当前位置: 仪器信息网 > 行业主题 > >

环境大气测量

仪器信息网环境大气测量专题为您提供2024年最新环境大气测量价格报价、厂家品牌的相关信息, 包括环境大气测量参数、型号等,不管是国产,还是进口品牌的环境大气测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境大气测量相关的耗材配件、试剂标物,还有环境大气测量相关的最新资讯、资料,以及环境大气测量相关的解决方案。

环境大气测量相关的论坛

  • 大气环境监测设备超声波自动气象站

    大气环境监测设备超声波自动气象站

    大气环境监测设备超声波自动气象站大气环境监测设备气象要素观测,在大气环境中,随着气象要素值的变化,大气环境监测设备各个要素传感器的感应部位输出的电量发生特定的变换数据,这种变换数据被CPU实时控制的数据采集器所采集,经过线性化和定量化处理,实现工程量到要素量的转换,再对数据进行筛选,得出各个气象要素值。大气环境监测设备从应用场景进行分类可以划分为智慧灯杆路灯,输变电线路气象监测,生态环保气象观测,校园教学科普,森林气象监测,旅游景区气象服务,农田气象监测等不同领域。[img=大气环境监测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230920212936_5669_4136176_3.jpg!w690x690.jpg[/img]在气象监测方面要求大气环境监测设备通讯设备具有良好通讯性能的同时,对环境适应方面有着苛刻的要求,如低温度、高湿度等,并要求其在恶劣的环境下能够具有稳定的通信性能。再有就是要求通讯设备必须低功耗,很多恶劣的监测环境或极其偏远的监测环境没有必要因为电源耗尽而频繁的使工作者前往设备架设地点更换电源,浪费人力物力。大气环境监测设备主要由雨量计/风速仪/自动气象站等气象设备,搭配GPRS/CDMA无线模块,后台服务器和应用程序组成。GPRS模块提供TTL界面可直接连接雨量筒并将雨量筒倾斗测量次数传回;或自行累积计算雨量筒倾斗测量次数,并将所侦测到之雨量值(即累积次数乘上倾斗容量)数据通过GPRS网络定时传送至控制中心分析。并提供RS-232/485透明通道直接连接气象设备的串行接口将数据作双向传送。[img=大气环境监测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230920423917_661_4136176_3.jpg!w690x690.jpg[/img]

  • 【讨论】环境大气走航监测

    为坚决打好污染防治攻坚战、打赢蓝天保卫战,有效地加强大气污染防治和应对措施,相关单位对大气污染物监测提出了更高的要求。如2020年6月23日生态环境部印发的《2020年挥发性有机物治理攻坚方案》中就要求,有条件的石化、化工类工业园区开展[b]走航监测[/b]、网格化监测以及溯源分析等工作,用以分析企业VOCs组分构成,识别特征物质,推动建立健全监测预警监控体系。  据了解,[b]大气走航监测[/b]指的是通过安装在走航车上的仪器设备进行大气取样、监测和数据处理的监测技术。相比于传统固定式的监测方式,走航监测可以实现边行驶、边监测、边反馈。在走航车缓慢行驶过程中,车上搭载的测量分析仪器可以对指定区域内VOCs、PM[sub]2.5[/sub]、PM[sub]10[/sub]、O[sub]3[/sub]、NO[sub]x[/sub]、CO、SO[sub]2[/sub]等大气污染物浓度进行实时监测。并快速绘制区域大气污染地图,精确判定污染行业、企业甚至工段,锁定重点污染源。为环保部门的环境决策、环境管理、污染防治提供科学有力的技术支撑。  如何高效地利用走航监测技术,更好地对区域大气污染情况进行实时监测,是仪器厂商和用户共同关注的问题。大家针对走航监测的应用场景、标准、使用仪器等方面有什么见解和建议可以在这里发布,欢迎一起讨论和交流~

  • 低噪声放大器在射频测试测量中的应用

    [color=#333333]低噪声放大器[/color]除了用于接收机的信号放大以外,在测试和测量中也经常用到。以下列举了一些低噪声放大器在射频测试和测量中的典型应用。 [b]一、用于电磁环境测量[/b] 电磁环境测量是保证各类无线电业务正常开展的必要环节,是合理、有效利用有限的无线电频谱资源的基木技术保障。下图是一个典型的电磁环境测量系统的方框图。[align=center][img=gooxian-噪声放大器-1]http://www.gooxian.com/Storage/master/gallery/201711/20171107105413_8860.jpg[/img][/align][align=center]电磁环境测量系统[/align] 在这个系统中,低噪声放大器是核心部件。 以下就是低噪声放大器在这个应用中的基本要求和相关指标: 1、基本要求 系统的基本要求是噪声电平(频谱分析仪的底噪声)要比被测信号的幅度至少小10dB,而且采用低噪声放大器后不应产生影响测试精度的假信号。 2、带宽 假设系统的带宽是1~18GHz,那么是采用多个倍频程带宽的放大器还是采用一个宽带放大器实现呢?这里有二种选择,一是采用四个放大器来覆盖,包括1`2GHz、2~4GHz、4~8GHz和8~18GHz。选择这种方案的测试者认为可以利用窄带放大器的带外抑制特性,在测试点附近的、不在测试目标内的大信号在某种程度上被放大器抑制了。但实际上,放大器并不会定义带外的传输特性也就是说,这种选择的“优点”无法化。但相对于宽带放大器,窄带放大器具有更高的增益和更低的噪声系数。 另一种选择是采用一个宽带放大器(1~18GHz)来实现全频段覆盖,这种方案的最大优点就是可以“一览无余”地在频谱分析仪上观察到整个频段内的频谱。对于可能出现的由大信号产生的假信号,可以用一组滤波器来滤除。这种方案具有更强的灵活性,同时为测试者提供了更宽的视角。 3、增益 无论是窄带还是宽带的低噪声放大器,都具有足够高的增益来满足电磁环境测量的要求,在这个应用中,可以选用25~35dB增益的低噪声放大器。 4、噪声系数 按照倍频程设计的窄带放大器(如4~8 GHz)可以做到很低的噪声系数,其典型值为1dB;而宽带放大器(1~18 GHz)的噪声系数也只比其高1dB左右。 综合以上因素,在电磁环境测量应用中,用宽带低噪声放大器更为合适。 [b]二、用于基站杂散测量[/b] 在蜂窝基站的杂散测量项目中,有—项落入系统内部接收频段的杂散和互调测试,这项测试对频谱分析仪[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]有很高的要求,如果频谱分析仪的底噪声无法满足测试要求,可以采用低噪声放大器来协助完成(如下图)。[align=center][img=gooxian-噪声放大器]http://www.gooxian.com/Storage/master/gallery/201711/20171107105427_4250.jpg[/img][/align][align=center]用低噪声放大器配合基站杂散测量[/align]

  • 放大器的反向互调失真测量

    当放大器受到一个来自输出端的反向功率时,也会产生互调失真。虽然反向互调失真的概念和测试方法较少被提到,但实际上,射频工程师们在很多场合是关注到这个问题的,比如在正向互调测试中,要求合路器有很高的隔离度,如果自身隔离度不够,还要外加隔离器。另外一个例子是在多路发射机的合成系统中,对多工器的隔离度有很高的要求。这些都是为了减少反向功率加到放大器输出端时所产生的互调失真。[color=#ffffff]www.[/color][align=center][img=gooxian-放大器测量-1]http://www.gooxian.com/Storage/master/gallery/201711/20171110141354_6340.jpg[/img][/align][align=center]放大器的反向互调测量[/align] 上图是放大器反向互调的测试方法[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]。其中被测放大器以f1频率工作,而测试放大器将频率为的功率从反向加入到放大器的输出端。F2的功率要小于力的功率,至于小多少,要参照实际的应用环境由使用者来定义。比如在蜂窝基站测试中,要求反向信号功率的幅度比被测放大器的输出功率小30dB。[color=#ffffff]hyxyyq[/color] 反向互调的测试结果见下图。通常只考虑三阶互调产物,被测放大器的输出功率与最大的三阶互调产物之间的差值即为反向互调值。[align=center][img=gooxian-无源互调测量系统-2]http://www.gooxian.com/Storage/master/gallery/201711/20171110141418_3670.jpg[/img][/align][align=center]放大器的反向互调测试结果[/align][color=#ffffff].com[/color] 无源互调测量中各向异性器件的反向互调问题与之类似,实际上在很多功率放大器的末级就采用了铁氧体环流器。

  • 【分享】大气环境保护标准目录 ( 2008-04-15实施)

    类 别 标准编号 标准名称 实施日期大气环境质量标准 GB 9137-88  保护农作物的大气污染物最高允许浓度 1998-10-1 GB 3095-1996  环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量标准 1996-12-6 GB/T 18883-2002  室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量标准 2003-3-1 GB 20426-2006 煤炭工业污染物排放标准 2006-10-1 GB 4915-2004 水泥工业大气污染物排放标准 2005-1-1 GB 13223-2003 火电厂大气污染物排放标准 2004-1-1 GB 13271-2001 锅炉大气污染物排放标准 2002-1-1 GB 18483-2001 饮食业油烟排放标准(试行) 2002-1-1 GB 9078-1996  工业炉窑大气污染物排放标准 1997-1-1 GB 16171-1996  炼焦炉大气污染物排放标准 1997-1-1   GB 16297-1996  大气污染物综合排放标准 1997-1-1   GB 14554-93  恶臭污染物排放标准 1994-1-15 GB 14762-2008 重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段) 2009-7-1   GB 14622-2007 摩托车污染物排放限值及测量方法(工况法,中国第Ⅲ阶段) 2008-7-1   GB 18176-2007 轻便摩托车污染物排放限值及测量方法(工况法,中国第Ⅲ阶段) 2008-7-1   GB 20891-2007 非道路移动机械用柴油机排气污染物排放限值及测量方法(中国Ⅰ、Ⅱ阶段) 2007-10-1   GB 20951-2007 汽油运输大气污染物排放标准 2007-8-1   GB 20998-2007 摩托车和轻便摩托车燃油蒸发污染物排放限值及测量方法 2008-7-1   GB 3847-2005 车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法 2005-7-1   GB 11340-2005 装用点燃式发动机重型汽车曲轴箱污染物排放限值 2005-7-1   GB 14763-2005 装用点燃式发动机重型汽车燃油蒸发污染物排放限值 2005-7-1  GB 17691-2005 车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)2007-7-1   GB 18285-2005 点燃式发动机汽车排气污染物排放限值及测量方法(双怠速法及简易工况法) 2005-7-1   GB 18352.3-2005 轻型汽车污染物排放限值及测量方法(中国III、IV阶段) 2007-7-1 大气污染物排放标准 GB 19756-2005 三轮汽车和低速货车用柴油机排气污染物排放限值及测量方法(中国I、II阶段) 2006-1-1   GB 19758-2005 摩托车和轻便摩托车排气烟度排放限值及测量方法 2005-7-1   GB 14621-2002  摩托车和轻便摩托车排气污染物排放限值及测量方法(怠速法) 2003-1-1   GB 14622-2002  摩托车排气污染物排放限值及测量方法(工况法) 2003-1-1   GB 14762-2002  车用点燃式发动机及装用点燃式发动机汽车排气污染物排放限值及测量方法 2003-1-1   GB 18176-2002  轻便摩托车排气污染物排放限值及测量方法(工况法) 2003-1-1   GB 18322-2002  农用运输车自由加速烟度排放限值及测量方法 2002-7-1   GB 17691-2001 车用压燃式发动机排气污染物排放限值及测量方法 2001-4-16   GB 18352.1-2001 轻型汽车污染物排放限值及测量方法(Ⅰ) 2001-4-16   GB 18352.2-2001 轻型汽车污染物排放限值及测量方法(Ⅱ) 2004-7-1

  • 放大器的反向互调失真测量

    当放大器受到一个来自输出端的反向功率时,也会产生互调失真。虽然反向互调失真的概念和测试方法较少被提到,但实际上,射频工程师们在很多场合是关注到这个问题的,比如在正向互调测试中,要求合路器有很高的隔离度,如果自身隔离度不够,还要外加隔离器。另外一个例子是在多路发射机的合成系统中,对多工器的隔离度有很高的要求。这些都是为了减少反向功率加到放大器输出端时所产生的互调失真。[color=#ffffff]www.[/color][align=center][img=gooxian-放大器测量-1]http://www.gooxian.com/Storage/master/gallery/201711/20171110141354_6340.jpg[/img][/align][align=center]放大器的反向互调测量[/align] 上图是放大器反向互调的测试方法[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]。其中被测放大器以f1频率工作,而测试放大器将频率为的功率从反向加入到放大器的输出端。F2的功率要小于力的功率,至于小多少,要参照实际的应用环境由使用者来定义。比如在蜂窝基站测试中,要求反向信号功率的幅度比被测放大器的输出功率小30dB。[color=#ffffff]hyxyyq[/color] 反向互调的测试结果见下图。通常只考虑三阶互调产物,被测放大器的输出功率与最大的三阶互调产物之间的差值即为反向互调值。[align=center][img=gooxian-无源互调测量系统-2]http://www.gooxian.com/Storage/master/gallery/201711/20171110141418_3670.jpg[/img][/align][align=center]放大器的反向互调测试结果[/align][color=#ffffff].com[/color] 无源互调测量中各向异性器件的反向互调问题与之类似,实际上在很多功率放大器的末级就采用了铁氧体环流器。

  • 【转帖】遥感技术在大气环境监测中的应用综述

    遥感技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优势, 还能发现有时用常规方法难以揭示的污染源及其扩散的状态, 它不但可以快速、实时、动态、省时省力地监测大范围的大气环境变化和大气环境污染, 也可以实时、快速跟踪和监测突发性大气环境污染事件的发生、发展, 以便及时制定处理措施, 减少大气污染造成的损失。因此,遥感监测作为大气环境管理和大气污染控制的重要手段之一, 正发挥着不可替代的作用。1  大气环境遥感监测技术的基本原理遥感监测就是用仪器对一段距离以外的目标物或现象进行观测,是一种不直接接触目标物或现象而能收集信息,对其进行识别、分析、判断的更高自动化程度的监测手段。它最重要的作用是不需要采样而直接可以进行区域性的跟踪测量,快速进行污染源的定点定位,污染范围的核定,污染物在大气中的分布、扩散等,从而获得全面的综合信息。根据所利用的波段, 遥感监测技术主要分为紫外、可见光、反射红外遥感技术 热红外遥感技术和微波遥感技术三种类型。大气环境遥感监测作为遥感技术应用中较为重要的内容之一,在业务上不同于常规气象要素的监测。常规气象要素遥感监测[1 ] 主要是指测量大气的垂直温度剖面、大气的垂直湿度剖面、降水量及频度、云覆盖率(云量和云层厚度) 和长波辐射、风(风速和风向) 、地球辐射收支的测量等。而大气环境遥感则是监测大气中的臭氧(O3 ) 、CO2 、SO2 、甲烷(CH4 ) 等痕量气体成分以及气溶胶、有害气体等的三维分布。这些物理量通常不可能用遥感手段直接识别,但由于水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射和吸收光谱特征,如影响水汽分布的主要光谱波长在017μm , O3在0155~0165μm 之间存在一个明显的吸收带等,因此我们实际上可通过测量大气散射、吸收及辐射的光谱特征值而从中识别出这些组分来。研究表明,在卫星遥感中,有两个非常好的大气窗可以用来探测这些组分,即位于可见光范围内的0140~0175μm 的波段范围和在近红外和中红外的0185μm、1106μm、1122μm、1160μm、2120μm 波段处。2  大气环境遥感监测技术的应用大气环境遥感监测技术按其工作方式可分为被动式遥感监测和主动式遥感监测,被动式遥感监测主要依靠接收大气自身所发射的红外光波或微波等辐射而实现对大气成分的探测 主动式遥感监测是指由遥感探测仪器发出波束、次波束与大气物质相互作用而产生回波,通过检测这种回波而实现对大气成分的探测。由于主动式大气探测仪器既要发射波束,又要接收回波,通常将这种方式称为雷达工作方式。根据遥感平台的不同,大气环境遥感监测又可分为天基、空基遥感和地基遥感。天基、空基遥感是以卫星、宇宙飞机、飞机和高空气球等为遥感平台,地基遥感则是以地面为主要遥感平台。本文将根据大气环境遥感监测技术的工作方式和遥感平台的不同,从四个方面来介绍大气环境遥感监测技术在实际中的应用。2. 1  大气环境的被动式空基遥感监测目前利用被动式空基遥感对大气环境监测主要包括:对臭氧层的监测,对大气气溶胶和温室气体如CO2 、甲烷(CH4 ) 的监测,对大气主要污染物、大气热污染源以及突发性大气污染事故如沙尘暴等的监测。大气环境污染主要体现在大气污染物上,大气污染物的种类约有数千种,已发现有危害作用而被人们注意到的有一百多种,其中大部分为有机物。本文为了论述的方便,将大气污染的主要污染物按污染区域及污染性质分为三大类,第一类为区域性污染的大气污染物,主要有二氧化硫、氮氧化物、大气颗粒物(包括可吸入颗粒物) 、有机污染物等 第二类为灾害性大气污染,如沙尘暴、有毒气体的泄漏等 第三类为在全球变化中起着不可忽视作用的污染物,如对流层气溶胶、臭氧(O3 ) 、CO2 、甲烷(CH4 ) 等。本文将针对以上三大类污染物来介绍被动式空基遥感在大气环境监测中的应用。21111  区域性大气污染物的被动式空基遥感监测利用遥感对大气环境进行监测的其中一个方面是对区域性大气污染物的监测,然而区域性大气污染信息是叠加于多变的地面信息之上的微弱信息,这些物理量通常不可能用遥感手段直接识别,提取非常困难,一般的地物提取方法均不实用。目前常用的方法主要有两类,一类是根据污染地区地物反射率发生变化,边界模糊的情况来对大气污染情况进行估计[2 ,3 ] 另一类是间接方法,主要根据树叶中SO2 等污染物含量与遥感数据中植被指数的关系估计大气污染的情况[4 ] 。王雪梅、邓孺孺等[5 ] 分析了卫星遥感像元信息构成的物理机制, 将像元信息概化为土壤、植被、水体等基本信息类型的线性集合与污染气体( SO2 ,NOx) 信息的简单叠加,首次从TM 卫星数据直接定量提取珠江口地区大气污染气体累加浓度信息。实验结果表明,所提取的污染信息满足精度要求。有学者[6 ,7 ] 用红外航片资料研究了环境污染区与植被的响应关系,指出受污染杨树与正常健康的杨树相比,光谱发射率在近红外波段(017~111) 有较大幅度的下降,而在红波段(016~017) 则有所增加,叶绿素指数也迅速减少,因此叶绿素指数可成为反映大气污染的一个重要指标。L. BRUZZONE[8 ] 等利用搭载在ERS - 2 卫星上的GOME 和ATSR - 2 传感器所接收到的数据,通过两种方法对生物燃烧排放到对流层中的NO2进行了计算,一种是假设这两种传感器所获得的数据与NO2浓度之间存在线性关系 另外一种是用基于辐射传输方程神经网络的非线性无参数方法来反演NO2 浓度。实验结果表明,这两种方法在实际反演NO2 浓度时效果较好。S. CORRADINI 等人[9 ] 根据aster 数据, 利用劈窗算法( the split2window technique) 计算了意大利Mt Etna 火山排放的SO2 ,试验证明,运用该方法可较为准确地计算出SO2的分布。21112  灾害性大气污染———沙尘暴的被动式空基遥感监测利用遥感技术对大气环境进行监测的另一个方面是对大气污染事故的监测,如对沙尘暴的监测。沙尘暴是严重的生态环境问题,同时也是严重的大气污染问题,它突发性强,危害巨大,当沙尘暴发生时,大量沙尘粒子悬浮于空中并随风移动,对人畜及环境造成极大危害。沙尘暴属于大气气溶胶的一种极端情况。在气象学中,沙尘暴是指强风从地面卷起大量沙尘,使空气很浑浊,水平能见度小于110km 的灾害性天气现象。周明煜等[10 ] 利用NOAAPAVHRR 资料分析了1993 年4月北京、天津上空沙尘暴特性,得到在沙尘暴发生时,AVHRR 可见光通道1 和可见光通道2 的反射率都有增加,沙尘暴强度越大,反射率增加越大,但仅给出了反射率增加的大小,而没有根据卫星反射率的变化对沙尘暴进行定量研究。目前对沙尘暴的遥感监测主要是利用GMS 和NOAAPAVHRR 数据,其研究表明, GMS 的红外通道数据有利于确定沙尘暴的位置,同时它所具有的高时间分辨率(1h) ,更有利于大尺度监测沙尘暴的运动轨迹[11~14 ] 。由于NOAAPAVHRR 数据不但可以监测到沙尘暴反射辐射特性[15 ,16 ] ,而且可以在较大尺度上监测到沙尘暴的时空分布[11 ,12 ] ,因此是目前沙尘暴研究和监测的主要遥感信息源。

  • 【世界环境日】大气臭氧监测的技术

    大气臭氧监测是评估和控制大气污染的重要手段,因为臭氧不仅影响人类健康,还会对植物生长和材料造成损害。目前,大气臭氧的监测技术主要包括以下几种:1. 紫外光度法(UV Photometry): 这是目前广泛使用的一种监测技术。它基于臭氧对特定波长紫外光线的吸收特性。通过测量通过臭氧层后的紫外线强度,可以计算出臭氧的浓度。这种方法快速、准确,并能实时监测臭氧浓度。2. 化学发光法(Chemiluminescence): 这种技术利用臭氧与特定化学物质反应时产生的光来测定臭氧的浓度。该方法灵敏度高,但通常用于实验室分析,较少用于现场实时监测。3. 电化学传感器法(Electrochemical Sensors): 这种方法通过电化学反应监测臭氧浓度,传感器响应速度快,但可能受到其他氧化性物质的干扰。4. 光谱法(Spectroscopy): 包括红外光谱法和激光光谱法等,可以提供高精度的臭氧测量,特别是激光光谱技术,因其高空间分辨率,适用于区域性空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量监测。5. 被动采样法(Passive Sampling): 通过使用特定的吸附材料(如滤纸、薄膜或化学传感器)来被动收集空气中的臭氧,之后通过实验室分析来确定臭氧的浓度。这种方法适用于远程监测和长期采样。6. 遥感技术(Remote Sensing): 包括卫星遥感和小飞机遥感等,可以覆盖大范围区域,提供空间上宏观的臭氧分布信息。这些技术通常与地面监测站的数据相结合,以获得更全面的大气臭氧状况。7. 便携式和车载臭氧监测设备: 这些设备便于携带和移动,适用于现场快速监测,尤其是在臭氧污染事件发生时。每种技术都有其优缺点,根据监测目的、成本、现场条件等因素,选择合适的技术进行臭氧监测非常重要。中国在大气污染防治工作中,采用多种技术相结合的方式,对大气臭氧进行监测和控制,以保障人民群众的健康和生态环境的良好状态。

  • 大气环境监测样品的取样与保存

    1、大气环境监测与大气环境监测样品大气环境监测:是指为了掌握某一区域的环境质量现状而进行的监测。大气环境监测样品:是指大气环境监测过程中所采集的样品。2、大气环境监测监测项目目前在我市进行的大气环境质量监测时,常规监测的项目为:TSP、SO2、NO2等三个常规项目,在特定的区域内,可能要加测其它的项目,如在XXXXXXX地区,由于氟化物为XXXXXXXXXXXXXXXXX大气排放的特征污染物,因为,在对该地区的环境质量现状进行监测时,除监测TSP、SO2、NO2外,还增加氟化物项目。3、大气环境监测的取样与现场样品保存大气环境监测目前常采用的恒流大气采样器,采取一定体积的空气样品,通过过滤或溶液吸收的方式,进行过滤或吸收处理后,再将样品带回实验室进行分析。

  • 城市网格化大气环境监测系统中应用到哪些传感器

    城市网格化大气环境监测系统介绍环境监测是环境治理的基础,日益受到人们的关注和国家的政策支持。传统的高成本、低密度的环境监测站已不能满足现今的监测需求。采用新技术的低成本、高密度的环境监测系统才能发挥高效的监测效益,并已成为环境监测的主流发展趋势。[url=http://news.isweek.cn/wp-content/uploads/2019/04/20190408143757.png][img=20190408143757,554,188]http://news.isweek.cn/wp-content/uploads/2019/04/20190408143757.png[/img][/url]网格化大气环境监测系统采用最新的传感技术,有效降低了环境监测成本。通过大范围部署监测点,实现对区域环境的高密度监测,形成网格化监测体系,打通了在线监测与政府监管之间的通道,为科学治霾、精准治污提供决策支撑。有利于环境监测的实时性、精准性和环境治理的科学性。网格化空气检测系统具备的功能如下:1.对PM2.5、PM10、SO2、NO2、CO、O3等多个大气环境参数进行监测;2.24小时在线连续监测,全天候提供监测地点的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量数据;3.基于监测数据和GIS技术的环境地图,支持以时间和空间为条件的数据回放和统计排名,使人员可直观、全局地掌握环境情况,为环境治理提供决策依据和技术支持;4.依托环境地图的直观表现和数据回放,可以直观的追寻到污染产生的源头,并监视其扩散和消散的轨迹,对于精准防霾,提供数据依据,保证数据可追溯;5.提供柱状图、折线图等多种形式的统计,并可导出Excel、XML、TXT、SQL、CSV、JSON等多种报表;6.系统采用一体化工业设计,安装简单方便,外表美观大方,为市容增光增色;7.自动报警、提前预警,及时预防和治理污染。网格化大气环境监测管理平台可通过手机APP和WEB端实现GIS地图展示、历史数据查询、参数对比、时段分析、数据报表、站点排名、空间分布、分类统计等功能。为了实现监测大气环境中的六个参数(PM2.5、PM10、SO2、NO2、CO、O3),推荐检测大气环境六参数的传感器,具体如下:[table][tr][td=1,1,73]传感器[/td][td=1,1,101]测量参数[/td][td=1,1,127]检测范围[/td][td=1,1,124]检出下限[/td][td=1,1,113]测量原理[/td][/tr][tr][td=1,1,73]CO-B4[/td][td=1,1,101]CO[/td][td=1,1,127]0 - 1000ppm[/td][td=1,1,124]4ppb[/td][td=1,1,113]电化学[/td][/tr][tr][td=1,1,73]NO-B4[/td][td=1,1,101]NO[/td][td=1,1,127]0 - 20ppm[/td][td=1,1,124]15ppb[/td][td=1,1,113]电化学[/td][/tr][tr][td=1,1,73]NO2-B43F[/td][td=1,1,101]NO2[/td][td=1,1,127]0 - 20ppm[/td][td=1,1,124]15ppb[/td][td=1,1,113]电化学[/td][/tr][tr][td=1,1,73]SO2-B4[/td][td=1,1,101]SO2[/td][td=1,1,127]0 - 100ppm[/td][td=1,1,124]5ppb[/td][td=1,1,113]电化学[/td][/tr][tr][td=1,1,73]H2S-B4[/td][td=1,1,101]H2S[/td][td=1,1,127]0 - 100ppm[/td][td=1,1,124]1ppb[/td][td=1,1,113]电化学[/td][/tr][tr][td=1,1,73]OX-B431[/td][td=1,1,101]O3[/td][td=1,1,127]0 - 20ppm[/td][td=1,1,124]15ppb[/td][td=1,1,113]电化学[/td][/tr][tr][td=1,1,73]PID-AH[/td][td=1,1,101]VOC[/td][td=1,1,127]0 - 50ppm[/td][td=1,1,124]1ppb[/td][td=1,1,113]PID[/td][/tr][tr][td=1,1,73]OPC-N2[/td][td=1,1,101]0.38~17um[/td][td=1,1,127]0 ~ 1000μg/m3[/td][td=1,1,124]0.3μg/m3[/td][td=1,1,113]激光散射[/td][/tr][tr][td=1,1,73]OPC-N3[/td][td=1,1,101]0.38~40um[/td][td=1,1,127]0~1000μg/m3[/td][td=1,1,124]0.3ug/m3[/td][td=1,1,113]激光散射[/td][/tr][tr][td=1,1,73]OPC-R1[/td][td=1,1,101]0.4~12.4um[/td][td=1,1,127]0 ~ 500μg/m3[/td][td=1,1,124]0.3μg/m3[/td][td=1,1,113]激光散射[/td][/tr][/table]

  • 小型环境气象测量系统景区森林案例

    小型环境气象测量系统景区森林案例

    小型环境气象测量系统景区森林案例从小型环境气象测量系统的用途、需求出发,进行了小型环境气象测量系统结构与功能设计,重点突出了移动应急气象观测对气象站的便携性、易架设性、低功耗、支持多种通信方式的要求。测试气象站传感器性能、使用的便携性和易架设性、通信方式的多样性、设备运行的低功耗和长期稳定性,试验结果表明,设备结构和功能设计可满足移动应急气象观测需求。小型环境气象测量系统观测生态环境气象变化情况。生态气象观测是生态气象信息服务、天气预测模式和相关科学研究工作的基础,生态气象观测的对象是农田、森林、湿地、荒漠、草地、湖泊等生态系统中水、土壤、大气、生物等不同要素了解生态系统中的能量流动与物质循环。生态系统观测中使用小型环境气象测量系统监测空气中的温湿度、光照强度、降雨量、蒸发量等气象要素,对生态环境的气象变化进行实时监测,及时预报预警,采用防御措施。[img=小型环境气象测量系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/08/202208230908100600_1814_4136176_3.jpg!w690x690.jpg[/img]通过小型环境气象测量系统对气象环境的监测,使得农业的生产更加的有保障,改变过去依靠经验种植的种植模式,为精细化农业的生产提供了重要的技术支撑,对于农业增产增效具有一定的指导作用。小型环境气象测量系统常见测量数据包括空气温度、湿度、风速、风向、降雨量、光照辐射、土壤温度、湿度等,不过在一些对气象环境要求比较高的农业生产基地,需要测量的参数不只这些,这就需要根据需求自主添加。小型环境气象测量系统具有拓展功能,可根据不同的需求添加各种传感器,满足农业气象多参数测定的要求。[img=小型环境气象测量系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/08/202208230908455054_637_4136176_3.jpg!w690x690.jpg[/img]

  • HJ2.2-2018《环境影响评价技术导则 大气环境》发布

    [align=center][b][color=red]生态环境部公告[/color][/b][/align][align=center]公告 2018年 第24号[b]关于发布《环境影响评价技术导则 大气环境》国家环境保护标准的公告[/b][/align]  为贯彻《中华人民共和国环境保护法》和《中华人民共和国环境影响评价法》,防治大气污染,促进空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量改善,进一步规范建设项目大气环境影响评价工作,现批准《环境影响评价技术导则大气环境》为国家环境保护标准,并予发布。  标准名称、编号如下:  环境影响评价技术导则 大气环境 (HJ2.2-2018)。  该标准自2018年12月1日起实施,由中国环境出版社出版。标准内容可在生态环境部网站(www.mep.gov.cn)查询。  自标准实施之日起,《环境影响评价技术导则 大气环境》(HJ2.2-2008)废止。  特此公告。[align=right]  生态环境部[/align][align=right]  2018年7月30日[/align]  抄送:各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,环境标准研究所,环境工程评估中心。  生态环境部办公厅2018年7月31日印发

  • 大气环境保护标准分享

    一、大气环境质量标准标准名称标准编号发布时间实施时间乘用车内空气质量评价指南GB/T 27630-20112011-10-272012-3-1室内空气质量标准GB/T 18883-2002 2002-11-192003-3-1环境空气质量标准GB 3095-1996 1996-1-181996-10-1保护农作物的大气污染物最高允许浓度GB 9137-88 1998-4-301998-10-1

  • 气体流量传感器在大气环境监测中的应用

    气体流量传感器在大气环境监测中的应用

    [align=left]跟随经济社会的快速发展,我们对公共气象服务需求越来越大,对即时气象信息获知的要求接连不断提高,但是,气象服务在覆盖面存在许多不足之处,气象预报服务局部地区的监测站密度不够,对局部的自然灾害的预警能力不够,导致灾害来暂时,经济损失较大。[/align][align=left]大气污染的日益加剧和雾霾现象的频繁发生,带来的影响也越来越大所以说大气环境监测还是很有必要的,有关气象部门给出的结果一定要具有真实性、准确性,增加气象信息的传输途径,提高城市气象监测系统,能够实现对实时交通、能源、建设空气污染等可能引发自然灾害的研究和动态监测,构建集气象服务与生态环境预测系统,提高城市工程气象的服务,进而采取有效的预警措施,减少损失。[/align][img=,497,323]https://ng1.17img.cn/bbsfiles/images/2018/11/201811201152135935_3204_3422752_3.jpg!w497x323.jpg[/img]要想对大气环境进行准确监测还需要用到气体流量传感器,可以安装到空气采样报警系统中,这种安装有气体流量传感器的空气采样报警系统与传统被动式烟雾探测系统相比,安装气体流量传感器的空气采样报警系统的灵敏度更高,可靠性和稳定性更好,不会因安装高度因素而漏报,同时也可以更好的对抗环境气流等原因的影响。(气体流量传感器平常被用于当中检测气流大小和有无)气体流量传感器空气采样报警系统通常用于数据或通信机房、大型展会中心、无人值守会议室等大面积、高气流的地方以及银行、档案馆和轨道交通等重要地方。气体流量传感器空气采样报警系统是主动抽取样品气体进行检测,从而能够在空气颗粒物浓度极低的情况下进行判别,属于极早期火灾探测系统。为了确保报警器的激光检测腔内有气流进入,平常可预先加装入气体流量传感器进行监测,幸免因无检测气流送入而贻误险情。OFweek Mall推荐使用FS4000系列的气体流量传感器进行大气环境监测:[b]气体质量流量传感器-FS4000系列[/b]1)专为管径3mm和8mm的气管中的低压气体流量测量而设计2)支持多种连接方式,易于安装与使用3)传感芯片采用热质量流量计量,无需温度压力补偿,保证了传感器的高精度计量4)在单个芯片上实现了多传感器集成,使其量程比达到了100:1甚至更高5)输出方式灵活,既可通过通讯接口主动上传数据或由上位机查询输出数据,也可通过模拟接口输出线性的模拟电压6)零点稳定度高7)全量程高稳定性、高精确度和优良的重复性8)低功耗、低压损9)响应速度快相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨气体流量传感器https://mall.ofweek.com/category_12.html丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨酒精传感器丨微量氧传感器丨PID传感器丨温湿度传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器丨紫外线传感器丨CO2传感器丨CO传感器丨超声波传感器丨UV传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨PM2.5传感器

  • 城市大气环境监测设备微型化设计

    城市大气环境监测设备微型化设计

    城市大气环境监测设备微型化设计大气环境监测设备是为生态环境监测系统设计的监测终端,带有1路ModBus-RTU主站接口,能够接入气象多要素百叶盒、负氧离子检测仪、翻斗式雨量计、风速传感器、风向传感器等485型传感器,可监测空气温湿度、风速、风向、PM2.5、PM10、大气压力、雨量、负氧离子浓度等多种因素,大气环境监测设备监测要素可自由搭配太阳能供电系统和高强度立杆,抗大风、防雨雪,可以24小时全天候自动监测环境各气象要素变化。现代的大气环境监测设备是气象监测业务体系的重要组成部分,是提升公共气象服务能力和提高气象预报预测准确率的重要基础。随着微电子技术、计算机技术、卫星技术和材料科学的发展,大气环境监测设备许多技术都应用到气象观测自动化中,例如现代化农业发展,森林防火,高速公路环境监测,学校环境监测等,大大提高了气象监测的探测精度和可维护性。[img=大气环境监测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204110904433970_7546_4136176_3.jpg!w690x690.jpg[/img]大气环境监测设备技术方案室内环境监测系统包括多功能空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器和环境监测平台,多功能控制质量传感器对各项监测指标进行监测,并上传至环境监测云平台,云平台对上传的数据进行收集整理并记录。从建筑节能和室内环境营造的角度来看,室内环境监测系统能够及时采集室内环境参数,作为调节环境的重要依据。总体而言,室内环境监测系统不仅能够有效提高建筑的能源使用效率,还可以加强室内空气品质监测,减少因室内空气污染而导致的健康问题。[img=大气环境监测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204110905060919_8350_4136176_3.jpg!w690x690.jpg[/img]大气环境监测设备特点1.电源系统:风光互补供电系统、交流220V、直流5V、12V、太阳能等,也可根据用户需要选配。2.可靠运行于各种恶劣的野外环境,低功耗、高稳定性、高精度、可无人值守。3.完善的防雷击、抗干扰等保护措施。4.硬件和软件均采用模块组合式开放性设计,可灵活组合使用。5.气象传感器可根据需要选配。6.通讯方式可根据需要选配。

  • 【原创】农业环境污染之大气污染

    在提及农业环境污染时,我们往往关注于化肥污染、水污染等能够切实感受以及对于农作物生长产生直接影响的污染源,而对于植物生长必须的依赖因素大气却较少关注,很大程度上这是由于大气污染和农作物之间的关系以及大气污染的特性决定的。首先,大气污染具有复杂性。受污染的大气对于农作物的影响一般会通过很多途径产生作用,日光中的紫外线可使工厂和汽车排出的碳氢化合物、氮氧化合物等发生化学变化,产生有毒的光化学烟雾,使植物不能正常进行光合作用;干旱情况下,植物对氯气污染的抵抗力增强,而高温、高湿条件则常加剧二氧化硫、氯化氢等对谷类作物,特别是处于抽穗扬花期作物,危害尤其严重。其次,大气污染具有传递性。气象的因素左右着大气中污染物的传送、积累以及扩散的时间和深度。更为严重的是,空气中的污染物会跟随者气象条件的变化,通过降水转变为土壤污染以及水体污染,这样就从一次污染转变为了二次污染。  正是由于这些原因,大气污染对于农业生产的影响更加不易察觉,造成的污染面也更加广泛。  其中最为常见的和熟知的就是空气中二氧化硫污染,即"酸雨"对于农作物造成的危害。"酸雨"几乎对于农田中的植物都会产生影响,受到"酸雨"影响的水稻,叶片变成淡绿色或灰绿色,上面有小白斑,随后全叶变白,叶尖卷曲萎蔫,茎杆稻粒也变白,形成枯熟,甚至全株死亡。小麦受二氧化硫危害后,叶片症状与水稻相似,典型症状是麦芒变成白色。而蔬菜以及果树的叶子都会受到二氧化硫的影响,致使落叶,严重情况下可造成植物死亡或者果实脱落等症状。虽然说可能因为植物本身特性的差异,不同植物对二氧化硫的敏感程度不同,但是,"酸雨"必然会对植物健康生长过程产生不利的作用。  从以上的分析中,我们可以对农田大气污染做一个较为明确的定义,农田大气污染是指向空气中排放的污染物数量超过了大气的自身净化和吸收能力,使得大气质量恶化,进而对农作物生长造成不利的影响。大气污染虽然对农作物造成的危害较为复杂,但是仍然有迹可循,其主要通过以下几种途径对作物产生影响。  第一、直接影响。通常植物都具有数量级的叶面积,这些植物叶片往往直接与空气接触,此为其一。其二植物对于外界的冲击一般也没有高等动物会产生缓冲作用,危害最为直接和快速。其三,植物也很难如同动物一样避开污染源。所以,当大气污染产生时,植物遭受的危害甚至是不可避免的。一般情况下,大气污染物中对植物影响较大的是二氧化硫(SO2)、氟化物、氧化剂和乙烯。氮氧化物也会伤害植物,但毒性较小。这些污染物在短期内,可造成叶片上出现坏死斑,称为急性伤害,长期与低浓度污染物接触,植物的生长受阻,发育不良,会出现失绿、早衰等现象。  第二、间接影响。大气污染物还会通过光照、降水等途径对农作物生长产生影响。例如臭氧可使叶绿素分解、原生质变质、植物不能正常进行光合作用。溶解了大气中污染物的降水,在下降的过程中还会吸收空气中的二氧化硫,从而使得危害进一步加大。降水落入地面之后,可能通过地表径流进入灌溉系统,或者进入渔业养殖水域,再次造成土壤污染以及毒害鱼类等水生生物。在最坏情况下,还可能污染水源、破坏种植环境,形成难以修复的恶性循环。  在了解了大气污染对于农业环境的种种危害之后,对于大气污染的防治也就成为我们必须思索的问题,鉴于大气污染的复杂和隐蔽,其防治措施也就具有长期性和系统性。  外部防治。对于任何环境问题的解决最根本也是最关键的措施就是控制污染源。然而,对于农田大气污染来说,污染源往往不在农田系统内部,而来自农业外部的生态环境,比如工业系统产生的大量废气,人类生活产生的燃油废气,汽车尾气就是大气废气主要组成部分之一。那么,防治工业以及人类活动产生的废气进入大气,就是防治农田大气污染的关键。在数量上,减少污染物排放量,多采用无污染能源,改革能源结构,大量用低污染能源。在技术上,使用除尘消烟技术、冷凝技术、液体吸收技术、回收处理技术等消除废气中的部分污染物。除此之外,应该充分认识到大气的自净能力,进行合理利用。对于风力大、通风好、湍流盛、对流强的地区和时段,大气扩散稀释能力强,可接受较多的污染物,反之,则要控制污染物向大气中的排放量。  内部优化。所谓内部优化包含两个方面内容,一方面是指农业内部要减少向大气的污染物排放,农业秸秆焚烧就是就是内部优化典型反面教材,不但产生的烟雾已成为一大社会公害,而且对于秸秆再利用的经济效益都欠缺考虑。欣喜的是,中央及地方各级政府三令五申,禁止秸秆焚烧,同时农民也看见了秸秆利用的前景,开始逐步推广秸秆直接还田以及综合再利用。内部优化更重要的一个方面还在于意识的优化,即认识到农业生产的局限性以及生态环境自身的净化能力。在这方面,日本防治农田大气污染可作为榜样。日本提出的"环境保全型农业"概念就认识到农业生产不再单纯追求效率的提高,而是要充分考虑到农业的多功能和自然循环机能,从单纯追求规模转变到关注大气、土壤、水利之间的链条平衡。在这样的思路下,通过法规以及技术层面控制了向农田大气的污染物排放量。可以说这是"松绑才能健康"理念的完美注释。  我们常言的"地球村"概念,从另一角度来看,也就意味着出现的问题要所有人共同承担,农田大气污染的解决之道在正在于此,需要工业、生活系统的共同努力,因为农业不只是其它行业的支持,同时还是人类生存的根基。

  • 【分享】大气环境保护标准目录及标准下载

    一、大气环境质量标准标准名称标准编号发布时间实施时间室内空气质量标准GB/T 18883-2002 2002-11-192003-3-1环境空气质量标准GB 3095-1996 1996-1-181996-10-1保护农作物的大气污染物最高允许浓度GB 9137-88 1998-4-301998-10-1

  • [推荐]大气环境保护标准目录

    下面是国家环保总局大气环境质量标准库地址:这里很多标准等待你的下载,都是PDF文档,下载享受资料前先安装adobe readerhttp://www.sepa.gov.cn/tech/hjjc/jcgfffbz/200603/t20060329_75253.htm

  • 大气采样体积是读取仪器上的还是进行手工计算

    大气采样时需要标体进行计算,可以直接读取仪器上的标体吗,还是只能读取累计体积,然后手工测量温度和大气压进行计算?手工计算的话小时值的大气压和温度应该如何测量,目前有仪器能连续测量一小时然后计算出平均温度和大气压吗?日均值的话又如何进行手工测量?如果温度和大气压要进行手工测量的话,无组织和环境空气是每个点位都要进行单独测量吗,还是只需要测量一个点位就可以了?

  • 【分享】大气环境工程师实用手册

    大气环境工程师实用手册PDG格式[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=78865]大气环境工程师实用手册[/url]

  • 【分享】氯苯类污染物在高层大气环境中形成的可能性

    《氯苯类污染物在高层大气环境中形成的可能性》应用化学, Chinese Journal of Applied Chemistry, 2010年 03期 摘要:简要地总结了大气离子与自由基反应的研究进展和以氯苯为目标产物的气相离子-分子反应的质谱研究。根据大气层状结构图、高层大气的特点以及相关的研究结果,提出了氯苯类污染物的形成不排除是大气化学反应尤其是离子反应产物的观点。对进一步研究大气中氯苯类污染物的生成机制和控制具有重要意义。1 POPs在高层大气环境中形成的可能性2 质谱在星际离子化学中的应用3 大气自由基反应动力学4 以氯苯为目标产物的气相离子反应质谱研究进展

  • 生态环境部关于同意建设国家环境保护大气环境暴露与健康风险管理重点实验室的函

    北京大学:  《关于申报建设“国家环境保护环境暴露与健康风险管理重点实验室”的函》(北自〔2023〕19号)收悉。经研究,同意以北京大学为依托单位,建设国家环境保护大气环境暴露与健康风险管理重点实验室(以下简称重点实验室)。  重点实验室主要建设任务是面向国家生态环境与人体健康战略需求,开展大气中主要健康危害因素识别、来源及环境过程,大气污染健康效应、机制及人群易感性,大气环境健康风险管理与环境治理关键支撑技术研究,推动解决大气环境暴露与健康风险管理中的关键科学问题,为我国大气污染防治和环境健康管理工作提供科技支撑。同时,以重点实验室为平台,推进国内环境健康学科发展,促进相关领域优势单位和科研人员合作与交流,培育一批优秀创新人才。  重点实验室建设期两年。请依托单位按照《国家环境保护重点实验室管理办法》(环办科财〔2020〕24号)有关规定,围绕重点实验室建设申请书提出的建设目标和建设内容,建立“开放、流动、联合、竞争”运行模式,进一步完善科研条件,加强队伍建设、资源开放共享和运行管理,按时提交重点实验室建设情况年度报告,努力提升重点实验室科学研究、管理决策支持和人才培养水平,为生态环境科技创新和推动生态文明建设提供支撑。建设期间若遇重大事项,请及时向我部报告。  特此函复。[align=right]  生态环境部[/align][align=right]  2023年7月25日[/align]  (此件社会公开)  抄送:各省、自治区、直辖市生态环境厅(局)。

  • 大气污染==(城市环境)城市气候岛

    1950年世界人口只有25亿,其中仅约1/3住在城镇。但2000年世界人口预计要增加到约62亿,而且其中约一半居住在城镇里。到2025年这个比例预测还将从50%增加到80%。城市中人口密集,工业发达,能耗巨大,绿地极少。城市化的迅速发展,使城市中大气环境严重污染,形成多种环境公害。

  • 【资料】大气环境监测方法标准

    标准编号 标准名称 实施日期 HJ 77.2-2008 环境空气和废气 二噁英类的测定 同位素稀释高分辨[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-高分辨质谱法 2009-4-1 国家环保总局公告 2007年第4号 环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量监测规范(试行) 2007-1-19 HJ/T 75—2007 固定污染源烟气排放连续监测技术规范(试行) 2007-8-1 HJ/T 76—2007 固定污染源烟气排放连续监测系统技术要求及检测方法(试行) 2007-8-1 HJ/T 373-2007 固定污染源监测质量保证与质量控制技术规范(试行) 2008-1-1 HJ/T 397-2007 固定源废气监测技术规范 2008-3-1 HJ/T 398-2007 固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 2008-3-1 HJ/T 400-2007 车内挥发性有机物和醛酮类物质采样测定方法 2008-3-1 HJ/T 174-2005 降雨自动采样器技术要求及检测方法 2005-5-8 HJ/T 175-2005 降雨自动监测仪技术要求及检测方法 2005-5-8 HJ/T 193-2005  环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量自动监测技术规范 2006-1-1 HJ/T 194-2005  环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量手工监测技术规范 2006-1-1 HJ/T 165-2004 酸沉降监测技术规范 2004-12-9 HJ/T 167-2004 室内环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量监测技术规范 2004-12-9 HJ/T 93-2003 PM10采样器技术要求及检测方法 2003-7-1 HJ/T 62-2001 饮食业油烟净化设备技术方法及检测技术规范(试行) 2001-8-1 HJ/T 63.1-2001 大气固定污染源 镍的测定 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 2001-11-1 HJ/T 63.2-2001 大气固定污染源 镍的测定 石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 2001-11-1 HJ/T 63.3-2001 大气固定污染源 镍的测定 丁二酮肟-正丁醇萃取分光光度法 2001-11-1 HJ/T 64.1-2001 大气固定污染源 镉的测定 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 2001-11-1 HJ/T 64.2-2001 大气固定污染源 镉的测定 石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 2001-11-1 HJ/T 64.3-2001 大气固定污染源 镉的测定 对-偶氮苯重氮氨基偶氮苯磺酸分光光度法 2001-11-1 HJ/T 65-2001 大气固定污染源 锡的测定 石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 2001-11-1 HJ/T 66-2001 大气固定污染源 氯苯类化合物的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2001-11-1 HJ/T 67-2001 大气固定污染源 氟化物的测定 离子选择电极法 2001-11-1 HJ/T 68-2001 大气固定污染源 苯胺类的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2001-11-1 HJ/T 69-2001 燃煤锅炉烟尘和二氧化硫排放总量核定技术方法—物料衡算法(试行) 2001-11-1 HJ/T 77-2001 多氯代二苯并二恶英和多氯代二苯并呋喃的测定 同位素稀释高分辨率毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/高分辨质谱法 2002-1-1 HJ/T 54-2000   车用压燃式发动机排气污染物测量方法 2000-9-1 HJ/T 55-2000 大气污染物无组织排放监测技术导则 2001-3-1 HJ/T 56-2000 固定污染源排气中二氧化硫的测定 碘量法 2001-3-1 HJ/T 57-2000 固定污染源排气中二氧化硫的测定 定电位电解法 2001-3-1 GB/T 12301-1999 船舱内非危险货物产生有害气体的检测方法 2000-8-1 HJ/T 27-1999 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法 2000-1-1 HJ/T 28-1999 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法 2000-1-1 HJ/T 29-1999 固定污染源排气中铬酸雾的测定 二苯基碳酰二肼分光光度法 2000-1-1 HJ/T 30-1999 固定污染源排气中氯气的测定 甲基橙分光光度法 2000-1-1 HJ/T 31-1999 固定污染源排气中光气的测定 苯胺紫外分光光度法 2000-1-1 HJ/T 32-1999 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法 2000-1-1 HJ/T 33-1999 固定污染源排气中甲醇的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 34-1999 固定污染源排气中氯乙烯的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 35-1999 固定污染源排气中乙醛的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 36-1999 固定污染源排气中丙烯醛的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 37-1999 固定污染源排气中丙烯腈的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 38-1999 固定污染源排气中非甲烷总烃的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 39-1999 固定污染源排气中氯苯类的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 2000-1-1 HJ/T 40-1999 固定污染源排气中苯并(a)芘的测定 高效液相色谱法 2000-1-1 HJ/T 41-1999 固定污染源排气中石棉尘的测定 镜检法 2000-1-1 HJ/T 42-1999 固定污染源排气中氮氧化物的测定 紫外分光光度法 2000-1-1 HJ/T 43-1999 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法 2000-1-1 HJ/T 44-1999 固定污染源排气中一氧化碳的测定 非色散红外吸收法 2000-1-1 HJ/T 45-1999 固定污染源排气中沥青烟的测定 重量法 2000-1-1 HJ/T 46-1999 定电位电解法二氧化硫测定仪技术条件 2000-1-1 HJ/T 47-1999 烟气采样器技术条件 2000-1-1 HJ/T 48-1999 烟尘采样器技术条件 2000-1-1 GB 9804-1996 烟度卡标准 1997-1-1 GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法 1996-3-6 HJ 14-1996  环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量功能区划分原则与技术方法 1996-7-22 GB/T 15432-1995  环境空气 总悬浮颗粒物的测定 重量法 1995-8-1 GB/T 15433-1995 环境空气 氟化物的测定 石灰滤纸.氟离子选择电极法 1995-8-1 GB/T 15434-1995 环境空气 氟化物质量浓度的测定 滤膜.氟离子选择电极法 1995-8-1 GB/T 15435-1995  环境空气 二氧化氮的测定 Saltzman法 1995-8-1 GB/T 15436-1995  环境空气 氮氧化物的测定 Saltzman法 1995-8-1 GB/T 15437-1995  环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法 1995-8-1 GB/T 15438-1995  环境空气 臭氧的测定 紫外光度法 1995-8-1 GB/T 15439-1995  环境空气 苯并[a]芘的测定 高效液相色谱法 1995-8-1 GB/T 15501-1995 空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺分光光度法 1995-8-1 GB/T 15502-1995 空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量 苯胺类的测定 盐酸萘乙二胺分光光度法 1995-8-1 GB/T 15516-1995  空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量 甲醛的测定 乙酰丙酮分光光度法 1995-8-1 GB/T 15262-94  环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 1995-6-1

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制