专家的需求。作为迄今为止最简单易用的微波系统,它节省了实验室的时间和资金。由于采用灵活的平台概念,您可以将 Multiwave 5000配置为最适合您应用的设备。智能操作系统:启动方法简单易行可根据需要配置主屏幕:在主屏幕上定义方法、菜单链接或视频手册的快捷方式,形成您自己的Multiwave 5000。Multiwave 5000提供:各种类型样品的消解(难度或体积不同),酸浸提,微波溶剂萃取,蒸发浓缩,微波辅助氧燃烧,紫外消解,样品干燥,合成。section style="padding: 18px 15px 20px 10px color: rgb(158, 222, 29) background-image: url(" wx_fmt="png") " background-repeat:="" text-align:="" background-size:="" letter-spacing:="" box-sizing:="" class="135brush" data-brushtype="text"另外,我们还增加了一款新转子20SVT50 反应罐和HVT赶酸附件,让我们来一睹他们的风采! 20SVT50反应罐20SVT50 反应罐采用智能控压技术。SVT 反应罐设计提供了最*高的操作参数,并可以消解难以消解的苛刻样品,同时保留了 HVT 反应罐易于操作的特性。SVT 反应罐非常适合消解各种样品,包括食品、环境和制药应用,以及要求更苛刻的样品,如陶瓷、合金、聚合物、化妆品、地质材料、石化产品、化学品和耐火材料样品。HVT赶酸附件 新型24EVAP附件是对转子24HVT50、转子24HVT80 和转子41HVT56的补充。它可促进、简化并加速酸的微波辅助蒸发以及液体样品溶液的浓缩过程。由于同一反应罐既可用于消解,也可用于先前或随后的蒸发,因此无需冒着污染风险转移消解溶液。对于各种样品,自动确定终点可以方便可靠地减少样品量。外部吸收装置可中和酸蒸汽,洗涤效率超过 95 %。安东帕微波前处理大家族为您的实验室提供最全面的前处理解决方案。想了解更多的详细资料,欢迎登入我们的网站或联系您当地的销售代表。
  • 空间引力波探测星间激光链路构建研究中取得进展
    太极计划通过卫星编队的形式进行空间引力波探测,而构建星间激光链路是其中的关键环节之一。相比应用于星间激光通信、重力场测量等领域的传统星间激光链路构建任务,太极计划需应用有限的星上资源实现三百万公里超远距离激光捕获及1 nrad/Hz1/2量级超高精度指向,因此其实现难度要大得多。为此,提出采用三级捕获探测方案, 通过星敏感器(STR)、CMOS捕获相机及四象限探测器(QPD)逐级探测压制激光指向偏差。目前对该方案的研究仍停留在仿真模拟及关键技术原理方法学论证阶段,并未充分考虑各阶段之间系统参数及核心探测技术之间的耦合关系,亟需通过全流程地面模拟实验进一步验证激光链路方案主要技术指标的可行性。针对上述问题,力学所引力波实验中心与国科大杭州高等研究院太极团队核心成员高瑞弘博士开展了面向太极计划的超高精度星间激光链路构建地面验证技术研究,设计并搭建了激光捕获跟瞄一体化地面模拟实验系统(如图1所示)。该系统在完整还原捕获跟瞄方案光学系统及实施流程的基础上充分考虑了对激光远场波前、高斯平顶光束接收、弱接收光强等空间实际运行情况的模拟。系统采用小口径光阑结合大发散角出射光,依据合理的参数设计及器件选型,在实验室近场传输情况下实现了双端近似夫琅禾费衍射模拟及高斯平顶光束接收。图1 捕获跟瞄一体化地面模拟实验系统实物图。光学平台上放置有CMOS及QPD两级探测器,利用自研的上位机软件可实现捕获-跟瞄全流程自动模拟。模拟实验采用DWS信号实时监测激光指向角度变化,图2所示的实验数据展示了由初始指向—扫描开环捕获—闭环捕获—精密指向的全流程指向角度变化,实现了对初始时刻百微弧度量级指向偏差的逐级压制。图2 捕获-跟瞄全流程模拟实验yaw方向角度变化。在激光捕获探测技术方面,首次提出并采用了改进的质心算法,在百皮瓦级弱光情况下实现了亚像素级光斑中心定位精度。在QPD前设计了共轭成像系统,降低了beam-walk对DWS技术非线性误差产生的影响,提高了精密指向阶段角度测量精度。在QPD探测器处,激光捕获及激光精密指向结果如图3所示,对应到实际400倍放大率的望远镜前均能满足太极计划要求,充分验证了目前拟采用方案的可行性。图3 (a)激光捕获完成后角度残余误差示意图。(b) 激光精密指向阶段残余指向抖动幅度谱密度曲线。综上所述,该项研究工作从物理实验的角度出发,设计并搭建了星间激光链路构建地面模拟实验系统。一方面为相应关键技术研究提供了模拟实验平台,验证了关键技术间的耦合关系,提出方法学上的改进策略并指导器件参数选择;另一方面,充分验证了整个方案的可行性,为未来方案转入工程化实现阶段提供完备的理论验证及技术支持。相关研究成果近期在国际顶级光学期刊《Optics and Lasers in Engineering》上发表。
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 微波消解在《2010版药典》中的应用(空心胶囊)
    上海屹尧仪器科技发展有限公司 市场部 E-mail: marketing@preekem.com 重金属对人体的危害,很早就有报道。当人因为饮用或食用受重金属污染的药物,体内重金属含量过高时,便会导致各种疾病。汞是重金属污染中毒性最大的元素,食入后直接沉入肝脏,对大脑、神经、视力破坏极大,著名的公害病“水俣病”的典型特征。镉不是人体所必需的微量元素,新生婴儿体内几乎无镉,人体中镉全部是出生后通过外界环境进入人体的,镉中毒症状主要表现为动脉硬化、肾萎缩、肾炎等。铅是重金属污染中毒性较大的一种,一旦进入人体将很难排除。被人体吸收后有慢性中毒作用,长时期暴露于含铅环境的儿童有着反应缓慢,视觉迟钝之现象。砷是砒霜的组分之一,有剧毒,会致人迅速死亡。尽管铜是重要的必需微量元素,但应用不当,也易引起中毒反应,现是损伤红细胞引起溶血和贫血。 鉴于上述元素毒性较强,有害于人类,直接影响人体的健康,国家对于中药材以及化学药中重金属的含量限定和检测方法在不断提升。 《中国药典》2000年版Ⅰ部收载的中药材及中药成方制剂共992种,其中有重金属限量要求的仅18种,约占2%,此版本中无针对特定元素的检测要求。为了加强中药的安全性,《中国药典》2005年版Ⅰ部新增了采用原子吸收或电感耦合等离子体质谱法测定重金属和有害元素的方法。其中,西洋参、白芍、甘草、丹参、金银花、黄芪等就是采用上述方法测定的品种,并且首次规定上述药材含重金属铅(Pb) ≤5.0 mg/kg,镉(Cd) ≤0.3 mg/kg,汞(Hg) ≤0.2 mg/kg,砷(As) ≤2.0 mg/kg,铜(Cu)≤20.0 mg/kg。《中国药典》2010年版Ⅰ部在上述重金属和有害元素测定品种的基础上又增加了枸杞子山楂阿胶等品种。同样也是采用原子吸收或电感耦合等离子体质谱法测定重金属和有害元素的方法。但区别是《中国药典》2005年版Ⅰ部电感耦合等离子体质谱法方法中未提到样品的前处理方法,《中国药典》2010年版Ⅰ部电感耦合等离子体质谱法方法中增加了供试品溶液的制备内容,其中对于固体样品的消解方法提出有敞口容器消解法、密闭容器消解法和微波消解法。微波消解法所需试剂少,消解效率高,对于降低试剂空白值、减少样品制备过程中的污染或待测元素的挥发损失以及保护环境都是有益的,可作为首选方法。 《中国药典》2010年版Ⅱ部化学药品中增加了明胶空心胶囊和胶囊用明胶的检测,其中重金属Cr的测定采用的是密闭的微波消解,后续用石墨炉原子吸收检测,铬含量不得过百万分之二。 不论是Ⅰ部还是Ⅱ部,但凡需要用微波消解处理的样品,鉴于取样的均匀性,都明确规定需要0.5g的做样量,故消解需要配备超高压的消解罐才能满足需求,如采用中高压罐,长期在其极限条件下工作会明显缩短使用寿命,得不偿失。笔者希望微波消解的应用能真正给实验人员带来福音,降低工作量的同时保证实验数据的准确性。 附录1 白芍微波前处理报告 附录2 胶囊微波前处理报告 如需具体的前处理方法,请来电咨询屹尧科技市场部,电话:4006802226;或通过发送邮件至marketing@preekem.com咨询。 关于上海屹尧 上海屹尧仪器科技发展有限公司是专业的微波化学产品研发,制造,销售商。公司成立于2001年,在短短的8年间既成为了国内微波化学产品线最全的公司,是国内唯一同时拥有密闭/常压微波消解技术,多模/单模微波合成技术,微波灰化技术,工业级微波谐振腔制造技术,微波水分测定技术的公司。制造优秀的科学仪器,提升中国仪器在国际的竞争力是我们的目标,我们将为此不懈奋斗。 欲了解更多信息,请浏览公司网站:http://www.preekem.com/
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。图一:IV曲线图图二:量子效率量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。图三:系统整体图先进的光源配置:系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。图四:普通卤素灯的光谱图图五:普通氙灯的光谱图独特的测试光路设计:大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。强大的偏置光配置:为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。功能全面高效的软件:软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。图六:功能强大的图标管理功能特点总结:1、实现内外量子效率同步测试2、双光源测试,契合IEC标准,提高测试准确性3、双路可调偏置光,轻松实现三节电池测试4、功能强大的测试软件
  • Kaleo套件-模块化计量解决方案
    Kaleo套件-模块化计量解决方案随着光学系统复杂性的增加,计量团队通常需要特定的测量参数(测试波长、精度、分辨率、相关结果… … )。 Phasics⽤Kaleo Kit解决了这⼀挑战,它是⽤于光学鉴定的模块化系统。 Kaleo 套件是各种兼容模块的组合,可让您创建经济⾼效、紧凑且易于使⽤的系统,它可以适应⼴泛的测量配置,并确保样品在开发的所有阶段满足质量要求。 ⼀次采集即可获取样品的所有参数: TWE、RWE、波前像差、MTF、PSF 等等。一、Kaleo Kit的选型只需要3个步骤1.选择您的波前传感器2. 选择您的R-cube,波长(nm)365 405 530 625 740 780 810 850 9401050 1550 3900 3.调整光束(扩束或者聚焦)二、Kaleo Kit的多重优势多用途• 适用波段从紫外到红外。• 各模块能兼容或者独立使用。• 可用于所有的测量条件: 有限远-有限远, 无限远-有限远...• 同样的模块适用于多种配置。 强大的独特技术• 高分辨率。• 可用于大的像差测量。• 消色差,对应所有波段消色差。• 纳米级别测量精度。易用的• 紧凑的。• 易于准直的。• 能快速获取分析结果。三、Kaleo Kit适宜多种应用场合 望远镜准直与表征 凹⾯镜测量 大直径平面光学特性测量:滤光片、窗口、偏振光学 任意配置的⼤直径镜头和物镜测量 离轴镜头测量Phasics是一家专门从事相位测量的法国公司。Phasics向其客户提供全系列的产品,所有这些都是基于独特的技术,即四波侧向剪切干涉技术。Phasics波前传感器体积小、结构紧凑,分辨率高、动态范围大,并且易于使用。非常适合集成在用户的光路中用于光学元件及组件的计量。另一方面,Phasics也提供定制化的量测系统。可以根据用户的实际需求设计方案。上海昊量光电设备有限公司作为Phasics在中国地区的核心代理商,致力于为国内的工业和科研用户提供技术解决方案。对于Phasics相位相机有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 如果您对SID4系列波前传感器产品有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/details-1631.html欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 成功击败国际巨头丨英国南安普顿大学“薄膜热电参数测试系统”安装成功!
    南安普顿大学(University of Southampton),建于1862年,是英国老牌名校 , 世界百强名校 ,英国常春藤联盟罗素大学集团成员,世界大学联盟成员,SES-5成员。南安普顿大学是英国大学专业评级中唯一一所每个理工部门都收到五星研究评级的大学 ,被公认为世界顶尖理工大学之一。 近日,嘉仪通科技的“薄膜热电参数测试系统(Thin-Film Thermoelectric Parameter Test System)”在英国南安普顿大学安装成功!该项目于今年5月在全球范围内公开竞标,嘉仪通科技的薄膜热电参数测试系统(MRS-3)成功击败国际巨头,获得评审专家一致认可。 作为国际顶尖的理工类院校,南安普顿大学一直非常重视热电材料领域的科学研究。此次采购嘉仪通科技的薄膜热电参数测试系统(MRS-3),也是对嘉仪通科技在热学分析仪器,尤其是热电材料物性分析仪器的高度认可。在安装调试过程中,嘉仪通科技安排最专业的安装调试人员前往南安普顿大学进行安装和测试,不仅高质量的圆满完成了安装任务,而且认真服务的工作态度获得了该校师生的高度评价。南安普顿大学设备安装调试现场 嘉仪通科技一直致力于在全球范围内,为从事新材料尤其是薄膜材料物理性能研究的客户提供热学和电学分析测试整体解决方案。此外,嘉仪通将在北美、英国、新加坡、印度、巴基斯坦等地办事处和联合实验室共享中心的基础上,进一步开展全球品牌推广,争取早日全面建成嘉仪通全球营销体系及客户服务网络,为全球客户提供最合适的产品与最好的服务。【薄膜热电参数测试系统】【薄膜热电参数测试系统】:薄膜热电参数测试系统MRS-3 ,专门针对薄膜材料的Seebeck系数和电阻率测量,采用动态法测量Seebeck系数,避免了静态测量在温差测量上的系统误差,采用四线法测量电阻率,测量更准确便捷。
  • 国家船舶材料质量监督检验中心订购莫帝斯燃烧测试系统
    2013年5月份,经国家质量监督检验检疫总局批准,国家船舶材料质量监督检验中心落户江阴。该中心由江阴质量技术监督局产品质量监督检验所筹建,为独立的第三方检测实验室,专业从事船舶材料的检验测试和相关技术、标准的研究,目前中心实验室基础建设已经完成,预计明年年底投入运行。 该测试中心的建立,为国内质检系统首家应用于船舶材料检测的国家级检验中心,有效弥补了质检系统长期以往无法开展该测试项目的不足。该中心的建立,对于江阴船舶制造和配套企业的发展,加大各个方面支持的力度,提供了创新合作的载体和形式。同时,可以有效依托这一合作平台,全方位开展检、学、研合作关系。 近日,国家船舶材料质量监督检验中心自莫帝斯订购用于船舶材料烟密度、烟毒性以及火焰船舶性能的燃烧测试仪器,应用于船舶制品的阻燃性能检测。国家船舶材料质量监督检验中心经过数家比较,认为莫帝斯燃烧技术所生产的烟密度测试箱,烟毒性测试装置以及热辐射火焰传播测试仪,不仅可有效应用于国内船舶制品检测,同时可以满足国外IMO测试标准要求,为同类厂家最优。 莫帝斯燃烧技术(中国)有限公司,继为公安部四川消防研究所(船级社认可单位)以及中国船级社远东防火试验中心提供船舶制品阻燃测试仪器后,为国家船舶材料质量监督检验中心提供阻燃性能检测仪器,证明莫帝斯的燃烧技术,再次得到了中国船舶用户的肯定。 www.motis-tech.comwww.firetester.com.cn
  • 500万!华南理工大学液态铅铋测试系统采购项目
    项目编号:0612-2340D0111385项目名称:华南理工大学液态铅铋测试系统预算金额:500.0000000 万元(人民币)最高限价(如有):500.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价/万元(人民币)1液态铅铋测试系统1套★加载头最低加载应变速率:1x10-7/s▲加载频率:(0.1-1)Hz▲试验温度:(-50~100)℃★最大工作压力:35Mpa500合同履行期限:在合同签订后(150)天内完成供货、安装和调试并交付用户单位使用。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广东省机电设备招标有限公司地址:广州市环市中路316号金鹰大厦10楼1030室联系方式:谷小姐、彭先生、刘先生 020-83544332、020-835441173.项目联系方式项目联系人:谷小姐、彭先生、刘先生电话:020-83544332、020-83544117
  • 新闻资讯‖东华测试与中国船舶711所签署业务合作协议
    通过开展长寿命缸压传感器的国产化研制,打破技术专利壁垒,实现缸压传感器的自主可控,为船用柴油机性能和可靠性的提升提供新的技术手段。7月17日,江苏东华测试技术股份有限公司与中国船舶711所在沪签署业务合作协议。东华测试副总经理顾剑锋,中国船舶711所副总工程师、研发中心主任黄立见证签约。711所所长助理、规划部主任姚辉介绍了所内的基本情况及七大战略业务。双方在柴油机及气体发动机、热气机及特种动力系统、动力系统解决方案及相关产品、电气及自动化系统、能源装备及工程、环保装备及工程、电站工程等业务进行了交流。双方希望在自主可控,细分市场等领域,加强相互合作,发挥各自优势,做出精确度更高、可靠性更强的产品。东华测试副总经理顾剑锋就传感器的研发,公司六大业务板块以及典型案例进行了分享。并就“全国产化”条件下的发展,介绍了我司在项目中积累的技术和经验,阐明了我司在全国产化进程中的决心。通过双方优势互补,互惠合作,进一步加强在科研领域的合作。近年来,江苏东华测试技术股份有限公司积极发挥自身优势,从实际应用需求出发,不断优化产品和创新技术,为客户提供了高效的服务。
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 十四五开局!6亿国拨经费支持科学仪器、试剂
    5月18日,“基础科研条件与重大科学仪器设备研发” 重点专项项目申报指南发布。为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发” 重点专项。根据重点专项实施方案的部署,现发布 2021 年度项目申报指南。本重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力;围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。2021 年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持 39 个项目,拟安排国拨经费概算 5.39 亿元。此外,拟支持 16 个青年科学家项目,拟安排国拨经费概算 4800 万元,每个项目 300 万元。科学仪器方向各项目自筹经费与国拨经费比例不低于 1:1。项目统一按指南二级标题(如 1.1)的研究方向申报。同一指南方向下,原则上只支持 1 项,仅在申报项目评审结果相近、技术路线明显不同时,可同时支持 2 项,并建立动态调整机制,根据中期评估结果,再择优继续支持。除特殊说明外,所有项目均应整体申报,须覆盖全部研究内容和考核指标。项目执行期原则上为 3~5 年。一般项目下设的课题数不超过 5 个,项目参与单位数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。科研试剂和科学仪器两部分指南方向(除 5.1 外)须由科研机构与从事相关领域生产并具有销售能力的企业联合申报,建立产、学、研、用相结合的创新团队。青年科学家项目(项目名称后有标注)支持青年科研人员承担国家科研任务。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1983 年 1 月 1 日以后出生,女性应为 1981年 1 月 1 日以后出生,原则上团队其他参与人员年龄要求同上。专项实施过程中,涉及实验动物和动物实验,应遵守国家实验动物管理的法律、法规、技术标准和有关规定,使用合格的实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。涉及高等级病原微生物实验活动的,必须符合国家病原微生物实验室有关要求,并具备从事相关研究的经验和保障条件。涉及人体被试和人类遗传资源的科学研究,须遵守我国《中华人民共和国人类遗传资源管理条例》《涉及人的生物医学研究伦理审查办法》《人胚胎干细胞研究伦理指导原则》等法律、法规、伦理准则和相关技术规范。本专项 2021 年度项目申报指南如下。1 高端通用科学仪器工程化及应用开发1.1辉光放电质谱仪研究内容:针对高纯材料、高温合金、绝缘固体样品等材料中主成分、微量和痕量元素检测需求,以及针对材料剥层分析、材料元素深度分布检测、涂层材料表面分析等需求,突破直流辉光放电离子源、绝缘固体第二阴极系统、高分辨电磁双聚焦质量分析器、法拉第杯与电子倍增管双检测器等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的辉光放电质谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在半导体、高纯稀土、高温合金等材料科学研究领域的应用。考核指标:质量分析范围(4~250)amu;质量分析稳定性≤25ppm/8h;分辨率 LR300/MR4000/HR10000;平均背景≤0.5cps; 灵敏度≥ 1×109cps ; 丰度灵敏度≤ 20ppb ; 主成分重复性≤ 3%RSD;微量成分重复性≤5%RSD;痕量成分重复性≤10%RSD。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.2 第三代基因测序仪研究内容:针对 DNA 基因测序的无扩增、长读长直接测序、大容量生物特征信息获取等检测需求,突破DNA 精确长读长直接测序、极微弱光或极微弱电信号测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的第三代基因测序仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在基因工程、病毒检测、生物安全检测、体外诊断等领域的应用。考核指标:序列平均读长≥15kb;最长读长≥500kb;DNA直接测序最高准确率≥95%;采样率≥1kHz;单个通道测序速度≥400nt/s;可溯源量值定值和质量评价方法≥3 种;基因组比对一致性≥99%;组装连续度 NG50≥1M 碱基;结构变异检测精度与检出率≥90%(片段长度≥50bp)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.3超高分辨活细胞成像显微镜研究内容:针对实时观察活细胞精细结构动态变化的检测需求,突破超高分辨活细胞成像显微、精密光机电控制、图像实时处理和成像标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超高分辨活细胞成像显微镜产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在细胞学、微生物学、生物物理学和药理学等领域的应用。考核指标:视场≥10µm×10µm;横向分辨率≤150nm;纵向分辨率≤350nm;时间分辨率≥15 帧/秒(2D 成像);时间分辨率≥8 帧/秒(3D 成像)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级; 至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.4核磁共振波谱仪研究内容:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在化学化工、生命医学、食品制药和环境能源等领域的应用。考核指标:磁场强度≥14T;室温孔径≥50mm;磁场稳定度≤9Hz/h;磁场均匀度≤0.05ppm;支持多核素频谱分析范围1H、13C、15N、31P、129Xe 等;射频带宽 50~650MHz 以上;波谱频率分辨率≤0.003Hz;射频发射通道数≥2 通道;液氦补充时间≥150 天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.5宽频带取样示波器研究内容:针对 5G 移动通信、光纤通信设备和高速网络设备的宽带模拟电路和高速数字电路开发与检测需求,突破 85GHz 采样器、超低抖动时钟产生与触发、高速时钟恢复、高精度波形采集与恢复、信号完整性分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带取样示波器,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在光纤通信、5G 移动通信、雷达、卫星通信与卫星导航等领域的应用。考核指标:电采样模块:通道数量 2;测试带宽≥85GHz;采样率≥150kSa/s;抖动≤80fs;采样分辨率 16bit;光采样模块: 波长范围 800~1600nm;光接收灵敏度优于-7dBm;测试带宽≥ 65GHz;采样率≥150kSa/s;抖动≤250fs;采样分辨率 16bit。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.6高灵敏手性物质离子迁移谱与质谱联用仪研究内容:针对生物样品分析、临床诊断和药物开发等领域对手性分子同分异构体快速识别、高灵敏高准确定量分析的需求, 突破离子迁移过程模型仿真与控制、手性物质高选择性试剂制备、手性气相离子高效选择性存储、高分辨手性气相离子构型差异分析与质量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏手性物质离子迁移谱与质谱联用仪, 开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、临床医学和药物学等领域的应用。考核指标:手性分子纯度检测范围 0.1%~99.9%,离子迁移谱分辨率≥300;手性物质分析检出限≤10-10摩尔/升;质谱质量分辨率≥100000;手性分子分析时间≤10 分钟/样品;建立手性物质数据库 1 套。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。1.7复杂微结构三维光学显微测量仪研究内容:针对光电探测器、MEMS 微系统、半导体集成电路等微小型器件和光学器件表面和亚表面缺陷检测需求,突破高倾斜光滑微结构、深 V 结构、混合材料层叠微结构、层叠结构亚表面等复杂微结构三维几何形状表征、三维几何参数精密测量、亚表面缺陷检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的复杂微结构三维光学显微测量仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在超光滑光学表面损伤、半导体集成电路、光电集成电路等领域的应用。考核指标:显微视场≥100μm×100μm;水平方向表面显微分辨率≤250nm;水平方向亚表面显微分辨率≤400nm;垂直方向 分辨率≤20nm;光滑微结构测倾斜角度≥50°;单一材料台阶高 度测量误差≤5%;多层材料台阶高度测量误差≤10%;亚表面缺陷检测深度≥110μm;缺陷检出灵敏度≤200nm;深度定位精度≤2μm;高能损伤缺陷判定准确率≥80%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2 核心关键部件开发与应用原则上,每个项目下设课题数不超过 4 个,项目参与单位总数不超过 4 个,实施年限不超过 3 年。2.1快速可调谐激光器研究内容:开发波长调谐范围大、调谐速度快的可调谐激光器,突破大范围无跳模腔体设计、高速微腔调制制备、高速数字化激光模块驱动电路设计和模式补偿算法、波长非线性修正等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光学相干层析检测、高精密光谱分析和共焦测量等仪器中的应用。考核指标:中心波长 1060nm 和 1310nm;输出功率≥15mW;波长调谐范围≥110nm;重复频率≥100kHz;相干长度≥15mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.2热场发射电子源研究目标:开发热场发射电子源,突破单晶钨制备、尖端取向和形状控制、氧化锆处理、电子枪结构设计、灯丝对中控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在扫描电子显微镜、透射电子显微镜等仪器中的应用。考核指标:微尖曲率半径范围 1.2µm~0.4µm(可控),误差≤±0.05µm;阴极温度 1750K~1800K;栅极电压-200~-600V(可调);角电流密度 200µA/sr;引出电压 3~6kV(可调);最大电子束流≥150nA;电流稳定度≤1%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.3侧窗型光电倍增管研究内容:开发高性能多碱阴极侧窗型光电倍增管,突破宽光谱及高灵敏度反射式多碱光电阴极制备、高增益电子倍增极结构设计、高二次电子发射材料制备、低暗计数率等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光谱分析、电子显微分析和X 射线分析等仪器中的应用。考核指标:探测面积≥8mm×24mm;阴极光谱响应范围≥165nm~900nm;阴极积分灵敏度≥250μA/lm;增益≥1×107;暗计数率≤1000cps;暗电流≤10nA(1000V);上升时间2.4磁共振成像低温探头研究内容:开发磁共振成像低温探头,突破高密度射频阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、波谱分析仪等仪器的应用。考核指标:通道数≥2;扫描孔径≥2cm;射频探头匹配≤-15dB;探头温度≤30K;前置放大器噪声系数≤1dB;灵敏度提高(低温/常温)≥4 倍。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级; 至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。2.5X 射线能谱探测器研究内容:开发 X 射线能谱探测器,突破大面积硅漂移探测、电荷前置放大、数字多道分析、漏电流噪声抑制、真空封装等关键技术;开展工程化开发、应用示范和产业化推广;形成具有自主知识产权、质量稳定可靠的部件产品,实现在X 射线能谱仪、电子显微能谱分析仪等仪器以及同步辐射大科学装置的应用。考核指标:探测器尺寸≥30mm2;能量分辨率≤127eV(MnK);探测元素范围Be~Am;最大输出计数率≥300kcps(最大输入计数率 1000kcps);窗口材料铍、氮化硅(≤100nm)或无窗。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.6高精度哈特曼—夏克波前传感器研究目标:开发高精度哈特曼—夏克波前传感器,突破高质量微透镜阵列制备、微透镜阵列与探测器高精度耦合、超高精度误差标定、快速高精度波前重构等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束质量分析、自适应光学系统和三维测量等仪器中的应用。考核指标:空间分辨率≥128×128;倾斜测量范围≥±3°;倾斜测量精度≤1μrad;相对波前测量精度(RMS)≤λ/150;绝对波前测量精度(RMS)≤λ/100;重复性精度(RMS)≤λ/200; 工作波长范围 400~1100nm;频率≥7Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.7高通量生物样品真空传递装置研究内容:开发高通量生物样品真空传递装置,突破小样品精细操作、真空低温精密运动、低温样品镀膜等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在透射电镜和扫描电镜等仪器中的应用。考核指标:最低存储温度≤-160℃;真空度≤5×10-4Pa;运动精度≤100μm;样品存储数量≥12grids;镀膜真空度≤4Pa;镀膜样品台温度≤-160℃。项目完成时通过可靠性测试和第三方异地 测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.8深地声学探测器研究内容:开发具有耐高温、耐高压、高性能和高稳定性的声学探测器,突破耐高温高压材料调控、小体积低频宽带结构以及界面粘接机理和工艺等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在三维远程声波探测仪、深地超声成像测井仪等仪器中的应用。考核指标:单极换能器(长度伸缩):工作频带 5~20kHz,最高耐温≥260℃,最高耐压≥200MPa;偶极换能器(弯曲振动):工作频带 1~4.5kHz,最高耐温≥230℃,最高耐压≥172MPa;多极接收器:工作频带 1~20kHz,最高耐温≥230℃,最高耐压≥ 172MPa;超声换能器:工作频带 250~700kHz,最高耐温≥205℃, 最高耐压≥172MPa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.9太赫兹超导混频器研究内容:开发太赫兹超导混频器,突破超导混频器芯片设计与制备、超导混频器与低温低噪声放大器集成、一维相干探测接收机阵列集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹频谱仪、太赫兹安检仪和射电天文接收机等仪器中的应用。考核指标:探测器中心频率 0.1~0.3THz;中频带宽≥5GHz;噪声温度≤7 倍量子噪声;动态范围≥30dB;像素≥1×10。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥ 5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权; 形成批量生产能力,经用户试用,满足用户使用要求。2.10分离打拿极电子倍增器研究内容:开发分离打拿极电子倍增器,突破检测器高纯打拿极合金及膜层制备、高精度封装、空气中安全存储、脉冲和模拟双模式检测等关键技术,开发具有自主知识产权、质量稳定可靠的部件产品,开展工程化开发、应用示范和产业化推广,实现在磁质谱仪、四极杆质谱仪上的应用。考核指标:增益≥105(模拟工作状态下),增益≥107(脉冲计数方式下);暗电流≤1pA;暗计数率≤50cps;单离子脉冲宽度/ 半高宽≤7ns。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.11宽频带同轴探针研究目标:开发宽频带同轴探针,突破弹性件热处理与表面处理工艺、精密微组装、微小零件加工等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微波集成电路在片测试仪、片上天线测试仪、三维封装天线测试仪等仪器中的应用。考核指标:2.92mm 连接器探针:工作频率DC~40GHz,插入损耗≤1.5dB;2.4mm 连接器探针:工作频率DC~50GHz,插入损耗≤1.5dB;1.85mm 连接器探针:工作频率DC~67GHz,插入损耗≤2.0dB。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.12 精密大带宽锁相放大器研究目标:开发精密大带宽锁相放大器,突破大带宽数字调制、高分辨率数模转换和高精度相位解调等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微弱信号探测、光谱测量及分析、电子束测量及能谱分析等仪器中的应用。考核指标:频率范围 0~50MHz;输入电压噪声≤5nV/√Hz;动态储备≥120dB;满量程输入灵敏度≤1nV;A/D≥14bit;相位分辨率≤1μdeg;频率分辨率≤0.7μHz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力, 经用户试用,满足用户使用要求。2.13相位型液晶空间光调制器研究目标:开发相位型液晶空间光调制器,突破大相位调制深度、高帧率驱动、高抗激光损伤等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束整形仪、波分复用仪、单色仪、超快激光加工机、激光打标机等仪器设备中的应用。考核指标:像元数≥1920×1080;相位范围≥2π(1064nm);相位灰阶≥8bit;填充因子≥92%;衍射效率≥80%;刷新频率≥ 100Hz;最大输入光功率密度≥50W/cm2。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.14 X 射线椭球聚焦镜研究目标:开发 X 射线椭球聚焦镜,突破 X 射线椭球聚焦镜制作、性能检测、高精度装校等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在 X 射线衍射仪、X 射线散射仪和X 射线成像仪等仪器中的应用。考核指标:工作能段 1~8keV;聚焦斑点≤100μm;口径≥15mm;聚焦镜长度≥30mm;镜面表面粗糙度≤0.5nm(rms);反射率≥70%。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.15双频短相干激光光源研究目标:开发双频短相干激光光源,突破激光线宽调制、高稳定低频差调制、高精度光程匹配与高效率耦合等关键技术, 开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在任意曲面测量、大口径干涉测量和平面干涉测量等仪器中的应用。考核指标:中心波长 633nm;相干长度≤300µm;功率≥1mW(单模光纤输出);双频频差 5Hz 和 10Hz;频差不稳定度≤1%;光程匹配范围≥100mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级; 至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。2.16高稳定度高压电源研究目标:开发高稳定度高压电源,突破高电压长时间稳定控制、低纹波噪声抑制和低温度漂移控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在电子显微镜、离子显微镜等科学仪器中的应用。考核指标:加速电压-20V~-35kV(可调),纹波≤20mV,稳定性≤10ppm/15 分钟;抑制级电压-200V~-1kV(可调),纹波≤ 15mV,稳定性≤10ppm/15 分钟;引出级电压:1kV~6kV(可调),纹波≤15mV,稳定性≤10ppm/15 分钟;灯丝电源电流 0~3A(可调)、电压 0~5V(可调),电流稳定性≤0.5mA/1 小时。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.17 多通道可变分辨率数据采集卡研究内容:开发高速数据采集卡,突破高密度多通道隔离设计、多通道同步采集和噪声抑制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在超声检测仪、电子显微镜、扫描探针显微镜等仪器中的应用。考核指标:采集通道单端 16 路/差分 8 路,每通道采样率和分辨率可设置;采样率 50kSa/s,分辨率 24bits,噪声电平 3.4μVrms;采样率 500kSa/s,分辨率 24bits,噪声电平 4.3μVrms;采样率1MSa/s,分辨率 22bits,噪声电平 13μVrms;采样率 5MSa/s,分辨率 20bits,噪声电平 31μVrms;采样率 10MSa/s,分辨率 18bits, 噪声电平 92μVrms;采样率 15MSa/s,分辨率 16bits,噪声电平401μVrms。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。3 高端化学试剂研制3.1高端金属与配体试剂制备关键技术研发研究内容:开展广泛应用于偶联、氧化、还原、加成、聚合反应的金属试剂(钌、铑、钯、铱、铂、铜、镍、铬、锰、铁、钴、锂及其各种价态的金属试剂)的制备方法和批量生产技术研究,研发具有自主知识产权的金属试剂;发展并建立具有重要应用价值的配体,特别是手性配体(含磷、氮、氧、硫配位原子的手性配体、手性烯烃配体和卡宾配体)的高效合成方法和批量制备技术,以及研发基于研究基于上述配体的新型高效金属催化剂, 开展其在化学、化工、医药以及新材料中的应用示范研究。考核指标:建立高端金属试剂、配体试剂自主知识产权体系,申请专利 20 项以上,实现重要金属试剂、催化剂以及配体的批量制备能力,包括 1)建立 50 个以上高纯(≥99%)金属试剂百克级规模的制备技术和质量控制标准;2)建立 100 个以上高纯手性配体和手性催化剂(纯度≥99%,≥99%ee)的克级规模的 制备技术和质量控制标准,形成 5 项以上企业或行业标准,并研发 15 个以上具有自主知识产权的手性配体和手性催化剂。3.2有机氟试剂研制研究内容:利用我国储量丰富的氟资源(萤石),研发新型亲电/亲核氟化、氟烷基化、氟烯基化、氟烷杂基化、[18F]同位素标记氟化试剂,开发具有我国自主知识产权的氟化学试剂,发展经济可行性好的合成工艺,实现原创试剂的批量化制备,并建立高纯氢氟酸的制备方法,把资源优势转化为技术优势,并利用原创性试剂,有力促进催化科学、含氟新材料和药物等方面的创新研究。考核指标:建立系列氟化学试剂的合成方法,形成 40 个以上具有自主知识产权的氟化、氟烷基化、氟烯基化、氟烷杂基化试剂(纯度≥99%)的批量制备技术并实现商品化,研发的试剂 列入国内外知名试剂销售商的产品目录,实现在国内外销售,催生 15~20 项原创性氟化、氟烷基化、氟烯基化、氟烷杂基化新技术;突破 8~10 项基于氟化试剂的[18F]标记探针(丰度≥90%,纯度≥99%)的合成技术;建立氟化学试剂从原料、合成、工艺到产品全流程自主知识产权体系,申请专利 15 项以上,实现高纯氢氟酸和若干重要氟化学试剂的批量制备能力,并制定质量控制标准。4 应用于重大疾病诊断的生物医学试剂创制与应用4.1近红外活体荧光成像诊断试剂体系研究开发研究内容:针对恶性肿瘤、心脑血管等重大疾病的早期精准诊断挑战,根据特异性标志分子、病理微环境特性等,发展高特异性抗体及抗体导向的响应近红外荧光成像试剂,建立高组织穿透深度、高时空分辨率、高灵敏的诊断技术方法,揭示重大疾病的发生发展机制;开发系列诊疗一体化近红外荧光成像试剂,实现在“可视化”药物筛选与评价、光热与光动力治疗、免疫治疗、荧光指导的手术导航等领域的应用;建立红外二区荧光成像试剂的安全性评价方法和标准化、规模化制备方法与流程,推进临床转化。考核指标:建立近红外荧光成像材料的可控制备技术,研发4~6种高性能近红外成像材料(含有机分子、稀土材料、量子点、荧光蛋白等)并实现百克级量产,发光波长达1000~1700纳米, 荧光量子效率20%;研发5~8种重大疾病靶向的特异性抗体,并实现与荧光材料的耦联,发展高性能近红外荧光成像试剂,实现生物组织穿透深度1.8cm;对4.2先进高场磁共振设备高分辨影像试剂研究开发研究内容:拟针对现有磁共振诊断试剂在高场下灵敏度低的难题,研发具有原始创新性的先进高场磁共振影像试剂,发展在体、实时、无创成像的新技术;为国产高端磁共振设备提供具有完全自主知识产权的高分辨率影像试剂,实现高场磁共振影像在生物医学应用的新突破,满足重大疾病微小病灶早期成像以及疾病区域血管等精细组织成像的重大需求;建立评估高场磁共振诊断试剂的生物安全性评价机制,建立试剂量产质控体系和标准品, 推进其向临床转化。考核指标:研发3~5种高性能磁性纳米材料并实现公斤级量产,在7T以上的高场条件下,试剂的横向弛豫率与纵向弛豫率比值(r2/r1)≤2;试剂在水相中保持稳定分散时间不少于1年。作为高场磁共振影像试剂,其在磁共振成像应用中应达到接近组织病理学检测水平的诊断灵敏度,实现接近组织病理学检测水平的诊断灵敏度,对5 同位素试剂典型同位素试剂研发与科研试剂评价技术标准研究研究内容:建立稳定可控的同位素试剂制备流程,开展制备方法标准化和程序化研究,进行产品重现性和稳定性的测试,研究高丰度无机同位素试剂制备和丰度测量技术;研究以13C、2H 同位素标记为代表的系列有机同位素标记物的共性制备、纯化和测量技术,开发2H 和13C 标记同位素标记物;研究基于13C、15N 稳定同位素标记的新型大分子同位素标记物;研制基于核反应堆和回旋加速器的放射性同位素试剂及溶液标准物质;研制高纯试剂、同位素试剂、生化试剂等的质量评价技术体系,包括质量评价共性技术方法、评价用质控物质,和评价规程规范。考核指标:制备无机同位素试剂 8 种,每种至少 1 克,总量不低于 50 克,丰度≥90%,纯度≥99%;开发食品环境检测用2H、13C 取代同位素标记物17~20 种,各1 克,丰度≥98%,纯度≥98%,或不低于进口产品;核设施安全运行监测用 8 种放射性同位素质控物质,不确定度优于 1.5%,单种放射性同位素产能 3.7E11 Bq/ 年,γ放射性不纯度13C、15N 稳定同位素标记大分子同位素标记物 2 种;建立同位素试剂检测方法 12~15 种; 高纯试剂、同位素试剂、生化试剂等共性关键指标评价技术方法20 种、评价用参考物质 30 种、规程规范 8~10 项,建立科研试剂质量评价技术体系 1 套,开展重点领域科研试剂质量评价示范应用 10~15 次。6 人类疾病动物模型创制研究6.1人类重大传染病基因修饰动物模型研发研究内容:针对 SARS-CoV-2、SARS、MERS、H7N9、Zika等病毒感染造成的人类重大传染病,研究以小鼠和大鼠等动物为主要实验载体的基因编辑动物模型的创新技术体系,研发一批适用于对某类(些)疾病发生机制进行多维度解析和新药研发与安全性评价等领域有重要应用价值的系列化基因编辑动物模型。开展基因编辑动物模型表型分析与评价技术平台建设的研究,以及病理学图谱的研究。开发相应疾病动物模型数据库和动物资源库, 为阐明相关疾病发病机制、验证新的药物靶标和新药开发与疫苗评价等提供基础条件。考核指标:建立完整的以小鼠和大鼠等动物为主要实验载体的基因编辑动物模型创新技术。完成 10~15 种符合人类重大传染病临床特征的新型基因修饰动物模型。建立和完善与这些疾病相关的动物生理生化、组织功能、动物行为学及免疫学检测技术和表型分析方法,以及动物模型技术指标体系和评价技术平台。完成描述和绘制新建人类重大传染病动物模型的动态演变规律和靶器官细胞分子演化图谱,以及不同阶段典型的病理学图谱,揭示其生理和病理意义。建立相关疾病动物模型数据库和生物学数据库。完成新建疾病动物模型相关的专利申报,并实现创建的新型疾病动物模型与现有国家实验动物资源库的整合。6.2心血管、代谢性疾病等基因修饰动物模型研发研究内容:针对人类心血管(冠心病、心肌梗死、心力衰竭、高血压、心肌缺血/再灌注损伤等)、代谢性(肥胖、糖尿病、非 酒精性脂肪肝病等)疾病等严重危害人民健康的重大疾病,研究以小鼠和大鼠等动物为主要实验载体的基因编辑动物模型的创新技术体系,研发一批适用于对某类(些)疾病发生机制进行多维度解析和新药研发等领域有重要应用价值的系列化基因编辑动物模型。建立动物模型制备技术体系,开展基因编辑动物模型表型分析与评价技术平台建设的研究。利用所研发的疾病动物模型, 深入研究主要心血管和代谢性疾病的发生机制,开发关键治疗靶点。建立相关疾病动物模型不同阶段典型的病理学图谱,揭示其生理和病理意义。开发相关疾病动物模型数据库、样本资源库和生物数据库。考核指标:建立多位点、多易感动物基因的疾病动物模型和完整的动物模型制备技术体系,完成以小鼠和大鼠等动物为主要实验载体的 50 种人类心血管和代谢性疾病等基因编辑动物模型。完成不少于 50 种疾病动物模型评价流程、技术指标体系及评价技术平台,以及不同阶段典型的病理学图谱,揭示其生理和病理意义。利用新建疾病动物模型研究 30 种以上主要心血管和代谢性疾病的发生机制,发现 20 个以上关键药物靶点。建立疾病动物模型数据库和模型资源库,以及相关疾病动物模型的生物数据库。完成新建疾病动物模型相关的专利申报,实现创建的新型疾病动物模型与现有国家实验动物资源库的整合。6.3基于特色实验动物的人类疾病动物模型创建及关键技术研究研究内容:在已建立的长爪沙鼠、东方田鼠、裸鼹鼠、高原鼠兔、树鼩、非人灵长类等动物的标准化种群基础上,选择已有较好研究基础和重要应用潜质的动物开展人类疾病动物模型的研究。重点支持利用基因编辑、物理干预、化学诱导等技术,研究病因性阿尔茨海默症、帕金森病、代谢性紊乱、辐射损伤、脑缺血、血吸虫病等动物模型。解决利用这些特色动物创制人类疾病动物模型的关键技术难点,建立疾病动物模型评价体系,系统描述和绘制疾病动物模型病理学图谱,开发疾病动物模型数据库。考核指标:根据选定的研究目标、研究技术和特色实验动物种类,完成 4~6 种人类疾病动物模型的制备,建立完善的动物模型的创制技术和评价技术体系。完成相关疾病动物模型不同阶段典型的病理学图谱。完成新建疾病动物模型相关的专利申报或新种鉴定,实现新建疾病动物模型与现有国家实验动物资源库的整合。有关说明:本方向拟支持不超过 6 个项目。7 国家实验动物资源库服务质量提升国家实验动物资源库服务科技创新能力提升关键技术研究与示范研究内容:以国家实验动物资源库已有资源和已建立标准化种群的实验动物新品种新品系为主要对象,开展遗传选育、资源保藏、生物净化、品种品系鉴定等技术,以及相关生物学特性深度挖掘、数字化描述和数据汇交等方面的研究;开展实验动物新资源创建关键核心技术研究,利用具有较好前期研究基础和重要应用潜质的资源动物,采用动物种群生物学和种群基因组学技术培育实验动物新品种新品系。研发符合标准要求的规模化生产关键技术,形成具有一定规模的保藏与供应的实验动物资源平台, 提升国家实验动物资源平台技术能力和资源共享服务水平。考核指标:建立完善的 SPF 级实验动物的遗传育种、资源保藏和生物净化等技术体系、实验动物新品种新品系的鉴定技术体系和技术平台。完成培育不少于 10 种实验动物新品种新品系, 并建立SPF 实验动物种群。完成不少于 20 个实验动物品种品系生物学特性的数字化描述,建立不少于 5000 个生物学特性指标的数据库。国家实验动物资源库与其他资源保藏机构共同构成的资源平台,所保藏与共享服务的实验动物资源种类覆盖我国常用实验动物品种品系 80%以上,供种满足率达到 70%以上。实现不少于 5 种具有自主知识产权的实验动物新品种新品系与现有国家实验动物资源库的整合。8 实验动物质量评价实验动物质量评价关键技术研究(青年科学家项目) 研究内容:参照国际先进的实验动物质量标准,研究实验动物微生物和寄生虫的病原/抗体检测方法;研究常用实验动物 SNP等遗传质量检测技术;建立针对病原微生物和寄生虫的特异、敏感、稳定的病原/抗体检测方法和相关技术规范;研制假病毒库, 建立实验动物免疫后中和抗体评价方法和技术规范;建立达到国际先进水平、适于自动化操作的封闭群和近交系实验动物 SNP 等遗传检测方法体系。所有新建检测方法技术指标(敏感性和特异性等)符合相关标准或技术指南要求。考核指标:由申报单位自主设定。实验动物病原快速检测新技术研究(青年科学家项目) 研究内容:开展实验动物人兽共患病、烈性传染病、新发和再发传染病的分子病原学检测技术,以及高通量筛查与鉴别、基因芯片和快检技术等新技术和新方法研究;建立高通量筛查与鉴别、基因芯片和快检方法及技术规范。所有检测方法技术指标(敏感性和特异性等)符合相关标准或技术指南要求。考核指标:由申报单位自主设定。9 科学数据分析挖掘应用关键技术与软件系统9.1 生物大数据管理和分析关键技术与系统研究内容:面向生物大数据管理、深度挖掘和转化应用等核心技术方面的短板,研发生物大数据汇交质控、发布更新等全生命周期的智能化管理系统;研究基于海量大数据的基因组序列精准定位、生物信息库多源融合及跨库检索等关键方法;建立生物大数据与文献信息关联融合机制,研发海量生物文献关键信息提取及其与数据共享互联的关键技术;优化现有基因组变异演化分析等生物信息学方法,建立对基因组重要功能位点突变的快速自动化监测和基于基因型网络推演重大疾病感染途径及传播路径的实时智能追踪系统;建立人工智能网络模型,开展肿瘤和心脑血管等疾病演变模式分析,实现疾病精准诊断、个体化治疗和健康管理等重大临床需求。考核指标:形成具有PB 级数据处理能力的生物大数据智能化管理系统等应用软件 5 项以上、基于海量大数据的基因组序列精准定位等分析挖掘的关键算法 5 项以上;形成生物信息库多源融合及具有上亿条记录处理能力的跨库检索等关键方法 2 项以上;研发 2~3 种肿瘤和心脑血管疾病全景式演变模式的人工智能分析模型;在国家生物类科学数据中心开展战略生物资源、人类遗传资源方面的应用,部署 100 种以上生物信息软件和流程,关联 100 个以上生物信息数据库,集成不少于 50PB 的组学原始数据等各类生物学数据;形成生物数据管理和分析的专利或软件著作权。9.2 微生物科学数据管理与挖掘关键技术与应用研究内容:研究以微生物科学数据为重点的微生物数字信息管理、汇聚、共享和安全保障的数据治理技术体系,研究微生物菌、毒种标本、样本的图像、图谱、序列等信息数据的高效识别与实时处理技术,建立符合国际标准的新型智能管理软件系统; 研发针对海量微生物相关科学数据的加密与脱敏软件工具;研究微生物表型、基因型、免疫性、形态图谱等数字资源整合与挖掘技术,研发智慧化微生物数据挖掘和分析模型、软件系统;研究面向海量异构微生物资源信息数据的垂直检索、关联整合与可视化技术,结合知识图谱和智能识别技术,实现基于科学数据在食品安全、口岸安全等领域的智慧化多点信息监控和应用示范。考核指标:建立一套符合国际标准的覆盖细菌、真菌、病毒的二十种以上微生物数据的智能化整合挖掘软件系统;建立微生物资源数据治理体系、数据安全分析体系和数据安全保障技术体系,形成 3~5 项微生物科学数据安全与管理标准,开发基于区块链技术的微生物数据隐私计算技术平台,支撑千万级数据的实时分析;整合新建超过 50 亿条微生物科学数据与文献数据的知识图谱,在国门生物安全、食品安全等方向建立应用示范,在金砖、一带一路沿线等不少于 30 个国家进行推广应用;围绕微生物科学数据的智能管理与挖掘应用形成一系列专利与软件著作权。9.3 生态系统大数据智能管理与挖掘关键技术及应用研究内容:面向我国生态文明建设国家战略,依托我国不同类型生态系统野外观测研究台站,研发耦合人工、自动等多源、高频观测数据的多层次的生态系统大数据管理软件系统;建立标准化生态台站监测数据质量控制和数据产品开发体系,研发基于工作流的生态数据产品软件工具;整合联网观测、地面调查、卫星遥感、文献等多源异构生态数据,研究多源生态数据时空挖掘、融合和数据同化技术,发展耦合人工智能和生态过程模型的生态系统质量评估模型与预测技术体系,研发生态系统大数据挖掘与预测软件系统;提高我国生态系统观测研究台站自主的数据处理分析挖掘能力,支撑我国生态文明建设。考核指标:建立一套覆盖农田、森林、草地、湖泊等多种生态系统类型的长期生态监测数据的智能化管理系统软件,在不少于 10 个野外台站以及中亚一带一路沿线国家野外站推广示范应用;整合形成超过 30 个以上野外台站的长序列生态类监测数据产品,建立标准化的生态监测数据质控软件工具和产品开发工具, 生态系统大数据分析挖掘和预测系统 1 套,在科学数据中心部署应用,并在国家生态系统质量评估中开展示范;形成生态系统大数据挖掘与管理方面的软件著作权和专利。9.4 场景驱动的海洋科学大数据挖掘分析关键技术与应用研究内容:针对海洋观测、监测、调查、统计等数据的多源多维异构特征,研究海洋科学大数据存储管理、融合分析、关联挖掘等关键技术,构建大数据在线存储分析引擎;突破多源海洋环境数据的多尺度多要素同化技术,建立自主化高分辨率海洋数值模式,研制多区域、高精度、长时序的海洋环境信息产品;构建集传统统计分析方法和大数据方法于一体的海洋经济与资源环境协调发展分析和预测模型,面向空间资源开发利用、生态环境修复等典型应用场景建立知识图谱;研发集算力—数据—模型— 知识于一体的海洋科学大数据融合分析软件,在沿海地区经济布局优化、产业提质增效、资源集约利用等领域开展示范应用,提升海洋科学数据增值服务能力。考核指标:海洋大数据在线存储分析引擎 1 套,支持超大规模数据的并发在线交互计算分析能力,集成多源要素融合、特征提取、关联分析、可视分析、统计分析、机器学习等方法算法不少于 6 种,典型分析计算响应时间不超过 5 秒;自主化海洋环境大数据超分辨率融合分析模型 1 套,中国海区 1/12°和海区 1/30° 海洋环境要素信息产品各 1 套,海洋资源和生态环境综合数据集各 1 套;建立基于大数据的海洋经济与资源环境融合分析和预测指标体系及模型各 1 套,形成海洋典型应用场景通用知识图谱构建框架,建立海洋空间规划应用、海域海岛管控与开发利用等知识图谱不少于 2 套;海洋科学大数据融合分析软件 1 套,在沿海地区开展示范应用;有关软件系统在科学数据中心得到部署应用, 形成保护相关技术方法、模型和软件的知识产权。9.5 卫生健康科学大数据智能分析与挖掘关键技术与应用研究内容:面向人民生命健康,研发多源卫生健康科学大数据汇聚管理、多维特征刻画、深度整合、大规模智能语义搜索和可视化关键技术,研究多病种及人群特征数据智能筛选、抽取和建模方法,研发集成疾病危险因素分析、病例跨时空分析、疾病风险预测等多种智能挖掘算法和功能的协同分析系统和系列工具;研究卫生健康科学大数据跨域、跨机构共享机制及隐私感知与计算、关联识别、自动分类和智能自适应脱敏算法以及卫生健康科学大数据安全态势感知与监测预警关键技术;研究医学影像辅助判读、临床病历智能提取和标注、多病种知识图谱自动构建关键技术,在疾病风险预测、临床辅助决策、药物不良反应监测、健康管理等领域开展应用示范。考核指标:研发一套面向PB 级卫生健康科学大数据的智能语义搜索、高效融合、特征抽取、深度挖掘的一体化、智能化数据管理和协同分析平台,具备万级用户并发访问能力;研发大数据应用所急需的具备高扩展性、高性能的智能人群分层、特征识别、疾病风险因素挖掘分析等工具软件不少于 10 个;研发可与国际主流产品可比的卫生健康科学大数据跨域共享和隐私保护、安全多方计算、安全感知预警等工具软件不少于 10 个;研发医学影像辅助判读、临床电子病历智能化提取和标注等软件工具不少于 10 个;研发融合多源异构卫生健康大数据的知识图谱自动构建工具 1 套,并建立融合不少于 20 个病种的具有高可更新性、可迁移性的知识图谱,有效支撑医学语义搜索、智能问答以及临床决策。研发的软件工具可独立发布部署,形成系列相关专利和软件著作权,并在国家科学数据中心应用部署,在临床、教育、科研等机构推广应用,应用示范单位不少于 20 家。9.6 面向国家科学数据中心的基础软件栈及系统研究内容:面向国家科学数据中心实现科学数据的发现、获取、分析、利用等需求,研发自主的科学数据中心基础软件栈及系统;面向科学数据全局可发现和可信共享需求,研究科学数据标识、建模方法和互操作、可信存证技术,支持数据确权和流转追溯;研究面向分析的科学数据加工处理流水线技术,研发面向领域的大数据处理流水线管理调度系统;研发面向多学科跨领域数据的融合管理系统和搜索引擎,支持结构化/非结构化数据的融合存储与查询;面向大数据集成分析需求,研发安全隔离的交互式云分析服务引擎,形成面向领域应用多编程语言、多算法环境、多适配版本的大数据分析环境,为科研人员提供在线编程和在线工作流交互分析服务。考核指标:构建科学数据与分析软件共享社区,在科学数据的标识、可信存证、跨中心互操作等方面形成一套自主的关键技术与软件体系。标识系统支持国家标准与国际主流科学数据标识的双标识注册解析与服务,系统存证的吞吐能力10 万TPS;数据处理系统具备完整、可追溯的数据汇聚、清洗功能,具备跨中心调度能力,处理性能优于 1000 万行/秒;融合管理系统支持 100 亿级实体和关系、1000 亿级非结构化数据对象的融合存储,提供标准的统一查询语言,科学数据搜索引擎可检索的科学数据集不少于 500 万个,覆盖生物、生态、农业等领域,实体数据量不低于 1PB;软件体系在不少于 5 个国家科学数据中心进行示范应用;在核心技术方向申请专利或软件著作权。10 科学数据自主应用软件科学数据自主应用软件研发(青年科学家项目)研究内容:针对大规模文本、图像、图谱、序列、遥感影像、数值等具有典型特征且在多个领域广泛普适的科学数据类型,面向海量科学数据分析的应用场景,发展数据分析和挖掘技术,开展智能分析挖掘方法的研究,研发具有自主知识产权的软件或软件系统,并在科学数据中心示范应用。考核指标:由申报单位自主设定。
  • 500us(2KHz)高速纯相位液晶空间光调制器(SLM)面世!
    纯相位液晶空间光调制器的液晶响应速度多年以来一直受限于60Hz的数据传输及30-140ms的液晶响应时间限制,无法实现高速的调制,不能满足相控阵扫描,自适应光学等高速调制应用的使用要求。一直以来,纯相位空间光调制器的速度到底可以做到多快?一直备受科研工作者的关注。 美国Meadowlark公司近日推出了高液晶响应速度(2KHz at 532nm)、高光利用效率(98%)、高填充因子(97.2%)、高分辨率(1024x1024)的纯相位液晶空间光调制器。500us(2KHz)高速纯相位液晶空间光调制器(SLM)产品特点:1) 液晶响应速度快:2KHz at 532nmMeadowlark Optics的硅基液晶(LCoS)空间光调制器(SLM)专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。这种组合为用户提供了具有高相位稳定性的最快响应时间(500us fall time)。图1 液晶响应时间 1024 x 1024 SLM非常适合需要高速、高衍射效率、低相位纹波和高功率激光器的应用。客户还可以控制温度设定点,从而在开关速度和相位稳定性之间找到完美的平衡。1024 x 1024 空间光调制器系统包括一个Gen3 x8 PCIe控制器,带有输入和输出触发器以及低延迟图像传输。触发可以在696µs的SLM芯片刷新周期边界上执行,对于需要SLM与外部硬件紧密同步的应用,甚至可以在刷新周期中间执行。该控制器还包括可加载752幅1024x1024(8bit)图片的内部存储器,可以提前加载,然后全速排序,以便在操作期间最大限度地减少PCIe总线上的流量。 2)光利用效率高:Up to 98%Meadowlark公司可提供镀介质镜型号的SLM,填充了像素间的间隙,使液晶空间光调制器的面积填充率达到100%,提高反射率、降低衍射损耗。镀介质镜型的SLM可以在400-1700nm工作波段范围内轻松实现98%(Max)的光利用率,同时降低了激光引起的热效应,提高了SLM的损伤阈值,以满足高功率脉冲激光调制和激光加工等应用需求。图2 镀介电膜的SLM反射率曲线图3 SLM损伤阈值测试 3) 高波前质量(λ/20)许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。已经开发了基于SLM的干涉子孔径的替代策略[9],以确保SLM的有效区域上的像差可以被校正到λ/ 40或更好。图4(a/c)未校准的SLM波前(λ/ 7 RMS)(b/d)校准后的SLM波前(λ/ 20 RMS)上海昊量光电作为Meadowlark Optics公司在中国大陆地区独家代理商,为您提供专业的选型以及技术服务。上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站了解更多的液晶空间光调制器产品信息,或直接来电咨询。
  • 激光干涉测量:“聆听”宇宙的声音
    激光干涉测量助力空天探索 在空天探索领域,空间引力波探测是当前国际研究热点,作为人类观测宇宙的新窗口,引力波将为人类探索早期黑洞合并、超新星爆发等宇宙结构形成过程提供观测手段,对探索宇宙起源与演化具有重要的意义。为了探测中低频段的空间引力波,国内外研究人员计划在相距数十万乃至数百万千米的空间轨道上建立超高灵敏度星间激光干涉系统,该方法的本质是将现有的激光干涉超精密测量技术应用到外太空去,突破地面探测臂长的限制,摆脱地面各种干扰源对精密测量的影响。其关键技术是测量相距数百万公里的两个测试质量之间的间距变化,主要包括:测试质量与卫星平台之间的间距变化、两个卫星平台之间的间距变化,前者涉及到测试质量的多个自由度精密检测,探测灵敏度需要在1 mHz~1 Hz频段达到~1 pm/Hz1/2(平动)以及~1 nrad/Hz1/2(转动)水平。揭秘空间引力波探测的原理 空间引力波探测任务需要实现对测试质量皮米量级的平动测量以及纳弧度量级的转动测量,关键技术单元包括:激光外差干涉、差分波前传感以及高精度相位测量三部分,如图1所示,通过测量两测试质量之间的平动转动,获得其间距变化信息,从而探测引力波信号。图1面向空间引力波探测的激光外差干涉多自由度超精密测量技术示意图激光外差干涉 激光外差干涉测量原理如图2所示,频率相近的两束激光(测量光频率f1,参考光频率f2)合束后,合成波(频率为f1+f2)会存在一个包络,其频率为|f1-f2|,这一包络频率也被称为外差频率。 当测试质量在沿测量光传播方向上运动状态改变、或者引力波来临时,干涉仪的测量臂光程发生变化,表现为外差干涉信号的相位波动,即图2中紫色虚线部分。以经典迈克尔逊干涉结构为例,外差干涉信号相位的一个周期变化对应位移变化半波长(光程变化一个波长),有 其中,λ为激光输出波长,L为测试质量的等效位移,φ为外差干涉信号的相位变化。图2 激光外差干涉原理示意图差分波前传感 差分波前传感是一种基于激光波前相位比较的高精度角度测量方法,测量原理如图3所示。测量光与参考光合束后入射至四象限探测器表面,两束光满足干涉条件产生外差干涉信号,照射在探测器四个象限后会分别产生四路干涉信号。当测量目标平动时,四路外差干涉信号相位发生相应波动,与采用普通光电探测器的原理相一致;当测量目标转动时,测量光的波前相对参考光发生偏离,由于四象限探测器具有一定的空间间距,导致四路外差干涉信号的相位波动并不相同,通过对比不同象限的干涉信号相位差异,可以反演得到测量目标在水平方向和竖直方向上的转动角度,有 其中,θh为水平转动角,θv为垂直转动角 ФA/B/C/D为不同象限的外差干涉信号相位变化 kh/v为比例系数,由光束参数以及四象限探测器的几何参数共同决定,实验中常用偏摆镜配合自准直仪进行标定。图3 差分波前传感和四通道拍频信号波形示意图高精度相位测量 高精度相位测量可以通过锁相放大器或者相位计来实现,其基本原理如图4所示,外差干涉信号转化为电信号后与本地时钟(或外部参考)及其正交信号混频,低通滤波后分别得到Q信号(quadrature)和I信号(in-phase),计算I/Q反正切值并作相位解包裹运算得到相位差,Q信号作为相位误差信号反馈至本地可调时钟,更新本地时钟输出频率从而保持与输入外差干涉信号频率一致,形成锁相环路。图4 相位测量基本原理[1]国内外干涉仪研究进展LISA LISA (Laser Interferometer Space Antenna)是于1992年发起的一项探测1 mHz~1 Hz频段引力波信号的科学研究计划,这是最早开始、也是目前国际上发展最成熟的空间引力波探测计划,其中一项关键技术是实现测试质量的超高灵敏度多自由度测量。 2012年,德国汉诺威大学的Marina Dehne等人设计搭建了一套用于验证测试质量干涉仪噪声源及其消除技术的激光外差干涉测量系统,分析了多个噪声源(激光频率、激光强度、激光指向漂移、温度、偏振态、移频驱动边带、杂散光等)对相位读出的影响,并研究了多种噪声消减数据处理方法,在空间引力波探测目标频段成功实现了~1 pm/Hz1/2的超精密位移测量。 图5给出了LISA激光干涉平动转动测量技术发展时间线,该计划从提出开始,经历地面模拟论证、噪声源探索、技术卫星验证、光路布局优化测试等,距今已经开展了三十余年,其中用于测试质量多自由度测量的激光外差干涉技术灵敏度已经突破1 pm/Hz1/2和1 nrad/Hz1/2。目前光学干涉平台布局处于优化设计阶段,激光外差干涉超精密测量技术是否能够实现百万公里距离的两测试质量之间的皮米级平动测量并成功探测到宇宙深处的引力波,这仍然需要时间来给出答案。图5 激光干涉平动转动测量技术发展时间线(LISA)太极&天琴 2008年,我国科学家开始探讨中国的空间引力波探测计划,并于2012年正式成立了空间引力波探测工作组,2014年提出基于“日心”轨道和“地心”轨道两个独立的探测方案,即太极计划和天琴计划[2-3]。目前两者均形成了较为完备的星间激光干涉测量方案。 同LISA一样,太极和天琴于2019年分别发射了太极一号和天琴一号技术验证卫星,所搭载的光学干涉平台如图6所示,前者采用殷钢材料制作光学干涉平台基座、后者则采用光粘的方式来提高干涉装置的热稳定性,两者都包含有前端光程参考干涉仪和测试质量测量干涉仪。测试实验最新结果表明,空间激光干涉仪可以实现毫赫兹频段皮米量级的超精密位移测量,标志着我国在空间引力波探测中用于测试质量的激光外差干涉测量技术研究正逐渐走向国际前列。图6 我国空间引力波探测技术验证卫星激光干涉平台(a)太极一号[2](b)天琴一号[4] 其他 2021年,美国德州农工大学提出了一种一体式外差干涉仪,将分光镜波片等关键镜组胶粘成一个整体,提升干涉仪稳定性,并通过抽真空、被动控温、噪声建模消减等措施最终实现了33 pm/Hz1/2@0.1 Hz的平动测量。 2022年,清华大学谈宜东团队提出了一种用于测试质量五自由度测量的偏振复用双光束干涉仪,光路设计如图7所示,包含参考干涉仪(RHI)、双光束干涉仪(DBHI)和偏振复用干涉仪(PMHI),初步实验在10 mHz~1 Hz频段实现了优于10 pm/Hz1/2 以及20 nrad/Hz1/2的平动转动灵敏度测量。图7 偏振复用双光束激光外差干涉五自由度测量系统星辰宇宙,未来可期 “此曲只应天上有,人间难得几回闻”,如果说引力波是携带着浩瀚宇宙信息的乐曲,那么激光干涉超精密测试技术就是用来“听曲”的最灵敏的传声筒。在空间引力波探测领域,我国的激光外差干涉多自由度超精密测量技术相比于欧美LISA团队仍处于跟跑阶段,但未来有希望实现并跑甚至领跑。而且,空间引力波探测中涉及的外差干涉技术,可以对长度量进行高精度、大量程的超精密测量,可扩展应用于下一代高速、超精密二维或三维运动台的精确定位与运动控制,进而支撑我国超精密加工制造、IC 装备及尖端航空航天科技的发展,对于国民经济和工业建设有着重要的实际意义[5]。全文下载:空间引力波探测中的激光干涉多自由度测量技术.pdf参考文献:[1]Schwarze T S.Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Institutionelles Repositorium der Leibniz Universität Hannover, 2018.[2] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021(5), 05A108.[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3): 035010.[4]Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.[5] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用.中国激光,2021,48(15) : 1504001.作者简介 谈宜东,清华大学精密仪器系,长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。 主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等项目40余项。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表 SCI 论文 100余篇,授权发明专利36项,在国际会议Keynote/Plenary/Invited报告40余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。课题组介绍 清华大学精密仪器系激光技术与精密测量应用课题组,在激光器件及其物理效应、精密测量应用等方面开展了大量的工作,构成了从基础器件的设计和发明,到物理现象和效应的发现,进而在发现基础上的仪器发明,直至仪器的推广和应用这一较为完整的体系。先后研制了双折射-塞曼双频激光器及其双频激光干涉仪,实现了成果转化,成规模应用于国家02专项以及中芯国际、吉顺芯等公司进口光刻机干涉仪的替换;基于激光回馈原理的无靶镜纳米测量干涉仪,用于国家多个重点型号工程,包括:高分四号、一号以及激光聚变点火等。课题组还开展了远距离激光侦听、激光回馈调频连续波绝对测距、生化检测、pm量级灵敏度的激光干涉超精密测量技术(引力波专项)等研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制