当前位置: 仪器信息网 > 行业主题 > >

超临界色谱泵

仪器信息网超临界色谱泵专题为您提供2024年最新超临界色谱泵价格报价、厂家品牌的相关信息, 包括超临界色谱泵参数、型号等,不管是国产,还是进口品牌的超临界色谱泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超临界色谱泵相关的耗材配件、试剂标物,还有超临界色谱泵相关的最新资讯、资料,以及超临界色谱泵相关的解决方案。

超临界色谱泵相关的仪器

  • Nexera UC 能够方便用户对多组分进行同时分析,从样品的前处理、到样品分离直至样品分析步骤均可实现在线自动化。Nexera UC 将实际应用于需要对多种样品进行快速且可靠分析的领域,诸如食品中农药残留检测,或对疾病标记物的研究探索。该系统以超临界流体CO2 作为流动相,可最多同时放置48 个样品,通过自动萃取单元进行前处理、通过色谱进行分离以及通过质谱进行检测,所有步骤均可实现自动化操作。因此,不需要复杂的样品前处理操作。同时,该系统还可对某些可能因接触空气而氧化或者降解的不稳定化合物实现稳定可靠的分析。此外,以食品中农药残留的分析为例,仅仅在预处理阶段,该系统就可将传统方法需要的35 分钟缩短至5 分钟。与传统的人工操作方法相比,可在提高产效率的同时减少人为误差,因此农药残留分析可以在更少的时间完成。该系统由日本岛津公司、大阪大学、神户大学和宫崎县农业研究所共同研究开发,并在JST(日本科学技术振兴机构)的研究成果发展计划中被列为“先进分析测量技术和设备的开发方案”。
    留言咨询
  • 传统LC/MS及GC/MS分析技术面临的挑战...Nexera UC 提供以上问题的稳妥解决方案全自动在线样品前处理及分析自动萃取目标化合物并分析杜绝不稳定化合物的降解在避光及无氧环境下实现样品萃取,防止不稳定化合物的氧化和降解分析速度、灵敏度及分离度的高度统一超临界流体实现样品的高效分离和高灵敏度分析,因此极大地提高检测灵敏度与分析通量特立独行的色谱技术,您所需要的唯一选择!Nexera UC通过全新的分离技术优化您的分析流程,将样品制备、分析及多种分离模式集于一体,提供高灵敏度的检测结果。 Nexera UC提供解决方案 农药残留分析过程中QuEChERS方法与NexeraUC方法对比QuEChERS作为样品前处理的典型方法,需要诸多人工操作,并且耗费大概35分钟的时间。而Nexera UC,同样的样品使用在线SFE/SFC分析方法仅需要大约5分钟时间用于样品前处理,且人工操作步骤大大减少。使用Nexera UC对上百种化合物进行同时分析。相比常规的LC及LC/MS和GC/MS等方法,Nexera UC可对不同极性的化合物进行分析。 不同极性的农药同时分析
    留言咨询
  • 岛津Shimadzu半制备型超临界流体色谱仪Nexera UC Prep集合了超临界流体色谱仪Nexera UC的卓越性能以及岛津制备的新技术。紧凑的设计节省空间,并兼顾制备回收率高和操作性好的特点,有助于进一步提高制备的操作效率。产品特点:独特的“LotusStream 气液分离器”,实现卓越的回收率即使在大体积进样时也能保持尖锐的峰形按照制备作业流程设计的专用软件Prep Solution,操作简单紧凑型台式系统,节约安装空间,降低安装成本从固体样品中自动萃取组分,实现全自动化在线萃取-分析-制备工作更少的有机相使用,减少对环境的负担
    留言咨询
  • 岛津制备型超临界萃取单元SFE-40P是专为制备规模开发,用于对样品的自动化萃取,支持Online和Offline两种组合方式:即与岛津半制备超临界流体色谱仪Nexera UC Prep组成在线SFE-SFC系统,完成自动化在线品萃取、分离和馏分收集;以及独立组成离线超临界流体前处理系统,完成对样品的萃取和馏分收集。产品特点:①支持对单个萃取容器的温度控制;②支持“静态”和“动态”两种萃取方式,以实现高效萃取;③搭配换架器(选配),实现多样品自动化连续萃取处理(最多48个样品);
    留言咨询
  • 超临界流体色谱 400-860-5168转1694
    超临界流体色谱(SFC) 采用超临界流体(最常见的是 CO2 )作为流动相溶剂进行萃取。超临界一氧化碳固有的低粘度和高扩散率与传统的液体萃取相比,SFE是一种更快、更高效的萃取技术。这提供了更快的流速,从而缩短了提取时间,而无需更高的压力系统。在CO2中加入助溶剂流动可以帮助进一步调整强度。抽气箱可提供高达 100°C 的温度,在提取容器之后是背压调节器,它提供保持 CO2 的背压要求超临界是提取性能的一个组成部分,整个系统可以更快速更高效的实现分离分析。&bull 高通量高分离度由于其高扩散率和低粘度,可以在保持高分离能力的同时短时间分离。 与HPLC相比,分析时间可缩短至1/2~1/10。&bull 低成本分离分析与HPLC相比,使用有机溶剂的成本可降低至1/2~1/10。&bull 高安全稳定性能二氧化碳稳定安全不易燃烧,容易获得可重复利用。&bull 待测的组分繁多根据改性剂溶剂、添加剂的类型和用量以及各种色谱柱的选择,也可以分离极性组分。&bull HPLC和SFC对比下图显示了使用具有小填料粒径的色谱柱测量的 HPLC、SFC 和高通量 SFC (HT-SFC) 获得的色谱图。 与显示相同分离效率的色谱图相比,使用填料粒径为5 μm的光学分体柱的SFC可以将分析时间减少到使用相同色谱柱的HPLC的1/3左右,而使用填料粒径为3 μm的光学分体柱可以将分析时间减少到使用5 μm色谱柱的SFC的1/3左右。
    留言咨询
  • BUCHI超临界流体色谱系统采用 SFC 色谱法进行制备分离,非常容易使用。 系统占用空间极小,并且能满足不同复杂程度和规模的项目。检测:UV;ELSD 和 MS (可选)泵:制备型 SFC 模式系统设计:结构紧凑,自动化 BUCHI超临界流体色谱系统技术参数:1、CO2泵/溶剂泵1.1采用不锈钢柱塞泵设计,两个独立通道,可在一个运行过程中使用C02或多种溶剂,无需提前混合1.2 可进行等度,二元线性梯度或阶梯式梯度洗脱1.3 总流速(含40%改性剂):0 - 660mL/min1.4 最高压力:CO2泵:400bar;改性剂泵:400bar1.5 改性剂数量:3个1.6 添加泵:标配内置1.7 泵冷却:冷却循环液1.8 CO2回收装置:标配 2、检测器2.1 DAD检测器,可同时根据8个不同波长的紫外检测通道进行收集2.2 紫外波长范围:190-720nm2.3 ELSD检测器:可选2.4 MS检测器:可选 3、进样和柱系统3.1 定量环:10mL3.2 叠加进样:标配3.3载柱能力:1根;Max.2根3.4 色谱柱规格:ID 20-50mm,L Max.800mm3.5 柱温箱温度:室温-50℃
    留言咨询
  • BUCHISFC 50 制备型超临界色谱系统性能指标:1、工作环境温度:15℃-25℃2、工作环境湿度:45-75%3、工作电压:230±10%, 50/60Hz4、尺寸:560mm×600mm×880mmBUCHISFC 50 制备型超临界色谱系统技术参数:1、CO2泵/溶剂泵1.1采用不锈钢柱塞泵设计,两个独立通道,可在一个运行过程中使用C02或多种溶剂,无需提前混合1.2 可进行等度,二元线性梯度或阶梯式梯度洗脱1.3 总流速(含40%改性剂):0 - 50mL/min1.4 最高压力:CO2泵:400bar;改性剂泵:400bar1.5 改性剂数量:4个2、检测器2.1 DAD检测器,可同时根据8个不同波长的紫外检测通道进行收集2.2 紫外波长范围 190-720nm2.4 运行中会自适应调整检测器信号量程,方便用户实时观察峰形2.5 ELSD检测器:可选2.6 MS检测器:可选3、进样和柱系统3.1 载柱能力:2根;Max.10根3.2 色谱柱规格:ID 4-16mm,L Max.250mm3.3 柱温箱温度:室温-70℃3.4 方法开发:支持,分析柱(ID 4-4.6mm
    留言咨询
  • PICLab超临界色谱具有以下显著特点:纯度可达到99%,收率可以达到95%分离速度很高,只需要几分钟时间由于采用CO2最为流动相,CO2可以循环使用,所以实验非常环保和安全并且成本大大减低用于手性化合物的分离 PICLab超临界色谱:分析型:用于实验室的分离和方法开发 分析兼半制备型:用于实验室分离,和100g的制备量,可选配CO2循环回路 制备型:制备量从g 到Kg级别,具有CO2循环回收功能。 同台设备可实现分析和制备两种功能CO2流速范围:10-1000mL/min,压力可达350 bar连续自动进样和手动进样控制软件,自动调节回收CO2中夹带剂的含量,保证样品分离效果强大的操作软件很容易实现分析和制备的功能转换,无需硬件操作
    留言咨询
  • JASCO生产的超临界萃取与色谱装置,采用电子制冷的CO2输送泵和特殊设计的全自动背压调节装置,确保了系统的压力稳定;极小的死体积(小于10ul),保证了分离的准确性。 主要特点 与泵一体的泵头制冷装置设计便于操作. SSQD系统,确保了被输送介质的流速稳定. 泵头电子冷却装置保持泵头温度低于-4℃. 系统控制单元包括各种操作模式,如加入有机改性试剂. 流量范围:0.001-10ml/min. Max压力:30MPa. 操作方式:定流量或定压力. 可配多种检测器,可以进行手性光学分析 无废液产生,绿色环保 制备型超临界萃取/色谱仪 用内径30mm色谱柱,可以分离从数百毫克到数克的样品 CO2流速可达120ml/min 有八套分馏储存器 专用软件可以迅速进行处理 多种检测器制备型可供选择 欢迎与我们联系索取详细资料!
    留言咨询
  • 半制备型SFC通过分析型超临界流体色谱仪对样品的纯化方法优化,获得合适的纯化条件,半制备型超临界色谱仪在此基础上使用10mm-30mm内径的色谱柱,进行毫克级别制备,更高效地获得高纯度目标物。半制备型SFC由以下五个模块组成:流动相输送模块,色谱柱管理模块,检测模块,背压模块及组份收集模块。 该系统的核心组成为背压调节器使系统压力控制无论溶剂组成和流量。特殊设计的两个NP7001输送泵可提供高达100ml/ min的CO2和50 ml /min的改性剂的输送能力,运行过程系统耐压高达42兆帕。可以选择手动和自动(选配)两种进样方式。重复注射可以进行叠加色谱操作。检测选择包括UV和ELSD。柱温箱内支持6支色谱柱进行切换,保持了温度一致性,更换更便捷。Clarity专业色谱软件过程控制设计为全自动操作,监测和记录温度、压力和色谱图。产品特点:高通量低粘度和高扩散系数的CO2的可以大幅度提高分离和提纯效率,缩短洗脱时间。成本低与制备型HPLC相比,由于使用廉价的CO2作为流动相和样品回收的简单性,总成本可以大大降低。安全和环保不可燃的CO2比有机溶剂更安全。使用二氧化碳可以提供更少的环境负担。
    留言咨询
  • 分析型SFC分析型超临界流体色谱以具有良好溶解和传质特性的超临界流体(主要为:CO2)作为流动相,通过筛选色谱填料、调节流动相的种类、比例、流速以及系统温度和压力,实现分析条件的优化,适合用于小极性及中等极性分子的分离,特别在手性拆分过程中具有不可替代的优势。分析型SFC主要由以下四个模块组成:流动相输送模块,色谱柱管理模块,检测模块及背压模块。产品特点:◆ 通常使用3-5倍HPLC的洗脱流速,使得分析更快速◆ 使用CO2以及少量改性剂作为流动相,分析成本更低◆ 不仅适用于中小极性分子的分离,一些亲水性大分子也同样适用◆ 保留行为与GC、HPLC差异显著,可解决传统分离手段不能满足要求的问题
    留言咨询
  • 超临界流体色谱系统超临界流体色谱系统(SFC)可精确地改变流动相强度、压力和温度,精微调控系统的分离能力和选择性,在结构类似物、异构体、对映体和非对映体混合物的定量分析和分离纯化中具有不可替代的优势。SFC是继GC、HPLC之后的新型分离手段,具有正相色谱的强大正交功能和反相色谱的易用性和可靠性。SFC能够最大限度地提高分离效率、减少溶剂用量、降低成本、绿色环保。SFC优势(1)分离快速SFC通常使用3倍于HPLC的洗脱流速,使得样品分析更加快速,同时分离度也得到了改善。在纯化抗肿瘤药物QD803时,分析时间缩短了2倍。(2)溶剂量少减少有机溶剂的使用,降低溶剂成本,减少废液产生。(3)适用范围广CO2可与极性至非极性的宽范围有机溶剂混溶,从而使液态CO2的流动相具有更强的分离能力。不仅适用于小极性和中等极性分子的分离,同样适用于一些亲水性的大分子。
    留言咨询
  • 使用超临界流体的制备型SFC是最常用的制备精制技术之一,但其仍存在改善回收率、纯度以及简化制备操作等有待解决的课题。  Nexera UC Prep制备超临界流体色谱系统集合了Nexera UC的卓越基本性能以及岛津的新技术。  紧凑的设计节省空间,并兼顾制备回收率高和操作性好的特点,有助于进一步提高制备的操作效率。实现卓越回收率利用超临界流体色谱法进行制备,可将目标化合物高度浓缩,并通过有机溶媒进行回收,因此不仅能缩短分析时间,也可节省制备结束后的后处理时间。使用Nexera UC Prep还可实现进一步节省等待时间的连续制备和高回收率制备,将每小时的制备量达到最大化。实现高回收率在使用SFC进行制备时,CO2从超临界状态短时间内膨胀到体积为约500倍的气态,可能导致色谱柱中的洗脱液飞散,这是回收率降低的原因之一。本产品采用独特的气液分离器,可通过抑制样品飞散和残留获得高回收率。即使是芳樟醇香料等挥发性化合物,无论流量和改性剂浓度状况如何,均可得到良好的回收率。 1%芳樟醇香料的回收率方式回收率(%)以往方式78.0%LotusSteam气液分离器96.7% otusSteam气液分离器采用多通道分支方式,无需扩张管径即可抑制流速。不会产生洗脱液飞散,CO2向外逸散,液体则通过中心轴心垂直向下滴落。(康达效应)按照制备作业流程设计的简单操作使用岛津制备专用软件,可简单地进行从分析到制备的扩大操作、灵活修改并调整分析条件。实现制备操作流程的效率化。 设定简单明了,初次使用也能轻松驾驭专用软件尽可能简化了制备作业中特有的参数设定,新手也能轻松操作。同时,还能防止因错误设定导致的样品浪费。在制备前,为确认峰的洗脱位置,进行单次分析。只需在3个标签处输入基本参数即可开始分析。在模拟窗口显示通过单次分析获取的色谱图,通过鼠标操作,可直观选择所需馏分的区间。并可自动保存反映到方法中。 轻松制备目标峰制备时,可能会出现峰形与预想不一致等无法预知的情况。使用专用软件,可以在查看色谱图的同时,灵活修改制备参数。不仅可防止样品的浪费,还减轻了变更参数进行重新分析的作业负担。根据设定条件进行分馏。制备时,不仅可观察色谱图,还可在馏分区间上显示色谱图,进行实时确认。迭加进样时,可对馏分条件和进样条件进行优化变更(On-the-fly功能)。 紧凑型设计的台式系统采用无需外置冷却器的小型台式CO2泵,节省空间。1台设备可应对更宽范围的流速需求,降低购置成本。 外观精巧紧凑,节省实验室空间通常,为了进行高流量CO2送液,送液泵需要配备用于冷却的冷却器。Nexera UC Prep采用压缩机型冷却单元,实现精巧紧凑的设计。可摆放在与常规级SFC系统同等尺寸的空间内。 根据不同用途进行优化的系统群Stacked Fraction System — 用于最多进样量20mL的大量制备 —Stacked Fraction System是重复对几种成分的化合物进样并进行大量制备的专用系统。不仅适用于手性化合物的制备,同时也可用于非手性化合物的制备。FRS-40同时具备进样器和馏分收集器功能,可实现一种样品的重复进样和克级样品量的制备。最多可进样20mL*,并可进行10瓶回收。可在10~150 mL/min范围内送液,可使用10~30mm色谱柱。*选配件 Multi-Fraction System — 用于杂质和天然物质等多样品制备 —Multi-Fraction System适用于医药品杂质等可检测出多个色谱峰的样品,针对各成分进行制备。使用自动进样器进样,最多可进样2mL*,可容纳162个样品(使用1.5mL样品瓶时)。馏分收集器FRC-40有三种样品架可供选择,最多可馏分540瓶(使用10mL样品瓶时)。该系统可处理10~150 mL/min的流量范围,10~30mm内径的色谱柱均可使用。*选配件 主要特征获取报价
    留言咨询
  • 创新的手性分离技术用于超临界流体手性化合物的作用是制药行业的关键因素,为了评估对映异构体,手性分离是作为主要课题. 作为一个解决方案,超临界流体色谱法(SFC)吸引了许多研究者的关注.由于 SFC的分离能力高于液相色谱法HPLC, SFC对于高效色谱法HPLC无法分离的手性化合物是强有力的分离工具。SFC-4000 – 分析系统超临界流体表现出来的物理特征包括溶解分子的扩散系数是液体的一百倍和至少小于一位数的粘度. SFC系统采用这样一个媒质作为流动相,在不降低任何分离效率的情况下,迅速执行分离分析方法, 原因是和使用液体作为流动相的高速液相色谱法相比柱温箱内的快速质量转移.SFC-4000 – 制备系统半制备SFC和制备 SFC系统应用于分离和高回收率提存. 当二氧化碳作为介质时,会发生气化只需保持分离和分馏样品在一个大气压力,使这一技术能够高效精炼一些后处理麻烦, 如消除溶剂制备后隔离. 这提供了许多优势, 包括削减成本采购溶剂和丢弃的有机溶剂相关的费用。种类丰富的检测器JASCO 提供了种类丰富的检测器,高压池紫外检测器UV, 二极管阵列检测器 (实时采集3D光谱和色谱) 和世界独一无二SFC用CD检测器.特别, JASCO独有的CD检测器用圆二色吸收法测量光学异构性, 还可以测量CD和 UV色谱图同时得到g-因子(CD/UV) 色谱图. 因为g因子特别是有一个比例关系和光学异构体成分比例的样本, CD检测器可以执行成分测量和没有分离峰的高纯度分馏法。通过SFC筛选研制方法分离并采集目标前手性化合物之前,需要寻找最合适的分离条件(色谱柱,溶剂,等.). 为了创建测量条件和自动测量样品, JASCO 可提供SFC研制方法筛选, 节省劳力的和改进操作。通过堆栈注入改进的样品处理量通过缩短进样间隔让色谱图重叠, 预分离模式可以提高效率. 这意味着即使是大量的分离和纯化样品可以在短时间内实现高回收率和高纯度。独特的样品采集机制SFC将二氧化碳作为流动相, 收集洗提样品时的一个主要问题是分离样品由于释放的二氧化碳体积膨胀导致飞散(约500倍). 为了提高采集率, JASCO已经开发出一种用于半制备SFC系统的微型旋风分离器(MCS), 和半制备SFC系统一个专用的馏分收集器.
    留言咨询
  • 传统LC/MS及GC/MS分析技术面临的挑战...Nexera UC 提供以上问题的稳妥解决方案全自动在线样品前处理及分析自动萃取目标化合物并分析杜绝不稳定化合物的降解在避光及无氧环境下实现样品萃取,防止不稳定化合物的氧化和降解分析速度、灵敏度及分离度的高度统一超临界流体实现样品的高效分离和高灵敏度分析,因此极大地提高检测灵敏度与分析通量特立独行的色谱技术,您所需要的唯一选择!Nexera UC通过全新的分离技术优化您的分析流程,将样品制备、分析及多种分离模式集于一体,提供高灵敏度的检测结果。 Nexera UC提供解决方案 农药残留分析过程中QuEChERS方法与NexeraUC方法对比QuEChERS作为样品前处理的典型方法,需要诸多人工操作,并且耗费大概35分钟的时间。而Nexera UC,同样的样品使用在线SFE/SFC分析方法仅需要大约5分钟时间用于样品前处理,且人工操作步骤大大减少。使用Nexera UC对上百种化合物进行同时分析。相比常规的LC及LC/MS和GC/MS等方法,Nexera UC可对不同极性的化合物进行分析。 不同极性的农药同时分析
    留言咨询
  • 准确、可靠的性能SFC-24 SSI超临界流体泵是一款可靠、准确、重现性极佳的液体流体输送泵,专为超临界萃取及其它高要求输液用途设计,也可以用来输送其它需要的超临界萃取液或各种助剂。SFC-24的最大流量为24mL/min,最高压力可以达到10,000psi。该泵的恒压模式具有一个可选择的压力设定点,流量会自动调节以保持设定的压力。SFC-24具有使用帕尔贴模块技术的集成冷却系统。易于维护冷却系统在泵内完全独立控制,不需要外部制冷装置、冷却剂或氟利昂,帕尔贴技术是完全固态的标准功能- 全铝泵头,有助于热传递- 帕尔贴集成冷却系统- 不锈钢流体路径(泵头除外)- 内置电子压力传感器- 简便的前面板键盘控制并带有LED显示- 电机故障检测器- 出口过滤器- RS232和远程控制SFC-24 技术参数流速 ......................... 0.01 – 24.0 mL/min.压力...........................0 – 10,000 psi压力精度 ................. ± 2%满量程流速精度.................. ± 5% (基于气体体积衡量及计算液体量)接口 ..........................RS-232串口,用于完全控制和状态监控 运行/停止输入(5V TTL) 远程0-10V和0-10kHz流速控制输入恒压........................ 压力监测(通过传感器)控制模式 ............... 用户可选择的压力设定点泵的流量会自动调整以保持压力尺寸...................... 5.75” H x 11.125” W x 21.125” D(14.6 x 28.3 x 53.7 cm)重量 ....................... 36 lbs. (16.3 kg)
    留言咨询
  • SFC-24超临界流体泵 400-860-5168转0237
    Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2 输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier 是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier 是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • SFC-24超临界流体泵 400-860-5168转2133
    产品简介 智能化的Model SFC-24是一款可靠、准确、重现性好的液体CO2输送泵,专为超临界萃取及其它高要求输液用途设计,也可以用来输送其它需要的超临界萃取液或各种助剂。 Model SFC-24泵的流速最大可达24mL/min,最大压力为10000psi。该泵在恒压模式下可自由选择压力设定点,流速可自动调整以满足设定的压力。 SFC-24制冷系统使用Peltier Thermoelectric模块。该制冷系统完全置入泵体内,避免了外接制冷,外设连接管路,使用特种冷却剂,Peltier技术是完全的固体状态。 众所周知,液体在超临界状态下的物理性质会发生巨大变化,其渗透性能将达到惊人的状态。而且,在处于超临界状态的液体挥发时,会强烈吸热,导致所接触的介质剧烈降温。所以,对超临界状态的液体输送泵有着很高的特殊要求。此外,用于输送泵的各种管路,还有柱塞密封材料的热胀冷缩性能都需要很稳定,否则,很容易漏液或出现故障。在研发和生产Model SFC-24泵过程中,SSI综合考虑了所有这些因素,经过多次试验,终于完成了该产品的制造。 Model SFC-24 泵已经被全球的许多重要的科研和生产部门使用,值得我们骄傲的是,这些重要的客户经过使用后,给与了该产品很高的评价!所有这些荣誉都将激励我们进一步研发更好更新的产品。 在中国,已有许多重要的科研和生产商使用,我们也很荣幸地拥有了很多优秀的重要的客户。 标准特性   1、全铝泵头,有助于热传递   2、内置Peltier电子恒温模块   3、不锈钢液体管路(只有泵头不是不锈钢)   4、内置电子压力传感器   5、简单的前面板键盘控制并带有LED显示   6、电机故障检测   7、出口过滤器 技术参数: 流速 0.01-24.0ml/min 压力 0-10,000psi 压力准确度 满量程的± 2% 流速准确度 ± 5% (基于气体体积衡量及计算液体量) 控制 RS-232控制 运行/停止输入 (5 V TTL) 用户选择上/下压限设计 远程0-10V和0-10kHz流速控制输入 恒压 用户选择压力设定点, 流速自动调整满足设定压力 控制模式 压力 外型尺寸 5.75&rdquo H x 11.125&rdquo W x 21.125&rdquo D (15 x 28 x 54mm) 重量 36磅 (16.5Kg) 订货信息: 货号:S10SNXP1 规格: SFC-24泵, 0.01-24mL/min, 恒压, 自清洗组件, 110/220V, RS232控制, 压力监控, 热电头冷却器 货号:S10SNX01 规格: SFC-24泵, 0.01-24mL/min, 恒流, 自清洗组件, 110/220V, RS232控制, 压力监控, 热电头冷却器
    留言咨询
  • Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier 是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • Model SFC-24超临界流体泵产品介绍 Model SFC-24超临界流体泵是一款可靠、准确、优重现性的CO2输液泵,为超临界及其它用途设计。 Model SFC-24超临界流体泵的流速Z大可达24mL/min,Z大压力为10000psi。该泵恒压模式下可选择压力设定点,流速可自动调整以满足设定的压力。 Model SFC-24超临界流体泵制冷系统使用Peltier Thermoelectric模块。该制冷系统完全整装入泵体内,避免了外接制冷,外设连接管路,使用冷却剂和氟里昂,Peltier是固体技术。Model SFC-24超临界流体泵标准特性1、全铝泵头2、内置Peltier 电子恒温模块3、不锈钢液体管路4、内置电子压力传感器5、简单的前面板键盘控制并带LED 显示6、电机故障检测7、出口过滤器技术参数:流速 0.01-24.0ml/min压力0-10,000psi压力准确度满量程的±2%流速准确度±5% (基于气体体积衡量及计算液体量)远程控制RS-232控制恒压 选择压力设定点,流速自动调整,满足设定压力控制模式压力外型尺寸146 H x 283 W x 537 D(mm)重量16kg
    留言咨询
  • 岛津Shimadzu半制备型超临界流体色谱仪Nexera UC Prep集合了超临界流体色谱仪Nexera UC的卓越性能以及岛津制备的新技术。紧凑的设计节省空间,并兼顾制备回收率高和操作性好的特点,有助于进一步提高制备的操作效率。产品特点:独特的“LotusStream 气液分离器”,实现卓越的回收率即使在大体积进样时也能保持尖锐的峰形按照制备作业流程设计的专用软件Prep Solution,操作简单紧凑型台式系统,节约安装空间,降低安装成本从固体样品中自动萃取组分,实现全自动化在线萃取-分析-制备工作更少的有机相使用,减少对环境的负担
    留言咨询
  • SFC采用具有良好溶解能力和传质特性的超临界流体作为流动相,通过调节流动相的组成、流速、系统的温度和背压,实现分析和制备条件的优化。标配CO2回收装置:经过过滤、加压、降温,CO2净化后重新液化,回到系统循环利用。具有自主知识产权的旋风收集器,能够高效分离CO2及夹带剂,提高回收率。
    留言咨询
  • 超临界微粒化装置 400-860-5168转5949
    1 功能用途1.1 本套系统所有的超临界组件均为兼容ASME标准设计1.2 功能用途:超临界流体染色、超临界流体反应、超临界流体萃取、超临界流体干燥与清洗 2 系统配置清单2.1 HPR系列超临界流体反应釜基本配置,1套- 500ml 【可选体积:50, 100, 200, 300, 500, 1000, 2000, 3000, 4000, 5000, 8000mL】操作釜体- 操作压力10,000 PSI(68.9MPa)- 操作温度,小于等于200度- 压力表- Inlet/Outlet 阀门- 采样环路- 完整的管路 / 阀门系统- 系统将作为一套完整的仪器设备提供,用户只需要在操作前接入公用设施即可2.2 全自动控制单元,1套2.3 Specialty Dyeing Basket / 超临界染色专用框栏2.4 Restrictor Valve, Back Pressure Regulator, High-Pressure Spent Dye Collection Assembly / 限流阀,背压调节器,高压废弃染料收集器2.5 电动超临界二氧化碳高压系统,1套(见注)2.6 隔膜式洁净气体压缩机,一套(见注)2.7 夹带剂泵,1套2.8 2个正交安装的视窗,蓝宝石材质或石英玻璃材质2.9 摄像系统(观测仪)+ 数据获取与成像软件,带多插槽大容量台式电脑,用于图像处理2.10 备品备件包,1套2.11 技术文件及论文集注:2.5, 2.6的选配请参阅具体解释
    留言咨询
  • 超临界萃取仪SFE-650M 400-860-5168转6170
    超临界萃取仪 SFE-650M原理:超临界流体萃取 (SFE,简称超临界萃取) 是一种将超临界流体作为萃取剂,把一种成分 (萃取物) 从混合物 (基质) 中分离出来的技术。二氧化碳 (CO2) 是最常用的超临界流体。超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等 具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界 流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有 选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所 得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升 温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目 的,所以超临界流体萃取过程是由萃取和分离组合而成的。技术参数:1 、萃取釜:容积 100-5000ml ,316 不锈钢材质一体加工,配有电加热系统,温度可调,配专 用料筒,最高工作压力 69MPa ,可增配萃取釜数量;2 、分离釜:容积 50- 1000ml ,316 不锈钢材质一体加工,配有电加热系统,温度可调。最高 工作压力 30MPa ,可增配分离釜数量 ;3 、分离釜视窗:分离釜带蓝宝石视窗,可观察萃取物收集进度;4 、CO2 高压泵:流速:0- 10ml/min ,0- 100ml/min 可选,最高工作压力 69Mpa ,带泵头制冷 和 co2 回收入口。恒流恒压模式可选,带软件可自动控制流速和压力。5 、夹带剂泵:流量 10ml/min ,最高工作压力 40MPa ,选配;6 、气路控制系统:截止阀+微调阀+背压阀气路控制系统,可精确调节压力和气流速;7 、安全系统:配有自动泄压系统,超压自动泄压保障压力在可控范围内;8 、加热系统: 电加热温控,控制范围 室温~200℃可调,控温精度 ±1℃; ’9 、压力显示:每个高压釜都配有独立的数显压力表,方便调控和观察釜内压力变化;10 、二氧化碳回收系统:二氧化碳回收泵+双级气体净化装置,可进行二氧化碳回收利用,选 配;11、 外观:一体式外观设计,结构紧凑, 自动化程度高,高性价比,适合实验室研发型用户。12、 磁力耦合搅拌器:锚式+螺带式适合粉体材料搅拌,185W伺服电机,转速0-400转可调,带有控制仪,控制搅拌转速(无极调速),可显示釜内搅拌转速,配合专用料筒使用;标配附件: 柔性高压 LCO2 管线,1.5 米,连接钢瓶和仪器; 外置过滤器 (过滤精度:0.5um) ,配套高压软管; 粉末样品料筒; 防静电排空管线 2 根,各 1.5 米; 备用萃取釜和分离釜密封环 (10) ; 安装工具一套; 用户说明书及使用指南; 一年质保及终生免费技术支持。用户需配备:钢瓶装二氧化碳;夹带剂 (或者其他适用介质) 。
    留言咨询
  • 岩征仪器超临界反应釜,超临界反应又叫临界反应,超临界反应是反应物处于超临界状态或者反应在超临界介质中进行。超临界反应釜具有耐高温、耐腐蚀、生产能力强等优点,广泛用于医药、生物、化工、颜料、树脂、科研等领域。超临界反应大致分为两类,超临界催化反应和超临界非催化反应。超临界技术应用于化学反应,所用到的溶剂主要是CO2、水、丁烷、戊烷、己烷等低分子烃类。在超临界条件下进行化学反应,超临界流体能影响反应体系的传质、传热、选择性、平衡收率和反应速率,从而有可能提供一种能高效控制反应速率、转化率和选择性,并有利于产物分离与溶剂回收的新方法或新过程。超临界反应釜具有耐高温、耐腐蚀、生产能力强等优点,广泛用于医药、饮料、化工、颜料、树脂、科研等工业部门。 设计参数:开合方式法兰螺栓密封方式V型线性密封换热方式电加热加热功率500~1500W (注1)设计温度300℃使用温度80~250℃(超声放热60~70℃)控温精度±1℃ (无强放热吸热情况下)设计压力150bar爆破压力125bar使用压力≤100bar (注2)标准材质316L (注3)搅拌速度150~1500r/min操作系统YZ-MRCTR探头材质TA2超声功率450W超声频率20/25 KHz搅拌形式磁子搅拌注1不同容积加热功率不同注2使用负压时应特殊说明,另装负压表和更换负压传感器注3有哈氏合金,蒙乃尔合金,锆材,因科镍,钛材等特殊材质可订制
    留言咨询
  • 仪器简介:超临界流体是指温度及压力均处于其临界点以上的液体。超临界流体的扩散性和气体类似,也具有液体的溶解性。在物质的临界点状态附近,压力和温度的微小改变会引起密度很大的变化,从而使超临界流体的许多特性可以&ldquo 微控&rdquo 。超临界流体是良好有机溶剂,在工业和实验室中应用广泛。超临界二氧化碳是**常用的一种超临界流体。超临界流体特性可应用在超临界萃取、超微颗粒和纳米薄膜的合成、超临界干燥、碳捕获和封存以及提高油品采收率等领域的研究。PARR制造的超临界萃取和反应系统可同时满足以上提及的所有应用。技术参数:系统包括一台耐压4300psig(300bar)、耐温300℃、容积1.2升的反应釜,并配备相应的自动进气装置和控制反应系统内部压力的气体背压阀。其中,反应釜由一个1500W的电加热器和控制器进行加热和温度控制。进料系统(图中未含)包括一台流速可达每分钟1.5加仑(5.7 lpm)的压力泵,可使二氧化碳流体的压力达到4000psig(275bar)。主要特点:按用户技术要求及独特应用而制造的反应器
    留言咨询
  • SCWO-100 不配备溶氧加入系统的超临界水氧化设备- 反应器:100毫升容量,500OC, 4500 psi- 全自动控制系统- 背压调节器- 管式预热器- 数字水计量泵- 300mL壳式和管式冷凝器 SCWO-250 配备气体与液体溶氧加入系统的超临界水氧化设备- 250ml,500℃ PID温控反应釜- 300ml、500℃ PID温控预热器- 4500 Psi (31.03MPa)PID控制背压阀- 100ml/min柱塞计量泵- 250l/h气体压缩机- 高压气体质量流量计- 带有开关控制的冷凝热交换器- 双氧水泵,0-24ml/min, 6000 Psi SCWO-1000 配备气体与液体溶氧加入系统的超临界水氧化设备- 1000mL Inconel 625材质反应器- 压力至4,500 psi(= 31Mpa)- 温度至500C- 压力反馈控制:PID控制器- 水计量泵:100CC/Min- 双氧水计量泵:24CC/Min- 气动空气/氧气压缩机:500N L/h- 质量流量计:500 NL/h- 预热器,带PID温度控制器:300CC- 冷却用热交换器,带ON/OFF冷却控制 SFT超临界水氧化设备用于模拟航天器生活废水的处理,直接将生活废水处理到可饮用水标准。设备配备两个超临界水反应系统,并有诸多的在线检测系统,可模拟静态与动态氧化
    留言咨询
  • 超临界气凝胶干燥仪一、什么是气凝胶它是一种固体相和孔隙结构均为纳米量级的无机非晶体多孔材料。具有连续无规则的开放纳米网络结构,孔隙率高达80%~99.8%多孔纳米结构使得它在宏观上表现出纳米材料*的界面效应和小尺寸效应,同时具有低折射率、低介电常数、低传声速度、低传热系数等优异的性质。材料以其优异的结构性能在隔热隔声材料、催化剂及催化剂载体材料、废气吸附材料、光学材料等等诸多其他领域都有着非常广泛的应用。 二、成型过程 溶胶→凝胶→凝胶老化→干燥。 前体溶液在催化剂的作用下形成胶体粒子分散在溶剂中→溶胶。溶胶中的胶体粒子经聚集缩合的凝胶过程形成无序交联具有空间三维网络结构的湿凝胶; 刚成形的湿凝胶,三维结构强度不够,很容易破碎断裂,故需在母液中老化一定时间。 老化时,凝胶内部和表面尚未反应的官能团(羟基、羧基、醚键、醛基、羰基等)会进一步缩合,使得所制备的凝胶的强度提高; 老化后,再干燥,不能破坏凝胶结构,使纳米量级孔结构中的溶剂被带走清除,得到高孔隙率、低密度的多孔固体材料: 湿溶胶→气凝胶(带很多气孔的轻质固定材料)。 三、干燥方法 在湿凝胶成为气凝胶的过程中,凝胶结构要承受巨大的干燥应力,这种应力会使凝胶结构持续的收缩和开裂,导致结构塌陷。 干燥应力主要来自于毛细力(主要压力)、渗透压力、分离压力等。 (备注:毛细力,产生是在三相界面上内弯液面引起----液面弯曲产生的。毛细力的方向:作用方向始终指向弯曲液面的凹面(凹凸弯液面是指相对于液相一侧言的)。毛细现象(capillarity) 在一些线度小到足以与液体弯月面的曲率半径相比较的毛细管中发生的现象。毛细管中整个液体表面都将变得弯曲,液固分子间的相互作用可扩展到整个液体。)湿凝胶干燥过程中,溶剂的挥发,孔道中的固液相界面向高能的固气相界面转变,形成弯月面,毛细力产生;在凝胶微孔结构中,由于孔道半径为纳米量级,其承受的毛细力非常大。凝胶结构中孔径大小并不均一,不同孔道承受的毛细力不同;溶剂挥发的毛细力从凝胶表面到凝胶内部产生巨大梯度,导致凝胶结构受力不均,造成凝胶结构的塌陷(凝胶结构会出现较大的收缩甚至开裂),最终得不到结构理想的气凝胶。 影响干燥应力的主要因素包括:凝胶结构的强度、凝胶的孔径大小与均一度、凝胶内溶剂的表面张力、溶剂与凝胶结构表面的接触角等。可以调节各类因素有效控制干燥应力对凝胶结构的破坏程度,提高成功概率及生产效率。 常规干燥方法:超临界干燥 在高于临界温度和压力的条件下,凝胶中的溶剂被替换成特定的超临界流体, 再通过先降压再降温的方式将凝胶孔径中的超临界流体转化为气体,得到干燥气凝胶。 原理:液-超临界相变和超临界-气相变替换了常规方法中的液-气相变,有效避免了在液-气相变中产生的干燥应力。 超临界干燥方法:1、高温超临界干燥:事例:硅气凝胶干燥。用甲醇等有机溶剂作为超临界流体。达到超临界条件时,高温导致硅凝胶结构表面为反应性的—OH基团与有机溶剂(如甲醇)发生二次酯化反应,亲水性的—OH 被取代为疏水性的烷基基团。 得到的气凝胶在空气中不会因吸收水分而导致结构开裂,稳定性强。 弊端:在高温高压条件,易燃的有机溶剂作为超临界流体,使得实验过程相对危险,对于相关设备要求苛刻。 2、低温超临界干燥二氧化碳作为超临界流体,通过低温超临界干燥制备出了硅气凝胶。临界温度非常容易达到的二氧化碳成为了低温超临界干燥中常采用的流体,其较低的临界温度(31℃)和临界压力(7.39MPa)以及二氧化碳的无毒和不易燃等特性使得低温超临界干燥技术更加安全。 弊端:CO2与水的相容性较差,必须先对湿凝胶进行水-乙醇置换,后由二氧化碳置换凝胶中的乙醇,经过干燥得到气凝胶。用二氧化碳低温超临界干燥方法得到的硅气凝胶不具有疏水性,得到的气凝胶表面具有亲水性—OH基团(故需要密闭存放,此方法得到的材料应用在干燥的环境中)。 3、方法对比:二氧化碳超临界干燥得到的硅气凝胶比在甲醇超临界干燥得到的硅气凝胶结构中的微孔率更高。可能是甲醇的临界温度和压力较高,加快了凝胶的老化(或部分孔隙的塌陷),使得凝胶结构变粗,孔隙率降低。冷冻干燥 冷冻干燥是通过避免液-气相界面在干燥过程中的毛细压力来实现凝胶干燥的方法。这种方法要求凝胶中的溶剂必须具有较低的扩散系数和较高的升华压强。溶剂在凝胶孔道中先被冷冻,然后再在真空条件下升华成为气态,得到干燥的气凝胶。冷冻干燥方法对于凝胶的结构强度要求较高,需要对凝胶进行较长时间的老化以获得足够高的强度。但是仍然会出现由于凝胶孔道中溶剂冷冻结晶而导致凝胶孔结构塌陷,故冷冻干燥方法没有普用性。 4、常压干燥常压干燥取决于凝胶的骨架结构强度、凝胶结构均一度、凝胶内溶剂的表面张力和凝胶表面的接触角,必须调节控制降低干燥应力。可能性的调节过程:通过控制溶胶-凝胶过程和老化过程来提高凝胶结构强度和均一度,通过表面改性或选择合适的前驱体来调节凝胶表面接触角,选表面张力较小的溶剂。表面改性和置换表面张力较小的溶剂是常压干燥中主要的步骤。表面改性的方法两种:一种是共前驱体法,即将改性剂与硅溶胶混合,改性剂也作为反应单体与硅溶胶一起发生聚合反应得到具有疏水特性的凝胶结构; 一种为凝胶后对凝胶表面进行改性。以有机硅为原料的硅气凝胶制备通常用的一种方法。以无机硅为硅源形成的硅气凝胶材料通常采用第二种改性方法,即将二氧化硅颗粒表面的Si-OH基团烷基化为Si-R基团,得到具有表面疏水特性的凝胶。由于凝胶表面的烷基化需要在有机溶剂中进行,在表面烷基化改性时,还需要对凝胶进行漫长的透析和溶剂置换。四、应用分析用超临界干燥法制备的材料,才是真正意义上的气凝胶,而常压干燥或冷冻干燥法制备的材料只能算“类气凝胶"材料。 型号:XT2000 CC设计体积:200ml--25L设计压力:10Mpa~100Mpa设计温度:-40℃~450℃主要配置:主超临界腔体 增压系统 压力安全控制器PSE(软件控制) 恒温恒压排气系统(避免巨大的压降导致空隙塌陷,及温度的下降导致的干燥不充分)含气液分离,冷凝,回收等 防爆设计:有机干燥 非防爆设计 :CO2干燥加热温度控制系统 程序化工作站平台 升降平台(可选)
    留言咨询
  • 超临界水热反应设备 400-860-5168转5949
    SFT超临界水热反应(SCWR)系统基本配置:&bull 反应釜体积:100mL ~ 8000mL&bull 操作压力:4500 ~ 5000 PSI (31 ~ 35Mpa)&bull 最高操作温度:500 ~ 600OC&bull 制造材质:Inconel 625&bull 水泵:往复式双活塞泵,流量控制&bull 全自动温度控制器&bull 手动背压阀调节压力&bull 结构紧凑,可移动便携式设计支架&bull 制造标准:ASME可选配置:&bull 预热器,最高操作温度500OC,最高操作压力35Mpa,Incolley 625材质&bull 后冷却器&bull Air/O2压缩机&bull Air/O2质量流量计&bull H2O2泵&bull 在线pH测量仪&bull 气液分离器&bull 在线除盐系统&bull PLC/HMI人机对话触摸屏操作界面&bull 监控与数据采集系统(SCADA)主要特点:&bull 从间歇式超临界水氧化/反应釜,直至完整的连续工艺系统&bull 从本地控制到全自动人机对话触摸屏操作界面、监控与数据采集系统(SCADA)&bull 从工业废水处理到可直接饮用水标准
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制