当前位置: 仪器信息网 > 行业主题 > >

中远红外相机

仪器信息网中远红外相机专题为您提供2024年最新中远红外相机价格报价、厂家品牌的相关信息, 包括中远红外相机参数、型号等,不管是国产,还是进口品牌的中远红外相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中远红外相机相关的耗材配件、试剂标物,还有中远红外相机相关的最新资讯、资料,以及中远红外相机相关的解决方案。

中远红外相机相关的资讯

  • 中远红外光谱一气呵成 – 傅立叶红外光谱界多年的梦想终得实现
    pspan style="font-size: 16px "  2014年十月于德国埃特林根,布鲁克集团光学事业部全球同步首发可以一次测试覆盖中红外、远红外和太赫兹光谱范围的傅立叶红外谱仪超宽谱区最新应用技术。继不久前问世的超宽谱区中远红外分束器后,布鲁克又推出了全新的超宽谱区中远红外DTGS检测器。VERTEX 70吹扫型和VERTEX 70v真空型研究级傅立叶红外光谱仪配置这两个新型超宽波段的红外光学部件,促成了VERTEX FM中远红外波段无与伦比的优势:您无需切换分束器或检测器、无需后续拼接谱图,只需一次测量,即可获得一张6,000 cm-1至50 cm-1的完整中远红外光谱。/spanbr//pp  傅立叶红外光谱仪的光谱范围取决于其所配备的光源、分束器和检测器的综合光学响应范围。中红外标准谱区,由于主要受限于可供选用的分束器的材质,通常截止于350 cm-1 (KBr分束器) 或者200 cm-1 (CsI分束器)。如果想扩展光谱范围至远红外和太赫兹区,通常需要一次甚至多次更换远红外分束器和检测器。而每次更换时,使用者都需手动打开谱仪光学腔。布鲁克最新推出的VERTEX FM功能,结合了新型超宽谱区中远红外分束器、中远红外检测器和标配红外光源,可以单次测量覆盖6,000 cm-1到50 cm-1的完整中远红外谱区,并广泛适用于透射、反射和衰减全反射等测量模式。独一无二的VERTEX FM技术是继几年前布鲁克VERTEX 80v高端研究级真空光谱仪的全自动分束器转换器和全自动检测器切换(多达五个检测器)功能后,布鲁克针对VERTEX 70(v)系列光谱仪的又一创新之举。/pp style="text-align: left "  VERTEX 70v真空型光谱仪配置了VERTEX FM功能后,可以结合外接水冷高压汞灯,将远红外/太赫兹谱区进一步延伸至10 cmsup-1/sup。img src="http://img1.17img.cn/17img/images/201510/noimg/9e2f5d33-8563-488a-a870-d4f50a8c0196.jpg" title="未标题-1.jpg" width="363" height="248" border="0" hspace="0" vspace="0" style="width: 363px height: 248px float: right "//pp  从中红外至远红外的谱区扩展,即突破传统中红外400 cm-1的界限,对很多分子振动光谱的应用领域有着至关重要的意义。这些应用领域包括无机和有机金属的化学分析、地质学和医药业,以及各种物理应用,如对多晶型物的筛分、对结晶度的检测和低温基质隔离光谱学。图中所示的是用VERTEX FM功能单次测量所得的维生素C的中远红外ATR光谱图。该谱证明,使用VERTEX 70或VERTEX 70v,并配置VERTEX FM新功能,您可以轻松快捷的获得从4,000 cm-1到50 cm-1的中远红外光谱区域的样品信息。/pp  布鲁克公司(NASDAQ:BRKR)是世界著名的高科技分析仪器企业,致力于开发领先技术以解决分子材料科研界、诊断学、工业及临床等各种分析问题。/pp  详情请见官方网站:www.bruker.com/pp  进一步了解VERTEX系列科研型傅立叶红外光谱仪,请访问相关网页:www.bruker.com/vertex/ppbr//p
  • 短波红外相机在海洋监测中的应用
    海洋区域湿度大,昼夜温差大,极易形成雾、霾、水汽等特殊条件。可见光在正常条件下成像良好,但是受天气影响较大,在恶劣天气下会出现对比度变低,轮廓模糊,细节丢失的现象等问题,无法清晰的识别目标。热成像技术虽然透雾能力好,但是当目标和背景温度接近时,热成像细节丢失严重,不利于海洋区域的目标探测。而短波红外在海面恶劣天气下也可以实现远距离船只监测,由于具备对海雾的良好透过性,所以目标几乎很少受到海上雨雾天气的影响,具有较为明显的轮廓和纹理特征。图 1可见光和短波红外雾天成像对比短波红外成像和可见光类似,主要依靠场景物体反射的光信号成像,其波段范围大约在900nm~2300nm之间,因为光在遇到大气中的分子、粒子、气溶胶和大量的悬浮小水滴时都会发生散射,当大气中的散射粒子小于光波长时,可以按照瑞利散射处理,散射系数为式中,S为散射粒子的截面积,N为单位体积的粒子数,λ为光波波长,从公式中可以看出,波长越长,散射越弱,透雾能力越强,所以短波红外穿透雾霾能力比可见光强。如图2所示,分别为可见光和短波红外的成像情况,舰船在短波红外图像中的细节更丰富。图 2 雾中短波红外(左)与可见光成像(右)不仅如此,短波红外在海面微小目标识别方面也有很大的优势,由于海面拍摄距离远,微小目标在探测器上占据的像素小, 而且海面也在不断地变化,当海杂波干扰过大时,微弱目标的信号会被淹没,造成可见光探测困难。但是短波红外则不同,利用海水对短波红外具有强吸收这一特性,可以大大提高微弱目标的识别能力。海水几乎不反射短波红外,而微弱目标发射红外辐射,背景和目标的对比度增大,微弱目标更容易被观测到。所以当对海面浮冰、小船、蛙人、浮标、飞机残骸、海面漂浮物等这些声光电特性不明显的目标探测时,相比可见光,短波红外更适合观测。 此外,短波红外技术还具有在夜间和低光条件下提供高质量监控图像的能力,在海岸港口,夜间航行可能存在风险,而短波红外监控系统可以保证即使在黑暗中,港口和船只的活动也能被及时监测,从而提高港口的安全性。西安立鼎光电提供非制冷、制冷面阵以及线阵多款短波红外相机,现货供应,具体产品如下:01非制冷短波红外相机02宽谱段短波红外相机03制冷型短波红外相机04科研型短波红外相机05线阵短波红外相机06定制短波红外相机立鼎定制型短波红外相机是立鼎团队为保证各类客户的产品性能指标而推出的定制化服务。可根据用户不同需求进行产品定制,将客户重点关注的产品性能进行提升,以满足客户在不同领域的使用。目前,立鼎团队已为多家客户定制适合客户项目应用需求的多款相机,得到了众多用户的认可。更多信息请联系西安立鼎光电400-860-5168转6159西安立鼎光电科技有限公司成立于2016年4月,是一家专业从事短波红外成像系统及光电测试装备的研发生产、系统集成、销售服务为一体的国家级高新技术企业。公司专注于为客户提供从器部组件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外成像系统在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求研制的多款光电测试装备为用户产品的性能指标保证发挥了重要作用。
  • 【巨哥科技】推出多光谱红外相机,快速识别材料属性
    在物料分选、材料分类、异物检测等应用领域,普通的RGB相机往往难以满足需求。多光谱红外相机探测目标对不同波段的光的吸收,形成代表材料属性的图像,提升分析的效率和准确性。巨哥科技最新推出的多光谱相机光谱响应范围900 nm至1700 nm,有效覆盖短波红外范围,适用于广泛的材料光谱分析。该相机具有7个波长通道,可提供丰富的光谱信息。一次多光谱成像时间小于0.1秒,10Hz的多光谱成像帧频确保了对动态过程的实时监控。通过收集不同波长下的光谱数据,该相机能够创建详细的材料光谱特征库,结合先进的数据处理算法构建高精度光谱模型,可实现自动化生产线上的快速材料分拣、质量控制和异物检测等任务。巨哥科技丰富的光谱分析和建模经验可以应对需要精确材料鉴别的复杂应用场景,如在复杂混合物中识别特定成分或在生产过程中实时监控材料变化。使用短波多光谱相机对不同材质的四类布料(涤纶、氨纶、棉以及使用了特殊染料的布料)进行成像。使用多光谱相机采集到的四类布料光谱数据如下图所示,可以看出不同材料在光谱上的差异。多光谱相机采集光谱通过建模算法确定图像中各点对应的材料成分后,使用伪彩色进行整体显示,可以直观看到各类布料的材质差异。多波段响应合成的伪彩色图区分不同材料基于上述原理,该款多光谱相机可用于以下领域:01 工业分拣:在生产线上,多光谱红外相机可以快速区分不同类型物质,如不同种类的纺织品或塑料,提高分拣效率。02 质量监控:通过光谱分析,实时监测PCB、水果等产品质量,快速识别并排除不合格品。03 成分分布:多光谱相机能够快速辨别材料成分,例如实时显示药物混合后的成分分布。04 异物检测:在食品加工等行业,相机能够有效识别潜在的异物,保障产品安全和消费者健康。巨哥科技多光谱红外相机的产品设计注重实用性和稳定性,确保在各种工作环境中均能提供可靠的性能。新款多光谱红外相机与现有光谱仪系列的协同作用,将为客户提供更加完善的材料属性分析工具。此外,巨哥科技为客户提供全面的技术支持和培训服务,确保客户能够充分利用我们的产品进行高效的材料分析和处理。巨哥科技致力于推动光电技术在工业和科研领域的应用,期待与客户共同探索和实现光电技术在现代工业中的更多可能。关于巨哥科技上海巨哥科技股份有限公司是专精特新和高新技术企业,自主研发光电仪器及核心芯片、智能算法和软件,获上海市科技进步一等奖。团队来自普林斯顿、清华、中科大、浙大、中科院等,获海外高层次人才、上海市优秀技术带头人等称号。巨哥科技提供全波段红外光电产品:用于电力、轨交、冶金、汽车等行业设备状态和过程监控的热像仪,用于石化等行业的气体泄漏成像仪,用于激光、半导体等先进制造领域的短波相机,用于石化、粮油、制药等领域成分分析的光谱仪等,并为材料、工程、生命科学等前沿研究提供科学级光电仪器。
  • 四川内江红外相机首次记录到海南鳽影像
    近日,在四川省内江市威远县石板河景区内,红外相机多次捕捉到海南鳽活动的身影,这也是四川范围内首次利用红外相机捕捉到海南鳽的活动踪迹。野保部门根据形态和羽色判断,镜头中的海南鳽,正是今年5月创下四川首次海南鳽自然繁殖纪录和首次科学放归纪录的那一只。据了解,今年5月5日,内江市威远县石板河景区内,有村民发现一只海南鳽雏鸟,随后这只雏鸟被送往管护中心救助。5月23日,经过救助后的海南鳽雏鸟,在专家研判后认为,已符合放归条件,可以跟随亲鸟学习飞行和觅食,提高野外生存能力。为持续监测放归海南鳽幼鸟及其亲鸟的生存状况,相关部门在放归地周边区域增设了4台红外相机。海南鳽,又名海南虎斑鳽、海南夜鳽,鹭科夜鳽属鸟类,因其模式标本采集自海南五指山地区而得名。海南鳽被世界濒危物种红色名录列为濒危鸟类,仅分布于中国南方、中南半岛、南亚次大陆局部地区,据估计全球种群数量不足一千只。2021年2月新调整发布的《国家重点保护野生动物名录》中,海南鳽的保护级别由国家二级提升为国家一级。
  • 新品上线立鼎光电短波红外相机仪器系列分享
    西安立鼎光电科技有限公司自成立以来,一直致力于短波红外成像技术开发与应用。结合市场需求,立鼎团队不断将产品迭代与优化,推出了一系列经典产品,性能可靠,价格合理,深受国内外行业用户的信赖。立鼎光电短波相机研发历程⏩ 2016年 组建团队,研发短波红外相机。⏩ 2017年 完成非制冷相机的研制并投入市场,反馈良好。⏩ 2018年 640×512(15μm)短波非制冷相机量产;同年,立鼎首版640一级制冷相机亮相深圳光博会,获得客户好评。⏩ 2019年 优化相机功能:增加GigE 、SDI接口,增加可供用户选择的跟踪功能;同年,完成高速短波红外相机的样机设计。⏩ 2020年 成功研发出第一代60Hz高速短波相机样机,并开始研发二级制冷科研级短波红外相机;同年,完成了320短波红外相机及扩展波段相机的研发及量产。⏩ 2021年 推出TE4深度制冷相机,制冷温度最低可达-80℃;同年推出1550nm激光通信专用短波红外相机。⏩ 2022年 研制多级深度制冷短波相机、全国产化短波红外相机、线阵短波红外相机、300/400Hz高速短波相机以及高光谱短波相机。立鼎光电短波红外相机系列分类经济型:采用非制冷铟镓砷探测器,结合专业散热结构,该型相机结构小、重量轻,方便集成在各类光电系统中。可以提供专业的定制化服务,旨在为用户提供小型化、轻量化、定制化产品解决方案。制冷型: 采用热电制冷铟镓砷探测器,能够很好的抑制芯片暗电流,从而提升成像质量,此系列可选配扩展型 InGaAs 焦平面探测器,可将探测范围扩展至1.1μm-2.2μm波段。旨在为用户提供更专业的高性能相机,以满足基础型相机无法达到的性能要求。科研型:采用了高性能的TE + air cool制冷设计,芯片温度最低可降至-80℃,在超长的曝光时间下工作,图像也能具有较高的信噪比。该型产品旨在满足高端用户或科研级用户在各种高要求/高精度场景下的应用。可提供集成多种图像算法的专用软件,为用户提供更好的使用体验。立鼎短波红外相机型号命名规则下图为立鼎短波相机命名规则。通过此规则,可以直观、快捷的了解到一型号产品的重要参数。或在选型中更方便快捷的选择项目所需对应规格的相机。立鼎短波相机的应用硅锭杂质检测液晶面板异型贴合半导体检测全息光学中的应用激光光斑捕获追踪海面观测透雾成像太阳能电池板检测生物成像激光光束质量分析晶圆切割获取更多信息可通过仪器信息网和我们取得联系400-860-5168转6159西安立鼎光电科技有限公司是一家专业从事红外、激光类产品及光电测试仪器设备的研发生产、系统集成、销售服务为一体的高新技术企业。公司专注于为客户提供从元件、组件、部件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外相机(系统)在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求定制的多款光电测试仪器设备,为用户产品的性能指标保证发挥了重要作用。
  • 中国首次利用红外相机自动监测南极雪海燕
    p style="text-indent: 2em text-align: justify "中国第35次南极科考队队员在对南极雪海燕进行系统调查的基础上,首次采用红外相机等先进技术对其繁殖生态习性进行自动监测。/pp style="text-indent: 2em text-align: justify "在为期两个多月的科考期间,本次科考队员、北京师范大学教授张正旺对南极中山站地区的鸟类进行了首次系统调查和监测,观测和记录到优势物种雪海燕470巢,并对其中109巢的繁殖状况进行了连续监测。通过11台红外相机对雪海燕繁殖行为的监测显示,其孵卵和育雏期间的活动高峰均集中于夜间。/pp style="text-indent: 2em text-align: justify "“红外相机是研究野生动物的一项先进的技术手段,在一些珍稀物种研究中得到了越来越多的应用。这次在中山站地区进行的鸟类繁殖自动监测,是该设备在我国南极鸟类调查和监测中首次应用。”张正旺说。/pp style="text-indent: 2em text-align: justify "在南极鸟类中,数量最多的企鹅是不能飞的南极“土著居民”,雪海燕则是翱翔天空的南极“土著居民”,它主要以磷虾为食,是南极海洋生态系统中的重要指示物种。雪海燕营巢于南极大陆及岛屿的山崖岩石缝隙中,11月底至12月初产卵,繁殖期90天至100天。/pp style="text-indent: 2em text-align: left "张正旺的研究发现,天敌捕食、极端气候和人为干扰是影响南极鸟类繁殖与种群发展的主要因素,进一步加强生态系统保护、减少人为活动影响,是未来保护南极鸟类的关键。/ppbr style="text-indent: 2em text-align: left "//p
  • 研究人员开发出基于远红外光的无创血糖测量技术
    p  日本东北大学生物医学工程研究生院Yuji Matsuura教授领导的一个研究团队开发出利用远红外光测量血糖的方法。这种方法是无害的,也是非侵入式的。/pp  糖尿病病人传统上需要使用一种常规的检测仪器测量从指尖中采取的血液,从而监控他们每天的血糖水平。这种让人不适的疼痛感和感染风险有时可能是巨大压力和担忧产生的源头。/pp  为了解决这一问题,其他的研究人员已提出和开发出利用近红外光测量血液中葡萄糖浓度的非侵入式方法。这种方法工作的前体条件为一些特定波长的近红外光被血液中的葡萄糖选择性地吸收。/pp  然而,利用这种方法进行准确地和稳定地测量已被证实是比较困难的,这是因为近红外光不仅被葡萄糖较弱地吸收,而且也被水、蛋白和血红蛋白较弱地吸收。/pp  相比之下,波长在40微米左右的远红外光能够被葡萄糖强劲地吸收,这就使得在理论上可以对病人进行更加准确地和灵敏地测量。然而,研究人员面临的问题是,远红外光只能穿透到皮肤表面下几微米,这就使得检测血糖比较困难。因此,Matsuura团队开发出一种新的测量技术:将一块小的棱镜附着到柔韧的空芯光纤末端上来发射远红外光。利用这种方法,就能够照射内唇的口腔黏膜。不同于皮肤,内唇没有厚厚的表皮角质层。/pp  实验结果证实这种新技术能够高灵敏度地检测和准确地测量血糖水平,误差范围在20%以下。Matsuura教授认为这足以适合临床使用。/pp  糖尿病是一种影响着全世界数百万人的严重健康问题。通过将这种方法与最近刚被开发出的远红外激光器联合使用,Matsuura教授期待更为紧凑的低成本血糖测量系统将很快地在临床上被广泛使用。/p
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 远红外等技术研制成的甲流病毒口罩面世
    可有效抑制流感病毒口罩研发成功  对甲型H1N1流感病毒抑制率达92%  据新华社北京11月8日电 一种可有效抑制流感病毒的抗病毒口罩日前研发成功并面世,经过国家流感中心检测,这种专用口罩对甲型H1N1流感病毒抑制率达92%。  这种抗病毒防流感的新型口罩,由天津市明大科技开发有限公司科技人员运用分子链接抗微生物技术和远红外技术研制而成。  中国科学院理化技术研究所抗菌材料检测中心对这种口罩针织材料所做的检测报告说,该材料可杀死大量对人体有害的细菌,尤其是对大肠杆菌、金黄色葡萄球菌、白色念珠菌的杀灭率高达99%以上。  据介绍,这种口罩具有长效抗病毒、杀病菌作用,水洗也不失效。
  • 药典委公示《化学成像指导原则标准草案》,涉及近红外、中红外、远红外和拉曼等
    近日,国家药典委发布《关于化学成像指导原则标准草案的公示》的通知,公示期自发布之日起三个月。本指导原则主要适用于基于振动光谱(例如,近红外、中红外、远红外和拉曼光谱)的化学成像系统,但也适用于其他成像技术。起草单位为浙江大学、浙江省食品药品检验研究院,参与单位为中国食品药品检定研究院。充分获取药品的化学成分及物理形态信息,对于准确评价药品质量至关重要。化学成像可同时提供样品的成分信息与空间信息,能可视化分析样品表面的分布特征,可实现不同样品之间的快速和无损比较,是传统光谱分析方法的重要补充,已收载于欧洲药典和英国药典。本指导原则围绕药学实践应用需求,参考欧洲药典、英国药典和其他相关技术要求,旨在通过建立统一的技术指南,为化学成像在药品成分鉴别、含量分布评估、物理形态表征等应用中提供指导,实现该技术在我国制药行业的规范和广泛应用,促进我国药品质量控制与国际接轨。制修订的主要内容如下:征求意见稿附件1 化学成像指导原则公示稿(第一次).pdf附件2 化学成像指导原则增订说明.pdf点击原文链接进行公示反馈 。
  • “活字印刷式”光电探测器阵列,实现多通道超构红外成像
    受神经形态计算并行处理能力的启发,多通道超构成像(meta-imaging)在成像系统的分辨率增强和边缘识别方面取得了相当大的进步,甚至扩展到中远红外光谱。目前典型的多通道红外成像系统由分离的光栅或合并的多个相机构成,这需要复杂的电路设计和巨大的功耗,阻碍了先进的类人眼成像器的实现。近期,由成都大学郭俊雄特聘研究员、清华大学Yu Liu、电子科技大学黄文教授和北京师范大学张金星教授领导的科研团队开发了一种由铁电超畴(superdomain)驱动的可打印石墨烯等离子体光电探测器阵列,用于具有增强边缘识别能力的多通道超构红外成像。通过直接重新调整铁电超畴而不是重建分离光栅,所制造的光电探测器在零偏压下表现出多光谱响应。与单通道探测器相比,研究人员所开发的多通道红外成像技术表现出更强和更快的形状分类(98.1%)和边缘检测(98.2%)。研究人员开发的概念验证光电探测器阵列简化了多通道红外成像系统,并为人脑型机器视觉中的高效边缘检测提供了潜在的解决方案。相关研究成果以“Type-printable photodetector arrays for multichannel meta-infrared imaging”为题发表在Nature Communications期刊上。基于“活字印刷式”多通道光电探测器阵列的红外成像使用铁电超畴打印的光电探测器的多通道超构红外成像技术方案如上图所示。与多个相机的合并不同,所提出的超构成像的像素点被设计为使用通过“活字印刷式”探测器实施的单个孔径实现并行多通道。通过将单层石墨烯和具有纳米级宽度条纹超畴的BiFeO₃ (BFO)薄膜集成,研究人员开发了一种简单的双端零偏压多通道阵列(MCA)探测器,用于超构红外成像。基于拉曼信号的载流子密度空间监测表明,通过重新调整铁电超畴可以实现石墨烯导电性的非均匀图案化。当工作在零偏压和室温下时,所开发的器件阵列在中红外区域表现出可调谐的透射光谱和选择性响应。“活字印刷式”等离子体光电探测器的制造和架构为了验证这种可打印架构的性能,研究人员通过重新调整铁电畴宽度(对应于活字印刷技术的排版过程)在同一BFO薄膜上制作了一个器件阵列。研究人员重点研究了石墨烯/ BFO超畴(不同宽度)混合结构的光谱响应。所开发的光电探测器实现了约30 mA W⁻ ¹ 的增强响应度和10⁹ Jones数量级的比探测率(D*)。“活字印刷式”光电探测器阵列的表征重要的是,研究人员展示了MCA光电探测器在红外成像应用中的集成,与单通道阵列(SCA)探测器相比,显示出对整体目标形状和边缘检测的更高识别精度,以及更快的训练和识别速度。“活字印刷式”探测器在手势红外成像和识别中的应用总而言之,通过将单层石墨烯和具有纳米级宽条纹超畴的BFO薄膜集成,研究人员开发了一种可打印的光电探测器阵列,证明了这种类型的器件阵列是为多通道超构红外成像应用而设计的,并实现了增强的边缘检测。所开发的可打印光电探测器在零偏压下工作,在室温下表现出约30 mA W⁻ ¹ 的高响应度。这可以归因于石墨烯等离子体与入射光的共振耦合。此外,器件阵列在中红外区域表现出选择性响应,这是通过在环境条件下直接重新调整BFO超畴宽度实现的。这项研究证明,通过在纳米尺度上改变铁电畴可精确控制石墨烯载流子密度。与依赖复杂纳米制造技术的传统器件相比,石墨烯片与不同衬底的兼容性提供了多种优势。此外,该研究还证明了MCA探测器可以增强红外成像中的形状和边缘检测。这些特性使得未来具有简单的电路设计和低功耗的集成光电子平台成为可能。论文链接:https://www.nature.com/articles/s41467-024-49592-4
  • 掺氮直拉单晶硅(Nitrogen-doped CZ Silicon, NCZ-Si)中氮的低温远红外测量
    在半导体材料领域,硅基半导体材料目前产量最大、应用最广,90%以上的半导体产品仍用单晶硅作为衬底材料制作。目前大尺寸硅片已成为硅片市场最主流的产品。硅片生产中在拉晶过程中,需要解决氧含量及径向均匀性、杂质的控制、缺陷控制、氧沉淀控制、电阻值定量、掺杂及径向均匀性等众多问题,同时对检测表征等保障技术也提出了更高的要求。直拉晶体硅中掺氮可用来调控原生氧沉淀和空洞型缺陷,从而提高硅晶体的质量,已经在产业界广泛应用,除了间隙氧、代位碳、III-V族元素检测以外,氮的测量也是硅材料界的一个热点课题。众所周知,直拉单晶硅中含有较高浓度(浓度范围1017-1018cm-3)的间隙氧(Oi),当氮掺入直拉硅单晶中时,除了以氮-氮对(N-N)形式存在以外,氮还会和氧作用形成氮氧复合体(N-Ocomplexes)。研究显示氮氧复合体会引起红外的局域模振动吸收和电子跃迁吸收,可以被红外吸收光谱技术探测到。在低温(10K左右)条件下,氮氧复合体在远红外波段有一系列由于电子跃迁产生的吸收峰,目前已经报导了7种氮氧复合体[1,2,3]。针对直拉单晶硅中杂质元素以及氮氧复合体的测量,布鲁克CryoSAS全自动、高灵敏度工业低温硅质量控制分析系统,通过测试位于中/远红外波段间隙氧(1136.3cm-1,1205.6cm-1)[7],代位碳(607.5cm-1)[6,7],III-V族元素[4,5]以及氮氧复合体吸收谱带(249.8,240.4cm-1[1,2]),通过直接或间接计算获得相应元素含量值。布鲁克CryoSAS系统主要特点:波段范围1250-230cm-1,覆盖了间隙氧(Oi)、代位碳(Cs)、III-V族浅能级杂质元素(硼B,磷P,砷As,铝Al,镓Ga,锑Sb,符合SEMI/ASTMMF1630-0704标准)以及N-N对,氮氧复合体[N-O-(1-6)]吸收谱带[4,5,6,7]闭循环低温冷却系统,T<15K,无需昂贵的液体制冷剂[4]不锈钢、真空样品室设计坚固、精确的步进电机,带有9位样品架简单易用(文献[1])(文献[3])如果您对此方法感兴趣,欢迎您来电垂询,交流、沟通。参考文献:[1]H.Ch.Altetal.AnalysisofelectricallyactiveN-Ocomplexesinnitrogen-dopedCZsiliconcrystalsbyFTIRspectroscopy,MaterialsScienceinSemiconductorProcessing9(2006)114-116.[2]H.Ch.Altetal.Far-infraredabsorptionduetoelectronictransitionsofN-OcomplexesinCzochralski-grownsiliconcrystals:influenceofnitrogenandoxygenconcentration,Appl.Phys.Lett.87,151909(2005).[3]《半导体材料测试与分析》,杨德仁等著[4]https://www.bruker.com/zh/products-and-solutions/infrared-and-raman/silicon-analyzer/cryo-sas-cryogenic-silicon-analyzer.html[5]SEMIMF1630-0704TestMethodforLowTemperatureFT-IRAnalysisofSingleCrystalSiliconforIII-VImpurities[6]SEMIMF1391-1107TestMethodforSubstitutionalAtomicCarbonContentofSiliconbyInfraredAbsorption[7]GB/T35306-2017硅单晶中碳、氧含量的测定低温傅立叶变换红外光谱法
  • 125万!清华大学真空型傅里叶变换红外光谱仪采购项目
    项目编号:清设招第2022172号项目名称:清华大学真空型傅里叶变换红外光谱仪采购项目预算金额:125.0000000 万元(人民币)最高限价(如有):125.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01真空型傅里叶变换红外光谱仪1套是设备用途介绍:主要用于测量气体、固体、液体样品的红外光谱特性,光电器件的光电流响应谱,以及材料的发射光谱等。主机光源覆盖近红外、远红外及太赫兹波段,能够一次完成近红外到中远红外的宽谱测量,提供高信噪比的数字化频谱信号输出。简要技术指标 :1)光谱范围:12900 cm-1~30 cm-1;2)分辨率:优于0.5 cm-1;3)具有紫外、可见光波段50000 cm-1~12900 cm-1和低频太赫兹波段30 cm-1~10 cm-1扩展能力。合同履行期限:合同签订后120日内交货。本项目( 不接受 )联合体投标。
  • 创新应用 | 中红外激光排放控制新应用
    可调谐激光吸收光谱(TDLAS)具有测量不受背景气体干扰、测量准确性好、可靠性高等技术优势,已被公认为工业应用的首选测量技术,特别是其具有非侵入特性,从而在原位应用方面备受关注。随着近年激光吸收谱技术的发展,尤其是量子级联激光器(QCL)、带间级联激光器(ICL)等小型激光器技术不断成熟,激光吸收光谱的输出波段从近红外到中远红外不断拓展。气体检测由传统的工业过程优化控制、废气源排放、燃烧诊断等领域扩展到环境微量气体检测。中红外光一般指波长从2.5um到25um的光谱区域,中红外基频指纹吸收谱具有吸收强、谱线宽且密集的特点。分子在中红外波段的吸收一般比近红外吸收高约2个数量级(或以上),所以在中红外光谱气体探测灵敏度比近红外光谱探测的灵敏度高很多。同时特殊气体,如有机分子、氮氧化物、烯烃类气体在中红外的吸收比近红外特征更强,下图为HITRAN数据库的空气常见气体吸收谱线;中红外基频指纹吸收强有利于痕量气体的高灵敏检测。LGT-3000激光气体分析仪LGT-3000激光气体分析仪是基于TDLAS技术开发的一款原位对穿正压防爆型仪表,可以原位测量O2、CO、CO2、NH3等气体含量。此外,LGT-3000可配置ICL激光模块,采用中红外光谱,达到更低的检测限,并且能检测在近红外没有吸收光谱的一些常见气体SO2、NO、NO2等。产品特点: ◆响应时间低至1s◆双屏显示,方便光路调节观察透过率信息◆正压防爆设计,可以在爆炸性场合1区和2区使用◆采用“单线光谱”技术,测量不受背景气体交叉干扰◆一体化结构方式,无运动部件,可靠性高,稳定性好◆原位测量,无需预处理系统,避免预处理采样吸附、堵塞和器件损坏等问题,降低运行成本应用领域:该系统广泛应用于硫磺回收、烟气脱硝、燃烧控制、合成氨等领域中。
  • 红外竟成为关键数据?接连登上Nature子刊!德国科学家和你聊聊如何利用新型全波段纳米红外
    【报告简介】傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长最小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源( 550-7000 cm-1),它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm级成像和光谱测量。这种独特技术的特点:• 超宽的可调谐波长范围550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 4 cm -1,实现快速的纳米级化学组分成像;• 与散射式近场光学(s-SNOM)和 AFM-IR / PTE+等测量模式兼容。在网络研讨会的问答时段,您可以直接与neaspec专家探讨科研工作中所面临的技术挑战和各种问题。欢迎您届时参加!【主讲人】主持人:Sergiu Amarie, neaspec高级应用工程师演讲嘉宾:Magnus Johnson, KTH Stockholm必看案例案例1:纳米傅里叶红外光谱仪(Nano-FTIR)对单层二维高分子聚合物的研究二维高分子聚合物作为一种新型有机二维材料,近年来在薄膜和电子设备的应用上受到广泛关注。相较于石墨烯由石墨自上而下的剥离合成路径,二维聚合物的合成路径可以采取自下而上的单体聚合反应,也因此具备更大的灵活性。如何优化合成路径以得到高品质的二维高分子聚合物是目前该领域的重大挑战之一。德国慕尼黑技术大学的Lackinger教授开发了一种有机单体分子自组装的光聚合合成路线,并利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对fantrip单体分子和其聚合物进行了吸收光谱的研究,验证了聚合反应的机理。该合成方法与传统的热聚合方法相比,大大减少了二维聚合物的缺陷密度,提升了材料均一性。相关研究成果发表于Nature Chemistry, 2021, 13: 730-736。研究人员利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)的近场光学技术的高灵敏度,测量了fantrip有机单体分子及其二维聚合物的纳米傅里叶红外吸收光谱。所得光谱与DFT计算结果一致,证明了单体分子参与光聚合反应形成二维高分子。该技术得到的近场吸收光谱与传统FTIR光谱对应,而传统FTIR或ATR-IR的灵敏度无法测量该单层分子材料的吸收光谱。同时,纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)的近场光学技术采用纯光学信号测量,而非基于材料热膨胀系数的机械信号。该技术灵敏度极高,可测量热膨胀系数低的材料,如二维材料,无机材料等。且对薄膜样品的破坏性极小,因此可用于单层分子自组装材料的研究。图2. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。案例2:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有极高的对应度,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图3. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图4. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电极电解液的原位界面表征的常用方法。然而该技术的探测深度在微米级别,而电极电解液的界面,如双电层,一般在纳米级别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面独有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电极的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm -1),C=O(1740cm -1)及C-O(1155cm -1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率最高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。纳米傅里叶红外光谱仪nano-FTIR的技术优势:☛ 极大地突破了传统红外光谱的空间分辨率极限,可达10 nm;☛ 得到的谱图与传统红外谱图有极高的一致性;☛ 探测光学信号而非机械信号,灵敏度极高,适用于热膨胀系数低的系统;☛ 可同时得到光谱及成像结果;☛ 测样时间短;☛ 操作和样品准备简单——仅需要常规的AFM样品准备过程。参考文献:1. Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional Polymers Ordered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.
  • 技术线上论坛|12月02日《红外竟成为关键数据?接连登上Nature子刊!550-7000 cm-1全波段 10 nm红外光谱(nano-FTIR/AFM-IR)测量系统》
    报告简介: 傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源,它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm成像和光谱测量。 这种特技术的特点:• 超宽的可调谐波长范围 550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 4 cm-1,实现快速的纳米化学组分成像;• 与散射式近场光学(s-SNOM)和 AFM-IR / PTE+等测量模式兼容。 在网络研讨会的问答时段,您可以直接与neaspec专家探讨科研工作中所面临的技术挑战和各种问题。欢迎您届时参加!报名注册:您可以通过点击此处或扫描下方二维码报名注册此次会议。扫描上方二维码,即可注册!报告时间:2021年12月02日 17:00(北京时间) 主讲人:主持人:Sergiu Amarie, neaspec高应用工程师演讲嘉宾:Magnus Johnson, KTH Stockholm技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 赛默飞世尔科技傅里叶变换红外光谱仪的缘起、发展与展望
    p style="text-align: justify "  strong1. 引言/strong/pp style="text-align: justify "  红外光谱分析技术的优点是灵敏度高、波数准确且重复性好,广泛用于样品的定性、定量分析。红外光谱可以分析常规的固体、液体或气体样品,也可以利用红外光谱附件或联机技术(如红外显微镜、气相色谱红外光谱联机等)分析微克级,甚至纳克级的样品。同时,红外光谱法即可以对单一组分的纯净物进行分析,也可以对多种组分的混合物进行测定,所以红外光谱的应用范围非常广泛。红外光谱技术可以用于有机物、无机物、聚合物、配位化合物的分析,也可用于复合材料、木材、粮食、饰物、土壤、岩石、各种矿物、包裹体等的分析。因此,红外光谱是教学、科研领域必不可少的分析技术,在化工、冶金、地矿、石油、煤炭、医药、环境、农业、海关、宝石鉴定、文物、公检法等部门也得到了广泛的应用sup【1】/sup。/pp style="text-align: justify " strong 2. 赛默飞 Nicolet致力傅立叶红外技术发展/strong/pp style="text-align: justify "  从上世纪七十年代到现在的五十年,傅里叶变换红外光谱(FTIR)技术发展迅速,FTIR光谱仪的更新换代很快。随着FTIR光谱仪器技术的不断发展,红外采样附件、联机技术、应用软件等也在不断地发展,不断地更新换代。使红外光谱仪的功能、性能不断地提高,也促使红外光谱技术得到更加广泛的应用。/pp style="text-align: justify "  在FTIR光谱仪发展历程中,赛默飞世尔科技(Nicolet)作为FTIR光谱仪的最主要制造厂商,见证和践行了FTIR光谱仪产品的诞生和发展,并且为FTIR光谱仪技术的发展sup【2】/sup做出了巨大贡献。因此,通过了解赛默飞世尔科技的FTIR光谱仪技术发展可以窥见整个FTIR光谱仪发展历程。/pp style="text-align: justify "  img style="float: left width: 150px height: 103px " src="https://img1.17img.cn/17img/images/202006/uepic/f0be8f2c-80fe-4cc6-945c-c495ede47daf.jpg" title="Nicolet.jpg" alt="Nicolet.jpg" width="150" height="103" border="0" vspace="0"/赛默飞世尔科技FTIR产品制造部门的前身是美国尼高力(Nicolet)仪器公司。Nicolet成立于1967年,其总部位于美国威斯康星州的麦迪逊。早期致力于全数码化的高科技产品开发,并于七十年代初已经拥有超小型计算机快速傅立叶变换(FFT)信号转换处理技术,也是Nicolet拥有 FTIR光谱仪产品制造的核心竞争力的缘起。/pp style="text-align: justify "  FTIR光谱仪能够全面取代光栅型红外光谱仪的关键源于发展的光学技术与计算机技术的结img style="float: right width: 150px height: 171px " src="https://img1.17img.cn/17img/images/202006/uepic/a1dfb346-2204-4102-9881-67a3fa07cee8.jpg" title="微信图片_20200608124942.png" alt="微信图片_20200608124942.png" width="150" height="171" border="0" vspace="0"/合,FTIR光谱仪初始产品是基于 Nicolet 的计算机技术。1970年世界上第一台FTIR产品的FFT信号转换处理系统是Nicolet 1070/pdp-8系统,时隔不久Nicolet就推出680处理系统,将1070/pdp-8系统需要1小时进行的FFT数据运算缩短至不到1秒钟,具有独到的技术优势。1975年Nicolet以领先的1180FFT处理系统自主生产从可见至远红外全光谱波段、光谱分辨率达0.06cm-1的高端7199型系列FTIR光谱仪 1979年除推出了第一台成本较低的MX-1型FTIR光谱仪之外,还相继推出的真空型的Nicolet 200SXV系列FTIR光谱仪,从而拥有了最完整的FTIR系列仪器产品,成为了世界上最大的FTIR制造厂商。/pp style="text-align: justify "  到了八十年代,Nicolet FTIR的技术更展现出创新能力:1)1981年推出第一台桌面台式的FT-IR仪器(5MX) 。2)推出油品分析专用FT-IR系统(8210)、气体分析专用FT-IR系统(8220)、专用半导体硅晶圆测量的ECO FT-IR设备、FTIR显微镜及FTIR遥感监测系统。3)Nicolet根据PC的应用前景,收购IBM公司分析仪器部,获得PC平台的多项技术,最早推出了PC-FTIR光谱仪以及基于PC机光谱软件。 4) Nicolet推出全新型的G-Series整体铸造的光学台底座(named“Gopher”),使仪器的稳定性和密封性能增强。5)1986年Nicolet的制造专家受到美国“挑战者”号航天飞机事件的启示,开始投入FTIR光谱仪的可靠性、耐用性、故障提示及故障预排除等功能的设计,1991年推出了全然改变的Magna系列FTIR光谱仪,仪器整体采用了“对针定位”无需手动调整的光学部件、合金高精度切削制作的光学镜、DSP控制高速动态调整干涉仪、高能量长寿命的红外光源、无鼓膜效应的远红外固态分束器等全新专利技术。从此FTIR光谱仪可对各种来源的干扰进行实时监测、同步校准。随着计算机技术的高速发展,干涉仪动态调整频率可达十三万次每秒,确保高分辨率光谱采集、步进扫描及纳秒级时间分辨等FTIR极限实验都可以轻松实现,并降低了对实验操作人员自身专业的要求。同期开发的OMNIC系列红外光谱软件则成为业界的经典,沿用至今。6)Nicole不断推出FTIR与GC、GPC、TGA、Raman、流变和显微等各种联用检测分析新技术,扩展FTIR光谱仪的功能。/pp style="text-align: justify "  进入新千年,随着计算机电子和光学技术的发展,Thermo Nicolet以不断提升和完善的FTIR核心技术作后盾,保证Nicolet FTIR光谱仪的技术领先,努力打造高性能、稳定、方便使用的智能型FTIR光谱仪,淘汰操作繁琐、稳定性差的常规技术,所有的Nicolet FTIR光谱仪核心部件均采用高性能的动态调整控制。Thermo Nicolet首次提出基于集成红外主机、附件、软件的 “Total Solution”设计理念。使高质量光谱一键即得,用户只需结合自己专业、专注于光谱信息解析,而不必为仪器状态花费精力。Nicolet FTIR技术面对日益增长的、多样化的测试需求,推出可“无限升级”的Nexus与X700系列,在中科院、高校等科研单位获得广泛应用。Nicolet红外采样技术推出了以多功能欧米采样器为代表的一系列智能附件。附件模块化设计、自动识别、即插即用、使用极其方便。Thermo Nicolet智能的高级ATR校正功能实现了ATR谱图与透射法采集的标准谱图库的直接检索,消除了制样技术对使用者的禁锢 高级材料分析功能,一键可自动给出清晰的叠谱解析。与此同时,Thermo Nicolet的 FT-NIR光谱仪,创建了工业解决方案,2000年以全新的工业标准,推出模块化设计Antaris 系列FT-NIR仪器,分别在2001和2002年连续获得“R& D”大奖。Thermo Nicolet FTIR的技术革新有力推动了整个FTIR光谱仪技术的快速发展,Nicolet FTIR的历程是FTIR光谱仪的发展史。/pp style="text-align: justify "  strong3. 赛默飞红外光谱产品及特点/strong/pp style="text-align: justify "  目前赛默飞Nicolet FTIR光谱仪的均采用傅里叶红外仪器采用最新一代麦克尔逊干涉仪,具有三维激光控制实时监测自动调整和每秒130,000次扫描控制高速动态准直调整功能,干涉仪超高的控制精度和稳定性,使红外光谱检测技术达到更高水准。/pp style="text-align: justify "img style="max-width: 100% max-height: 100% width: 300px height: 130px float: right " src="https://img1.17img.cn/17img/images/202006/uepic/ad82b4f9-5155-467a-bc5f-42eaad5fd8e0.jpg" title="Nicolet iS50.jpg" alt="Nicolet iS50.jpg" width="300" height="130" border="0" vspace="0"/  其中 Nicolet iS50系列是目前Nicolet最具代表性的FTIR光谱仪,是FTIR技术之集大成者。一经推出即获得“R& D 100”大奖。Nicolet iS50系列已经不仅仅局限在红外光谱测试本身,而是一个高性能、稳定、自动化的全功能分析工作站,可满足红外及各种联用方式、特殊应用等多种分析需求,创立了智能化高端研究型傅里叶红外光谱仪技术的更高标准。完全自动化设计可实现多个光源、分束器、检测器等光学器件的自动切换,光谱范围可覆盖中红外、近红外、远红外、太赫兹、可见光甚至紫外等多个谱段,红外与Raman、样品仓与内外光路转换皆可“一键式”自由选择。光学仓“背景保持”技术,结合主机一体式ATRimg style="float: right width: 300px height: 149px " src="https://img1.17img.cn/17img/images/202006/uepic/c9f2ca25-23d2-42ff-a883-1de73dbc52bf.jpg" title="0303.jpg" alt="0303.jpg" width="300" height="149" border="0" vspace="0"/配置可轻松实现同一测试位置的中远红外光谱范围的样品测试。该设计对于远红外测试是一个极大地进步,特别是液体样品的远红外测试。即使昂贵的真空型红外光谱仪也无法如此方便的获得相同测试效果。依照模块化智能附件的设计思路,甚至如显微傅里叶拉曼、热重联机等复杂的大型联机模块也被设计成智能附件,直接放置于样品仓,极大提高了光学效率与联机稳定性,推动了相关技术的发展。更多的联机技术:热重分析仪、气相色谱、凝胶色谱、液 相色谱、超临界色谱、Stop Flow、流变仪、椭偏仪、同步辐射光源、IRRAS、振动圆二色等 通过步进扫描可实现的应用:纳秒级的时间分辨、脉冲激光器的光谱特性、光化学反应、液晶的TRS光谱、晶体激光材料的发射光谱,以及幅调制光谱、相分辨光谱(光声深度断面图分析、聚合物拉伸分析)等。针对用户如发射光谱测试、光致发光光谱、光电流谱、超高真空原位联合表征等特殊检测需求,Nicolet iS50也可以通过灵活的开放光路搭建多种客户需要的光学系统。br//pp style="text-align: justify "  为满足不同应用的需求,赛默飞世尔科技傅立叶红外光谱仪设计了Nicolet Summit/iS5、Nicolet iS20、Nicolet iN10系列、Anatirs II系列、Antairs IGS等一系列产品。/pp style="text-align: justify "  - Nicolet Summit/iS5 是针对中红外典型光谱测试开发的专用FTIR光谱仪。因其光学效率高、操作简便、坚固耐用、体积小巧、方便携带等特点深得用户喜爱。是目前FTIR市场中台数最多的FTIR产品 /pp style="text-align: justify "  - Nicolet iS20为从事分析服务、质量控制和法医应用的实验室而设计,其良好的性能为材料验证和识别提供充足保障,伴随重新设计的Thermo Scientific™ LightDrive™ 光学引擎和集成触摸操作面板,其高分辨率与快速扫描能力满足了原位反应监测的需求,是最高效的研究级FTIR光谱仪。其稳定的光学输出,是构建等效双光路光学测试系统的基础。基于Nicolet iS20、创新的双光束FTIR原位监测系统为催化剂原位表征添加新手段 /pp style="text-align: justify "  - Nicolet iN10系列红外成像系统是针对红外微区或微小样品测试设计的专用显微红外光谱仪。创新的“一体化”设计是专门满足红外光谱成像对能量与稳定性的需求。以其超高的光学效率即使是室温DTGS检测器也可获得有效光谱。完整光学平台获得的稳定性结合自动化控制系统是“超快成像”功能的保证。极大提升了红外光谱成像速度。该系列一经推出即获得“R& D 100”大奖,并在之后直接拓展了显微FTIR光谱仪的市场。/pp style="text-align: justify "  - Antairs IGS专用气体分析仪独特的“双光路设计”是依据气体分析特点专门开发的。可随时消除大气背景变化对测试结果的干扰。特别适合流动气体、反应气体的实时监测。/pp style="text-align: justify "  strong4. 赛默飞傅立叶红外光谱仪助力中国用户/strong/pp style="text-align: justify "  赛默飞世尔科技作为科学服务的领导者,是仪器的生产制造者,更是分析应用的服务者。回顾Nicolet的FTIR光谱仪发展历程,关注用户体验,将应用要求作为仪器设计的定位是Nicolet FTIR技术始终保持市场领先的原因。根据世界著名咨询公司 SDi 撰写的关于化学分析仪器“市场分析与前景报告”,赛默飞世尔科技的FTIR光谱仪自2000年至今,全球占有率仍处于第一位。并且给出了“Thermo Fisher leads the market”sup【2】/sup的极高评价。/pp style="text-align: justify "  赛默飞世科技在中国开展业务已有四十多年,Nicolet首批MX-1 FTIR光谱仪在中国的推广可以溯源到上世纪七十年代,当时其中三台突破了技术封锁才运抵国内实验室。进入80年代,中国开始大批量引进Nicolet FTIR光谱仪。目前Nicolet FTIR光谱仪已遍布我国高等院校、科研机构、厂矿企业和分析测试部门,为我国的先进材料、前沿科学、高等教育、国家政府管理技术以及工农业各领域的发展发挥了不可或缺的作用。/pp style="text-align: justify "  赛默飞世科技在中国具有业内用户首肯的最强最健全的应用技术支持、销前售后的服务体系。处于市场领先地位的FTIR产品的全面服务是根据用户的应用需求量身定制,帮助用户提升分析工作的生产效率。内容从技术咨询、方案开发,到仪器维修和优化,帮助用户分析测试创建完全自定义、可扩展、高效率的解决方案,为用户科研和分析工作提供更自信的保障。赛默飞世科技为促进用户间的FTIR的技术交流,定期举办用户交流会和各种操作、制样及应用学习班,参与出版了《傅立叶变换红外光谱技术及应用研讨会论文集》、《实用傅立叶变换红外光谱学》和《傅里叶变换红外光谱分析》等专著,组织全国四十多位红外光谱专家撰写出版了《近代傅立叶变换红外光谱技术及应用》(荣获了中宣部颁发的中国图书奖)。对Thermo Nicolet FTIR光谱仪的用户而言,不仅意味着拥有一台高质量和良好售后服务的仪器,而且在整个使用过程中还将不断得到多方面的帮助和支持,能更好地开发仪器功能,解决工作中遇到的实际问题。/pp style="text-align: justify "  纵观整个分析仪器行业,尽管傅里叶变换红外光谱技术(FTIR)发展非常迅速,但相比同样在2000年以后开始高速发展的色谱、质谱技术则缓慢了很多。作为多年从事相关工作的从业人员认为傅里叶变换红外光谱技术存在更大的发展空间。这是因为红外光谱可以直接得到化学键与官能团等分子结构信息,无需前处理,也是可以在大多数条件下真正实现原位、现场检测的技术。特别是现在的FTIR光谱仪不仅仅是一个单一分析技术,而是一个涵盖广泛应用的光学平台。可以同时在非常宽的光谱范围内收集高光谱分辨率数据。其可覆盖的光谱范围不仅仅是传统的中红外,而是在中红外、近红外、远红外、可见光、紫外、太赫兹多个波段都可以利用此平台进行光谱采集 固体、液体、气体全态样品都可直接测试 既可以将样品放置在样品仓,也可以将检测光束引到仪器外部的测试位置 温度、压力、真空、电场、磁场等检测条件也可以在样品测试中实现。因此,FTIR光谱仪理应获得更大发展。/pp style="text-align: justify "  目前,从Thermo Nicolet的FTIR光谱仪发展情况,FTIR光谱仪的核心技术已经相当成熟。更多的发展空间在于应用开发。特别是样品处理、光谱采集、数据分析及综合控制的自动化与智能化应用。做好这些就可能开发出基于FTIR技术的全新市场。一直以来,Thermo Nicolet都是致力于与用户一起开发新应用,通过新应用开拓新市场。例如,沥青检测,原先没有适合的技术符合现场、快速的检测要求。甘肃畅陇公路养护技术研究院有限公司率先使用Nicolet iS5 红外光谱主机结合Nicolet专属的Foundation附件研发的沥青指纹识别技术在天定、成武、临合等六条高速公路成功推广使用,并协助甘肃公路管理局对全省二级公路沥青使用进行监控。沥青指纹识别技术具有操作简便快捷的特点,从取样、测试到分析3分钟完成,基于采集的红外谱图数据库,建立了红外光谱自动分析系统,通过测试可自动确定沥青品牌。有效解决了常规国标检测耗时长、美国SHRP测试价格昂贵等问题sup【3】/sup。截止到现在,该系统已在检测现场成功装备了一百余台。包括国内的其他FTIR制造商看到此中商机也相继开发基于FTIR技术的沥青快速检测仪。新市场就这样开拓出来了。/pp style="text-align: justify "  作为制造商,推出更合适的、方便用户参与的FTIR硬件与软件是将来FTIR光谱仪发展方向。硬件上,Thermo Nicolet不刻意追求功能强大,而是在所有机型核心部件具备最高性能的情况下给予用户最经济的成本 软件上,OMNIC软件系列几乎涵盖了所有红外光谱数据处理功能,方便用户方法开发。除此之外,为了配合于2015年5月19日由国务院正式印发《中国制造2025》计划,赛默飞特别推出“OEM Technology Partner Program”项目,致力于与中国客户打造中国自己的专用产品。专门设计推出了适用于 OEM 应用的新型模块化 FTIR 光谱学平台,该光谱平台可供您搭建独特的基于 FTIR 技术的分析仪。快速将您的思想转变最终产品。/pp style="text-align: justify "img style="max-width: 100% max-height: 100% width: 600px height: 100px " src="https://img1.17img.cn/17img/images/202006/uepic/39ff49ec-22eb-4a82-9b2a-9f6436052589.jpg" title="0404.jpg" alt="0404.jpg" width="600" height="100" border="0" vspace="0"//pp style="text-align: justify "  实现用户的梦想是我们的目标。赛默飞世尔科技非常愿与中国用户一起不断开发FTIR应用,拓展FTIR市场。/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  【1】《傅里叶变换红外光谱分析》(第三版)翁诗甫、徐怡庄编著/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  【2】The 2017 Global Assessment Report – January 2017,Page 296/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  【3】a href="http://www.gansu-hc.com/info/1051/7375.htm" _src="http://www.gansu-hc.com/info/1051/7375.htm"http://www.gansu-hc.com/info/1051/7375.htm/a /span/pp style="text-align: right "(赛默飞投稿)/p
  • 红外技术如何应用在压铸行业?
    模具温度的表面分布对于确保工艺的高品质,高效率和无损缺陷具有至关重要的意义。在压铸的过程中,之所以会主线缩痕,砂孔,裂缝,气泡等缺陷,大多数是因为模具温度失控而导致的。那么,红外技术是如何应用在压铸行业,保证模具温度快速调整并安全作业的呢?对于模具的表面温度进行实时监控在无需中断生产流程的情况下,即可有效的防止铸造过程中存在的各种问题,及时将其扼杀在萌芽状态。由于不必要的使用温度调节,压缩空气,水基润滑剂,脱模剂等,造成加工过程中模具温度过高或者过低对于零件的质量,模具的使用寿命,生产周期以及能源消耗和维护成本等产生不良的负面影响。压铸工艺的优化在模具喷涂前和喷涂后,自动对每一次压铸循环生成的模具分布的全辐射的热图做保存分析,提供有关模具热图分布的热感应图像,得到模具热部分的详细信息。从而使客户对于当前工艺条件有最直观的判断。铸造工程师可以通过对模具喷涂过程的优化以实现对模具温度的快速调整。裂纹,铸件表面粗糙,灰色或者黄色斑点,缺料,铸件翘曲,锈蚀等均被认为是与模具温度相关的铸造缺陷,通过在线红外热像仪对压铸工艺做全面的控制就可以大大提升控制水平。flir红外相机可以在现场抓取高质量的红外热图,并且存贮在后台的计算机中,对于每一模的温度都做保存,并且通过后台的软件作出统计分析,对于生产的工艺作出全面的控制,大大提高压铸厂家的工艺稳定性和数据追溯能力。上图是一个现场的红外热像监控系统,通过安装在机械臂上的红外相机(安装在保护壳中),红外相机根据压铸系统中的plc发出的命令抓图,并且传输到后台计算机中,做进一步的温度分布分析。借助flir在线红外相机强大的功能以及稳定性,这套系统已经在大量客户现场稳定工作了。
  • 新疆理化所在红外非线性光学材料研究方面取得进展
    红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS), AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型红外非线性光学材料。为了获得大的倍频效应,有利于朝向一致排列的四面体是最常用的结构基元。相比于上述经典材料中规则排列的四面体基团,八面体是另一类有利于规则排列的基团,有望用于硫属化合物光学性能的调控。但由于MQ6(M = 主族金属元素,Q = S/Se)八面体基团较低的形成几率,相关的研究是十分匮乏的。中科院新疆理化所晶体材料研究中心科研团队通过利用碱土金属八面体调控非线性活性四面体基团的排列,首次在AIBII3CIII3QVI8家族合成出9例新的硫属化合物。这些化合物均结晶于P-6空间群,表明结构中碱土金属八面体及非线性活性四面体构成的风车状框架具有高的结构稳定性,有利于原子的替代。NaMg3Ga3Se8展示出平衡的光学性能,如大的倍频效应(~ 1 ×AGS),较大的带隙(2.77 eV),适中的双折射率(0.079@546 nm),高的激光损伤阈值(~ 2.3 ×AGS)。实验及计算的结果表明,相较于AgGaQ2,碱土金属八面体的引入降低了非线性活性四面体基团([MQ4])所构成结构的维度,但不影响四面体基团的朝向排列。同时,碱土金属的引入增大了材料的带隙。这些结果为后续设计带隙与倍频性能平衡的红外非线性光学材料提供了新的思路,将激励科研人员探索更多性能优异的八面体与四面体复合的红外非线性光学材料。该研究成果发表在《美国化学会志》上(J. Am. Chem. Soc., 2022, 144, 21916-21925.)。论文第一作者为硕士研究生罗琳、博士研究生王霖安及硕士研究生陈建邦,李俊杰研究员与潘世烈研究员为该论文的共同通讯作者。该研究工作得到了国家青年人才计划、中国科学院人才计划、国家自然科学基金及新疆自然科学基金等项目的支持。图1(a)AgMg3Ga3S8中Ag, Mg, Ga的配位环境;(b)四面体基团连接形成的Ga-S链结构;(c,e)[MgS6]与[GaS4]构成的[Mg3Ga3S24]基团;(d)AgMg3Ga3S8的三维结构 (f) AGS中形成的 [Ga6S18]基团 (g) AGS的三维结构图2(a)NaMg3Ga3Se8和AGS在2.09 μm激光下不同颗粒度的倍频效应;(b)实验的带隙值;(c)计算和实验的双折射值;(d)与典型硒化物光学性能的对比
  • 上海技物所可见短波红外高光谱相机在轨应用情况良好
    近日,生态环境部在北京举行高光谱观测卫星在轨投入使用仪式。上海技物所研制的可见短波红外高光谱相机(AHSI)经过在轨测试交付用户投入业务应用。AHSI是2021年发射的高光谱观测卫星主载荷之一,可实现2.5到10纳米光谱分辨率、30米空间分辨率、60公里幅宽,能够同时获取地物从0.4到2.5微米波段范围内的高光谱影像信息,是我国首台可在轨动态配置的宽幅宽谱高光谱相机。AHSI获取的武汉市(2022年5月)的可见近红外光谱立方体(左)和短波红外光谱立方体(右)南四湖、太湖、滇池水质叶绿素a浓度反演结果测试结果表明,AHSI获取的图像清晰,光谱和辐射定量准确,空间结构和光谱反映能力强。与国际同类载荷相比,其综合性能达到国际领先水平。相机在河流/水库/湖泊等不同体量内陆水体的各类水质参数提取、矿区周边生态胁迫、植被精细分类和植被指数反演、大宗固体废弃物遥感监测、海洋生态环境监测、点源甲烷探测等生态环境应用方面,以及在矿物信息精细提取、作物种类识别和生长参数反演、区域产草量等行业应用方面,均具备突出的在轨应用能力,为我国水环境监测、自然生态监测、碳排放监测以及生态环境监管等主体业务提供了国产高精度高光谱数据保障。通过矿物识别分层谱系、光谱特征归一化与光谱特征综合法以及光谱分解法进行矿物信息提取。图为测试区高光谱矿物填图。测试区农田土壤类型调查。图(左)为假彩色合成原始影像,图(右)为测试区农田土壤类型遥感监测识别结果图。煤炭工业园区内的煤矿矿井开展甲烷泄漏监测目前,AHSI正与同为上海技物所研制的资源02D、资源02E、高光谱综合观测卫星同类载荷组网协同观测,使我国拥有当前国际上时-空-谱综合观测性能最强的高光谱对地遥感能力,有效服务于我国环境质量监管和自然资源调查等重大需求。
  • 火热开启 | OGI红外气体相机客户现场演示预约活动
    EyeCGas 红外气体成像仪Hi,大家好我是OGI红外气体相机,通常大家都叫我EyeCGas。在黑科技与好口碑的加持下,我能帮助您快速定位泄漏元件,让您“用眼睛看到”包括碳氢化合物、CO2、CO,NH3等在内的各种气体泄漏。咔,这是我的自拍哦!我在防护等级、防爆等级、检测灵敏度、易用性等OGI(Optical Gas Imager)光学气体成像关键技术指标方面具有很强的竞争力!我的工作领域也非常广泛,包括环境执法与监管,工业园区、工业企业安全与环境监测、环境泄漏检测与修复等领域。如果您想身临其境的体验我是如何实现各种各样的工业应用?如何帮助您提高产能和工作效率?如何确保您始终处于安全的工作环境?那就千万不要错过接下去的这场活动啦!2022年OGI红外气体相机客户现场演示预约活动正式开启啦!活动揭秘↓↓↓活动介绍赛默飞化学分析部门隆重推出OGI红外气体相机客户现场免费演示活动,协助客户高效应对VOCs泄漏检测,VOCs排放监管,防微杜渐,防患未然!活动时间2022/05/17 - 2022/10/31活动详情在活动有效期内申请现场演示的客户,经赛默飞专业审核并确认后,为其提供专业工程师现场OGI演示及技术方案咨询,您只需填写下方申请表提交即可,活动火热持续中,赶紧申请吧!活动海报赛默飞世尔科技简介赛默飞世尔科技是科学服务领域的世界领导者。公司年销售额约400亿美元。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战、提高实验室生产力、通过提供诊断以及研发制造各类突破性的治疗方法,从而改善患者的健康。我们全球的员工将借助于一系列行业领先的品牌——Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific、Unity Lab Services、Patheon和PPD,为客户提供领先的创新技术、便捷采购方案和全方位的制药服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已近40年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、济南等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有9家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了5个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海和苏州的3个中国创新研发中心,拥有110多位专业研究人员和工程师及100多项专利。创新中心专注于垂直市场的产品研究和开发,结合中国市场的需求和国内外先进技术,研发适合中国用户的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2800名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • “高分五号”可见短波红外高光谱相机使我国高光谱遥感技术再上新台阶
    p  2018年5月9日,北京时间2时28分,我国在山西太原卫星发射中心成功发射“高分五号”高光谱卫星。中国科学院上海技术物理研究所承担研制卫星红外地平仪(已在入轨初期成功捕获地球)和可见短波红外高光谱相机。/pp  作为“高分五号”卫星六大主载荷之一,可见短波红外高光谱相机是国际首台同时兼顾宽覆盖和宽谱段的高光谱相机,对复杂地物、环境具有突出的识别和分类能力。它可同时获取观测对象的几何、辐射和光谱信息,并以足够高的光谱分辨率、空间分辨率和辐射分辨率,定量获取观测目标的构造和成份等信息,同时获取观测路径上大气等相关信息,实现对陆地表面高光谱、高空间、高辐射分辨率成像光谱观测。/pp  可见短波红外高光谱相机以高光谱的方式实现对地优于30米空间分辨率的连续成像,它具有330个光谱通道,比一般成像相机多了近百倍 其光谱覆盖可见光至短波红外的2100纳米范围宽度,比一般相机宽了近9倍 特别是同时实现的60公里高光谱成像幅宽,将极大提高对全球陆地环境生态资源的探测能力。与国际上经典的高光谱相机相比,该载荷幅宽提高8倍,光谱数增加近百个,信噪比提升近4倍 与美国、德国、日本、加拿大等国际上当前发展的高光谱相机比较,其综合性能和主要技术指标可保持5年以上的国际领先水平。/pp  上海技物所创新性地提出基于视场倍增远心成像和凸面光栅大平场度低畸变分光的高光谱成像方案,历经10年时间,突破了小F数大视场低畸变远心成像,大平场度超低畸变精细分光、在轨高精度光谱辐射定标、大规模高帧频红外焦平面探测器等关键技术,完成高光谱相机的原型样机、工程样机、鉴定产品、发射产品的研制。相机入轨后,将有力提升我国在环境、生态、资源、农业、林业等多个领域遥感监测方面的能力,有效服务“美丽中国”建设,使我国高光谱遥感技术再上新台阶,走在国际前列。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/39eacb35-8a94-47c6-87c3-a8a96b880be2.jpg" title="微信图片_20180510094457.jpg"//pp style="text-align: center "卫星发射现场br//ppbr//p
  • 新型红外扫描仪可在毫秒级完成3D立体图像捕捉
    p  3D传感器能够更好的创建真实世界物体的3D模型,但是消费级的设备通常只能处理小型设备,或者以较低的分辨率进行扫描。现在德国的科研机构Fraunhofer透露了全新的3D传感器,能够使用远红外光更清晰的捕捉对象和人物,每秒能够拍摄36张三维图片。/pp style="text-align: center "img title="be0a50c8c076eef_meitu_1.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/723ffa07-63fa-4a93-9bbb-8723b9e3d053.jpg"/p  相比较其他3D传感器,Fraunhofer的设备功能更像是微软的Kinect,能够在扫描区域投影出一个看不见的近红外图形,所开发的近红外投影仪能够在不同图形中进行切换,从而测量图形点到近红外投影仪的距离。然后通过软件能够对其进行分析从而创建三维图像,整个转换过程在毫秒时间完成。/pp  捕捉的每张图片都有1000*1000像素,彩色相机拍摄的数张照片通过整合形成彩色的物体轮廓。每秒能够捕捉36张这种3D帧,这款设备能够迅速创建移动、彩色三维的图片,意味着设备能够很好的在扫描质量和速度上平衡。/p/p
  • 高光谱观测卫星可见短波红外高光谱相机在轨应用情况良好
    2023年4月4日,生态环境部在北京举行高光谱观测卫星在轨投入使用仪式。上海技物所研制的可见短波红外高光谱相机(AHSI)经过在轨测试交付用户投入业务应用。   AHSI是2021年发射的高光谱观测卫星主载荷之一,可实现2.5到10纳米光谱分辨率、30米空间分辨率、60公里幅宽,能够同时获取地物从0.4到2.5微米波段范围内的高光谱影像信息,是我国首台可在轨动态配置的宽幅宽谱高光谱相机。   测试结果表明,AHSI获取的图像清晰,光谱和辐射定量准确,空间结构和光谱反映能力强。与国际同类载荷相比,其综合性能达到国际领先水平。相机在河流/水库/湖泊等不同体量内陆水体的各类水质参数提取、矿区周边生态胁迫、植被精细分类和植被指数反演、大宗固体废弃物遥感监测、海洋生态环境监测、点源甲烷探测等生态环境应用方面,以及在矿物信息精细提取、作物种类识别和生长参数反演、区域产草量等行业应用方面,均具备突出的在轨应用能力,为我国水环境监测、自然生态监测、碳排放监测以及生态环境监管等主体业务提供了国产高精度高光谱数据保障。   目前,AHSI正与同为上海技物所研制的资源02D、资源02E、高光谱综合观测卫星同类载荷组网协同观测,使我国拥有当前国际上时-空-谱综合观测性能最强的高光谱对地遥感能力,有效服务于我国环境质量监管和自然资源调查等重大需求。AHSI获取的武汉市(2022年5月)的可见近红外光谱立方体(左)和短波红外光谱立方体(右)南四湖、太湖、滇池水质叶绿素a浓度反演结果通过矿物识别分层谱系、光谱特征归一化与光谱特征综合法以及光谱分解法进行矿物信息提取。图为测试区高光谱矿物填图。测试区农田土壤类型调查。图(左)为假彩色合成原始影像,图(右)为测试区农田土壤类型遥感监测识别结果图。煤炭工业园区内的煤矿矿井开展甲烷泄漏监测
  • SPECIM发布SPECIM FX50中波红外高光谱相机新品
    SPECIM FX50中波红外高光谱相机黑色塑料广泛用于汽车工业、电子产品、食品包装、塑料袋,与我们的日常生活息息相关。不幸的是,当前人们对废旧黑色塑料垃圾的处理不是回收再利用,而是烧毁或填埋,原因是缺乏高效可靠的技术对黑色塑料进行识别并分类。而塑料垃圾是人类面临的且必须尽快解决的重大环境问题之一。 芬兰SPECIM公司进行技术创新推出一款专为工业机器视觉在线检测而设计的高速、性能稳定的SPECIM FX50高光谱相机。SPECIM FX50是全球第一款工业MWIR高光谱相机,该相机可采集各类黑色塑料在2.7-5.3μm范围内的光谱信息,快速、可靠地识别不同材质的黑色塑料,如ABS、 PP、 PE、 PC、 PS、 PVC、HIPS。 图1:SPECIM FX50高光谱相机 FX50高光谱相机的特点: • 设计精致,外形紧凑• 光谱范围:2.7 - 5.3μm• 高分辨率:640个像素• 高采集速度:380 Hz• 光学部件:温度恒定• 内置图像校正• 数据一致性高:出厂前经过统一光谱校准• GigE Vision标准接口• 易于安装在工业环境中 图2:光谱响应 除了黑色塑料, SPECIM FX50还可用于:• 识别橡胶、非黑色塑料、橡胶/塑料中的阻燃剂;• 木材和纸制品的识别分类;• 金属温度测量:范围为0-1000℃;• 金属表面的污染检测: 杂质、污垢、油和其他有机残留物;• 石油/天然气中碳氢化合物的分析识别;• 采矿生产中矿物的分析识别,如长石和石英。 黑色塑料分选 金属与汽车工业:金属表面的污染检测石油/天然气和矿产勘探:烃类与矿物分析 木材和纸制品的识别分类 SPECIM FX50高光谱相机满足工业应用需具备的高速、稳定性能的特点,并且易于安装、维护和扩展,同时具有高效的投资回报。SPECIM FX50成像速度快,满足生产线的速度要求;同系列的产品出厂时经过统一光谱标定,数据一致高,现场使用时可任意替换;拥有GigE Vision接口,配置软件开发包,满足用户的开发需求。 SPECIM FX50高光谱相机成为工业机器视觉应用领域内一种全新的解决方案。创新点:优势:可采集各类黑色塑料在2.7-5.3μ m范围内的光谱信息,对难处理的黑色塑料进行快速、可靠的分选,如ABS、 PP、 PE、 PC、 PS、 PVC、HIPS...
  • 温室气体监测市场潜力巨大,昕甬智测“三驾马车”助力零碳地球
    减污降碳一直是我国的重点工作。习近平在2023年全国生态环境保护大会上强调,要积极稳妥推进碳达峰碳中和,落实好碳达峰碳中和“1+N”政策体系等。最近印发的《深化碳监测评估试点工作方案》中提到,我国2022年基本完成试点工作,到2025年基本建成碳监测评估体系。随着国家“碳达峰”和“碳中和”战略的实施,温室气体的准确监测与评估将成为降碳目标的根本前提。随着一系列政策法规的出台,以及温室气体监测试点城市项目的开展,温室气体监测市场逐渐增大,国产仪器研发力度也不断加大。政策引航,温室气体监测行业蓄势待发随着全球气候变化问题的日益严峻,温室气体的监测与管理已经成为全球各国共同面临的重要议题。各国政府对温室气体排放的监管力度不断加强,企业、政府机构和科研机构等客户群体对温室气体监测服务的需求日益旺盛。在此背景下,我国环境监测行业得到了持续、稳健的发展,其中温室气体监测作为重要的一环,呈现出迅速发展的趋势。世界气象组织(WMO)组建了全球最大、功能最全的国际性大气温室气体监测网络(GAW),通过31个全球大气本底站、400多个区域大气本底站以及飞机和轮船上携带的二氧化碳探测仪测得的数据整合而得全球温室气体浓度。据了解,目前美国和欧洲已建立温室气体监测网络,对二氧化碳、甲烷、氧化亚氮等主要温室气体进行持续监测。生态环境部依托国家背景站初步建立了覆盖我国大部分地区的温室气体本底浓度监测网络,在福建武夷山、内蒙古呼伦贝尔、湖北神农架、云南丽江、广东、南岭、四川海螺沟、青海门源、山东长岛、山西庞泉沟、海南西沙和南沙等11个站开展了温室气体监测。与国外相比,我国温室气体监测站的数量仍显不足,这表明未来温室气体监测市场具有巨大的发展空间,市场规模及设备销售规模将继续保持增长态势。降碳道阻且长,昕甬智测应运而生目前,国内外温室气体监测技术主要包括:非分散红外光谱技术(NDIR)、傅立叶变换光谱技术(FTIR)、差分光学吸收光谱技术(DOAS)、差分吸收激光雷达技术(DIAL)、可调谐半导体激光吸收光谱技术(TDLAS)、离轴积分腔输出光谱技术(OA-ICOS)、光腔衰荡光谱技术(CRDS)、激光外差光谱技术(LHS)、空间外差光谱技术(SHS)等。针对不同的应用场景可以选择合适的测量方案,以满足生态、环境、气候研究对温室气体排放监测的多样化需求。在国外市场上,有一些优秀的气体分析仪器公司,如美国的Picarro和ABB,他们开发的高性能CRDS和OA-ICOS气体检测仪器在国内外温室气体高精度测量领域占据了主导地位。而德国的Bruker则以超高分辨FTIR地基遥感技术为全球碳排放观测提供了主要的技术支持。国内在温室气体高端分析仪器方面与国外还存在一定差距。就国内目前的监测技术而言,由于起步较晚,国内在温室气体高端分析仪器性能上,尤其是测量精度、环境适应性和长期稳定性等技术指标方面与国外还存在一定的差距。但进口温室气体监测产品价格高居不下,对于一些中小型企业来说,是个不小的难题。2021年"昕甬智测"应运而生,以硬件、软件和数据服务为三驾马车,构建了零碳生态系统的完整体系。"昕甬智测"凭借着碳排放监测、碳数据挖掘和碳资产管理的全面服务,为国家和区域的碳监测事业贡献着独特的技术优势。尤其是便携式多组分温室气体分析仪、大气氨/甲烷/氧化亚氮激光开路分析仪,产品基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。便携式多组分高精度温室气体分析仪的优势明显HT8800系列便携式多组分高精度温室气体(二氧化碳/CO2、甲烷/CH4、氧化亚氮/N2O、水/H2O)分析仪由宁波海尔欣光电科技有限公司自主研发、生产和销售,为“昕甬智测”品牌国产创新产品。与市场上同类品牌相比,以HT8800系列产品为例,有以下优势:1. 多组分:采用中红外波段,独立强吸收谱线,无交叉干扰,使测量更精准2. 便携性:高强度ABS材料箱体设计,防水耐用易携带,在仪器箱内实现快速响应的高精度测量3. 可靠性:气体分子的强吸收信号,不需要超长光腔,使测试光腔更稳定,数据更可靠4. 灵活性:可用于定点或车载走航连续自动检测,突破检测环境局限5. 低功耗:主机功耗小于100W,可由太阳能或电池供电,实现连续不断电检测6. 自主研发,全球多个服务网点,快速响应,售后无忧&bull 以HT8800系列产品为例,与CRDS(进口)对比模拟土壤呼吸实验&bull 多个户外应用案例聚合科技环保,推动和谐共生昕甬智测现有的产品主要集中于氨气、氧化亚氮、甲烷的气体分析,公司将继续更新、创新产品,推出测量更精确、更及时、更科学的产品。昕甬智测还将继续关注地球环境,为零碳地球的梦想贡献一份力量,为社会和下一代创造一个更美好的未来,将先进的科技与环境保护有机结合,推动人类与自然的和谐共生。小结温室气体监测技术是应对全球气候变化问题的重要手段之一,其发展与市场需求密切相关。随着技术的不断进步和市场需求的不断增长,温室气体监测市场将迎来新的发展机遇。未来几年,市场将继续保持快速增长,同时将呈现出多元化的发展趋势。在这个过程中,政策制定者、科技界和相关企业需要密切合作,共同推动温室气体监测技术的发展和应用,以更好地应对全球气候变化问题。
  • 滨松红外荧光定位观察相机PDE助力乳腺癌术后乳房再造技术
    第十届全国乳腺癌术后乳房重建学习班于2018年5月11日至5月12日在天津肿瘤医院举办,围绕乳腺癌术后乳房再造技术,行业专家们进行了学术交流和演示示教。 因可对皮瓣血运情况判断便捷易行、清晰准确,荧光定位显像技术作为会议的重要话题之一被提出。除了深入的学术探讨以外,还实施了现场手术演示。滨松红外荧光定位观察相机PDE作为本次会议中荧光定位显像技术的提供者,充分展示了该技术对皮瓣血运判断发挥的重要作用。滨松红外荧光定位仪(Photodynamic Eye,PDE)是一套医学荧光显像系统,主要用于医用荧光显像,通过观看示踪剂的流动状态,帮助临床医生实时观察血管、淋巴管的状况,从而判断血运状态。在皮瓣血运、穿支定位、穿支选择时起到直观判断、实时显示的作用,在整形领域有广泛的应用空间。
  • 工欲善其事,必先利其器——从重大科学仪器基金看表界面化学表征方法的发展
    ■ 高飞雪,吴凯,伊晓东本文总结了国家自然科学基金委员会化学科学部催化与表界面化学学科相关的国家重大科研仪器研制项目的资助概况及已批准项目的研制目标、仪器构成与应用领域,在此基础上,提出了项目申请与管理的一些建议与思考。前言 “创新科学仪器”是科学发展的原动力。运用科学仪器进行实验可以判定科学理论的正确性和准确性,发现新的现象,提出新问题,从而促进技术进步,推动相关领域的发展。国家自然科学基金委员会(以下简称“基金委”)于2011年设立国家重大科研仪器研制项目,面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力【1】。我国“催化与表界面化学”近十年来得到了快速发展,某些领域的研究成果得到了国际上的肯定和关注,特别是在创新仪器研制方面瞄准国际前沿,超前部署,为今后做出原创性工作提供有力的技术支撑。希望这些与“催化与表界面化学”相关的创新仪器的成功研制将进一步推动“催化与表界面化学”的发展。一、重大科学仪器基金项目资助概况国家重大科研仪器研制项目包括部门推荐和自由申请两个亚类。自重大科学仪器研制项目设立以来,化学科学部共资助6项部门推荐的重大科研仪器项目,其中与“催化与表界面化学”相关的有4项,具体的重大仪器项目(部门推荐和自由申请)资助情况见表1和表2。表1 “催化与表界面化学”相关重大仪器研制项目(部门推荐)信息表表2 “催化与表界面化学”相关重大仪器研制项目(自由申请)信息表二、部门推荐类重大仪器研制项目在这里,我们重点介绍部门推荐类重大仪器研制项目的研制目标、仪器构成以及应用领域。1、高分辨多功能化学成像系统问题的提出:化学成像是近年来兴起的新型表征技术,它将光学成像与谱学测量相结合,可同时获得化学成份的含量和空间分布信息。由于时间和空间分辨率的限制,现有化学成像技术大多难以实现分子水平的原位检测;而且基本上是单一模式成像,难以进行分子结构和分子间相互作用的多组分/多参数分析和验证。研制目标:复杂体系中表界面分子结构和性能变化的原位、实时研究,突破材料化学、生命化学等前沿交叉领域研究的技术瓶颈。仪器构成与功能:高分辨多功能化学成像系统,以超分辨受激辐射耗尽STED光学成像为基础,将具有超高空间分辨的光学成像和质谱、光谱等谱学技术及扫描探针显微成像技术相结合,在对物质的形貌进行成像的同时,对其化学组成、表界面分子结构、分子间相互作用及其动态变化等进行分子水平的原位、实时、多参数表征。在此基础上,发展了纳米尺度和分子水平的化学成像新技术和新原理。仪器构成示意图见图1。应用领域:该仪器的建成和使用促进纳米化学、能源化学和生命化学等领域的研究取得新突破,为绿色化学、生物医药、电子工业、环境治理、能源资源等高新技术产业的发展提供高水平的综合实验平台。图1 高分辨多功能化学成像系统示意图2、基于可调极紫外相干光源的综合实验研究装置问题的提出:绝大部分现有能源和新洁净能源都涉及原子分子的物理化学过程,因此研究原子分子在气相和表面的化学物理过程一直是能源基础研究极其重要的方向。极紫外波段光源在气相原子分子和表面物种的探测中发挥着不可替代的作用。但是, 现有光源亮度较弱大大限制了在这一方向的研究能力。研制目标:研制一套基于高增益谐波产生模式的、超高亮度且具有超快时间特性的可调极紫外相干光源的综合实验装置,将先进相干光源的发展和原子分子和自由基的高灵敏度探测方法发展紧密结合起来, 将先进相干光源装置的研制与能源相关的基础物理化学研究装置的研制紧密结合起来, 希望在较短的时间内使该综合实验研究装置成为世界上独特的的基础物理化学实验研究平台。仪器构成与功能:该大型综合实验装置主要由高品质的电子直线加速器、极紫外激光高增益谐波产生放大器、极紫外光束线和实验站(含基元反应实验装置、表面光化学反应实验装置、分子束表面散射化学反应实验装置、生物质谱实验装置、中性团簇实验装置等)组成,产生的极紫外激光脉冲能量超过100 uJ,重复频率可达50 Hz,波长在极紫外区域(50-150 nm)完全连续可调,脉冲长度可实现30 fs/100 fs/1 ps切换。结合传统激光技术、离子成像技术、原子分子和自由基高灵敏度电离技术、高分辨质谱技术以及独特的UV-EUV泵浦-探测技术,该装置可以被广泛地用于研究光化学动力学、团簇结构及动力学、表面化学动力学、燃烧化学动力学、生物分子结构等能源化学相关过程的重要基础科学问题。仪器构成示意图见图2。图2 基于可调极紫外相干光源的综合实验研究装置结构图应用领域:该大型综合实验装置可用于燃烧、能源催化、大气化学、星际化学、表面科学和生物质谱分析等领域的研究。3、基于可调谐红外激光的能源化学研究大型实验装置问题的提出:化石能源的高效利用、能量转换与储存中的多相催化反应和电化学反应都是发生在表面和界面上的物理化学过程。研制基于可调谐红外激光的能源化学研究大型实验装置,从微观的原子分子尺度检测上述物理化学过程涉及的多种表面反应关键中间物种、自由基和激发态,对化石能源的优化利用和洁净能源的开发起着非常关键的作用。研制目标:国内第一个红外自由电子激光用户装置,同时也是国际上第一个面向能源化学研究的红外自由电子激光装置,使我国在低增益FEL振荡器装置研究方面达到国际先进水平,解决能源化学前沿科学问题。仪器构成与功能:结合当前自由电子激光等技术领域最新成果,该仪器由中红外到远红外波段连续可调的红外自由电子激光,和以其为光源的表界面反射吸收红外光谱、纳米红外光谱(空间分辨光谱)、和频光谱(时间分辨光谱)、光解离光谱和光激发光谱五条实验线站组成。该大型实验装置显著提升了从原子分子水平研究多相表界面过程(如(电)催化剂活性中心位本质、(电)催化剂作用机理和(电)催化反应机理)、团簇结构及其反应动力学和红外振动态激发分子反应动力学的能力。实现了原位/在线/工况探测过去只能间接推测而无法直接从实验上获知的能源化学反应关键中间体(如氧物种、表面-吸附分子成键振动等)的结构、解析相关的团簇结构及其动力学、获取分子振动激发对化学反应影响等全新的信息。发现新现象、揭示新规律,取得实验和理论的突破。仪器构成示意图见图3。应用领域:该仪器的建成将为解决能源化学的瓶颈问题的提供研究平台,使能源化学和材料化学相关领域研究取得突破性进展。图3 基于可调谐红外激光的能源化学研究大型实验装置结构图4、超高时-空分辨的离子化学研究系统问题的提出:离子是物质科学中的基本粒子之一,是稀土分离、核废料处理、离子电池、分子磁体、发光、相转移催化、土壤污染修复和离子通道等领域中重点研究对象。溶剂介质中离子化学的核心科学问题是离子溶剂化效应。溶剂化离子的结构复杂而动态,造成研究手段匮乏,理论处理棘手。研制目标:建造一套具有超高时-空分辨能力的离子化学研究系统,探索与发现离子化学中的新现象和新性质。仪器构成与功能:该系统的建成将为相对稳定的金属正离子和非金属负离子的制备提供普适的方法;所产生离子束通过电化学系统的加速、抽取、偏转、漂移和减速,软着陆到介质表界面或其它指定位置;综合利用软着陆离子束、分子束、低温和超高真空技术,实现原位制备单离子、溶剂化离子、离子对、离子配合物和聚集体等;结合超高空间分辨成像技术和超高时间分辨的超快多维光谱技术、测量单个离子的本征结构,研究受控的离子溶剂化过程,探究溶剂化离子的大小、结构、电荷和能量转移等;监控单一离子在多相表界面的迁移动力学,研究离子迁移与介质表界面结构、离子种类、离子大小和溶剂化效应等之间的内在关系;对具有特殊功能性质的稀土发光和磁学配合物,测量单个裸露离子或配位(或溶剂化)离子的光学及磁学性质等。整套仪器的主要参数指标包括:在空间分辨上约为0.01 ~ 0.1 Å;时间分辨上为fs ~ ns(不同能量测量范围);在能量分辨上能达到0.1 ~ 1 meV;为达到软着陆目的,离子束的能量小于1 eV。仪器构成示意图见图4。应用领域:该仪器将在我国超纯稀土萃取、高端稀土功能材料开发、土壤污染中重金属处理、核废料处理中的放射性离子提取与转化、磁性分子材料的设计与制备、离子电池和储能材料的研制等重大应用过程提供技术平台。图4 超高时-空分辨离子化学研究装置的主要系统功能划分上述四项仪器研制项目(部门推荐)从可调谐极紫外自由电子激光到中远红外自由电子激光,使原可探测的光谱段扩展和增强。利用其对表界面活性中间物种等进行探测,特别是对很难探测到的甲烷等的关键中间物种、自由基和激发态进行有效探测及其随时间演化的动力学过程,以及中间体物种与催化剂表面成键的探测(大多在远红外区)等,为催化及能源化学领域反应路径和机理的理解提供了重要的直接实验证据。同时,成像与光谱和质谱结合,可同时获取表界面反应的物种定量和定性以及化学组成信息,为反应机制提供可视化证据。特别是结合超高空间分辨的成像技术和超快时间分辨的多维光谱技术,研究离子的本征性质和行为,是离子化学研究的前沿,将为能源、材料和环境等领域提供重要的技术平台。上述仪器的成功研制和发展的实验方法将进一步推动“催化与表界面化学”的发展,加速创新性原创成果的产生,为“催化与表界面化学”未来发展提供了重要技术储备,同时也反映了表界面化学表证方法的发展趋势。三、创新仪器和表征方法的发展态势表界面结构与性质的演变是表界面化学的研究核心,必须借助于先进的实验技术和表征方法,既要注重挖掘和综合利用现有的实验技术,又要注重利用新的科学原理来建立新的表征方法【2】。在材料结构表征技术中,原子分辨电子三维/四维技术、基于X射线、自由电子激光和同步辐射光源的三维相干衍射成像技术、4D扫描透射显微技术(4D-STEM)和电子叠层成像术(Electron ptychography)在原子水平上研究材料体系的组成、分布、结构与性质的时空变化,对于表界面物理化学至关重要。在真实催化反应条件下与同一时间尺度下,综合使用原位X射线吸收谱学(XAS, X-ray adsorption spectroscopy)、原位X射线掠入式衍射(GID, grazing incidence X-ray diffraction)、原位傅立叶变换红外光谱(IR,infrared Fourier transform spectroscopy)、引入外加扰动(如同位素切换)的瞬变动力学分析(TKA,transient kinetic analysis)、原位光电子能谱、原位固体核磁、光催化电荷转移过程全时空域成像、球差校正扫描透射电镜二次电子成像等多种表征技术,可以同时获得多种信息,有助于人们深入理解真实催化过程和催化作用机制,总结催化活性与催化剂的内在规律,为新型高效催化剂的研制提供科学依据。通过反应器的创新设计,在电极材料与电化学表界面(固液两相及气液固三相界面)工作条件下,协同联用和同步耦合原位X光吸收光谱、表面增强振动(红外和拉曼)光谱、扫描探针显微技术(SPM)与微分电化学质谱等原位表征技术是电化学前沿研究的强大工具。原位界面和频振动光谱(SFG)、液体环境中的电化学STM、引入光、电、力、温度等外场和液体、气氛等化学环境的透射电镜(TEM)、液固界面AFM、介质环境下的X射线吸收精细结构谱(XAFS)、液相体系中的圆二色谱法等是目前介质环境下表征技术的重点与难点。基于石英音叉轻敲模式的非接触原子力显微镜(Qplus NC-AFM)技术、非弹性电子隧道谱(IETS)、针尖增强拉曼光谱(TERS)、二维飞秒红外光谱、秒X射线激光脉冲、时间,空间与能量分辨的超快超宽频多维光谱、将皮秒级太赫兹脉冲耦合到STM针尖的太赫兹(THz)STM等技术是化学键与能量迁移表征技术发展的方向。四、建议与思考我国表界面化学的研究起步较晚,作为跨度宽广、应用普遍和意义重大的一门交叉学科,表界面化学在我国经过几十年的艰苦发展,其触角已经深入到物理、化学和其他相关学科的诸多研究方向,受到人们越来越多的重视。得益于我国经济的快速发展以及国家对基础科学研究的大量投入,近十几年来一批高端精密设备被引进、改造、创制并投入到实际研究之中,在解决催化及相关方向的关键科学问题取得了重要进展。但是,目前我国高端精密仪器的制造和创制能力还不足。一方面,重要的表面分析仪器和设备都是国外垄断,制约我国表面化学乃至基础科学的发展。另一方面,我国表界面化学的研究也在一定程度上依然存在着“跟风”和急于求成现象,导致研究创新性相对缺乏,在一些需要啃硬骨头和相对冷门的方向和领域的研究动力不足。例如,人们更多关注表面反应的静态表征,但对于表面反应的动态过程研究十分有限,理论研究也比较薄弱。再如,表面扩散动力学以及低维结构的生长动力学研究等缺乏足够的重视和深入的探讨,在表面量子态调控等方面也几乎是空白。重大科学仪器研制项目是科学基金资助体系中环境支撑的重要部分,是推动科学问题导向的创新仪器研制和原创成果产生的重要平台。科学基金在持续资助创新仪器的同时,不断完善仪器基金的后续管理和支撑条件。2018年化学部学科重组后,设立了仪器创制与大科学装置应用的申请代码(B0407)。表界面化学(B02)仪器项目的申请可选择任一代码。仪器基金的会评是在学科或学部函评的基础上,学部推荐后统一由计划局组织评审。近三年来,表界面化学相关仪器项目(自由申请)的申请数不多,结题项目的优秀率也不高。对于已经结题的仪器(部门推荐)项目,结题两年后还要开展后评估工作。主要考察仪器的科学目标和应用目标完成情况、依托仪器取得的重大科研成果情况、关键核心技术的掌握和推广应用情况、仪器核心器件自主可控情况和仪器运行及其稳定性,另外还考察组织管理情况,例如:依托单位履行职责情况(包括基础设施和配套设施建设、人员配备、运行经费保障、国有资产管理等)。同时注重考察仪器研制技术团队建设和人才培养情况,成果转化及对经济社会的影响。建议依托大科学装置和基金委资助的仪器研制项目,充分发挥研制仪器在解决相关科学问题中的重要作用。针对表界面的关键科学问题,鼓励高端精密仪器的制造和基于新原理的原创性仪器研制,注重挖掘和提升现有仪器的综合有效利用,发展基于大数据和AI技术的表界面研究新方法和新范式,注重培养仪器研制、设计加工和维护专业技术人才队伍,提升我国表界面化学创新仪器的研制能力,促进学科的全面快速发展。【参考文献】[1] 2021年度国家自然科学基金项目指南[2] 高飞雪, 伊晓东. 催化与表界面化学“十四五”发展规划概述, 中国科学: 化学, 2021, 51(7): 932. doi: 10.1360/SSC-2021-0121
  • 长沙开元仪器参与制定的《煤中全硫测定 红外光谱法》国标正式实施
    GB/T25214-2010 《煤中全硫测定 红外光谱法》国家标准已于2010年9月26日发布,2011年2月1日起正式实施。此项标准由中国煤炭工业协会于2008年提出,经国家标准化管理委员会审批,归口全国煤炭标准化技术委员会(SAC/TC 42)管理,由煤炭科学研究总院煤炭分析实验室和长沙开元仪器有限公司共同负责起草并制定。主要起草人为煤炭科学研究总院煤炭分析实验室的皮中原和尹杨林、连云港检验检疫局的吴扬及长沙开元仪器有限公司研究院的刘长江。  利用红外光谱法分析煤中硫含量的技术方法,很早就在国际上认可并制定成ASTM标准实施。长沙开元仪器有限公司从2003年就开始销售自主研发的红外测硫仪,当时是我国唯一能够生产红外测硫仪用于煤质分析的企业。但因没有相应的国家标准支持,导致许多国内客户不能使用,因此长沙开元仪器有限公司一直积极倡导和推动此项标准的制定。GB/T25214-2010《煤中全硫测定 红外光谱法》国家标准的实施,不仅仅能让已使用红外测硫仪的用户和想购买红外测硫仪的客户能有据可依,更重要的是对推动我国煤质分析技术发展、缩小同国外相关技术标准的差距有着深远影响。
  • 高载流子迁移率胶体量子点红外探测器
    短波红外和中波红外波段是两个重要的大气窗口。在该波段范围内,碲化汞胶体量子点表现出良好的光响应。此外,胶体量子点具有易于液相加工制备以及与硅基工艺兼容等优势,因此有望显著降低红外光电探测器的成本。然而,目前胶体量子点红外光电探测器在比探测率、响应度等核心性能方面与传统块体半导体红外探测器相比仍存在一定差距。有效地调控掺杂和迁移率等输运性质是提升量子点红外光电探测器性能的关键。据麦姆斯咨询报道,近期,北京理工大学光电学院和北京理工大学长三角研究院的科研团队在《光学学报》期刊上发表了以“高载流子迁移率胶体量子点红外探测器”为主题的文章。该文章第一作者为薛晓梦,通讯作者为陈梦璐和郝群。在本项工作中,采用混相配体交换的方法将载流子迁移率提升,并且实现了N型、本征型、P型等多种掺杂类型的调控。在此基础之上,进一步研究了输运性质对探测器性能的影响。与光导型探测器相比,光伏型探测器不需要额外施加偏置电压,没有散粒噪声,拥有更高的理论灵敏度,因此是本项工作的研究重点。同时,使用高载流子迁移率的本征型碲化汞量子点薄膜制备了短波及中波红外光伏型光电探测器。实验过程材料的合成:Te前驱体的制备在氮气环境下,称量1.276 g(1 mmol)碲颗粒置于玻璃瓶中,并加入10 ml的三正辛基膦(TOP)中,均匀搅拌至溶解,得到透明浅黄色的溶液,即为TOP Te溶液。碲化汞胶体量子点的合成在氮气环境下,称量0.1088 g(0.4 mmol,氮气环境下储存)氯化汞粉末置于玻璃瓶中,并加入16 ml油胺(OAM),均匀搅拌并加热至氯化汞粉末全部溶解。本工作中合成短波红外和中波红外碲化汞胶体量子点的反应温度分别为65℃和95℃。使用移液枪取0.4 mL的TOP Te溶液,快速注入到溶于油胺的氯化汞溶液中,反应时间分别为4 min和6 min。反应结束后加入20 ml无水四氯乙烯(TCE)作为淬火溶液。碲化银纳米晶体颗粒的合成在氮气环境下,称量0.068 g(0.4 mmol)硝酸,并加入1 mL油酸(OA)和10 mL油胺(OAM)中,均匀搅拌30 min。溶解后,注入1 mL TOP,快速加热至160℃并持续30-45 min。然后向反应溶液中注入0.2 mL TOP Te(0.2 mmol),反应时间为10 min。碲化汞胶体量子点的混相配体交换混相配体交换过程包括液相配体交换和固相配体交换。选择溴化双十二烷基二甲基铵(DDAB)作为催化剂,将碲化汞胶体量子点溶在正己烷中,取4 ml混合溶液与160 μL β-巯基乙醇(β-ME)和8 mg DDAB在N,N-二甲基甲酰胺(DMF)中混合。之后向溶液中加入异丙醇(IPA)进行离心,倒掉上清液,将沉淀物重新溶解在60μL DMF中。固相配体交换是在制备量子点薄膜后,用1,2-乙二硫醇(EDT)、盐酸(HCL)和IPA(体积比为1:1:20)溶液对已成膜的碲化汞胶体量子点表面进行处理。碲化汞胶体量子点的掺杂调控在调控碲化汞胶体量子点的掺杂方面,Hg²⁺可以通过表面偶极子稳定量子点中的电子,所以选择汞盐(HgCl₂)来调控量子点的掺杂状态。在液相配体交换结束后,向溶于DMF的碲化汞胶体量子点溶液中加入10 mg HgCl₂得到本征型碲化汞胶体量子点,加入20 mg HgCl₂得到N型碲化汞胶体量子点。材料表征采用混相配体交换的方法不仅可以提高载流子迁移率还可以通过表面偶极子调控碲化汞胶体量子点的掺杂密度。液相配体交换前后中波红外碲化汞胶体量子点的TEM图像如图1(a)所示,可以看到,进行液相配体交换后的碲化汞胶体量子点之间的间距明显减小,排列更加紧密。致密的排列可以提高碲化汞胶体量子点对光的吸收率。混相配体交换后的短波红外和中波红外碲化汞胶体量子点的吸收光谱如图1(b)所示,从图1(b)可以看出,短波红外和中波红外碲化汞胶体量子点的吸收峰分别为5250 cm⁻¹和2700 cm⁻¹。利用场效应晶体管(FET)对碲化汞胶体量子点的迁移率和薄膜的掺杂状态进行测量,把碲化汞胶体量子点沉积在表面有一层薄的SiO₂作为绝缘层的Si基底上,基底两侧的金电极分别作为漏极和源极,Si作为栅极,器件结构如图1(c)所示。通过控制栅极的极性和电压大小,可以使场效应晶体管分别处于截止或导通状态。图1(d)是N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线。利用FET传输曲线的斜率计算了载流子的迁移率μFET。图1 (a)混相配体交换前后碲化汞胶体量子点的透射电镜图;(b)短波红外和中波红外碲化汞胶体量子点的吸收光谱;(c)碲化汞胶体量子点薄膜场效应晶体管测量原理图;(d)在300K时N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线测试结果。分析与讨论碲化汞胶体量子点光电探测器的制备光伏型探测器不需要施加额外的偏置电压,没有散粒噪声,理论上会具有更好的性能,借鉴之前文献中的报告,器件结构设计为Al₂O₃/ITO/HgTe/Ag₂Te/Au,制备方法如下:第一步,在蓝宝石基底上磁控溅射沉积50 nm ITO,ITO的功函数在4.5~4.7 eV之间。第二步,制备约470 nm的本征型碲化汞胶体量子点薄膜。第三步,取50 μL碲化银纳米晶体溶液以3000 r/min转速旋转30 s,然后用HgCl₂/MEOH(10 mmol/L)溶液静置10 s后以3000 r/min转速旋转30 s,重复上述步骤两次。在这里,Ag⁺作为P型掺杂层,与本征型碲化汞胶体量子点层形成P-I异质结。最后,将器件移至蒸发镀膜机中,在真空环境(5×10⁻⁴ Pa)下蒸镀50 nm Au作为顶层的电极。高迁移率光伏型探测器的结构图和横截面扫描电镜图如图2(a)所示。能级图如图2(b)所示。制备好的探测器的面积为0.2 mm × 0.2 mm。图2 (a)高迁移率碲化汞胶体量子点P-I异质结结构示意图及扫描电镜截面图 (b)碲化汞胶体量子点P-I异质结能带图。器件性能表征为了探究高载流子迁移率短波红外和中波红外光伏型探测器的光电特性,我们测试了器件的I-V曲线以及响应光谱。图3(a)和(b)分别是高迁移率短波红外和中波红外器件的I-V特性曲线,可以看到短波红外和中波红外探测器的开路电压分别为140 mV和80 mV,这表明PI结中形成了较强的内建电场。此外,在零偏置下,高迁移率短波红外和中波红外器件的光电流分别为0.27 μA和5.5 μA。图3(d)和(e)分别为1.9 μm(300 K) ~ 2.03 μm(80 K)的短波红外器件的响应光谱和3.5 μm(300 K) ~ 4.2 μm(80 K)的中波红外器件的响应光谱。比探测率D*和响应度R是表征光电探测器性能的重要参数。R是探测器的响应度,用来描述器件光电转换能力的物理量,即输出信号光电流与输入光信号功率之比。图3 (a)300 K时短波红外I-V曲线;(b)80 K时中波红外I-V曲线;(c)短波红外及中波红外器件的比探测率随温度的变化;(d)短波红外器件在80 K和300 K时的光谱响应;(e)中波红外器件在80 K和300 K时的光谱响应;(f)短波红外和中波红外器件的响应度随温度的变化。图3(e)和(f)给出了探测器的比探测率D*和响应度R随温度的变化。可以看到,短波红外器件在所有被测温度下,D*都可以达到1×10¹¹ Jones以上,中波红外器件在110 K下的D*达到了1.2×10¹¹ Jones。应用此外,本工作验证高载流子迁移率的短波红外和中波红外量子点光电探测器在实际应用,如光谱仪和红外相机。光谱仪实验装置示意图如图4(a)所示,其内部主要是一个迈克尔逊干涉仪。图4(b)和(c)为使用短波红外和中波红外量子点器件探测时有样品和没有样品的光谱响应结果。图4(e)和图4(f)为样品在短波红外和中波红外波段的透过率曲线。对于短波红外波段,选择了CBZ、DDT、BA和TCE这四种样品,它们在可见光下都是透明的,肉眼无法进行区分,但在短波红外的光谱响应和透过率不同。对于中波红外波段,选择了PP和PVC这两个样品。在可见光下它们都是白色的塑料,但在中波红外光谱响应和透过率不同。图4(d)为自制短波红外和中波红外单点相机的扫描成像。,短波相机成像可以给出材质信息。中波红外相机成像则是反应热信息。以烙铁的中波红外成像为例,我们可以清楚地了解烙铁内部的温度分布。在可见光下,硅片呈现不透明的状态使用自制的短波红外相机成像后硅片呈现半透明的状态。图4 (a)利用高载流子迁移率探测器进行响应光谱测量的原理示意图;(b)和(c)分别是在有样品和没有样品两种模式下用自制探测器所探测到的光谱响应;(d)自制短波红外和中波红外光电探测器的单像素扫描成像结果图;(e)TCE、BA、DDT和CBZ在短波红外模式下的透光率,插图为四种样品的可见光图像;(f)PVC和PP在中波红外模式下的透光率,插图为两种样品的可见光图像。结论综上所述,采用混相配体交换的方法,将量子点薄膜中的载流子迁移率提升到了1 cm²/Vs,相较于之前的研究提升了2个量级。并且通过加入汞盐实现了对量子点薄膜的掺杂调控,分别实现了P型、本征型以及N型多种类型的量子点薄膜。同时,基于本征型高迁移率量子点制备了短波红外和中波红外波段的光伏型光电探测器。测试结果表明,提升量子点的输运性质,有效的提升了探测器的响应率、比探测率等核心性能,并且实现了光谱仪和红外相机等应用。本项工作促进了低成本、高性能量子点红外光电探测器的发展。这项研究获得国家自然科学基金(NSFC No.U22A2081、No.62105022)、中国科学技术协会青年托举工程(No.YESS20210142)和北京市科技新星计划(No.Z211100002121069)的资助和支持。论文链接:https://link.cnki.net/urlid/31. 1 252.o4.20230925.0923.016
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制