当前位置: 仪器信息网 > 行业主题 > >

超高温恒温器

仪器信息网超高温恒温器专题为您提供2024年最新超高温恒温器价格报价、厂家品牌的相关信息, 包括超高温恒温器参数、型号等,不管是国产,还是进口品牌的超高温恒温器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高温恒温器相关的耗材配件、试剂标物,还有超高温恒温器相关的最新资讯、资料,以及超高温恒温器相关的解决方案。

超高温恒温器相关的资讯

  • 北斗仪器最新款CA600型超高温真空接触角测量仪
    超高温接触角测量仪原理介绍:接触角(Contact angle)是指在气、液、固三相交点处的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ,是润湿程度的量度,是现今表面性能检测的主要方法。由主体支架、专用光源、远焦镜头、工业成像CCD、高温高真空炉体、水循环冷却系统、真空泵、专用分析软件等组成。超高温接触角测量仪的应用: 在高温真空条件下,通过视频光学原理,测试各种材料的润湿铺展性能;目前已经广泛应用于陶瓷材料研究、金属材料研究、钎焊研究、航空航天材料研究、钢铁冶炼研究、复合材料研究等众多高校院所及企业。研究材料在高温状态下熔体与其相应的基底材料间的接触角变化规律。对于高熔点材料能实现高真空或惰性气体保护气氛下的表界面性能测试,而对于低熔点材料能现实升降温过程中的收缩、变形、融化、润湿、铺展及凝固行为进行图像化、定量化表征。设备性价比高、加热稳定、真空度高、功能全面、可满足各种金属材料科研的需要。1、测量液态金属在高温真空状态下对基材的润湿性能,评估不同材质在高温真空状态下润湿过程及附着性能 2、研究金属与陶瓷复合材料间的润湿性能,测量金属材料在高温真空状态下熔融时,在陶瓷材料上的接触角 3、研究钎焊过程,钎料在基材上的润湿铺展过程,动态分析钎料在高温下的接触角、润湿过程 4、测量金属在不同的高温状态下,以及不同的气体保护环境下,对于不同基材的接触角变化及区别:5、分析涂层与基材的接触角,分析涂层与基材的润湿过程及铺展机理,并研究不同温度及不同气氛下,润湿性能的区别:6、研究液体与固体间的接触角,评估液体与固体的附着粘附性能,分析固体的表面自由能 7、分析焊料与焊接体的接触角值,从而有效地提升焊接强度 8、基于分析接触角及表面张力的基础,控制合理润湿范围,查找有效的去除冶炼过程中炉垢的办法。应用案例超高温接触角测量仪核心参数:型号CA600 腔内环境大气环境/真空/惰性/有氧气氛高温系统温度范围室温~1200℃/室温~1700℃长期使用温度室温~1100℃/室温~1600℃真空下温度1000/1500测温电偶1200°:N型电偶 1700°:B型国际铂铑热电偶测温精度±1℃温度控制30段程序温度设定实现复杂热处理工艺的分析升温速率常温-1000℃≤10℃/min1000℃-1600℃≤5℃/min加热体1200°HRE合金电阻丝/1700度U型硅钼棒恒温区尺寸长200mm加热管尺寸内直径50mm*长度700mm测温系统温度监控,测温材质美国钨铼合金,测量精度±0.1℃,可实时测量加热管内温度。进样方式具有快速样品制备专用工具,以及样品装载专用工具,确保样品快速定位视窗法兰专用同轴双视窗法兰,备双通道惰性保护装置,可同时或单独使用某种工艺气体对内部金属进行保护,带真空系统及保护气体管路、双水冷装置。采用进口石英材质并可快拆更换。炉膛材质1200°C内采用石英,1700°C以上采用高纯刚玉保温材料湿法真空抽滤成型制备的多晶无极氧化铝陶瓷纤维材料样品尺寸5*5*5mm真空系统真空度范围1*10-1Pa采用机械真空泵+数字流量计+真空法兰1*10-3Pa采用分子泵+复合全量程高精度真空计+真空法兰材质两级组合,在高温下达到高真空要求;泵体采用高纯度不锈钢;配置复合真空计;真空系统也可以通保护气体水冷系统温控范围温度范围:5-35℃外形尺寸约460mm(长)*380mm(宽)*590mm(高)水泵流量15L/min冷却系统容量≥11L实测制冷量1520W成像系统镜头Subpixel0.7-4.5倍超高温高清远焦距工业级连续变倍式显微镜、工作距离500mm相机日本SONY原装进口高速工业级芯片(Onsemi行曝光)传感器类型1/2.9 英寸逐行扫描CMOS分辨率1280× 1024镜头控制仰视角度:±10度,精度:1度,前后180mm(微调50mm)*左右200mm(微调50mm)帧率全局曝光高速400帧/s(最快2.5ms采集/次)视频录像功能可录制整个高温润湿过程连续测量测量间隔时间可调、实时记录、连续测量光源系统组合方式采用石英扩散膜与均光板使得亮度更均匀,液滴轮廓更清晰光源进口CCS工业级冷光源(有效避免因光源散发热量蒸发液滴),寿命可达5万小时 亮度调节PWM数字调节功率10W测量软件CA V2.0静/动态接触角测量软件+表面能测量软件操作系统要求windows 10(64位)测量方式自动与手动计算方法自动拟合法(ms级别一键全自动拟合,不存在人工误差)、三点拟合、五点拟合、自动测量(包括圆拟合法/斜圆拟合法(Circle method/ Oblique Circle)、椭圆拟合法/斜椭圆拟合法(Ellipse method /Oblique Ellipse))、凹凸面测量等基线拟合自动与手动角度范围0°<θ<180°精度0.1°分辨率0.001°分析自动计算多组数据中接触角的最大接触角、最小接触角、平均接触角,左右接触角分别计算与比较功能表面能测量方法Fowks法,OWRK法,Zisman法,EOS法,Acid-Base Theory法,Wu harmonic mean法,Extended Fowkes法,得到固体表面能。表面能单位mN/m输入电源220V 50-60Hz仪器尺寸约1500mm(长)*405mm(宽)* 725mm(高)润湿性分析粘附功一键自动分析铺展系数一键自动分析粘附张力一键自动分析精度0.001 mN/m单位mN/m选配件1.机械真空泵,真空度:1*10-1Pa 2. FJ-110分子泵组一套,最大抽气速率110L/s (对空气),真空度:1*10-3Pa 3.惰性气体气氛保护(Ar,N2,He或混合气体)4.冷浴装置:5℃-35°超高温接触角测量仪测试方法
  • 我国实现3000℃极端环境下的超高温应变场测量
    记者9日从北京航空航天大学李宜彬教授团队获悉,该团队首次利用自主研发的紫外-数字图像(UV-DIC)系统在超高温极端环境应变场测量领域实现了3000℃环境下的成功测量。相关研究成果近日发表于国际无损检测领域的权威杂志《无损检测与评价国际》上。25℃-3000℃散斑图:(a)T=25℃;(b)T=1100℃;(c)T=1500℃;(d)T=1900℃;(e)T=2100℃;(f)T=2300℃;(g)T=2500℃;(h)T=2700℃;(i)T=2900℃;(j)T=3000℃;(k)在加热至3000℃后冷却至25℃的散斑此前,在超高温极端环境应变场测量领域一直缺乏有效测量表征手段,主要难点包括:一是超高温热辐射导致测量图像过度曝光,无法表征;二是使用中性密度、蓝光、偏振等多组滤光片,导致测量步骤繁琐,表征成像效果欠佳;三是作为变形信息载体的散斑在超高温中容易脱落,导致测量失败,无法表征。典型温度下应变场云图:(a)1100℃;(b)2100℃;(c)2500℃;(d)2700℃;(e)2900℃;(f)3000℃该文章通讯作者、北京航空航天大学、天目山实验室助理研究员董亚丽表示,研究人员利用紫外-数字图像(UV-DIC)系统,仅用单个紫外滤光片就有效抑制了3000℃热辐射,同时开发了以碳化铪粉末为散斑材料的超高温散斑制备工艺,最终在3000℃环境下成功测量了石墨热膨胀系数,并清晰记录了被测对象从室温到3000℃的高质量图像。该成果由北京航空航天大学、天目山实验室联合研发。“以上难点在紫外-数字图像相关的应变场测量方法中均被很好地解决,该测量方法能够有效、准确测量热端部件在超高温极端热力耦合条件下的热变形,对于助力我国航空航天技术发展具有积极意义。”李宜彬说。
  • 国际首台材料超高温力学性能测试系统在中国问世
    &ldquo 把脉&rdquo 极端环境下的材料性能&mdash &mdash 中国建材检验认证集团首席科学家包亦望教授专访  2000℃的环境下,铁已熔成液体,有人想到变通办法,在铁表面镀一层&ldquo 膜&rdquo &mdash &mdash 可以胜任高达2000℃以上超高温氧化环境的陶瓷材料。但问题接踵而至,现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温氧化极端环境,如何评价材料的可靠性?这个问题曾经难倒了我国科研人员,也包括国际同行。  如今,问号已经拉直。  1月9日,在2014年度国家科技奖励大会上,中国建筑材料科学研究总院博导、中国建材检验认证集团(CTC)首席科学家包亦望教授和他的团队凭借&ldquo 结构陶瓷典型应用条件下力学性能测试与评价关键技术及应用&rdquo 捧得国家科技进步二等奖。包亦望在操作超高温极端环境力学测试系统  缺失的极端环境下材料评价方法  2003年,包亦望还在中科院金属所做&ldquo 百人计划&rdquo 研究,所里一位研究人员找到他,寻问有没有陶瓷复合构件界面强度的评价方法。这个问题来源于工程实践。  之所以找到包亦望,不仅因为他是有名的&ldquo 点子王&rdquo ,更重要的是,解决这个世界性难题已经越来越迫切。  结构陶瓷具有高强耐磨、抗腐蚀、耐高温等许多优异性能,因此被广泛应用于航空航天、机械、石油化工和建筑等高技术领域。  但陶瓷本身是脆性的,具有&ldquo 宁碎不屈&rdquo 的特点,服役中的陶瓷及构件容易发生突发性灾难事故,故又成为最不安全的材料。  时隔近30年,1986年的&ldquo 挑战者&rdquo 号航天飞机灾难仍被多次提及,刚起飞73秒,航天飞机发生解体,机上7名机组人员丧命。这次灾难性事故导致美国航天飞机飞行计划被冻结了长达32个月之久。最终调查发现,原因之一是陶瓷隔热瓦与母体界面脱粘后失去隔热能力,导致价值12亿美元的航天飞机被炸成碎片。  如果能对结构陶瓷力学性能做出准确评价,不仅可以保证构件安全可靠,还能对其失效时间做出预测。  但由于涂层与基体间难以剥离作为单质材料进行测试,如何评价材料的可靠性是一项国际难题。  包亦望告诉记者,具体来说,难题体现在四个方面:界面问题:陶瓷复合构件界面强度和不同环境下的服役安全评价;异型件:管状或环形陶瓷构件的力学性能无法参照现有标准和检测技术;陶瓷涂层:热障涂层、耐磨涂层的模量或强度无法直接测试 极端环境:超高温氧化环境下陶瓷性能评价无技术,无标准,无测试设备 构件性能预测:通过表面痕迹和接触响应非破坏性的监测和预测构件可靠性。  &ldquo 因为评价标准缺失,目前大多采用&lsquo 牺牲层&rsquo 的办法。&rdquo CTC研究中心副主任万德田解释,所谓&ldquo 牺牲层&rdquo ,是指本来只要10毫米的涂层,被加厚到了15&mdash 20毫米,这样虽然安全系数提高了,代价是飞行器重量也提高了,成本随之增加。  随着航天、航空、航海、化工、冶金等工业的快速发展,准确评价涂层材料力学性能显得越来越紧迫和重要。  中国工程院院士杜善义曾经说过,超高温试验是一个很复杂的技术问题,每一系统的建立难度都很大,但我国航空航天工业的发展需要建立超高温测试技术。  &ldquo 雕虫小技&rdquo 解决大难题  &ldquo 方法非常简单,在外行看来可能就是雕虫小技。&rdquo 但包亦望说,这其中最难的是首先要想到捅破那一层窗户纸的方法,而这得建立在大量分析计算基础上。  随手翻开一本笔记本,除了看似简单的图示,就是密密麻麻的计算式。  &ldquo 有时候为了一个小公式,花几个月推导都是正常的。&rdquo 经过长达十多年的研究,包亦望和团队不断试验,反复采集整理数据,发明了一系列评价新技术。  陶瓷材料难以直接进行拉伸载荷试验,如何测得界面拉伸强度和界面剪切强度?传统的测试方法将试验样品叠加或者拼接,然后在叠加处或拼接处施力,但都无法获得界面拉伸强度。  &ldquo 十字交叉法&rdquo 提出,将两根矩形截面短棒以十字交叉方式粘接成测试样品,设计专用带槽夹具和圆弧形压头,分别测得界面拉伸强度和界面剪切强度。  这项技术适用任何固相材料之间的界面强度和疲劳性能评价,并可推广到各种高强粘接剂的强度和耐久性评价,此方法一经推广,受到国内外无机材料检测领域专家的赞赏。  但新课题又来了。  不是所有产品的样品都能加工成常规的矩形截面,而这类产品的应用范围又很广,如模拟核爆用石英玻璃管,光纤套管,火箭或导弹的尾喷管,石油化工用防腐内壁管等。  &ldquo 缺口环法&rdquo 能简单、方便、快捷的评价管状和环状脆性材料的基础力学性能。  &ldquo 无需特殊的夹具,节省了大量的试验经费和时间。&rdquo 包亦望说。  &ldquo 相对法&rdquo 则是通过已知或容易测量的材料参数去计算出无法直接测量的未知参数。  &ldquo 这就好比即使没有秤砣,只要知道一公斤白糖在杆秤的什么位置,就能称出同样质量的其他物质。&rdquo 包亦望说,这解决了陶瓷涂层的基础力学评价问题。此前涂层材料力学性能测试基本上空白,世界各国都在寻求测试技术。  试验证明该方法简单、准确、可靠达到事半功倍的效果,解决了热障涂层、防腐涂层和耐磨涂层等力学性能测试的空白。  &ldquo 局部受热同步加载法&rdquo 解决了超高温氧化环境下测试的国际难题。  &ldquo 痕迹法&rdquo 则有点类似于&ldquo 中医号脉&rdquo ,通过分析试验后样品残余压痕痕迹的形貌和尺寸,推测出几乎全部的材料力学性能。该方法受到国内外专家的高度赞赏,国际评审专家认为&ldquo 这项工作确实是对纳米压痕技术的一个新贡献&rdquo ,并在国际综述文献里被称为&ldquo BWZ method&rdquo (其中B指包亦望)。  主导制定国际标准提高话语权  建立方法、发明技术,包亦望和团队不满足于此,近年来一直致力于将技术转化为国家标准和国际标准。  &ldquo 国际标准的形成过程是一个博弈过程,体现了技术、产业乃至国家的综合影响力和话语权,是市场的竞争源头,为此国际上对标准的竞争极为激烈。&rdquo 包亦望印象深刻的是将&ldquo 相对法&rdquo 形成国际标准中的波折。  2007年,包亦望将发明的&ldquo 相对法&rdquo 在国际刊物发表,受到国际同行的高度认可,实验证明该方法简单、准确、可靠。此前虽然国内外有用纳米压痕技术来评价陶瓷涂层的弹性模量,但反映的仅仅是局部甚至某晶粒的性能,只对理想均匀致密材料有效,而且设备昂贵,尚不能测量涂层的强度。  2013年,ISO组织向全世界征求陶瓷涂层测试技术时, &ldquo 相对法&rdquo 评价技术与日本提出的类似国际标准草案形成竞争,最后交由ISO顾问Peter(皮特)先生仲裁,由于相对法具有原创性,适用范围更广泛,最后被成功立项。  利用自主知识产权转化成的国际、国内及行业标准,已被用于1000多家陶瓷企业和军工企业的相关产品各项力学性能检测与分析,经济效益数亿元。  包亦望认为,标准的社会效益意义更重大。大量性能检测方面的标准技术的制定,对于促进工程陶瓷和玻璃行业健康发展、无机非金属材料力学性能的学科发展、切实保障老百姓生命财产安全方面具有重要意义。  2007年,包亦望向ISO组织提交的以&ldquo 十字交叉法&rdquo 技术为基础的国际标准获得一致通过,在此前的陈述环节中,他提出的创新性、实用性受到高度关注,与会的六七个国家代表找到包亦望,反映该标准简洁明了,并找他要PPT,提出在自己的国家先用。  不将技术装在口袋里  让科技成果落地开花,而不是将技术装在口袋里。  有别于大多数科研工作者,包亦望不仅建立了很多创新的理论,还能将抽象的理论转化为可操作的方法与技术,并通过仪器设备这种载体来实现,反过来,自主研发的科学仪器设备又成为产生新观点的重要工具。  在中国建筑材料科学研究总院的实验室里,庞大的超高温极端环境力学测试系统塞满了约40平米的屋子。  &ldquo 该系统是国际上唯一针对陶瓷、复合材料的超高温力学性能测试仪器,温度最高可达2200℃,已经为多家合作单位进行了材料的超高温测试试验,解决了材料的超高温力学性能评价技术难题。&rdquo 万德田言语间透出自豪,他告诉记者,以近地空间用超高声速飞行器为例,该系统可为飞行器所用特种材料的服役安全和结构设计提供重要技术支撑,此外还有助于低成本选材。  超高温氧化耦合极端环境下,航天、航空飞行器的外围材料,如发动机和喷火管等处材料的安全性性能评价和设计至关重要。现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温极端环境,这样使得材料的力学性能试验样品无法测试。该系统就是包亦望和团队运用&ldquo 局部受热同步加载法&rdquo 生产出来的。  包亦望教授率领他的团队不断攻克难题,从理论到技术、从实验到装置,发明了一套评价材料在极端超高温氧化环境下的力学性能测试方法与评价技术,开发了国际上首台&ldquo 材料超高温力学性能测试系统&rdquo ,并获得863计划和首批国家重大科学仪器设备开发专项的支持。  这些年,包亦望和团队将取得的理论成果和新方法、新技术转化为一系列有特色的仪器设备,包括常温和高温固体材料弹性模量测试仪、安全玻璃冲击失效检测仪、多功能零能耗钢化玻璃检测器、钢化玻璃表面平整度测试仪、钢化玻璃缺陷和自爆风险检测仪、硬脆材料性能检测仪、幕墙松动脱落风险测试仪等,这些仪器设备有的已经进入国内多所高校和科研机构的实验室,成为科研工作者探索科学的有力工具。
  • 复旦大学300.00万元采购恒温器
    详细信息 低温强磁实验系统国际招标公告(2) 上海市-浦东新区 状态:公告 更新时间: 2022-12-06 低温强磁实验系统国际招标公告(2) 项目编号:0808-2240GJF31061 公告类型: 招标公告 招标方式:国际公开 截止时间:2022-12-27 09:00:00 招标机构: 上海浦成机电设备招标有限公司 招标地区:上海市 招标产品:低温强磁实验系统 所属行业: 实验室仪器 购买标书 上海浦成机电设备招标有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2022-12-06在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。 1、招标条件 项目概况:低温强磁实验系统 资金到位或资金来源落实情况:资金来源已经落实 项目已具备招标条件的说明:已具备招标条件 2、招标内容 招标项目编号:0808-2240GJF31061 招标项目名称:低温强磁实验系统 项目实施地点:中国上海市 招标产品列表(主要设备): 序号 产品名称 数量 简要技术规格 备注 包件1 低温强磁实验系统 1套 低温强磁光学测量平台,该平台由低温强磁模块、激发模块和信号分析模块三个部分构成, 本项目计划购买的低温强磁恒温器是低温强磁模块的核心部件,用于提供低温、强磁的环境,对于低温强磁光学测量平台的搭建起着决定性的作用。该设备具备无液氦、超低振动、超高温度稳定性的优异性能,用于低温实验物理领域。 预算金额:人民币300万元最高限价:人民币294万元合同履行期限:签完合同后一年。 3、投标人资格要求 投标人应具备的资格或业绩:(1)投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织; (2)投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权; (3)投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册; (4)本项目不允许联合体投标。 是否接受联合体投标:不接受 未领购招标文件是否可以参加投标:不可以 4、招标文件的获取 招标文件领购开始时间:2022-12-06 招标文件领购结束时间:2022-12-13 是否在线售卖标书:否 获取招标文件方式:现场领购 招标文件领购地点:上海市浦东新区商城路618号良友大厦8楼会议室 招标文件售价:免费 其他说明:有意向的合格投标人可从2022年12月6日至2022年12月13日,每天上午9:00至12:00,下午12:00至16:00(北京时间)。提交资料:法人或者其他组织的营业执照等证明文件,自然人的身份证明、法人授权委托书、被授权人代表身份证的扫描件发送到tiankong1903@163.com(以邮件接收时间为准),免费获取招标文件。潜在投标人应在上述规定的时间内按照规定获取招标文件,逾期不再办理。未按规定获取招标文件的潜在投标人将不得参加。 5、投标文件的递交 投标截止时间(开标时间):2022-12-27 09:00 投标文件送达地点:上海市浦东新区商城路618号良友大厦8楼会议室 开标地点:上海市浦东新区商城路618号良友大厦8楼会议室 6、投标人在投标前应在____( https://____)或机电产品招标投标电子交易平台( https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 7、联系方式 招标人:复旦大学 地址:中国上海邯郸路220号 联系人:张老师 联系方式:86-21- 65641327 招标代理机构:上海浦成机电设备招标有限公司 地址:上海市浦东新区商城路618号良友大厦8楼 联系人:刘伟 联系方式:86-21-58792499 8、汇款方式: 招标代理机构开户银行(人民币): 招标代理机构开户银行(美元): 账号(人民币): 账号(美元): 其他:以人民币采用电汇、网银形式支付投标保证金、中标服务费等请付至以下帐号: 开户名:上海浦成机电设备招标有限公司 开户银行:上海银行白玉支行营业部 银行帐号:03003166286 摘要:0808-2240GJF31061投标保证金 以下帐号仅用于支付除人民币以外的外汇保证金: 开户名: 上海浦成机电设备招标有限公司 开户银行: Industrial Bank Co., Ltd., Shanghai Branch 美元: 2163 2140 0100 0550 84 日元: 2163 2270 0100 0008 15 欧元: 2163 2110 0100 0036 06 SWIFT CODE: FJIBCNBA600 摘要: 0808-2240GJF31061投标保证金 9、其他补充说明 其他补充说明:HW 2022112708 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:恒温器 开标时间:2022-12-27 09:00 预算金额:300.00万元 采购单位:复旦大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海浦成机电设备招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 低温强磁实验系统国际招标公告(2) 上海市-浦东新区 状态:公告 更新时间: 2022-12-06 低温强磁实验系统国际招标公告(2) 项目编号:0808-2240GJF31061 公告类型: 招标公告 招标方式:国际公开 截止时间:2022-12-27 09:00:00 招标机构: 上海浦成机电设备招标有限公司 招标地区:上海市 招标产品:低温强磁实验系统 所属行业: 实验室仪器 购买标书 上海浦成机电设备招标有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2022-12-06在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。 1、招标条件 项目概况:低温强磁实验系统 资金到位或资金来源落实情况:资金来源已经落实 项目已具备招标条件的说明:已具备招标条件 2、招标内容 招标项目编号:0808-2240GJF31061 招标项目名称:低温强磁实验系统 项目实施地点:中国上海市 招标产品列表(主要设备): 序号 产品名称 数量 简要技术规格 备注 包件1 低温强磁实验系统 1套 低温强磁光学测量平台,该平台由低温强磁模块、激发模块和信号分析模块三个部分构成, 本项目计划购买的低温强磁恒温器是低温强磁模块的核心部件,用于提供低温、强磁的环境,对于低温强磁光学测量平台的搭建起着决定性的作用。该设备具备无液氦、超低振动、超高温度稳定性的优异性能,用于低温实验物理领域。 预算金额:人民币300万元最高限价:人民币294万元合同履行期限:签完合同后一年。 3、投标人资格要求 投标人应具备的资格或业绩:(1)投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织; (2)投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权; (3)投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册; (4)本项目不允许联合体投标。 是否接受联合体投标:不接受 未领购招标文件是否可以参加投标:不可以 4、招标文件的获取 招标文件领购开始时间:2022-12-06 招标文件领购结束时间:2022-12-13 是否在线售卖标书:否 获取招标文件方式:现场领购 招标文件领购地点:上海市浦东新区商城路618号良友大厦8楼会议室 招标文件售价:免费 其他说明:有意向的合格投标人可从2022年12月6日至2022年12月13日,每天上午9:00至12:00,下午12:00至16:00(北京时间)。提交资料:法人或者其他组织的营业执照等证明文件,自然人的身份证明、法人授权委托书、被授权人代表身份证的扫描件发送到tiankong1903@163.com(以邮件接收时间为准),免费获取招标文件。潜在投标人应在上述规定的时间内按照规定获取招标文件,逾期不再办理。未按规定获取招标文件的潜在投标人将不得参加。 5、投标文件的递交 投标截止时间(开标时间):2022-12-27 09:00 投标文件送达地点:上海市浦东新区商城路618号良友大厦8楼会议室 开标地点:上海市浦东新区商城路618号良友大厦8楼会议室 6、投标人在投标前应在____( https://____)或机电产品招标投标电子交易平台( https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 7、联系方式 招标人:复旦大学 地址:中国上海邯郸路220号 联系人:张老师 联系方式:86-21- 65641327 招标代理机构:上海浦成机电设备招标有限公司 地址:上海市浦东新区商城路618号良友大厦8楼 联系人:刘伟 联系方式:86-21-58792499 8、汇款方式: 招标代理机构开户银行(人民币): 招标代理机构开户银行(美元): 账号(人民币): 账号(美元): 其他:以人民币采用电汇、网银形式支付投标保证金、中标服务费等请付至以下帐号: 开户名:上海浦成机电设备招标有限公司 开户银行:上海银行白玉支行营业部 银行帐号:03003166286 摘要:0808-2240GJF31061投标保证金 以下帐号仅用于支付除人民币以外的外汇保证金: 开户名: 上海浦成机电设备招标有限公司 开户银行: Industrial Bank Co., Ltd., Shanghai Branch 美元: 2163 2140 0100 0550 84 日元: 2163 2270 0100 0008 15 欧元: 2163 2110 0100 0036 06 SWIFT CODE: FJIBCNBA600 摘要: 0808-2240GJF31061投标保证金 9、其他补充说明 其他补充说明:HW 2022112708
  • 超高真空低温恒温器研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "超高真空低温恒温器/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√正在研发 □已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/a1a94f9f-3af9-4ec9-98bc-1812fcf23df2.jpg" title="cryostat.jpg" width="280" height="373" border="0" hspace="0" vspace="0" style="width: 280px height: 373px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 针对SPM等振动敏感设备所设计的一款可在超高真空环境下工作的低温恒温器。设计运用有限元分析方法进行模拟和仿真,力求达到最低的漏热和振动,最大化低温制冷剂使用效率。尚在研发中,主要技术指标待测。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 在电子输运测量、磁性测量、拉曼光谱、X射线衍射、SPM等诸多实验过程中,都需要用到低温环境,其中很多测量还对真空度、振动等提出了更苛刻的要求。该设备针对机械振动进行了优化设计,同时兼容超高真空环境,适用于SPM系统以及光学光谱等应用,国内每年需求量在数十台至上百台。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ strong /strong发明专利:201510345910.8/p/td/tr/tbody/tablepbr//p
  • 全自动超高温乌式粘度计在聚丙烯(PP)材料中的应用
    聚丙烯简称PP,是指由丙烯通过加聚反应而成的聚合物,呈白色蜡状,外观透明而轻,具有无毒、比重低、易加工、耐化学腐蚀、电绝缘性好等诸多优良性能。被广泛应用于服装、毛毯等纤维制品、医疗器械、汽车、自行车等的机械部件,也可用于食品、药品等的包装,是今年来发展迅速的高分子材料之一。聚丙烯(PP)材料在过去更多用于编织袋、包装袋、捆扎绳等产品,约占总消费的30%。随着材料科学的发展,聚丙烯(PP)材料开始更多的应用于新能源部件,医用器材,光纤等高精尖领域,这也对聚丙烯(PP)材料的质量控制提出了更高的要求。GB/T 1632.3-2010中规定了使用毛细管粘度计测试聚丙烯稀溶液粘度的方法,借助相关辅助设备,在135℃下测定溶剂以及规定浓度的聚丙烯(PP)聚合物溶液的流出时间,根据这些测定的流出时间和聚丙烯(PP)聚合物的已知浓度计算比浓黏度和特性黏度。由于聚丙烯(PP)材料的粘度测定条件处于135℃的高温条件,操作危险性较大,对人员的素质要求较高,目前研究机构和聚丙烯材料生产厂家更多采用全自动超高温乌式粘度计来进行辅助测试,全自动超高温乌式粘度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯(PP)材料等高分子材料化验分析中的常用实验仪器。以杭州卓祥科技有限公司的IV6000H系列全自动超高温乌式粘度计,MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000H系列超高温全自动乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000H系列全自动超高温乌式粘度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液、自动加清洗液和干燥液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000H系列全自动超高温乌式粘度计可实现自动测试、自动排废液、自动加清洗液和干燥液,自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 万米地层的“照相师”——超高温高压小井眼电成像测井仪
    3月4日,当得知深地塔科1井钻探深度突破10000米大关时,马雪青激动不已。马雪青是中油测井制造公司一级工程师,也是深地塔科1井四开测井电成像仪器保障组组长。她主要负责200摄氏度、170兆帕超高温高压小井眼电成像测井仪的研发、试验和保障工作。为满足深地塔科1井的测井耐温耐压指标要求,该仪器提前一年就完成了研发。2023年底,两支样机经高温测试和标准井功能验证后,从西安奔波2800余公里,与马雪青同时抵达轮台基地。可万万没有想到,经过验证的仪器来到塔里木却“掉了链子”,出现主电流突增通信中断、极板电路供电电源微跳等问题。马雪青对自己说:“必须在一个月内完成所有整改工作。”她逐一分析原因、查找源头,很快就设计出工艺、算法、电路的改进方案,带领团队对仪器进行整改。不料,整改后的仪器在接受万米井验收井——满深11井的检验时,仪器极板图像依然欠佳,地质信息显示不全。满深11井与深地塔科1井的四开井况相似,只有过了这一关,仪器才能具备挺进万米深井的能力和实力。走路、吃饭、睡觉……马雪青脑子里想的都是这件事。一天中午吃饭时,她发现这里的饭菜比西安的咸一些,这激发了她的灵感:“与之前的试验井相比,塔里木的两口试验井泥浆矿化度高,仪器可能是‘水土不服’。”马雪青立刻返回厂房,用食用盐水模拟井下环境,将极板放置其中,终于发现了问题,找到了症结。随之,她带领团队改变了仪器下回路地线结构和极板内部地线安装方式,这一次,仪器终于在高对比度井眼环境中通过了验证。目前,中油测井自主研发的电成像、密度、能谱等6种12支测井仪器均已通过试验验证,准备就位、整装待发。
  • 这台低温恒温器,助力低温NV色心研究发表多篇Nature子刊及Science!
    光学检测磁共振(ODMR)因使用具有高灵敏度和超小型传感器的氮空位色心(NV中心)技术来探测样品的磁学性质而受到广泛关注。这种原子大小的NV中心具有自旋依赖的光致发光特性,可以用作良好控制的单光子源。其超长的自旋相干时间可转化为超过nT范围的超高磁灵敏度。作为扫描探针显微镜的商业供应商,attocube公司为ODMR研究提供理想的平台进行了努力,为了将NV中心的突出特性用于磁成像,使用了AFM(控制传感器相对于样品表面的位置)和共焦显微镜(在反射模式下提供光学自旋状态制备和读出)的组合。随后可以通过NV缺陷自旋子能级的塞曼位移测量局部磁场,该塞曼位移与顶端遇到的局部磁场成正比。  光学检测磁共振(ODMR)通常使用两套xyz定位器进行粗略定位,允许在几毫米的范围内独立定位样品和AFM顶端。通常,承载NV色心作为传感器的AFM探针准确定位在高NA物镜的焦斑中,然后在NV色心传感器下方扫描样品。  attoDRY2100是闭循环低温恒温器系列中的佼佼者,可提供1.65 K的连续基础温度、1.65至300 K的自动温度和磁场控制,以及定制化的超导磁体。它甚至可以在300 K下产生全磁场,具有优异的温度稳定性,并且可以在不需要处理液氦的情况下对样品进行场冷却。因此,它是任何低温实验的优先选择,无论是磁输运测量、共焦显微镜和光谱学或扫描探针显微镜。而attoDRY2200低震动无液氦磁体与恒温器使得基于NV色心技术的光学检测磁共振(ODMR)成像测量在闭循环低温恒温器内进行高空间分辨率成像成为可能。attoDRY22‍‍00助力NV色心研究案例:1. 量子传感器磁成‍‍像  范德华材料(vdWM)作为设计理想材料性能的合适场所,近年来受到了广泛关注。由于潜在的自旋电子学应用,磁性范德华材料特别有吸引力。Jörg Wrachtrup(德国斯图加特大学)小组通过低温氮空位(NV)磁强计研究了原子薄的CrBr3中作为磁场函数的畴壁动力学。通过使用量子传感器(NV中心)实现这种相当新的扫描技术,达到纳米级的空间分辨率,从而识别钉扎中心,并定量测定了CrBr3中的磁化强度。该团队的结果是在attocube公司的低温恒温器中的attoAFM/CFM显微镜的帮助下获得的。该工作证明,扫描NV磁强计是探索2D磁体的一个优异工具。  【参考】Q.-C. Sun et al., Magnetic domains and domain wall pinning in atomically thin CrBr3revealed by nanoscale imaging. Nature Commun.12, 1989 (2021)‍‍‍‍‍‍‍2. 超导穹顶内量子相变的探测‍‍‍‍‍‍‍‍  非常规超导体(UCS)一直是物理学家们关注的焦点,他们希望利用高温超导,为未来更经济、可持续的能源利用铺平道路。阐明反铁磁量子相变(QPT)和超导态之间的相互作用对于理解UCS至关重要。在实验上,这种相互作用通常从正常状态侧进行探测。Ruslan Prozorov团队(美国艾姆斯实验室)通过测量一类铁氰化物的伦敦穿透深度λ,从超导侧对其进行了探测,方法是在attocube公司低温恒温器中使用attoAFM/CFM进行NV磁测量。他们的结果显示,λ的峰值与QPT一致,该结果出乎意料地表明,无论无序程度如何,铁氰化物中普遍存在QPT。  【参考】K.R. Joshi et al., Quantum phase transition inside the superconducting dome of Ba(Fe1−xCox)2As2from diamond-based optical magnetometry. New J. Phys.22, 053037 (2020)3. 扫描氮空位磁强计研究范德瓦尔斯磁体  范德瓦尔斯材料(vdWM)在过去几年中吸引了大量注意力,因为在设计所需性能方面,它们已被证明是有益的。然而,在vdWM中,缺乏磁性材料,这在技术上可能对数据存储或传感器有用。三碘化铬(CrI3)是一种罕见的具有本征磁性的vdWM。巴塞尔大学(瑞士)帕特里克马列廷斯基的量子传感小组在理解其性质方面取得了突破:使用扫描氮空位磁强计(NVM),他们确定了CrI3单层的磁化强度为≈ 16 µB/nm2。此外,作者测量了具有奇数层的多层中的可比磁化值,而具有偶数层的层中没有磁化,这归因于单个铁磁层的反铁磁耦合。该工作的结果是在attocube公司低温恒温器中的attoAFM/CFM显微镜的帮助下获得的。范德瓦尔斯磁体的定量研究是探索这类新型纳米磁体应用潜力的先决条件,NVM为其提供了很好的工具。  【参考】L. Thiel et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science,364, 6444, 973-97 (2019)4. 超导体的定量纳米尺度涡旋成像  通过非侵入性工具,可以在大范围温度和高磁场下以纳米分辨率进行定量成像,从而大大有助于理解超导的微观机制。基于attoAFM/CFM,Patrick Maletinsky小组(巴塞尔大学)报告了使用NV中心磁强计的低温测量。该团队的技术允许以高灵敏度和空间分辨率提取YBCO中单个超导涡流的局部磁场的定量数据。通过确定局部伦敦穿透深度,作者发现所谓的珍珠涡模型比标准单极模型更好地解释了数据,并允许拟合其他参数。该实验是一个令人印象深刻的例子,说明了基于NV中心的磁力测量工具的实际应用已经发展到了很重要的程度。  【参考】L. Thiel et al., Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology11, 677-681 (2016).5. NV色心显微镜对畴壁跳跃的纳米尺度成像和控制  磁线中的畴壁可能被证明对未来的自旋电子学器件有用,因此它们的纳米尺度表征是实现实际应用的重要步骤。正如Vincent Jaques团队在《科学》杂志上所展示的,他们基于attoAFM/CFM的NV中心显微镜允许以高分辨率对1 nm厚的铁磁纳米线中的畴壁成像,并在单个畴壁的钉扎位置之间跳跃。同时,他们表明,由于高局部激光功率,通过局部加热诱导跳跃,畴壁可以沿着导线移动。由于畴壁由近的钉扎位点钉扎,这允许非常有效地探测和成像样品的钉扎景观。  【参考】Tetienne et al ., Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science344, 1366(2014)attoDRY2200低温恒温器以及可选显微镜主要技术特点:  ☛ 温度范围:1.8K ..300 K  ☛ 磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)  ☛ Z方向振动噪音:AFM噪音 (工作带宽=195Hz) 100pm  ☛ 可选显微镜:AFM/CFM(NV色心研究),AFM(接触式与非接触式), CFM  ☛ 样品定位范围:5×5×4.8 mm3  ☛ 扫描范围: 50×50 μm2@300 K, 30×30 μm2@4 K   ☛ 商业化探针  ☛ 可升级 MFM,PFM, ct-AFM, cryoRAMAN, atto3DR等功能相关产品:  1、低震动无液氦磁体与恒温器-attoDRY https://www.instrument.com.cn/netshow/SH100980/C377018.htm
  • 低温光学系统群英荟萃!从1.5K-800K,一站式解决您的低温恒温器需求!
    为了更好地服务国内用户,提供种类更加多样化的低温光学设备以满足国内用户的不同用途和不同的预算。Quantum Design中国子公司与知名的低温设备制造商Lake Shore Cryotronics, Ltd.合作,正式成为其在中国的独家经销商,并于2024年起在国内提供包括Janis恒温器在内的全部Lake Shore相关产品。继Montana Instruments 低温光学系统、OptiCool强磁场低温光学系统后低温光系统再次增加新成员,可以为不同需求用户提供一站式解决方案。型号丰富的Janis低温系统☛ Infinite Helium智能氦液化器Infinite Helium是一款全新的氦液化器,可以将目前各种湿式设备挥发的氦气进行液化并循环利用,采用全新的智能型设计方案,可以满足不同的制冷功率需要,配合湿式低温恒温器使用可以实现闭循环、低振动解决方案,可以兼容其他制造商的多种湿式低温设备。尤其是目前需要超低振动环境的低温设备面临着不能直接安装制冷机升级,而传统的氦液化器对氦气的回收率不高的困境。Infinite Helium的诞生可以有效解决此类问题,可以令湿式设备在高效率闭循环的工作下而不影响任何设备性能。新型的设计方案通过智能触屏即可实现对设备的全面控制。Infinite Helium智能氦液化器 ☛ CCS干式低温恒温器系统CCS干式系列低温恒温器是一款可提供1.5 K、4 K、10 K不同极限低温的系统。该系列恒温器采用制冷机制冷,无需消耗液氦或液氮,操作简单且后期使用成本低,是低温实验的理想选择。根据不同的实验需求,该系列恒温器涵盖了通用型低温恒温器、光学恒温器、低振动光学恒温器,顶部插杆式恒温器、穆斯堡尔谱用恒温器,可为样品提供超高真空、真空或者低温氦气环境。CCS干式低温恒温器系列 ☛ ST、STVP、SVT系列连续流液氦&液氮低温恒温器Janis可提供一系列连续流低温恒温器,温度可低于2 K,高至800 K。根据不同实验需求,可以选择样品处于真空环境或交换气体环境中。可选用顶部插杆式装样和底部装样等方式满足多种光学测量和电学测量的需求。ST-500 与ST-100连续流液氦恒温器☛ VPF、VNF系列连续流液氮低温恒温器VPF系列低温恒温器采用液氮冷却,可提供最高500K、800 K高温环境,样品处于真空中。VPF系统使用和重新填充液氮十分简单,利用重新填充式置换器组件,能够在不影响受控温度的情况下,重新填充LN2储罐。VNF系列低温恒温器中样品处于流动的氮气环境,非常适合不容易固定或者导热较差的样品。该系列恒温器采用顶部装载样品(Top-loading)的方式,允许快速更换样品。VPF-100与VNF100连续流液氮低温恒温器 ☛ RGC系列液氦闭循环系统该系统是一款专门为液氦设备研发的氦气闭循环制冷机,可以使各种湿式恒温器实现闭循环工作,从而节省高昂的液氦费用。设备配合湿式低温恒温器使用可以实现闭循环、低振动的解决方案。此闭循环系统可以兼容其他制造商的多种湿式低温恒温器。RGC氦气闭循环系统与湿式恒温器组成的闭循环恒温器 Montana Instrument超精细多功能无液氦低温光学系统超精细多功能无液氦低温光学系统——CryoAdvance是一款采用新的性能标准和架构而生产的新一代低温光学系统。设备使用简便,可以直接固定在通用型的光学桌面上。减震技术和特殊温度稳定技术的结合,可保证在不牺牲任何便捷性的同时,为实验提供温度稳定性和超低震动环境。CryoAdvance全系列产品都具有超低振动的特点,提供多种配置可选,能够满足每个研究人员对高精度低温光学测量的特殊需求。☛ 标准型超低振动低温光学系统该系统为全干式系统,无需消耗氦气或液氦,可降低实验成本。超低温度波动和纳米级的震动可为各种测量提供稳定的实验环境。 超大温区(3.2K - 350K)与超快的变温速度可提高实验效率。 桌面式设计方案,方便移动,无缝衔接现有的室温实验方案。全自动、优化的温度控制:简单设定目标温度,一键Cooldown。超精细多功能无液氦低温光学系统——CryoAdvance☛ 物镜/磁体集成式超低振动低温光学系统CRYO-OPTIC系统将光学物镜集成到低温系统的样品腔中,在低温下实现超稳定、高质量的大数值孔径成像。CRYO-OPTIC系统的设计消除了在低温设备中使用高倍物镜时所面临的对准和漂移问题。系统对配件和选件具有良好兼容性,允许用户自定义设备的具体配置以满足特殊的实验需求。MAGNETO-OPTIC直接将磁体集成到低温样品腔中。这一附加模块不影响系统本身的稳定性,磁体系统具有完全自动化的控制系统。系统可兼容多种选件和配件,包括内置压电位移器,快速变温样品台等。用户可选择不同配置以满足个性化的实验需求。此外CryoAdvance还可以与穆斯堡尔谱、FMR、MOKE等多种设备配合实现对应的变温测量方案。CRYO-OPTIC、MAGNETO-OPTIC与变温穆斯堡尔谱系统Quantum Design 强磁场低温光学平台超精准全开放强磁场低温光学研究平台-OptiCoolOptiCool是Quantum Design研发推出的全干式超精准全开放强磁场低温光学研究平台。启动和运行只需少量氦气。全自动软件控制实现一键变温、一键变场。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达±7T的磁场。多达7个侧面窗口、1个顶部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验无限可能。超精准全开放强磁场低温光学研究平台-OptiCoolQuantum Design 作为低温测量领域的知名设备供应商,与众多世界优质厂商深入合作,全力支持科研工作者在低温领域的各项实验。其为全球客户提供的OptiCool强磁场低温光学系统、Montana Instruments低温光学系统已广泛应用于全球众多高校和实验室,每年助力用户发表百余篇高水平学术论文。从二维材料到光学微腔、量子点荧光到超快光谱、再到原子钟等领域的重大开创性工作,都是这些高性能低温光学设备发展史上的里程碑。我们相信随着Janis低温系列产品的加入,Quantum Design中国将进一步壮大其在低温领域的产品线,为科学研究提供更多元化、更具创新的设备和解决方案,持续推动低温相关领域的探索和发展。
  • 全新!Ultratemp 过程恒温器——适用于生物技术和制药工业的高要求应用
    作为全球市场的温度控制仪器领导者,LAUDA 推出了最新系列产品 —— Ultratemp 过程恒温器!Ultratemp 系列恒温器可满足生物技术、生物制药和工业应用领域的各项严苛要求。01超高性能,可满足各种需求的恒温器Ultratemp 恒温器的加热和冷却功率有 25 kW、35 kW 和 50 kW 可选,其设计目标是能够快速的加热和冷却大体积、大流量的导热液体。这一设计尤其适用于典型的生物技术、生物制药和其他生物工业应用,这些应用通常需要较大的温度和功率范围。02可实现精准控温,优化应用的恒温器Ultratemp 恒温器可在 - 5 °C 至 60 °C 的范围内,精确调控外部设备的温度,同时保证 ± 0.5 °C 的温度稳定性,从而实现应用中的精准温度控制。Ultratemp 采用水冷式制冷技术,最大限度地减少了排放至周围环境中的热量,使用水或水-乙二醇等不易燃介质作为导热液体,能够大大简化操作和降低运营成本。03坚固耐用、易于清洁、可直观操作全新 Ultratemp 过程恒温器,坚固耐用、易于操作。标准防护等级为 IP 54,可防水,外壳采用优质不锈钢,便于清洁。可通过 LCD 屏幕和功能键,对设备进行直接操作。同时,Ultratemp 集成有以太网接口,允许通过控制台或个人电脑,对设备进行远程监控或操作。 此外,Ultratemp 还可以连接传感器(如 Pt 100 温度传感器)或信号接收器等外部组件。04双频电源,可在全球范围内使用Ultratemp 过程恒温器配备了双频电源 (400 V 3/PE 50 Hz 和 460 V 3/PE 60 Hz),可在全球范围内使用。除此之外,Ultratemp 还提供一款专门型号,针对 50 Hz 的电源频率进行了优化。所有型号均可在 &minus 15 °C 到 50 °C 的环境温度内运行。Ultratemp 过程恒温器,补充完善了 LAUDA 的现有产品组合,为反应器容量高达 5000 L 的生物技术应用提供了最佳的温度控制解决方案。Ultratemp 专为满足生物制药工业及其工艺的要求而设计,可以为长时间的工艺过程,持续提供高效的加热和冷却,将温度保持在 37 °C,并在随后对反应器内的产物进行快速冷却。高性能 Ultratemp 过程恒温器,让 LAUDA 进一步扩大了自身的服务范围,并再一次兑现了自己在创新温控解决方案上许下的承诺!在全球范围内推动生物技术、制药和工业领域的生产效率!我们是 LAUDA精确温度控制领域的世界市场领导者。我们的温度控制仪器和设备是许多重要应用的核心,为更美好的未来作出贡献。我们是电动汽车、氢能、化工、制药、生物技术、半导体和医疗技术领域的可靠合作伙伴,在研究、生产和质量控制中保证最佳温度。65 年来,我们每天都以崭新的面貌支持世界各地的客户,提供专业的建议和创新的解决方案。
  • 汗诺制冷型干式恒温器厂家直销
    上海汗诺仪器有限公司专业生产恒温金属浴,制冷型金属浴现货供应厂家直销,欢迎选购www.hanuo.cn 18621653239 薄利明产品简介HNDTC-100 干式恒温器(制冷型) 价格:7200元是采用微电脑控制和半导体制冷技术制造的一款恒温金属浴产品,仪器可配置多种模块,可广泛应用于样品的保存、各种酶的保存和反应、核酸和蛋白质的变性处理、PCR 反应、电泳的预变性和血清凝固等。 产品特点1.即时温度显示、时间递减显示;2.强大的可编程功能实行多点温度点的控制,最多达5个温度点的温度和恒温时间的设置及连续运行3.自动故障检测及蜂鸣器报警功能;4.温度偏差校准功能;5.便捷的模块更换,便于清洁与消毒;6.内置超温保护装置;7.液晶屏显示,按键开关。性能指标1.控温范围:-10℃~100℃;2.升温时间:&le 15Din (从20℃升至100℃);3.降温时间:&le 20Din室温-25℃,(环境温度为30℃下检测); &le 30Din (室温-30℃),(环境温度为25℃下检测);4.温度稳定性@100℃:&le ± 0.5℃;5.模块最大温差@40℃:0.3℃;6.模块温度均匀性:&le ± 0.3℃;7.显示精度:0.1℃;8.时间设置最长:99h59Din;9.最高温度:100℃;10.模块型号选择:参见DTC-100系列可更换模块。1.最大功率150W;2.外形尺寸:270x190x170 DD;3.净重:2.2Kg。HNDTC-100系列可更换模块型号孔径及试管数最高温度备注 A96× 0.2Ml标准板100℃ B54× 0.5Ml离心管100℃ C35× 1.5Ml离心管100℃ D35× 2.0Ml离心管100℃ E15× 0.5Ml+20× 1.5Ml离心管100℃ F24× 直径&le &phi 12DD试管100℃ G32× 0.2Ml+25× 1.5Ml离心管100℃ H32× 0.2Ml+10× 0.5Ml+15× 1.5Ml离心管100℃ I103× 67× 30 (方槽模块)100℃ J96× 0.2Ml酶标板 (平底)100℃ K可订做100℃
  • 120万!中国地质科学院郑州矿产综合利用研究所计划采购PPV法超高温制样粘度仪
    一、项目基本情况项目编号:ZKGSF(ZB)-20220592项目名称:PPV法超高温制样粘度仪采购项目预算金额:120.0000000 万元(人民币)最高限价(如有):120.0000000 万元(人民币)采购需求:详见附件合同履行期限:自合同签订之日起90日历天本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目属于专门面向中小企业采购项目。3.本项目的特定资格要求:3.1具有独立承担民事责任的能力,供应商须具有有效的营业执照。3.2具有良好的商业信誉和健全的财务会计制度,供应商提供具有2020年度经财务审计机构出具的财务审计报告或具有基本开户银行出具的近三个月的资信证明。3.3具有履行合同所必需的设备和专业技术能力。(出具承诺,格式自拟)。3.4具有依法缴纳税收凭据和社会保障资金的证明材料,供应商应提供近一个月依法缴纳税收和社会保险的证明材料。3.5参加政府采购活动前三年内,在经营活动中没有重大违法记录(提供参加政府采购活动近三年内,在经营活动中没有重大违法记录的书面声明函,格式自拟,加盖单位公章)。3.6供应商须提供通过“信用中国”网站(www.creditchina.gov.cn)和“中国政府采购网(www.ccgp.gov.cn)”查询企业信用记录的网页复印件并加盖公章,列入“信用中国”网站的“失信被执行人”和“税收违法黑名单”、“中国政府采购”网站的“政府采购严重违法失信行为记录名单”不符合规定条件的供应商,不得参与本次采购活动。开标当天由采购代理机构或采购人对供应商查询内容进行查询,查询结果以代理机构或采购人在开标当天现场查询结果为准,并将查询网页、内容进行截图或拍照等方式进行信用信息查询记录证据留存。3.7单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动(出具承诺,格式自拟)。三、获取招标文件时间:2022年05月23日 至 2022年05月27日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:/方式:有意参加本项目的投标人,请按照规定时间将“法定代表人身份证明或授权委托人持法定代表人授权书、法人身份证复印件、被授权人有效身份证复印件(联系方式)及营业执照”扫描件合并成一个PDF文件发送至邮箱zkgshn@163.com(邮件主题:项目名称+公司名称),我方收到邮件后,将会通过邮件或电话方式通知各投标人缴纳招标文件费用、发送招标文件。售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月14日 14点30分(北京时间)开标时间:2022年06月14日 14点30分(北京时间)地点:郑州市郑东新区商务内环路9号龙湖大厦17层1709开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜公告内容以附件为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国地质科学院郑州矿产综合利用研究所     地址:河南省郑州市中原区陇海西路328号        联系方式:马老师、0371-68632018      2.采购代理机构信息名 称:中科高盛咨询集团有限公司            地 址:郑州市郑东新区商务内环路9号龙湖大厦17层            联系方式:许先生 0371-53626688、18037197779            3.项目联系方式项目联系人:许先生电 话:  0371-53626688、18037197779
  • EXFEL大型低温恒温器样机研制工作完成
    日前,首台由中科院高能所研制的EXFEL大型低温恒温器样机全面通过了德国电子同步加速器研究所(DESY)的测试验收,受到DESY的好评。欧洲X射线自由电子激光(EXFEL)是计划建造在德国汉堡的国际合作的大科学装置。2005年11月24日,科技部代表中国政府正式签署了准备阶段的谅解备忘录,成为EXFEL计划的正式成员,并且拟以实物贡献的方式参加到此次国际合作当中。作为此次国际合作的单位之一,高能所开展大型低温恒温器的样机及其关键技术的研究,样机测试合格后进行批量生产,完成EXFEL国际合作的部分实物贡献,同时通过此次国际合作全面掌握大型低温恒温器的设计、制造、安装及调试等关键技术。EXFEL低温恒温器的长度为12.2m,总重量为7.8吨,其中有2.8吨的冷质量和5吨的真空容器质量。鉴于其独特的结构和性能要求,高能所科技人员在进行大量调研和充分消化吸收的基础上,将原29张图纸转换为206张适合于国内加工制造的技术图纸并分别撰写了相应的工艺和技术要求。同时根据国内外此类产品的加工经验,撰写了详细的产品制造说明书供加工单位参考使用。在加工制造阶段选派组内经验丰富的工程技术人员驻厂进行技术监督和指导工作,帮助生产方进行工艺工装的设计,确保重要部位焊接及机加工严格符合技术要求,在液氮冷激、压力、真空、漏率等重要的性能测试工作中严格把好质量关。对EXFEL恒温器最关键的漏热和支撑部件POST进行了专门研究,针对POST的特殊结构自行设计了拉力试验机对其分层进行不同等级的拉力试验。在整个EXFEL恒温器样机的研制过程中,从材料的采购、零部件的加工制造、性能测试到最后的包装运输每个步骤均进行严格的质量控制,精益求精。样机出厂时邀请了有经验的专家意大利INFN的Carlo. Pagani教授和使用方德国DESY MKS1组 Kay. Jensch参加了出厂测试和预验收,他们对样机制造过程中的工艺方法和质量控制给予高度评价。Carlo. Pagani教授认为此台低温恒温器的制造水准已经超过了对样机的要求,Kay. Jensch则表示中国的研制能力给其留下深刻印象,不会怀疑中国在以后批量生产的技术水平和能力。EXFEL大型低温恒温器样机于2009年3月10日正式发运,4月21日运抵德国。EXFEL网站对这台样机进行了报道,并将其命名为PXFEL1,以区别于西班牙和法国制造尚未完成的样机。5月至7月在德国DESY进行了低温恒温器与超导腔的总装和低温测试,在零下271℃的低温下,恒温器各项技术指标均达到或超过技术要求,表明我所研制的恒温器样机全面通过了DESY方面的测试验收,受到DESY方面的认可和好评。DESY网站再次进行了大篇幅的报道,DESY主管加速器的副所长Brinkmann先生在给高能所姜晓明副所长的电子邮件中将其称为“两所之间高效的、富有成果的、令人愉快的合作典范”。
  • 德国IKA/艾卡:德国IKA恒温器新品上市暨IKA大学生创业基金之恒温器众筹计划发布会
    时间:2014年9月24日 下午 13:00-16:30地点:上海新国际博览中心 N4馆M46(上海市浦东新区龙阳路2345号)内容安排:13:00-13:45 IKA艾卡集团管理层发言暨大学生创业基金之恒温器众筹计划发布13:45-14:15 现场媒体提问14:15-15:00 IKA恒温器介绍 主讲专家: IKA恒温器全球产品经理 Markus Schlegel 先生14:50-15:10 现场抽奖活动15:10-16:00 限量预售活动,数量有限,只限现场认购16:00-16:30 组织参加IKA展位:Analytica China N1馆1132号请详细填写下方的回执表并回传(敬请于9月17日前回传,以预留席位),谢谢!邮 箱:Eric.zhang@ika.cn传 真:020-8208 8373 转807电 话:020-8221 9930(直线)联系人:张尚磊 公司名称:姓名职位电话电子邮箱 关于IKA ( www.ika.cn )IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 恒温循环器,量热仪, 实验室反应釜等相关产品构成了IKA?实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 韩国,巴西等国家都设有子公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 高压下的奇迹!美伯克利大学Nature:利用干式低温光学恒温器揭秘氢化物超导体中的迈斯纳效应
    文章名称:Imaging the Meissner effect in hydride superconductors using quantum sensors期刊:Nature IF 64.8文章链接:https://www.nature.com/articles/s41586-024-07026-7 压力的存在能够直接改变微观相互作用,为凝聚相和地球物理现象的探索提供一个强大的调谐旋钮。兆巴(1 Mbar=100 GPa)压力区域的研究极具前沿代表,科学家们可在该压力区域研究高温超导材料的结构与相变。然而,在该高压环境中,许多传统的测量技术都失败了。针对此问题,美伯克利大学的N.Y.Yao教授团队利用干式封闭循环桌面式光学低温恒温器(attocube attoDRY800)突破性的在兆巴压力下以亚微米空间分辨率对金刚石砧单元内局部实现磁力测量的能力。相关研究内容以《Imaging the Meissner effect in hydride superconductors using quantum sensors》为题,在国际SCI期刊《Nature》上发表。该课题组将浅层氮空位色心直接植入铁砧中(见图1),选择与氮空位色心固有对称性相兼容的晶体切割,以实现在兆巴压力下的功能。文章中对最近发现的氢化物超导体CeH9进行了表征。通过同时进行磁学测量和电输运测量,观察到超导性的双重特征:迈斯纳效应的抗磁特性和电阻急剧下降到接近于零。通过局部映射抗磁响应和通量捕获,直接对超导区域的几何形状进行成像,在微米尺度上显示出明显的不均匀性(见图2d)。图1:兆巴压力下的NV色心传感测量。1a为样品加载示意图显示CeH9在两个相对的砧之间压缩。图2:CeH9的局部抗磁性。2a,2b: 同一个样品中两个不同位置处,在零场冷却到温度T Tc时收集的ODMR光谱。2c: 样品S2的共聚焦荧光图像。2d:通过在不同的空间点进行ODMR光谱测量,可以确定一个约10 μm的局部抗磁性的子区域(用d中的虚线表示)。利用这个信号可以识别CeH9已经成功合成的区域。 值得指出的是,该团队利用干式封闭循环桌面式光学低温恒温器(attocube attoDRY800)搭载实验所需的共聚焦荧光显微镜对NV色心进行了测量,见图3。该研究工作将量子传感带到兆巴边界,并使超氢化物材料合成的闭环优化成为可能。 图3:本实验的设备硬件与校正。3a: 用于产生磁场的设备包括一个定制的电磁铁,位于低温恒温器的电磁屏蔽外。3b:在样品S1的四个位置的不同冷却条件下的校准。3c: 样品S1的共聚焦荧光图像。3d: 在桌面式光学低温恒温器attoDRY800真空罩内部的图像显示DAC,冷指和热连接。 attoDRY800桌面式光学低温恒温器(见图4)是由德国attocube公司研发的一款干式闭循环低温恒温器,光学平台与系统冷头高度耦合,系统可提供4K到室温的变温环境。设备具有极低的震动噪音,已在国内外课题组广泛应用于量子通信、量子点发光、半导体材料、二维材料等研究领域。根据典型实验所需,该产品设计了几种标准真空罩方便用户进行拉曼、荧光等常见的测量手段对材料进行光-电-磁物理性质的变温测量。图4. attoDRY800桌面式光学低温恒温器- 可以选配低温物镜,低温位移台以及其他定制配置。 attoDRY800桌面式光学低温恒温器已经在北京大学,半导体所,国家纳米科学中心等单位顺利运行,持续助力各个课题组的科研工作。图5为常见的的低温物镜兼容真空罩,该真空罩内可配置attocube特有的低温消色差物镜以及纳米精度位移台。如果实验(例如光纤量子通信与open cavity等实验)需要更复杂的实验设计,我们可以根据用户的技术要求和偏好定制桌面上的真空罩。图5:常见配置-低温物镜兼容真空罩。 attoDRY800主要技术特点:☛ 光学平台和闭式循环低温恒温器完美地结合在一起☛ 提供无光学平台配置:全新一代独立光学低温恒温器attoDRY800xs☛ 宽温度范围(3.8 K…300 K),自动温度控制☛ 用户友好、多功能、模块化☛ 与低温消色差物镜兼容,数值孔径大于0.8☛ 可定制真空罩,标准样品空间:75mm直径。☛ 与典型光学桌的高度相同☛ 包含36根直流电线图6:全新一代独立光学低温恒温器attoDRY800xs- 冷头与光学面包板高度集成。 attoDRY800桌面式光学低温恒温器 部分发表文献:[1]. N.Y.Yao et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024)[2]. Liying Jiao et al. 2D Air-Stable Nonlayered Ferrimagnetic FeCr2S4 Crystals Synthesized via Chemical Vapor Deposition. Advanced Materials 2024[3]. Yohannes Abate et al. Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers. Adv. Optical Mater. 2024, 2302326[4]. Pablo P. Boix et al. Perovskite Thin Single Crystal for a High Performance and Long Endurance Memristor. Adv. Electron. Mater. 2024, 2300475[5]. Mauro Valeri et al. Generation and characterization of polarization-entangled states using quantum dot single-photon sources. 2024 Quantum Sci. Technol. 9 025002[6]. Ajit Srivastava, et al Quadrupolar–dipolar excitonic transition in a tunnel-coupled van der Waals heterotrilayer. Nature Materials 22, 1478–1484 (2023)[7]. Hanlin Fang et al. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nature Communications 14 : 6910 (2023) [8]. S. Kolkowitz et al. Temperature-Dependent Spin-Lattice Relaxation of the Nitrogen-Vacancy Spin Triplet in Diamond, Phys. Rev. Lett. 130, 256903,2023[9]. Yunan GAO, et al. Bright and Dark Quadrupolar Excitons in the WSe2/MoSe2/WSe2 Heterotrilayer. Phys. Rev. Lett. 131, 186901,2023[10]. Tim Schrö der, et al. Optically Coherent Nitrogen-Vacancy Defect Centers in Diamond Nanostructures. Phys. Rev. X 13, 011042 , 2023 attoDRY800桌面式光学低温恒温器 部分国内用户单位:相关产品1、低震动无液氦磁体与恒温器-attoDRYhttps://www.instrument.com.cn/netshow/SH100980/C377018.htm
  • 上新了,低温光学! ——MI低温光学恒温器新品来袭
    一、CryoAdvanceTM诠释更先进的低温设备全球知名光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供性能的光学恒温器而广受好评。正所谓潮平两岸阔,风正一帆悬!作为低温光学恒温器的旗舰,Montana Instruments近推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息等领域有更进一步的研究。CryoAdvance50/100在保留Cryostation C2/F2及Cryostation S50/100系列产品的优点基础上,进行了功能性和模块化的升。除了保证的低温和稳定性外,增加了电学通道的数量,并大的提高了后续功能模块的兼容性。科研人员拥有一台CryoAdvance,后续可以不断升或更换配置满足多种实验要求。CryoAdvance 50系统主机与样品腔内部示意图CryoAdvance 50新特色:✔ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。✔ 模块化设计:多种配置可选,快速满足各种实验需求,后续升简单。✔ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。✔ 稳定性设计:新设计在变温和振动稳定性上进一步优化。CryoAdvance 50主要参数:✔ 自动控温:3.2K - 350K 样品台✔ 温度稳定性:10mK(峰-峰值)✔ 震动稳定性:5nm(峰-峰值)✔ 降温时间: 300K-4.2K ,~2小时✔ 样品腔空间:Φ53 mm ×100 mm(更大空间,多种型号可选)✔ 光学窗口:5个光学窗口,可选光纤引入✔ 水平光路高度:140 mm✔ 窗口材料:多种材质可选✔ 基本电学通道:20条直流通道。✔ 接口面板:双RF+25DC(已包含),预留满足光纤等各种升通道。✔ 制冷系统:变频压缩机,延长冷头寿命。二、CryoCoreTM快速进入低温研究的稳固“基础”深处种菱浅种稻,不深不浅种荷花。为满足研究人员对设备性能的不同需求,Montana Instruments推出了价格友好型光学恒温器——CryoCore。作为光学恒温器家族的新成员,CryoCore的定位是以高的性价比作为低温研究的基础设备。CryoCore在价格友好的基础上提供了低4.9K的低温、100mK的稳定性、50 nm的振动,可满足大多数的低温光学实验要求和传统的低温实验要求。CryoCore具备了CryoAdvance的大多数优点,但是大的提高了性价比,减轻准备进入低温研究领域的科研工作者经费压力。CryoCore 特色:✔ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。✔ 集成式设计:系统包含真空泵、真空阀门控制系统,确保样品空间的“纯净”。✔ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。✔ 稳定性设计:新设计在变温和振动稳定性上进一步优化。 CryoCore系统主机CryoCore主要参数:✔ 自动控温:4.9K - 350K 样品台✔ 温度稳定性:100mK(峰-峰值)✔ 震动稳定性:50 nm(峰-峰值)✔ 降温时间: 300K-6K ,~3.5小时✔ 样品腔空间:Φ53 mm ×63 mm✔ 光学窗口:5个光学窗口,可选光纤引入✔ 水平光路高度:140 mm✔ 窗口材料:多种材质可选✔ 基本电学通道:20条直流通道。✔ 接口面板:双RF(已包含)。三、背景简介Montana Instruments成立于2006年并与Quantum Design结为全球战略合作伙伴,2012年正式进入中国市场。自2008年推出款商业化光学恒温器Cryostation C1以来,产品已经过三次升换代,设备的各方面性能均以达到高度优化。目前在全球的光学恒温器销量已突破1000套,在国内的销售已突破120套。此次重大升使得系统在模块化、后续升兼容性方面具有更大的提升空间。经过此次升,尤其是CryoCore以更加友好的价格兼具了低温光学和通用低温设备的特点。Montana Instruments在低温光学、量子计算低温设备之外能够适用于更多方向。无论是高精度低温显微光谱,还是兼具光学与普通低温测量,Montana Instruments总有一款设备适合您!
  • 北京理工大学140.00万元采购恒温器
    详细信息 北京理工大学无液氦低温光学恒温器采购 北京市-海淀区 状态:公告 更新时间: 2022-12-22 招标文件: 附件1 北京理工大学无液氦低温光学恒温器采购 项目编号:BMCC-ZC22-0527/2 发布日期:2022-12-22 16:24 下载 北京理工大学无液氦低温光学恒温器采购项目招标公告 项目概况: 北京理工大学无液氦低温光学恒温器采购项目的潜在投标人应在线上邮箱报名,并于2023年1月12日下午2点00分(北京时间)前递交投标文件。 一、项目基本情况: 项目编号:BMCC-ZC22-0527/2 项目名称:北京理工大学无液氦低温光学恒温器采购 预算金额:140.00万元 采购需求: 名称 数量 简要项目描述 备注 北京理工大学无液氦低温光学恒温器采购 1套 无液氦低温光绪恒温器是一个可用于多种光学测量的闭循环的制冷系统,系统具有多个光学窗口可以满足多种自由光路的光学测量方案,可用于低温光学显微光谱的,同时带有电学通道,可用于电学测量和调控。 详见招标文件 是否接受进口产品投标:是。 其他:投标人应对招标文件中“第七章 货物需求及技术需求”中所有货物进行投标,不得将其中的内容拆开投标,否则其投标将被拒绝。 合同履行期限:自签订合同之日起至合同内容全部执行完毕止。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求:本项目不接受联合体投标;投标人应遵守国家有关法律、法规、规章和政府采购有关的规章;本项目采用线上获取招标文件,投标人须按规定获取招标文件,否则没有资格参加本项目投标。 三、 获取招标文件: 1、 时间:2022年12月22日至2022年12月29日,上午9:00至11:30;下午13:00至16:30(北京时间,法定节假日除外)。 2、 地点:线上邮箱报名(具体方式详见“六、其他补充事宜”) 3、 方式:本项目只接受电汇或网银购买(具体方式详见“六、其他补充事宜”) 4、售价:每本人民币200.00元。 四、提交投标文件截止时间、开标时间和地点: 1、 提交投标文件截止时间、开标时间:2023年1月12日下午2:00分(北京时间)。 2、 提交投标文件地点:北京市海淀区学院路30号科大天工大厦B座十七层1706室第一会议室。 五、公告期限:自本公告发布之日起5个工作日。 六、其他补充事宜: (1)详细报名及获取招标文件方式,请完整阅读以下全部内容: 1)填写下表,连同电汇底单(网银转账页面或银行回单)扫描件发送至bjmdzx@vip.163.com。邮件主题请务必为“购买标书登记+项目编号+项目名称”。报名后我司将回复邮件告知报名结果,请关注邮件及相关附件。 请注意:电汇或网银必须于标书销售截止日下午4:30前到账。 项目编号 BMCC-ZC22-0527/2 项目名称 北京理工大学无液氦低温光学恒温器采购 汇款金额 公司名称 统一社会信用代码 公司通讯地址 项目联系人 联系电话 联系邮箱 汇款/转账凭证 (汇款或转账的底单扫描件或截图) 2)银行账户信息,电汇购买招标文件、投标保证金及中标服务费收取的唯一账户: 汇款或转账时请务必附言“项目编号+用途”。 公司名称:北京明德致信咨询有限公司 开 户 行:中国工商银行股份有限公司北京东升路支行 账 号:0200 0062 1920 0492 968 3)招标文件的获取: 电子版:明德致信公司网站“招标(采购)公告”频道:http://www.zbbmcc.com/node/119。无需注册,按项目名称或编号查找对应项目,点击标题下红色“下载”按钮即可。采购代理机构不再提供纸质招标文件。招标文件售后不退。 (2)问题咨询联系方式的说明: 1)有关招标(采购)文件购买、中标(成交)通知书领取及服务费发票、保证金交纳及退还事宜的联系电话:010-82370045; 2)有关招标(采购)文件技术部分的问题咨询:请拨打公告“项目联系方式”中项目联系人的手机号码。 (3)本项目的公告发布媒介: 仅在中国政府采购网发布。对其他网站转发本公告可能引起的信息误导、造成供应商的经济或其他损失的,采购人及采购代理不负任何责任。 七、对本次招标提出询问,请按以下方式联系: 1.采购人信息: 名 称:北京理工大学 地 址:海淀区中关村南大街5号 联系方式:陈老师,010-68912384 2.采购代理机构信息: 名 称:北京明德致信咨询有限公司 地 址:北京市海淀区学院路30号科大天工大厦B座17层1709室 联系方式:张昕昕、苏悦、吕绍山 010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30) 电子邮箱:bjmdzx@vip.163.com 3.项目联系方式: 项目联系人:张昕昕、苏悦、吕绍山 电 话:010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30) 北京明德致信咨询有限公司 2022年12月22日 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:恒温器 开标时间:2023-01-12 02:00 预算金额:140.00万元 采购单位:北京理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北京明德致信咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北京理工大学无液氦低温光学恒温器采购 北京市-海淀区 状态:公告 更新时间: 2022-12-22 招标文件: 附件1 北京理工大学无液氦低温光学恒温器采购 项目编号:BMCC-ZC22-0527/2 发布日期:2022-12-22 16:24 下载 北京理工大学无液氦低温光学恒温器采购项目招标公告 项目概况: 北京理工大学无液氦低温光学恒温器采购项目的潜在投标人应在线上邮箱报名,并于2023年1月12日下午2点00分(北京时间)前递交投标文件。 一、项目基本情况: 项目编号:BMCC-ZC22-0527/2 项目名称:北京理工大学无液氦低温光学恒温器采购 预算金额:140.00万元 采购需求: 名称 数量 简要项目描述 备注 北京理工大学无液氦低温光学恒温器采购 1套 无液氦低温光绪恒温器是一个可用于多种光学测量的闭循环的制冷系统,系统具有多个光学窗口可以满足多种自由光路的光学测量方案,可用于低温光学显微光谱的,同时带有电学通道,可用于电学测量和调控。 详见招标文件 是否接受进口产品投标:是。 其他:投标人应对招标文件中“第七章 货物需求及技术需求”中所有货物进行投标,不得将其中的内容拆开投标,否则其投标将被拒绝。 合同履行期限:自签订合同之日起至合同内容全部执行完毕止。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求:本项目不接受联合体投标;投标人应遵守国家有关法律、法规、规章和政府采购有关的规章;本项目采用线上获取招标文件,投标人须按规定获取招标文件,否则没有资格参加本项目投标。 三、 获取招标文件: 1、 时间:2022年12月22日至2022年12月29日,上午9:00至11:30;下午13:00至16:30(北京时间,法定节假日除外)。 2、 地点:线上邮箱报名(具体方式详见“六、其他补充事宜”) 3、 方式:本项目只接受电汇或网银购买(具体方式详见“六、其他补充事宜”) 4、售价:每本人民币200.00元。 四、提交投标文件截止时间、开标时间和地点: 1、 提交投标文件截止时间、开标时间:2023年1月12日下午2:00分(北京时间)。 2、 提交投标文件地点:北京市海淀区学院路30号科大天工大厦B座十七层1706室第一会议室。 五、公告期限:自本公告发布之日起5个工作日。 六、其他补充事宜: (1)详细报名及获取招标文件方式,请完整阅读以下全部内容: 1)填写下表,连同电汇底单(网银转账页面或银行回单)扫描件发送至bjmdzx@vip.163.com。邮件主题请务必为“购买标书登记+项目编号+项目名称”。报名后我司将回复邮件告知报名结果,请关注邮件及相关附件。 请注意:电汇或网银必须于标书销售截止日下午4:30前到账。 项目编号 BMCC-ZC22-0527/2 项目名称 北京理工大学无液氦低温光学恒温器采购 汇款金额 公司名称 统一社会信用代码 公司通讯地址 项目联系人 联系电话 联系邮箱 汇款/转账凭证 (汇款或转账的底单扫描件或截图) 2)银行账户信息,电汇购买招标文件、投标保证金及中标服务费收取的唯一账户: 汇款或转账时请务必附言“项目编号+用途”。 公司名称:北京明德致信咨询有限公司 开 户 行:中国工商银行股份有限公司北京东升路支行 账 号:0200 0062 1920 0492 968 3)招标文件的获取: 电子版:明德致信公司网站“招标(采购)公告”频道:http://www.zbbmcc.com/node/119。无需注册,按项目名称或编号查找对应项目,点击标题下红色“下载”按钮即可。采购代理机构不再提供纸质招标文件。招标文件售后不退。 (2)问题咨询联系方式的说明: 1)有关招标(采购)文件购买、中标(成交)通知书领取及服务费发票、保证金交纳及退还事宜的联系电话:010-82370045; 2)有关招标(采购)文件技术部分的问题咨询:请拨打公告“项目联系方式”中项目联系人的手机号码。 (3)本项目的公告发布媒介: 仅在中国政府采购网发布。对其他网站转发本公告可能引起的信息误导、造成供应商的经济或其他损失的,采购人及采购代理不负任何责任。 七、对本次招标提出询问,请按以下方式联系: 1.采购人信息: 名 称:北京理工大学 地 址:海淀区中关村南大街5号 联系方式:陈老师,010-68912384 2.采购代理机构信息: 名 称:北京明德致信咨询有限公司 地 址:北京市海淀区学院路30号科大天工大厦B座17层1709室 联系方式:张昕昕、苏悦、吕绍山 010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30) 电子邮箱:bjmdzx@vip.163.com 3.项目联系方式: 项目联系人:张昕昕、苏悦、吕绍山 电 话:010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30) 北京明德致信咨询有限公司 2022年12月22日
  • 这个光学低温恒温器太小了,还超低振动,量子光学实验必备!
    随着科学技术的发展,越来越多的研究人员希望在低温下进行量子光学实验,但却没有空间放置占用几立方米宝贵实验室空间的大型低温恒温器。针对此问题,国际知名低温显微镜领域制造商attocube systems AG公司推出了全新一代立光学低温恒温器attoDRY800xs。attoDRY800xs将attoDRY800的革命性概念提升到了一个新的水平,成为量子光学实验中紧凑的平台。该平台可定制低温护罩,配备您想要的光学设置,集成到光学平板中。attoDRY800xs是有史以来个立的光学低温恒温器,低温样品空间地嵌入到一个无障碍的工作空间中。图1. 全新一代立光学低温恒温器attoDRY800xs。 根据典型配置,我们设计了几种标准真空罩和冷屏,它们在定位器、样品架、工作距离和目标方面进行了优化。图2为可配置的低温物镜兼容真空罩,该真空罩内可配置attocube有的低温消色差物镜以及纳米精度位移台。如果仍然不够,可以根据用户的技术要求和偏好定制桌面上方的任何内容。图2:低温物镜兼容真空罩。 尽管设计紧凑,但attoDRY800xs仍能提供出色的超低振动性。图3中激光干涉仪直接测量冷头位置的振动,垂直方向的峰间振动小于2纳米(3纳米),而在横向上低于10纳米(40纳米),带宽为200赫兹(1500赫兹)。图3. attoDRY800xs样品区域振动水平测试结果 紧凑的光学低温恒温器attoDRY800xs保留了原始attoDRY800的所有关键优势,例如类似的低振动性能、通过可定制的真空护罩实现的多功能性,以及自动温度控制、气体处理和远程控制。 因此,attoDRY800xs可以直接在其光学平板上建立一个立的实验,也可以将其放置在现有较大的光学台附近,光学元件之间进行光纤耦合。简而言之, attoDRY800xs为您的科学研究提供一个小型紧凑但功能依然强大的光学低温平台。 attoDRY800xs主要技术特点:☛ 只需要17英寸x28英寸的实验室空间☛ 光学面包架和闭式循环低温恒温器地结合在一起☛ 宽温度范围(3.8 K… 300 K)☛ 用户友好、多功能、模块化☛ 与低温消色差物镜兼容☛ 可定制的真空罩☛ 与典型光学桌的高度相同☛ 自动温度控制☛ 包含36根直流电线attoDRY800应用案例:1. InGaN量子点作为单光子源的提升与改进 虽然量子点通常被认为是单光子源的佳候选,但它们的实际性能在很大程度上取决于化学成分。在氮化物量子点的特殊情况下,一方面它们即使在温度高达350 K的情况下可以发射单光子,另一方面它们的发射会显著加宽。为了了解优化其性能的佳方法,Robert Taylor小组(英国牛津大学)对InGaN量子点的光致发光进行了广泛的研究,发现在非性平面上生长的量子点与性氮化物点相比,光谱扩散率降低,寿命显著缩短。由于在配备有ANPxyz101位移台的attoDRY800低温恒温器中进行了低温光致发光测量,这些发现得以实现。【参考】Robert A. Taylor, et al Decreased Fast Time Scale Spectral Diffusion of a Nonpolar InGaN Quantum Dot. ACS Photonics 2022, 9, 1, 275–281 2. 悬浮纳米颗粒的量子控制 attoDRY800不仅能够为量子光学实验提供一个无障碍的实验平台,而且还可以确保非常干净的高真空条件。Lukas Novotny(瑞士苏黎世ETH)团队出色地利用了这些特性,他们次在低温环境中光学悬浮介电纳米颗粒,并实现了对其运动的量子控制。由于在低温环境中抑制气体碰撞和黑体光子发射所提供的低水平的退相干,从而允许将粒子的运动反馈冷却到量子基态,从而实现了这些结果,反馈控制依赖于粒子位置的无腔光学测量,该测量接近海森堡关系的小值,在2倍以内。此外,量子研究的重要性以及Novotny在其中的作用在ETH董事会2021年的年度报告中有所体现。【参考】Lukas Novotny, et al Quantum control of a nanoparticle optically levitated in cryogenic free space, Nature, 595, 378–382 (2021) 3. 增强单光子量子密钥分配 按下按钮即可发射单光子的工程量子光源是量子通信协议的基本组件。为了大限度地提高量子密钥分发的预期安全密钥和通信距离,柏林理工大学(德国柏林)的Tobias Heindel团队开发了一些工具,以优化使用此类工程单光子发射器实现的量子密钥分发性能。利用二维时间滤波,可以优化预期的安全密钥以及通信距离。该小组在一个基本的量子密钥分发试验台上完成了他们的常规工作,该试验台包括一个量子点装置,该装置向一个四端口接收器发送单光子脉冲,分析飞行量子比特的化状态。单光子源安装在光学attoDRY800光学恒温器的冷台上,冷台与光学平台的集成为光学平台上的冷点提供了简单的解决方案。该团队的方法进一步证明了通过光子统计进行实时安全监控,这是量子通信安全认证的重要一步。【参考】Tobias Heindel, et al Tools for the performance optimization of single-photon quantum key distribution.npj Quantum Information , 6, 29 (2020) 4. 易于使用的单光子实验平台 有效地产生单个、不可区分的光子对于光学量子信息处理的发展至关重要。具体而言,按需创建单光子的探索仅限于某些类型的源和技术。为了实现这一目标,Quandela公司提供光学配件和先进的固态源设备,这些设备每秒可发射数百万个量子纯光子。将attocube的闭式循环低温恒温器attoDRY800与Quandela的半导体量子点发射器相结合,可为复杂的实验和协议提供可靠且易于使用的先进固态单光子源。通过这种稳健的设置,很容易使用单光子源按需生成零、一或两个光子的量子叠加加速芯片多光子实验,并证明该技术可用于大规模制造相同的源。【参考】J. C. Loredo, et al Generation of non-classical light in a photon-number superposition,Nature Photonics ,13, 803–808(2019) 5. 高压下的纳米量子传感器 压力会影响从行星内部的性质到量子力学相位之间的转换等现象。然而,在高压实验装置(如金刚石砧座单元)中产生的巨大应力梯度限制了大多数常规光谱学技术的应用。为了应对这一挑战,由三个小组(按字母顺序)立开发了一种新型纳米传感平台:Jean-Francois Roch小组(法国巴黎大学)、Sen Yang小组(中国香港中文大学)和Norman Yao小组(美国加州大学伯克利分校)。研究人员利用集成在砧座单元中的量子自旋缺陷,在端压力和温度下以衍射限的空间分辨率检测到了微小信号。为此,Norman Yao及其同事使用了台式集成闭合循环attoDRY800低温恒温器,这是快速控制金刚石砧座温度的理想平台,同时提供了大的样品室和自由光束通道。【参考】N.Y.Yao, et al Imaging stress and magnetism at high pressures using a nanoscale quantum sensor,Science 2019:366, 6471,1349-1354 6. 低温拉曼研究气相沉积的二维材料NiI2晶体磁学性质 范德瓦尔斯磁性材料的发现引起了材料科学和自旋电子学界的大关注。制备原子厚度以下的超薄磁性层是一项具有挑战性的工作。纳米科学中心的谢黎明研究员团队报道了气相沉积的NiI2范德华晶体,在SiO2/Si衬底上生长的二维NiI2薄片为5−40纳米,在六角氮化硼(h-BN)上可生长原子层厚度的晶体。随温度变化的拉曼光谱揭示了生长的二维NiI2晶体中的磁性相变。该研究工作使用attoDRY800光学低温恒温器进行了样品冷却,低温物镜(LT-APO/VIS/0.82)用于激光聚焦和信号采集。这项工作为外延二维磁性过渡金属卤化物提供了一种可行的方法,也为自旋电子器件提供了原子层厚度的材料。【参考】Liming XIE, et al Vapor Deposition of Magnetic Van der Waals NiI2 Crystals, ACS Nano 2020, 14, 8, 10544–10551. 7. 范德华异质结构中局域层间激子间的偶相互作用 虽然自由空间中的光子几乎没有相互作用,但物质可以调解它们之间的相互作用,从而产生光学非线性。这种单量子水平上的相互作用会导致现场光子排斥,对于基于光子的量子信息处理和实现光的强相互作用多体态至关重要。美国Ajit Srivastava课题组报道了异质双层MoSe2/WSe2中电场可调的局部化层间激子之间的排斥偶-偶相互作用。具有平面外非振荡偶矩的单个局部化激子的存在将二激发的能量增加约2 meV:大于发射线宽的一个数量,对应于约7 nm的偶间距离。样品被装入闭循环低温恒温器attoDRY800中,课题组自制了低温(~ 4K)显微镜进行PL测量。在较高的激发功率下,多激子络合物以较高的系统能量出现。该发现是朝着创建激子少体和多体态迈出的一步,例如范德华异质结构中具有自旋谷旋量的偶晶体。 【参考】Ajit Srivastava, et al Dipolar interactions between localized interlayer excitons in van der Waals heterostructures, Nature Materials, 19, 624–629(2020) 8. 单层WS2范德华异质结构腔中的光吸收 单层过渡金属二卤化物(TMD)中的激子控制着它们的光学响应并显示出由寿命限制的光−物质强相互作用。虽然各种方法已被应用于增强TMD中的光激子相互作用,但所达到的强度远远不足,并且尚未提供其潜在物理机制和基本限制的完整图片。西班牙Koppens课题组介绍了一种基于TMD的范德瓦尔斯异质结构腔,它提供了在超低激发功率下观察到的近100%激子吸收和激子复合物发射。低温恒温器attoDRY800为光谱吸收实验提供了不同的温度条件(4K-300K)。实验的结果与描述光的激子−空腔相互作用的量子理论框架完全一致。研究发现,辐射、非辐射和退相衰变率之间的微妙相互作用起着至关重要的作用,并揭示了二维系统中激子的普遍吸收定律。此增强型光−激子相互作用为研究激子相变和量子非线性提供了一个平台,为基于二维半导体的光电子器件提供了新的可能性。 【参考】Frank H. L. Koppens, et al Near-Unity Light Absorption in a Monolayer WS2 Van der Waals Heterostructure Cavity, Nano Lett. 2020, 20, 5, 3545–3552图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。
  • WIGGENS推出最新多功能恒温器(干浴器)
    WIGGENS专为试管、微量离心管和比色杯以及微孔板的加热恒温而设计的多功能恒温器,明亮LED数字式温度显示,设置简单,灵敏的电子控制器保证优越的温度稳定性和均一性. 有WD310和WD320两个型号 加热块数量: WD310: 一块, WD320: 两块 温度范围: 室温+5-150℃ 温度稳定性(37℃): ± 0.1℃ 加热块间温度均一性(37℃): ± 0.1℃ 显示分辨率: 0.1℃ 定时: 0-9999min 安全设置: 高于170℃自动切断加热功能
  • Montana光学恒温器实力解决低温MOKE测量难题,持续提供低温磁学测量新思路
    全球知名的Montana光学恒温器又有新搭档啦!著名MOKE生产商英国Durham公司推出的官方产品说明手册中推出了低温MOKE的佳方案,NanoMOKE与MI光学恒温器的Magnet-optic系统搭配可以为用户实现低温MOKE测量。搭配Attocube的高精度位移器与旋转台,可以实现多种MOKE的定点测量研究。图1 a NanoMOKE与MI恒温器整体系统;b、c 局部细节图 长期以来怎么将室温下相当成熟的MOKE测量在低温下实现一直是困扰磁学研究者的问题。问题主要有以下几个方面:1、传统湿式恒温器对液氦的消耗导致实验成本高昂;2、传统制冷机恒温器震动较大使得测量的信噪比较差,无法进行或微区测量;3、传统恒温器温度控制的稳定性不好,很难实现特定温度下的测量;4、传统低温恒温器操作复杂,使得测量的过程异常繁琐。MI推出的超精细无液氦恒温器解决了以上问题。图2 a 横向样品托;b 纵向样品托;c 不同方向带电样品托 先,MI恒温器使用智能变频制冷机系统,完全摆脱了液氦,对氦气的消耗也非常小,大大降低了低温试验成本;其次,MI的恒温器震动峰-峰值小于5nm,这一震动水平已经达到了室温光学实验的水平;再次MI恒温器温度的稳定性优于10mk,这使得对特定温度下的测量异常稳定;后MI恒温器操作非常简便,完全智能化的控制系统能够让您的控制随心所欲。系统的样品更换非常方便,系统可以联网控制,真正实现远程遥控。这样以来低温MOKE的可行性和精度都得到了大的提高,真正的实现了低温下微米量的高精度磁性、磁畴测量。此外NanoMOKE针对Montana样品腔可以提供向、横向、纵向等多种解决方案。 除了与MOKE搭配之外,MI恒温器针对磁光系统推出了多种样品台,使样品在可以平行和垂直于磁场方向(如图2所示)。带电的样品托可以帮助用户实现变场、变温、光电的测量,大的拓宽了恒温器的功能。图3 a Cryostation-GMW系统整体图;b 样品腔局部图;c 样品腔截面图 近期,MI与GMW公司联合推出了多种灵活的外部磁体解决方案,使得用户更容易实现各种特殊的实验测量,磁场强度也有所提升,此外更有多种永磁体等多种方案可以选择。MI的灵活性打破了很多传统低温实验的瓶颈,使得低温实验像室温实验一样方便。除了磁学测量以外,MI恒温器在低温拉曼上也取得了巨大的成功,用户可以很方便地用已有的高性能光谱仪直接在MI恒温器上来实现低温拉曼的测量。在新兴的量子信息领域MI恒温器更是大显身手,目前国内在量子信息领域较为出色的科研单位都已成为MI恒温器的用户。特别是中国科学技术大学和清华大学,分别拥有多个型号的多台MI恒温器,已成为国内用户前两位。目前MI恒温器在国内的数量已超过60台,应用领域涵盖量子信息、NV色心、拉曼、晶体光学等多个方向,且连续、稳定地工作在各大实验室。MI恒温器已成为不可多得的多功能、高精度、超稳定、全干式恒温器。 相关产品链接:美国Montana无液氦超低振动低温光学恒温器:http://www.instrument.com.cn/netshow/SH100980/C122418.htmAttocube低温纳米位移台:http://www.instrument.com.cn/netshow/SH100980/C80795.htm
  • 国内首套带有He3的大功率极低温绝热去磁恒温器落户高能物理研究所
    金鸡辞旧岁,瑞犬报春来,在辞旧迎新之际我国低温领域又添新设备。近期,国内台新型HPD低温热去磁恒温器(ADR)在高能物理研究所刘聪展科研团队实验室完成安装并顺利验收。该设备由Quantum Design合作伙伴,美国著名低温设备生产商High Precision Devices(HPD)公司生产,产品型号为107 K2。 Quantum Design工程师、HPD工程师与高能物理所用户合影,图为新型热去磁恒温器107 K2近年来,随着空间探测器、量子信息等科学的发展,低温设备广泛走进了实验室。获取低温的手段通常是通过稀释制冷或热去磁来实现,两者各有优缺点。一般的热去磁操作简单,价格较低,但是提供的mK温度时间有限,通常只能工作几个小时就要升温充磁。稀释制冷机能够连续提供mK温度,但是操作为复杂、降温过程缓慢并且价格昂贵。所谓“宝剑锋从磨砺出,梅花香自苦寒来”,HPD公司经过多年的潜心研究,生产出一款专为科研中更低温度、更大功率的不断需求量身设计的产品:新型大功率低温热去磁恒温器107 K2。低温热去磁恒温器107 K2的特点是:采用了特的He3预冷创新设计,这使得它在300mk时仍能具有25J的超大冷量,其制冷低温度可达25mK;同时,在没有负载的情况下,100mk低温控温时间可达200小时,超大实验空间:34cm diameter X 20cm tall 让人眼前一亮。如果您的实验当中真的需要稀释制冷机,或许带有He3的ADR才是您的佳选择! 带有He3的低温热去磁恒温器HPD 107 K2“剑阁峥嵘而崔嵬,一夫当关万夫莫开”,HPD的工程师们正是攻克了这样一道道难以逾越的技术难关,后才得以登上低温技术的巅峰。为了纪念研发的艰辛,HPD将ADR新型低温热去磁恒温器以著名山峰来命名。K2代表了二高,却是难登的山峰——乔戈里峰,寓意了这款恒温器低调务实却有技术实力。 此次HPD还为紫金山天文台安装了型号为Rainier雪山的103型ADR恒温器。这些恒温器将为我国的低温粒子探测器等研究提供有力帮助。此次中国之行,HPD的工程师特地参观了长城,这座人类伟大的工程,激发了他们在低温领域继续前进的热情,期待我们的科研人员能在这样的低温技术支持下延续低温的传奇之旅。 相关产品及链接1、低温热去磁恒温器:http://www.instrument.com.cn/netshow/SH100980/C201745.htm2、超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/SH100980/C122418.htm 3、完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/SH100980/C18553.htm
  • 215万!散裂中子源科学中心高分辨谱仪2K低温恒温器采购项目
    项目编号:OITC-G230DY0003项目名称:散裂中子源科学中心高分辨谱仪2K低温恒温器采购项目采购方式:公开招标预算金额:2,150,000.00元采购需求:合同包1(高分辨谱仪2K低温恒温器):合同包预算金额:2,150,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表高分辨谱仪2K低温恒温器1(套)详见采购文件2,150,000.00-本合同包不接受联合体投标合同履行期限:合同签订后14个月内(具体进度要求见招标文件)。散裂中子源科学中心高分辨谱仪2K低温恒温器采购项目招标文件.zip
  • 199万!散裂中子源科学中心高分辨谱仪4K低温恒温器采购项目
    项目编号:OITC-G230DY0004项目名称:散裂中子源科学中心高分辨谱仪4K低温恒温器采购项目采购方式:公开招标预算金额:1,990,000.00元采购需求:合同包1(高分辨谱仪4K低温恒温器):合同包预算金额:1,990,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表高分辨谱仪4K低温恒温器1(套)详见采购文件1,990,000.00-本合同包不接受联合体投标合同履行期限:合同签订后14个月内(具体进度要求见招标文件)散裂中子源科学中心高分辨谱仪4K低温恒温器采购项目招标文件.zip
  • 215万!散裂中子源科学中心高分辨谱仪2K低温恒温器采购项目
    采购计划编号:441901-2023-00026项目编号:OITC-G230DY0003J项目名称:散裂中子源科学中心高分辨谱仪2K低温恒温器采购项目(二次)采购方式:竞争性谈判预算金额:2,150,000.00元采购需求:合同包1(高分辨谱仪2K低温恒温器):合同包预算金额:2,150,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)1-1其他仪器仪表高分辨谱仪2K低温恒温器1(套)详见采购文件2,150,000.00本合同包不接受联合体投标合同履行期限:合同签订后14个月内(具体进度要求见采购文件)。2.zip
  • 199万!散裂中子源科学中心高分辨谱仪4K低温恒温器采购项目
    采购计划编号:441901-2023-00025项目编号:OITC-G230DY0004J项目名称:散裂中子源科学中心高分辨谱仪4K低温恒温器采购项目(二次)采购方式:竞争性谈判预算金额:1,990,000.00元采购需求:合同包1(高分辨谱仪4K低温恒温器):合同包预算金额:1,990,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)1-1其他仪器仪表高分辨谱仪4K低温恒温器1(套)详见采购文件1,990,000.00本合同包不接受联合体投标合同履行期限:合同签订后14个月内(具体进度要求见采购文件)8a7edc5f861c6f430186352356b512c6.zip
  • 低震动无液氦磁体与恒温器成功助力低温NV色心研究取得新进展
    原子层厚薄的范德瓦尔斯(vdW)磁性材料的发现使得在二维空间中对各种自旋系统中的磁性机制进行基础研究成为可能。由于具有易于制造和多种调控机制的优点,vdW磁体和它们的异质结构有望成为下一代的自旋电子器件候选材料。这种基础研究和技术兴趣的结合激发了人们对新型室温vdW磁体的探索和对已发现材料的磁性机制的研究。 科学家们已经通过多种探测技术在微米尺度对vdW磁体进行了密集研究,如磁光克尔效应显微镜,磁圆二向色性显微镜,反常霍尔效应等。尽管已有许多重要的结果,但这些方法由于存在激光衍射跟电尺寸限制,空间分辨率有限等问题,致使原子层厚薄vdW磁体的纳米尺度特征如磁畴和拓扑结构、自旋结构等大部分研究依旧未经探索。图1. 实验示意图。CrBr3双层膜杂散磁场是用金刚石探针中的单个NV色心探测的。实验在低温恒温器内进行,实验中温度5 K。 科学家已根据磁光致发光和微磁测量中的异常磁滞回线,预测了层状CrBr3中的磁畴,但在真实空间中尚未检测到磁畴结构及其演变。近期,德国斯图加特大学的科学家演示了在低震动无液氦磁体与恒温器内利用金刚石探针对单个NV色心进行了低温扫描磁测量(见图1实验示意图)。通过使用脉冲测量方案,商用金刚石探针获得佳磁场灵敏度约为0.3 μTHz-1/2,微波加热显著降低。该团队还利用该装置定量研究了少数几层CrBr3样品的磁化,并在真实空间中成像了CrBr3双层中的畴结构。研究人员也观察了磁畴的演化及磁畴壁缺陷位置的钉扎和反畴形核。图2.磁畴与饱和磁化强度。 a-b: 在沿着NV色心轴的2 mT外磁场下,CrBr3双层膜杂散磁场和的重建磁化强度图;c: 11 mT外磁场下的磁化强度图。所有图像的比例尺均为1 μm。d-e:图像b和图像c中磁化值的直方图。 杂散磁场可以通过对具有洛伦兹线型的光学探测磁共振曲线(optically detected magnetic resonance,简称ODMR)进行拟合得到。图2a显示了在零磁场下冷却后,在2 mT外磁场下CrBr3双层膜的典型杂散磁场图像,该杂散磁场图清晰地显示了具有明显正负值的磁畴。为了揭示更多细节,该团队还使用反向传播协议把杂散磁场图转为重建磁化强度图(见图2b)。图2b清楚地显示了磁畴结构,具有正电荷(负)值表示磁化方向平行(反平行)外磁场。通过增加外部磁场,样品可以化,图2c显示了在11 mT外部磁场下测得的磁化图像。饱和磁化强度可以通过图2d-e中的两个磁化图像的统计数据来计算,通过分析数据饱和磁化强度值分别为~26(−28)和~26μBnm−2,μB为玻尔磁子。 图3. 外加磁场变大时磁畴的演化。a-g: 沿NV色心轴分别施加2、2.5、3、3.5、4、5和6 mT外磁场下连续测量的磁化图像。图像g中的比例尺为1 μm。h-i: 图e和g中虚线框所示样品区域的磁化图像。j: 从图a–g磁化图像中提取的初始磁化曲线。 除了说明二维磁体的磁畴结构,基于NV色心的磁学成像测量可以使科学家能够更详细地研究这些系统中的磁化机制。多畴铁磁体通常通过反畴的形核及畴壁运动,反转其磁化方向。材料中的缺陷会改变磁畴壁的能量,从而影响磁畴壁的运动。图3a–g显示了样品在零磁场下退磁并冷却后,将磁场从2 mT增加到6 mT的情况下获得的磁化图像。从图中可以看到正(负)畴的面积随着磁场的增大而增大(缩小),随着畴壁向负畴移动。负畴在完全消失之前变得非常小,磁化图像图3g中显示了接近几十个纳米直径的磁化点。为了在机理上验证钉扎效应可主导矫顽力,作者提取了样品的初始磁化曲线(见图j)。当磁场2 mT时平均渗透率非常低,当磁场大于2 mT时,其显著增加(参见图3j中的蓝色条),这与钉扎效应的行为主导了初始磁化的结果一致。 另外,在其他不同层数的CrBr3样品中也观察到类似的磁畴结构和畴壁钉扎。通过测量三层CrBr3样品在不同激光功率下的畴结构和磁性,表明激光加热效应可以忽略不计。综上所述,利用低震动无液氦磁体与恒温器内低温NV色心探针,作者通过定量绘制杂散磁场图研究了CrBr3样品中的磁畴,测定了双层CrBr3的磁化强度并在实空间观察到了磁畴的演化。 低震动无液氦磁体与恒温器内NV色心技术的高空间分辨率使磁共振成像成为可能,并可定位钉住畴壁并使反向畴成核的缺陷位置。该工作突出了低温恒温器内NV色心技术是未来探索二维磁体中纳米尺度特征的一种定量探测手段。图4. attoDRY2200低震动无液氦磁体与恒温器,适用于低温NV色心研究 attoDRY2200低温恒温器以及可选显微镜主要技术特点:-温度范围:1.8K ..300 K-磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)-Z方向振动噪音:AFM噪音 (工作带宽=195Hz) 100pm-可选显微镜:AFM/CFM(NV色心研究),AFM(接触式与非接触式), CFM-样品定位范围:5×5×4.8 mm3-扫描范围: 50×50 μm2@300 K, 30×30 μm2@4 K -商业化探针-可升 MFM,PFM, ct-AFM, cryoRAMAN, atto3DR等功能 参考文献:1. Qichao SUN, et al. Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging,Nature Communications 12, 1989 (2021) .
  • Montana超精细多功能无液氦低温光学恒温器从“中场核心”到“球队领袖”
    杯已经进行到了如火如荼的阶段,无论是集体颜值高的德国还是有着神射手的阿根廷,本届杯的表现都让我们的心情跌宕起伏。我们不难发现阿根廷纵然拥有梅西这样的射手,一旦失去中场的强力支持,进攻就会显得很不连贯,以至于出线历程险象环生。而德国队的表现更是让球迷哭泣,感觉他们缺少一些中场的核心凝聚力和真正的人物,以至于关键时刻不能完成致命一击。“teamwork”这个词真是对足球好的诠释了。我们的科学研究情况也是这样,一个前沿的研究课题要想取得突破离不开的科研人员,同样也离不开多种先进设备的协同工作。目前量子材料、量子信息和低温光学是为活跃的研究方向。这些领域都有着自己的特色仪器,好像仪器中的“前锋”;另外还有为这些设备提供研究环境和平台使得它们能够协同工作的低温光学恒温器,这就好像仪器中的“中场核心”。前锋固不可少,而中场核心更是决定比赛走势的中流砥柱。今天我们就为大家来介绍中场队员中的佼佼者——montana超精细无液氦低温光学恒温器。 图1 montana超精细无液氦低温光学恒温器 系统特色:无液氦制冷 低温度:3k超低震动:1-5nm温度稳定性:优于10mk光学窗口:多可达8个位置稳定性:位置防温漂移技术高数值孔 na:0.95可兼容磁场:1t -9t样品腔体大可到20cm直径兼容高压腔的各种光学实验应用领域:各种光谱实验共聚焦显微nv色心单量子点发光量子通讯高压光学低温moke自旋电子学低温fmr日前亚洲套montana超精细无液氦低温光学恒温器超稳定高阻尼系统hila落户中国香港。在过去短短两个月中,montana超精细无液氦低温光学恒温器微系统所、复旦大学以及中国科学技术大学陆朝阳研究组顺利完成了安装。montana超精细无液氦低温光学恒温器作为低温光学和量子信息领域重要的设备之一,为各种测量仪器提供低温光学研究环境。目前montana超精细无液氦低温光学恒温器已经发展成为型号齐全,功能全面,应用领域为广泛的低温光学恒温器。如果将科研看成一场比赛的话,那么montana超精细无液氦低温光学恒温器长期以来扮演着低温光学与量子信息科研比赛的“中场核心”,在科研道路上披荆斩棘帮助用户“攻城略地”。 图2 quantum design工程师(右一)与微系统所用户montana instruments 始终不满足于眼前的成绩,在不断探索继续前进,在与多种三方测量设备的兼容上都取得了突破,甚至已经成为nanomoke和fmr设备进行低温测量的官方推荐方案。目前montana超精细无液氦低温光学恒温器提供的三方设备集成方案包含各种磁体、各种显微镜、多种拉曼光谱仪、moke、铁磁共振、多种波段光谱仪、各种电学测量设备、微区扫描squid、stm等几十种设备。mi工程师专业的技术支持使客户省去了繁琐的实验搭建环节,大大提高科研效率。更为可喜的是,2017年cryostation一词已经正式获批注册商标,象征着mi在全球低温光学领域的影响力和地位。如果说montana超精细无液氦低温光学恒温器以前是一名的中场核心,现在已经成长为球队的。这样的成绩源于科学家对montana instruments的肯定激励我们朝着更广的应用领域,更深的研究细节奋勇前进!附:montana超精细无液氦低温光学恒温器光谱学领域文章举例raman spectroscopy2017 - david d. awschalom (university of chicago) - nature physics - accelerated quantum control using superadiabatic dynamics in a solid-state lambda system2017 - amir safavi-naeini (stanford university) - phys. rev. applied - engineering phonon leakage in nanomechanical resonators2016 - douglas natelson (rice university) - acs nano - plasmonic heating in au nanowires at low temperatures: the role of thermal boundary resistance2016 - kenneth s. burch (boston college) - review of scientific instruments - low vibration high numerical aperture automated variable temperature raman microscopephotoluminescence, fluorescence, single molecule spectroscopy, super resolution microscopy2018 - hui deng (university of michigan) - nature comms - photonic-crystal exciton-polaritons in monolayer semiconductors2017 - hongkun park (harvard university) - nature nanotechnology - probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons2017 - kartik srinivasan (nist) - review of scientific instruments - cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters2016 - xiaodong xu (university of washington) - science - valley-polarized exciton dynamics in a 2d semiconductor heterostructure2014 - edo waks (university of maryland) - nature photonics - all-optical coherent control of vacuum rabi oscillationsoptical transmission, optical absorption spectroscopy, pump-probe techniques2018 - carlos silva (georgia tech) - phys. rev. materials - stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder2016 - alan bristow (west virginia university) - spie - two-dimensional coherent spectroscopy of excitons, biexcitons and exciton-polaritons2015 - mikael afzelius (university of geneva, switzerland) - phys. rev. lett - coherent spin control at the quantum level in an ensemble-based optical memoryoptical reflection, pump-probe techniques2018 - hongkun park (harvard university) - phys. rev. lett - large excitonic reflectivity of monolayer mose2 encapsulated in hexagonal boron nitride2017 - lilian childress (mcgill university) - optics express - a high-mechanical bandwidth fabry-perot fiber cavity2017 - jun ye (jila, nist) - phys. rev. lett - ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 koptical cavities2018 - jelena vuckovic (stanford university) - nano lett - strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond2017 - jun ye (jila, nist) - phys. rev. lett - ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 k2017 - kartik srinivasan (nist) - science - quantum correlations from a room-temperature optomechanical cavity2016 - alberto amo (cnrs, université paris-saclay) - nature comms - interaction-induced hopping phase in driven-dissipative coupled photonic microcavities2015 - paul barclay (university of calgary, canada) - phys. rev. x - single-crystal diamond nanobeam waveguide optomechanics相关产品及链接:montana超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/c122418.htm超全开放强磁场低温光学研究平台—opticool:http://www.instrument.com.cn/netshow/c283786.htm
  • 发布绝热退磁制冷机 绝热去磁制冷系统 ADR恒温器新品
    德国kiutra -绝热退磁制冷器 绝热去磁制冷器 ADR低温恒温系统kiutra结合了多级磁性制冷和闭环预冷功能,在无致冷剂下,可提供连续不断的开尔文至亚开尔文温度。 我们的冷却系统提供了一种便捷的方式来生成非常低的温度,达到接近绝 对零值(–273.15°C):无危险且使用简单 我们的设备是全电气高度自动化。特别是它们不需要稀有且昂贵的液化气(低温剂),而是使用廉价的固体作为冷却介质。具有出色的温度精度和稳定性 由于采用了直接的电磁控制机构,因此可以以非常出色的稳定性和稳定性达到并保持温度设定点,从而获得更好的测量数据或性能结果。最小的基础设施和空间要求 电磁冷却解决方案以紧凑的方式构建,并且只需要最少的基础架构。如何工作磁性制冷是基于磁热效应的:当介质被磁化时,其磁矩会对齐,并且释放出磁化热。反之亦然,如果介质被消磁,其温度将下降。kiutra的冷却系统可以利用两种不同类型的磁制冷方法:单次绝热退磁制冷(ADR)如以上附图中示意性所示,磁制冷可用于产生短期冷却。从封闭式低温冷却器提供的初始基准温度开始(步骤1)首先,将合适的冷却介质磁化(步骤2)。然后,磁化热由低温冷却器消散(步骤3)。随后,冷却介质通过所谓的热开关进行热分离(步骤4),然后再消磁(步骤5)。在退磁过程中,冷却介质的温度下降。如果在磁场B降低到零之前达到设定点温度,则可以调节冷却功率以在一段时间内提供恒定温度,例如持续几个小时甚至几天(步骤6)。当磁场最终减小到零时,冷却过程停止(步骤7),介质再次加热到基本温度(步骤8)。等待一段时间后,可以重新启动该过程。3级电磁冷却系统中的连续ADR对于某些应用,单发冷却是不够的。对于这些应用,kiutra提供永 久冷却动力的无低温磁性热泵。这些系统基于多级磁制冷,其中几个磁制冷单元相互连接并控制温度稳定性,如上图所示。原理:在n个磁化冷却单元释放的热量是由第(n-1)个单元消散,等等...这确保了连接到样品台的最终冷却单元永远不会耗尽了磁场,因此可以永 久连续提供开尔文甚至亚开尔文温度。 kiutra的磁性制冷系统以高度模块化的组件提供单次和连续ADR。根据客户的特定需求,单次ADR系统可以升级为多级CADR恒温器。创新点:kiutra结合了多级磁性制冷和闭环预冷功能,在无致冷剂下,可提供连续不断的开尔文至亚开尔文温度。我们的冷却系统提供了一种便捷的方式来生成非常低的温度,达到接近绝对零值(–273.15° C)。绝热退磁制冷机 绝热去磁制冷系统 ADR恒温器
  • 匹配Bruker HYPERION 3000红外显微镜的ST-300MS恒温器安装成功
    上周我司在上海某高校成功安装ST-300MS恒温器,该恒温器带上下两个凹窗,顶窗和底窗之间距离小于2cm,匹配Bruker HYPERION 3000红外显微镜的上下两个红外镜头。该恒温器除了提供红外石英窗外,还选配了BaF2窗和楔形金刚石窗,由于采用O-ring密封方式,更换窗片非常方便。 本月初我司在北京某高校成功安装带紧凑矩形尾部的ST-300MS低温恒温器(参见下图),匹配电磁铁,该恒温器的最高工作温度达600K。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制