自适应显微镜

仪器信息网自适应显微镜专题为您提供2024年最新自适应显微镜价格报价、厂家品牌的相关信息, 包括自适应显微镜参数、型号等,不管是国产,还是进口品牌的自适应显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自适应显微镜相关的耗材配件、试剂标物,还有自适应显微镜相关的最新资讯、资料,以及自适应显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

自适应显微镜相关的厂商

  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

自适应显微镜相关的仪器

  • 仪器简介:活体样本 ASOM中的快速扫描镜代替了许多显微镜应用中用到的传统扫描环节。由于不需要移动样品,在利用ASOM技术进行活体样本成像时,可以在检测的环境中植入传感器或控制器。ASOM同时还消除了机械平台的移动,而这种移动会限制扫描速度,并会引发许多活体样品使用的液体和粘滞介质产生破裂性振动[2]。由于图像到图像之间的移动时间小于5ms,使ASOM的移动速度可以达到机械移动显微镜的100倍,并且使用高速CCD相机 可以使合成图像的帧传输速率达到100帧/秒。高扫描速率的潜在应用包括毒品检测和大规模筛选等。 最初为望远镜开发的技术大大提高了显微镜的性能,使之具有微米级的分辨率和更广的有效视场。 光学系统设计者们越来越多地使用主动元件,推动着光机电一体化领域的持续快速发展。主动元件包括转换器和传感器、主动和自适应光学元件,以及实时微处理控制器等。这种高动态光学仪器的性能和应用潜力,甚至远远超出了仅由静态光学元件构成的仪器的理论极限。 就自适应光学而言,天文学是其发展的最初推动力,1953年Horace Babcock建议采用主动光学补偿来解决穿过大气成像的内在挑战[1]。不同密度的大气层之间的湍流会产生动态的折射率梯度和随时间变化的入射光光程。如果不采取任何校正措施,在电磁波的波前上产生的振幅和相位畸变就会导致在形成的图像上产生闪烁的亮区或暗区,这严重地限制了地基望远镜的角分辨率。尽管Babcock建议的在一个带静电电荷的镜面上涂上一层油来改变局部油层厚度的方法从来没有实现过,但他的基本设计思想在现今的许多自适应光学应用中仍在使用。目前,可由计算机控制表面面形的变形镜被普遍用于校正由大气湍流引起的波前畸变。 由Ben Potsaid 和Scott Barry领导的Thorlabs/RPI研究小组设计并构建的ASOM系统包含Nova Phase公司生产的定制扫描透镜组、一个定制的高速转向镜(该转向镜是Boston Micromachines公司生产的有140个静电控制器的MEMS变形镜)和一个Thorlabs公司的CCD相机。 20世纪60年代,自适应光学的早期发展是由国防工业资助的,然而直到80年代,自适应光学才因为改善了地基望远镜的性能而在天文学领域找到了用武之地。自适应光学中最基本的设计包括利用波前传感器(Shack-Hartmann干涉仪或可变剪切干涉仪)进行波前的实时测量和波前校正(变形镜和液晶空间光调制器)。结合以前发展的技术,目前自适应光学的应用已经扩展到其他领域。主要特点:2005年,伦瑟勒理工学院自动控制技术和系统中心(CATS)的Ben Potsaid、John Wen和Yves Bellouard开发了一种自适应扫描光学显微镜(ASOM),它基于MEMS变形镜来校正物镜的离轴波前像差。 成像镜扫描透镜的输入通光孔就可获得扩大的视场,其潜在的应用包括跟踪移动的样品,以及对突发事件成像。 这种新型的显微镜设计,配合高速物镜后振镜式扫描镜、空间光调制器和扫描透镜,就会产生具有微米级分辨率和较大有效视场的图像,因而提供了一种相对经济的办法来获得高质量图像,而传统上这只能通过很高分辨率的显微镜才能实现。在后来由Thorlabs/RPI小组设计的ASOM中,总的合成视场超过1250 mm2,分辨率为1.5祄 在ASOM系统中设计一个远心扫描透镜用于获得具有40mm视场的有限共轭像。透镜组由七个光学元件组成,后向焦距为19mm,数值孔径为0.20。一个定制的75mm快速MEMS转向镜在3.3mm2的通光孔上分布着140个静电控制器。科学级CCD相机具有1024 768个像素,栅距为4.7祄。 传统的显微镜由于物镜的限制,其视场相对较小。为了得到大尺寸样品的高分辨率图像,物镜就必须对样品进行扫描(或者移动显微镜,或者移动样品)。在ASOM中,其扫描机制是一个质量较轻的高速转向镜,它可以通过物镜扫描整个视场。 在这种结构中,离轴光线经过物镜后会发生显著的波前畸变,一般情况下会导致图像模糊,但是通过利用一个可实时控制的变形镜,系统会补偿波前畸变,因而能得到具有均匀分辨率的衍射图像。对样品扫描后再进行图像重构就会得到放大的视场。这在生物领域是非常有用的,因为在生物应用中常常需要获得细胞级的分辨率(约为1祄),同时还需要保持一个大的视场在厘米尺度上监测总的解剖信息,或者观测那些可能&ldquo 游到&rdquo 视场外的活生物体
    留言咨询
  • 变形镜波长范围122nm-10.6um有效直径10-600mm电极/激励器数600行程40um频率1kHz损伤阈值50kW/cm2 或 20J/cm2泽尼克系数24波前传感器波长范围122nm-10.6um有效直径4-600mm微透镜直径低至150um灵敏度Lambda/150 rms动态范围50 Lambda频率2kHz软件实时显示哈特曼和波前分析、泽尼克多项式、2D\3D条纹图、相位图、光强图、M2、PSF、波前P-V和RMS哈特曼计哈特曼计用于测量光学表面平整度,可取代菲佐干涉仪,具有同样的性能。通过一束激光照射到测量表面,然后用夏克-哈特曼波前传感器测量反射回的波前。主要特点是实时测量,对振动不敏感。波长范围122nm-10.6um可测口径没有限制(扩束镜)可测曲率半径没有限制(补偿光器件)准确度Lambda/30 rms横向分辨率孔径的2/100软件实时显示哈特曼和波前分析、泽尼克多项式、2D\3D条纹图、相位图、光强图、M2、PSF、波前P-V和RMS自适应光学系统自适应光学闭循环系统由变形镜、波前传感器及软件组成,可用于高功率激光、同步辐射光束、天文望远镜、生物显微镜等。软件实时显示哈特曼和波前分析、泽尼克多项式、2D\3D条纹图、相位图、光强图、M2、PSF、波前P-V和RMS;实时参数监控;实时显示镜片上电压;测量镜片电极反应函数等
    留言咨询
  • 意大利Dynamic optics自适应光学产品-变形镜可变形透镜-即插即用用于任何光学仪器中的像差校正:从显微镜到医学成像和大气湍流校正。它们可以用于激光光学显微镜(SLO)、光学相干层析成像(OCT)和眼底相机。可以在某些场景下替代自适应光学系统中的变形反射镜。多执行器变形透镜可以修正高达4阶的Zernike畸变,响应时间小于5 ms。 光圈直径Clear Aperture 10/15/25mm或者按照要求定制镜面涂层CoatingAR MgF2涂层透射率Transmission92%(无AR涂层)97%(有AR)驱动器数量18或32电子控制器PZT Mini (+/-125V) 动态光学压电双晶片可变形反射镜是许多应用校正光学像差的理想组件:高功率激光器、眼科成像、显微镜和光通信。我们的可变形反射镜可以使用与激光系统相同的金属或电介质涂层。我们可以支持高反射率、高损伤阈值、大带宽和低 GDD。我们的技术是成本和性能之间的完美权衡。光圈直径Clear Aperture 10到200mm镜面涂层Coating金属或电介质反射率选项Reflectivity高达99.99%低GDD大带宽双波长高损伤阈值任意入射角低吸收最大平均功率高达1KW无冷却驱动器数量Number of drives高达128DM尺寸带嵌入式电子92mm直径DM 尺寸带外部电子75mm 动态光学压电叠堆可变形反射镜(压电变形镜):压电变形镜是用于高平均功率激光器的像差校正和光束整形的理想组件。意大利Dynamic Optics的可变形反射镜采用无热设计,能够在不使用主动冷却的情况下以极高的平均功率工作。 产品参数光圈直径Clear Aperture 25到200mm镜面涂层Coating金属或电介质反射率选项Reflectivity高达99.99%低GDD大带宽双波长高损伤阈值任意入射角低吸收最大平均功率高达4KW无冷却 Dynamic Optics的Shack Hartmann波前传感器及相关软件 灵活快速。它可以高精度和高精度地测量波前畸变。Photon Loop软件可以与任何类型的相机连接,并控制任何类型的可变形镜子。我们的Shack Hartmann波前传感器可以在任何光谱范围内以高分辨率、高精度和帧速率进行测量。 微透镜阵列150um间距5.2mm焦距(可定制)帧率500fps(1000Hz)传感器尺寸9x7.13mm驱动电压5V通信接口USB3.0控制闭环开环均可编程通过TCP-IP进行编程其他变形镜兼容Alpao,OKO,Adaptica,OKO,BMC,Thorlabs
    留言咨询

自适应显微镜相关的资讯

  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 清华大学330万元采购单光子自适应高速三维显微成像系统,仅限国产
    8月24日,清华大学公开招标购买1套单光子自适应高速三维显微成像系统,预算330万元,仅限国产。  项目编号:清设招第2021172号  项目名称:单光子自适应高速三维显微成像系统  预算金额:330.0000000 万元(人民币)  采购需求:包号名称数量是否允许进口产品投标采购预算(人民币)01单光子自适应高速三维显微成像系统1套否330万元  设备用途介绍:实验需要对在体活细胞进行清晰地大范围亚细胞结构动力学过程观测,比如细胞器间的相互作用、胚胎发育过程、神经响应等等,必须能够高速获取大范围的三维荧光信号。  单光子自适应高速三维显微成像系统的成像方式极大的提高了成像速度及有效的解决了系统及样品的像差问题,同时大大降低了激光对样品的损伤,能够实现更长时间的活体观察,其图片能观察细微的差别,分辨亚细胞水平动力学及结构,成像质量非常高。  简要技术指标 :  1)基本配置:系统由以下主要模块组成  倒置荧光显微镜   多波段激光器   数据采集系统   图像处理系统。  2)技术要求:  系统分辨率:XY小于250nm,Z小于400nm   图像采集系统:支持活体哺乳动物三维图像采集   图像处理系统:专业处理器i9 10920,内存不小于128GB,固态硬盘不小于10T,显卡Nvidia RTX2080TI。  合同履行期限:交货时间:合同签订后5个月内  本项目( 不接受 )联合体投标。 开标时间:2021年09月14日 09点00分(北京时间)
  • “一米新真空太阳望远镜多层共轭自适应光学系统”投入使用
    在国家自然科学基金的支持下,中国科学院光电技术研究所联合云南天文台成功研制国家重大科研仪器“一米新真空太阳望远镜多层共轭自适应光学系统”并投入使用,实现了大视场自适应光学技术从原理方法创新到实际仪器应用的跨越。   2月2日至3日,该仪器技术指标现场测试会在云南天文台抚仙湖太阳观测基地召开。测试专家组经现场技术指标测试后认为,该仪器各项技术指标达到了资助项目计划书的要求,可以对太阳目标长时间稳定闭环工作,在大气相干长度r0优于10cm@500nm情况下,可见光波段成像分辨力优于0.2″,校正视场大于1′。   “一米新真空太阳望远镜多层共轭自适应光学系统”是光电所联合云南天文台申请的国家自然科学基金国家重大科研仪器研制项目(自由申请)。该项目瞄准空间天气预报重大需求和太阳物理科学前沿研究,针对云南天文台一米新真空太阳望远镜(New Vacuum Solar Telescope,NVST)研制一套多层共轭自适应光学(Multi-Conjugate Adaptive Optics, MCAO)系统,对太阳大气进行大视场、高分辨成像和光谱观测。   该仪器基于研究提出的新型MCAO架构,采用3块变形镜、2个大视场多视线波前传感器以及2套波前实时处理机,实现了在角分量级视场内对大气湍流波前像差的有效补偿。目前,该仪器已与NVST后端科学仪器对接进行常规观测,为太阳风暴的预警预报和太阳物理科学研究持续提供高质量的光谱和成像数据。

自适应显微镜相关的方案

  • 拉曼光谱制备具有自适应润湿性和抗冻性的油水凝胶
    北京航空航天大学刘明杰教授领导的研究团队从自然界获取灵感,根据高纬度和高海拔地区的生物因细胞多脂而度耐寒的现象,成功制备出一种具有异质网络结构的二元油水凝胶。该凝胶除可在-78-80 ℃的宽温度范围内保持稳定弹性外,还具有优良的自适应(随溶剂性质不同而变化的)润湿性。
  • 如何运用一台数码 显微镜分析 经过或未 经过制备的地质样品
    一百年前,偏振光显微镜就已经应用于传统的地球科学研究之中了。从那时起,随着技术的不断进步,这类显微镜在用户友好性、人体工程学以及光学性能方面逐渐改善。时至今日,仍有一方面在原地踏步:传统的偏振光(复式)显微镜仅适用于经过制备的样品,因为这类显微镜提供的工作距离不足以满足整个样品的检测。这就意味着必须切割和抛光较厚、较大的地质样品,以适应复式显微镜的有限工作距离。这些样品制备对精确度的要求极高,而在抛光片的厚度、平整度和抛光效果方面,对精确度的要求则更甚。运用带透射、偏振光 [1,2] 的复式显微镜进行检测时,标准厚度应为 30 微米。换言之,科学家检测未经制备的样品时,需要切换成工作距离较大的体视显微镜。
  • 微球显微镜(超高分辨率显微镜)在半导体材料领域的应用
    用户可以使用微球显微镜(超高分辨率显微镜)通过光学方式检查样品,获得由裂缝或灯丝桥引起的纳米级故障。用户还可以检查样品是否符合预期尺寸、形状以及它们的图形/布局,并保留光学显微镜的所有优势——快速、样品无损、全真彩色。

自适应显微镜相关的资料

自适应显微镜相关的试剂

自适应显微镜相关的论坛

  • 计算自适应光学技术可实现高清医学成像

    科技日报 2012年04月25日 星期三 本报讯 实时3D微观组织成像技术的出现不啻为癌症诊断、微创手术和眼科等医疗领域的一场革命。据物理学家组织网4月23日报道,美国伊利诺伊大学的研究人员开发出用计算自适应光学系统校正光学层析成像的畸变技术,给未来医疗的“高清”成像带来前景。相关技术成果刊登在最新一期美国《国家科学院学报》在线版上。 美国贝克曼研究所高级科学和技术博士后研究员史蒂芬说:“该技术能够超越现在的光学系统,最终获得最佳品质的图像和三维数据。这将是非常有用的实时成像技术。” 畸变如散光或扭曲困扰着高分辨率成像。其会使对象细点的地方看上去如斑点或条纹。分辨率越高,问题会变得更糟糕。这是在组织成像中特别棘手的问题,而精度对于正确诊断至关重要。 自适应光学可以校正成像的畸变,被广泛应用于天文学来校正当星光过滤器通过大气层的变形。医学科学家已经开始将这种自适应光学系统的硬件应用于显微镜,希望能改善细胞和组织成像。 但伊利诺伊大学生物工程内科医学的电子和计算机工程教授斯蒂芬指出,这同样富有挑战,将其应用于组织、细胞成像,而不是通过大气对星星成像,存在很多光学上的问题。基于硬件的自适应光学系统复杂而昂贵,调整繁琐,故不太适用于医疗扫描。 由此,该团队采用计算机软件来发现并纠正图像畸变,替代硬件的自适应光学,称为计算自适应光学技术。研究人员用此技术演示了大鼠肺组织含有微观粒子凝胶的幻影。用光学成像设备干涉显微镜的两束光扫描组织样本,计算机收集所有数据后,纠正所有的深度图像,使模糊的条纹变成尖锐的点而特征显现,用户可用鼠标点击改变参数。研究人员说:“我们能够纠正整个研究体积的畸变,在其任何地方呈现高清晰度图像。由此,现在可以看到以前不是很清楚的所有组织结构。” 该技术可以应用于许多医院和诊所的台式电脑,可对任何类型进行干涉成像,如光学相干断层扫描。(华凌)

  • 金相显微镜用途及舜宇BH200正置金相显微镜介绍

    金相显微镜用途及舜宇BH200正置金相显微镜介绍

    金相显微镜的用途主要用来观察金相组织的专业仪器是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射隔膜泵光照明。金相显微镜具有稳定性好、成像清晰、分辨率高、视场大而平坦的特点。舜宇BH200金相显微镜特点●光学系统:有限远色差校正光学系统,图像质量好●目镜及物镜: a)高眼点平场目镜PL10X,线视场数18mm,提供宽阔平坦的观察空间,可安装各类测微尺 b)长工作距离专业消色差金相物镜 c)无盖玻片设计,像质优良:●照明系统落射式柯拉照明,并设计防反射结构,有效防止反射光线的干扰,从而使成图像更清晰,视场衬度更好●采用自适应式宽电压90V一240V,6V30W卤素灯,灯丝中心可调,光强连续可调,照明更加充足,有效提高图像的质量●载物台:复合式机械移动平台,低手位同轴调节,并在机械平台上附设180mn×145mm的平板平台,便于放置较大尺寸的样品●附件: a)照明光路中可加入黄`绿、蓝、白四种滤色片,为观察各种样品提供不同色度的照明 b)照明光路中可加入起偏镜和检偏镜,实现偏光观察 c)起偏镜±25°可调,能有效调整正交态或视场衬度 物镜参数表http://img.china.alibaba.com/img/ibank/2014/426/185/1312581624_1333274521.jpg 目镜参数表http://img.china.alibaba.com/img/ibank/2014/791/881/1311188197_1333274521.jpghttp://ng1.17img.cn/bbsfiles/images/2014/08/201408201411_510943_1848148_3.jpg

  • 【求助】观察石英晶体该用哪种显微镜

    我从事化学分析方面工作,对石英晶体的结构一窍不通.最近我们领导给我们下任务,了解一下显微镜方面的相关情况.进论坛一看,显微镜品种很多,不知何种适合我们观察石英晶体.请各位帮忙,谢谢!

自适应显微镜相关的耗材

  • Dynamic-Optics变形镜,自适应镜头,Dynamic-Optics变形镜
    总览夏克-哈特曼波 Dynamic-Optics 可变形透镜易于集成,使它们成为任何光学系统中像差校正的理想选择。我们的可变形透镜已经在许多仪器上进行了测试:显微镜、望远镜、检眼镜和激光器。它们可用于波前传感器或自动软件校正系统的闭环控制。技术参数产品应用显微镜眼科成像像差的快速校正望远镜易于闭环和无传感器校正 关键规格折射相位调制器易于集成高传输( 92%)光学性能闭环控制高达1kHz任何尺寸和形状 高质量像差产生 产品参数描述数据通光孔径大小10mm、16mm、25mm,按需定制涂覆层AR MgF2涂层透射率92%(无AR涂层)97%(有AR涂层)执行器18或32电子控制驱动器PZT Mini(+/-125V) 可变形透镜可变形透镜易于集成,使它们成为任何光学系统中像差校正的理想选择。我们的可变形透镜已经在许多仪器上进行了测试:显微镜、望远镜、检眼镜和激光器。它们可用于波前传感器或自动软件校正系统的闭环控制。 产品应用显微镜学眼科成像关键规格快速聚焦极低波前误差高传输( 92%) 描述数据通光孔径大小10mm,16mm,根据要求定制涂覆层AR MgF2 涂层透射率92%(无AR涂层)97%(有AR涂层)波前误差 0.15光波(有效值)调焦0-1.5D 动态光学套件动态光学套件包括波前测量和控制的所有组件,如自适应透镜,波前传感器,PSF相机和所有的光机械组件。有了这个工具包,就能测试波前控制,为大气校正、显微镜、激光通信和视网膜成像等实验做准备。 关键组件可变形透镜AOL1816(可选:可变形反射镜或AOL1810或AOL1825)快速CMOS夏克-哈特曼波前传感器(高达500Hz)PSF图像传感器摄像机激光二极管光源635nm
  • ZSA302 连续变倍体视显微镜
    ZSA302 连续变倍体视显微镜产品参数:物镜连续变倍,变倍比1:7.2,物镜倍率0.7~5倍,三目,透反射照明,大视野、高眼点物镜组合,视场更加宽阔舒适、更清晰;防静电功能,确保敏感元件不受静电的危害;超长工作距离,适宜于各种标本的观察;同轴照明系统,适宜于常规无法观察的标本;宽电压适应范围符合CE标准的开关电源,对数型电位调节,亮度调节更均匀;各种大物镜、目镜齐全ZSA302 连续变倍体视显微镜
  • 显微镜隔振台
    显微镜隔振台,进口显微镜隔振台由中国领先的进口精密仪器和实验室仪器旗舰型服务商-孚光精仪进口销售!孚光精仪精通光学,服务科学,欢迎垂询!显微镜隔振台是专业为各种显微镜的隔离和消除振动或震动而设计进口显微镜隔振台针对Zeiss,Leica,Olympus, Nikon等世界主流显微镜的每款型号显微镜隔振台都有相匹配的显微镜减震台进口显微镜隔振台的尺寸恰好能与显微镜的底座匹配,大小有30x46cm, 41x41cm, 46x61cm,61x76cm显微镜隔振台采用三角配置,即能隔离振动,又可以大大节省工作台空间进口显微镜隔振台属于被动震动隔离类型的平台显微镜隔振台与传统而笨拙的气浮式平台相比,它不仅尺寸小,而且免于维护,终身使用,寿命大大增加进口显微镜隔振台小巧便携,它可以放置到任何桌面上,具有免维护的独特优势显微镜隔振台不再需要笨重的防震桌,大大节省空间显微镜隔振台使用时,直接把仪器放置到显微镜减震台上面即可使用显微镜隔振台分类:进口显微镜隔振台蔡司显微镜显微镜隔振台莱卡显微镜进口显微镜隔振台尼康显微镜显微镜隔振台奥林巴斯显微镜显微镜隔振台和欧洲的进口显微镜隔振台,是专业为各种显微镜的隔离和消除振动或震动而设计,可以适合所有显微镜减震.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制