当前位置: 仪器信息网 > 行业主题 > >

中阶梯光栅仪

仪器信息网中阶梯光栅仪专题为您提供2024年最新中阶梯光栅仪价格报价、厂家品牌的相关信息, 包括中阶梯光栅仪参数、型号等,不管是国产,还是进口品牌的中阶梯光栅仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中阶梯光栅仪相关的耗材配件、试剂标物,还有中阶梯光栅仪相关的最新资讯、资料,以及中阶梯光栅仪相关的解决方案。

中阶梯光栅仪相关的论坛

  • 中阶梯光栅的介绍

    线色散率、分辨率、集光本领是评价光谱仪性能的重要指标,而这些性能又主要取决于所采用的色散元件—光栅,制造高性能的光栅一直是光谱仪技术追求的目标。ICP分光系统中,全直谱图的很多都是采用中阶梯光栅。从光栅色散率公式可知,在自准条件下(a=b=e)dl/dλ=(m·f)/(d·cosb)提高线色散率可采用长焦距f、大衍射角b、高光谱级次m、减少两刻线间的距离d(提高每毫米刻线数)。从光栅分辨率公式可知R=λ/Dλ=m·N提高分辨率可增加光栅刻线总数N、用高衍射级次来解决。在常规的光栅设计中,都是通过增加每毫米刻线数来提高线色散率和分辨率。事实上由于制造技术及成本原因,精确、均匀地在每毫米刻制2400条线已很困难,采用全息技术制造的全息光栅最高可达10000条,但由于槽面成正弦形,使闪耀特性受影响,集光效率下降。1949年美国麻省理工学院的Harrison教授摆脱常规光栅的设计思路,从增加衍射角b,利用“短槽面”获得高衍射级次m着手,增加两刻线间距离d的方法研制成中阶梯光栅(Echelle),这种光栅刻线数目较少(8~80条),使用的光谱级次高(m=28~200),具有光谱范围宽、色散率大、分辨率好等突出优点。但由于当时无法解决光谱级次间重叠的问题,在五、六十年代未受到重视,直到七十年代由于实现了交叉色散,将一维光谱变为二维光谱,方得到实际应用。随着九十年代初二维半导体检测器(CID)和(CCD)的应用,中阶梯光栅的优点才在ICP光谱分析中充分的展现出来。光栅方程d(Sina+Sinb)=mλ 同样也适用于中阶梯光栅。在“自准”(a=b=e)时,m=2d·Sine/λ。中阶梯光栅不同于平面光栅,采用刻槽的“短边”进行衍射,即闪耀角e很大(60°- 70°);采用减少每毫米刻线数,即增大光栅常数d,因此,光谱级次m大大增加。例如IRIS Ad.全谱直读ICP的光栅刻线为52.6条/mm,闪耀角e=64°,可计算出对应λ=175nm的光谱级次m=189级,对应λ=800nm的光谱级次m=42级。对于衍射级次从42~189时,其闪耀波长分别在800~175nm光谱分析段内,且这些闪耀波长间隔较近,即形成全波长闪耀。中阶梯光栅的角散率:db/dλ=(2·tgb)/λ线色散率 dl/dλ=(2·f·tgb)/λ分辨率 R=λ/Dλ=2·W/(λ·Sinb)从上面三个公式可知,中阶梯光栅的角色散率、线色散率和分辨率都与衍射角b有关,并随着b增大而增大。因此,只要取足够大的b值(取闪耀角接近衍射角b=64°),即相当于在较高级次下工作,就能获得很大的角色散率、线色散率和分辨率。对于一般平面光栅,线色散率dl/dx =(f·m)/d,必须依靠增大仪器的焦距f,减小刻线间距d(增加刻线条数)来增加线色散率。而中阶梯光栅由于角色散率很大,不必依赖焦距的增加,就能获得较大的线散率。例如焦距1米,3600条/mm的平面光栅在200nm处,一级光谱的倒数线色散率仅为0.22nm/mm,而0.5米焦距,52.6条/mm的中阶梯光栅光谱仪在168级处同一波长的倒数线色散率可达0.14nm/mm。由于中阶梯光栅的角色散率足够大,焦距反而可缩小(如0.5米),因此,仪器光室的体积大为缩小,使相对孔径变大,光谱光强也得到提高。由于线色散率大,中阶梯光栅每一级光谱的波长范围相当小,在这个范围内各波长的衍射角基本一致,而且各级基本上是在同一角度下(闪耀角)观察整个波长范围,所以均可达到很大闪耀强度,即“全波长闪耀”。另外,这种中阶梯光栅它们相邻的衍射光谱级次之间的能量分布如上图所示,从图中可以看出,同一波长的入射光的能量多被分布在两个相邻衍射光谱的级次里,由于最佳闪耀波段两侧能量锐减,如图中虚线下方所示。故入射光强能量几乎都被集中到如图中虚线上方的闪耀波段中的该波长上,由此可知,中阶梯光栅在175~800nm全波段范围内均有很强的能量分布,中阶梯光栅其光谱图象可聚焦在200 mm2的焦面上,非常适合于半导体检测器来检测谱线。中阶梯光栅光谱仪各级之间的重叠用交叉色散棱镜的办法来解决,即棱镜的色散方向与中阶梯光栅的色散方向互相垂直,这样在仪器的焦面上形成二维光谱图象。

  • 【讨论】中阶梯光栅

    为什么中阶梯光栅每一级光谱范围很窄?同时其高级光谱密集而低级光谱稀疏?一直搞不懂啊

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【杨啸涛研究员】回用户【zhangxm】关于中阶梯光栅的问题并推荐一本好书

    Zhangxm,您一共有六个问题,先回答一个。关于中阶梯光栅,我的回答是抄书。以下的文字是邓勃,何华昆老师的《[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析》中抄下来的,改了改段落号和图号,改了一二个印刷错误。《[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析》化学工业出版社2004年9月第一版。这是十分好的教科书。许多问题可以从中得到解答。参考文献我就不列了。希望大家都能看到,看完这本书。[color=red]【4077注】[/color]本网《仪器书店》有这本书出售,用户可在此购买:[url]http://www.instrument.com.cn/book/shtml/20040922/1008299.shtml[/url]1. 中阶梯光栅与棱镜构成的双单色器中阶梯光栅的特点一是每毫米的刻线数目较少,都在100以内;二是以较大的衍射角和较高级数的谱线工作,且多与棱镜或低色散的光栅构成高色散中阶梯光栅单色器。G.R.Harrson开创了这项工作。 由前面的光栅的角色散率与分辨率各式可知,在波长一定时,光栅的角色散率与衍射角β、光栅常数d和光谱级次n有关,分辨率取决于光栅的刻线面宽度W和光谱级次n。当衍射角β确定后,用小的光栅常数d(即大的刻线密度)和低谱级次(n小),或者采用大的光栅常数d(小的刻线密度)高谱级次(n大),可以得到相同的角色散率。缩小d,即增加刻线密度是有物理限度的。所以采用大的衍射角β和高谱级次n是增大角色散率的实际有效途径。至于要提高分辨率,除了要增大衍射角β外,还要增大光栅的刻线面宽度W,因为与分辨率直接相关的通光孔径A会随衍射角β的增大而缩小(A=Wcosβ)。Harrson据此发明了刻线密度小(例如100刻线/mm),主要用于高谱级(例如n等于几十至一二百)的光栅,并命名为echelle,中文译名是中阶梯光栅。图1是中阶梯光栅示意图。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211444_2819_1868106_3.gif[/img]图1中阶梯光栅示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211445_2820_1868106_3.gif[/img]图2 中阶梯光栅的色散的重叠多级谱线位于最佳闪耀区 当衍射角β=0时,通光孔径A=O,此时分辨率虽达到分辨率的理论极限值Rmax,但光栅无法使用。目前,一般的中阶梯光栅采用a=β=63。26’(实际上β是有一定角度范围的),此时,R= O.89Rmax。此外,为了使光栅在β方向有最大的闪耀效率,必须使光栅的闪耀角ε=β=α。并且,光栅刻槽的衍射面s须与入射、衍射光谱线垂直,s面的光学平整度要达到1/10干涉条纹(“光圈”),否则不可能使上百级的光谱都有足够的光强。这就是说,在β方向的闪耀效率很高,只要有一两度的偏离,闪耀效率就会迅速下降。目前中阶梯光栅各级光谱中央的闪耀效率可以达到70%以上(如图2所示)鬼线强度也只有母线的O.005%以下。中阶梯光栅的特点是:a.衍射角β大,由nλ=2 sinβ可知,将不同的λ和不同n级的谱线重叠在同一位置;b.这些重叠的谱线都集中在最佳的光栅闪耀区;c.对中阶梯光栅光谱,需用辅助色散元件在垂直方向进行谱级色散,再在水平方向进行波长色散,即可获得高色散的良好结果。表1列出了3个元素的谱线在不同级数次中的相对强度。表1不同级次中光谱线的相对强度[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211446_2821_1868106_3.gif[/img]2. 中阶梯光栅、棱镜两次色散一维分光双单色器 用中阶梯光栅和棱镜作色散元件构成的双单色器分光系统,如图3所示。这种单色器具有体积小,线色散率高的特点。第一个单色器用中阶梯光栅作色散元件,能得到大衍射角高级次角色散率大的谱线。由于众多衍射级次的谱线分布在很小的角度范围内,不同级次的谱线发生重叠较严重,第二个单色器将不同级次间重叠区分离开并对相应级次谱线进行色散。因第二个单色器用了石英棱镜色散元件,其紫外光谱区线色散倒数小。如Thermo-Elemental公司M系列[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]就是采用这种分光系统,其线色散倒数为0.5 nm。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211447_2822_1868106_3.gif[/img]图3 中阶梯光栅、棱镜两次色散一维分光光路系统示意3.二维分光工作方式 二维分光是指在X轴与y轴两个方向色散分光,经分光后谱线在二维的焦面上成像。由上述对中阶梯光栅工作过程分析可知,对中阶梯光栅的色散,再加用辅助的色散元件,在被色散谱线的垂直方向进行色散,即可获得高色散的良好结果。图4为中阶梯光栅与棱镜组成的交叉色散(即二维色散)分光过程示意,为简化问题,只标出了在垂直方向的色散,即不同衍射级次谱线的色散。图5为多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]实验装置中用的中阶梯光栅两次分光交叉色散多色器分光系统,分光系统的焦面为二维谱线图像,检测器亦由多个光电倍增管组成的二维阵列。在检测器阵列与谱线焦面之间经严密测算制作的与多条分析波长谱线图像对应的多个狭缝专用板,分析线的数目多于光电倍增管的数目,专用板也有多块。工作时根据分析者选定的分析元素,采用相应的专用板,再通过转动机构将光电倍增管阵列移至分析谱线波长位置。这种固定光学系统,采用更换专用狭缝板和移动光电倍增管的工作方式,不仅免除了要将中阶梯光栅和棱镜十分精确地转动一个极小角度的困难,还可得到与多道同时测定一样的精度,而且在接近检出限工作时也不会找错谱线。这种交叉色散系统能提供高分辨的二维光谱信息,最先是应用在原子发射光谱仪器中。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211449_2823_1868106_3.gif[/img]图4 为中阶梯光栅与棱镜组成的交叉 色散(二维色散)分光过程示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211450_2824_1868106_3.gif[/img]图5 为连续光源多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]实验装置中用的 中阶梯光栅两次分光交叉色散多色器分光系统4 电子扫描二维分光工作方式由于中阶梯光栅经交叉色散后能给出面积较小,并有较宽波长范围的高分辨率二维光谱,所以人们就容易想到用成像器件来做二维检测器,最先是用于原子发射光谱仪器中,如国外若干大分析仪器公司的原子发射光谱仪器商品都是用紫外增强型CMOS、 CCD或CID等半导体图像检测器。对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器采用此项先进技术的是SIMAA6000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],有文献详细报道过,采用了具有高分辨率的二维光谱焦面的中阶梯光栅分光系统和紫外增强型分段式PDA检测器。其分光光路和检测系统如图6所示,中阶梯光栅刻线是79槽/mm,闪耀角63.4o,棱镜是人造熔融石英,顶角25.15o,成像球面镜的焦距501 mm,面积是120 mmxl20 mm。线色散倒数是O.1 nm/mm(200 nm,113级)和O4nm/mm(800nm,28级)。入射狭缝选用2.3 mm×1O mm时,对于As 193.7 nm光谱通带0.2 nm,Ba 553.5 nm光谱通带约为O.55 nm。二维光谱线焦面约为50 mm×60 mm,覆盖波长范围190~900 nm。半导体图像体检测器从日本Hamamatsu定制,专门设计加工成分段式单片检测器,称分段式PDA[又称分段式CMOS-PDA]检测器],整个检测器结构如图6所示。可提供的分析线数目为:39个主要常用元素的主灵敏线,16条次灵敏线和3条用于波长校正的氖线。关于波长的检查和校正,使用装在仪器内的充氖辉光放电灯,由计算机控制一面反射镜使氖灯发射光谱线进入光路,用位于图6左上角的607.43 nm[607(A)]和左下角的614.31 nm[614(A)]和Zn空心阴极灯的202.55 nm[位于图6右上角的202(A)]三条谱线来进行。此三条谱线处于二维焦面三个重要位置,包罗了全部分析线。具体操作程序是通过在X和Y方向分别在2 mm和4 mm范围内扫描,用峰拟合程序测量三条谱线轮廓的半宽度与相对位置。SIMAA型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]的这种分光系统,用电子扫描代替了分光元件转动的机械扫描,不但缩短工作时间和减少机械磨损,而且提高了波长精度。由于光源数量的限制,以及其他技术难点,多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器还在研究开发中,上述的中阶梯光栅分光系统应属较好的方案之一。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211451_2825_1868106_3.gif[/img]图5 SIMAA6000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]光学系统示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211451_2826_1868106_3.gif[/img]

  • 光栅知识问询

    你好,请问光栅有多少类型?有什么差别吗?查资料是有平面光栅、反射光栅、透射光栅、闪耀光栅、中阶梯光栅、小阶梯光栅、阶梯光栅,它们的原理是什么。

  • 【分享】什么是阶梯水价?

    什么是阶梯水价? 第一次听到阶梯水价大家会想到什么呢?肯定是阶梯或者楼梯。那么阶梯水价就是像阶梯一样节节增高的水价。其实简单的理解就是用的水量越多水费就越贵。 为了提高企业以及居民的节水意识,国家设置了阶梯水价的制度。例如一般居民的家用水表规定每月用水量有两个分界点,当用水量低于20吨时的水费是0.5元/吨;用水量是20~30吨时的水费是1.3元/吨,而当用水量大于30顿时的水费是2.2元/吨。一般家庭的正常用水量在15吨左右,如果超出就按阶梯水价收费。这样一是避免大家过分的浪费水资源,再一个就是对水资源进行了合理的分配和利用。不同的用水场所阶梯水价也是不一样的,例如企业、工程等用水量较大的地方,阶梯水价的第一个分解点也应该有所升高。为了顺应建设节约型社会的要求,阶梯式智能水表已经成功问世。各个地区按照管理部门的标准进行调整和实施。让我们时刻不要忘记节约用水。

  • 【资料】看看AA的光栅是如何制造的

    [font=SimSun][size=4][b]制造光学光栅的历史[/b] 光栅是光学光谱仪的心脏部分。在过去的50年中,电子、软件及自动化都得到快速的发展,而光栅的改进却是滞缓而固难。1949年George R Harrison在马省理工学院(MIT)发明了中阶梯光栅。中阶梯光栅解决了一个在刻制光栅时所碰到的问题,即如何制止钻石工具的磨损问题。即使光栅是刻制在相当柔软的材料,如铝、金和铜上,当在金属表面上精细地加工光栅时,这些金属也将很细微地磨损钻石工具。钻石工具的磨损将导致整个光栅刻槽形状的改变,使其分辨率降低而杂散光增强。我们可以设想一下,在一块面为50X100mm的空白光栅上,刻制每毫米为2400线的光栅,钻石工具将在表面材料上走动12000 m (相当7.5英里)。为了获得优于2400条/mm刻线光栅的分辨率,同时降低钻石工具的走刀路程,Harrison设计了中阶梯光栅,中阶梯光栅每毫米仅为50条刻线,在相同的50X100mm的空白光栅上,钻石工具走动250m(相当820英尺)!今天,我们采用中阶梯光栅不但是因为减少了钻石刀头的磨损,而且是因为当它与棱镜交叉色散时可获得的高分辨率二维中阶梯光谱,该二维光谱与电荷转移阵列检测器(例如CID)实现最佳匹配。[b]原来的刻线机[/b]在二十世纪50年代,Jarrell-Ash公司(Thermo Elemental的前生)先后研制了两台机械光栅刻制机。一号机具有可以在每英寸中刻制确切槽数的传动装置,而二号机可设定刻制每毫米特定的条数。上述机械中的关键部件,诸如Nitr-合金(Nitralloy)的滑台导轨、导向螺杆以及导向螺杆传动装置,在其制造时是非常小心且费力地用手工研磨抛光而成,以获得最好精度。60年代,二号机的精度由于增加了一个测量放置光栅胚模(Grating blank)滑台位置的干涉仪而大大提高。其原理是通过传动装置的差异,干涉仪用作为反馈回路以校正导致螺杆的微小但必然存在的误差。这两台仪器在其服务的三十年里作出了令人满意的贡献。1990年,科学家们对二号机作了一个彻底的现代化改造,将其技术水平提高为“艺术级”,以满足刻制机械所要求的最严竣的挑战,它被用于刻制中阶梯光栅。[/size][/font]

  • XRD应用能力的七重阶梯(粉晶衍射)

    [font=宋体]随着[/font]XRD[font=宋体]仪器越来越多,从事[/font]XRD[font=宋体]应用的人员也越来越多,但技术水平却参差不齐,有的人不善言辞却能充分解决科研和生产中的问题,有的人也许只会仪器简单的操作但却夸夸其谈,技术是做不得假的,更不能伪装,一旦出现错误和伪劣,轻则浪费成本和时间,重则导致生产事故,这就要求带有问题的老师同学或者企业人员必须具有一双能甄别“真伪”的眼睛。[/font][font=宋体]为了提高甄别能力,也为了给[/font]XRD[font=宋体]从业人员铺就一条学习之路,在十余年从业经验和亲身经历基础上,特此提出本帖之命题,将[/font]XRD[font=宋体]应用能力划分成七个阶段,也可称为七重阶梯。[/font][font=宋体]第一重:应用初级。[/font][font=宋体]具备操作仪器通用功能的能力,具有一定的仪器维护保养能力,能读懂[/font]XRD[font=宋体]测量标准,并严格执行标准,做到一名“合格检测员”。[/font][font=宋体]第二重:应用中级。[/font][font=宋体]在合格检测员的基础上,能熟练使用仪器高级功能,能应对大多科研检测和分析,并具有对检测和分析中存在的问题给出一定合理解释的能力。[/font][font=宋体]第三重:应用高级。[/font][font=宋体]能将检测和分析中存在的问题进行定量化处理,具备利用仪器配置的光路、样品台、探测装置等设计检测方案的能力,能自主开发便于科研应用的小装置小部件,真正达到将仪器应用到“灵动由心”的程度。[/font][font=宋体]第四重:专业初级。[/font][font=宋体]能将所学的衍射理论、测量几何、晶体学、材料学等理论知识,充分与[/font]XRD[font=宋体]测量和分析相结合,达到理论与实践融合一体,对测量和分析具有充分预判的能力,并对样品相关课题中的问题给出深入并理论知识上逻辑自洽的解释,主动走进课题中去,利用[/font]XRD[font=宋体]推动相关课题发展。[/font][font=宋体]第五重:专业中级。[/font][font=宋体]在理论学习和[/font]XRD[font=宋体]实践中,发现至今未曾得到解决的新问题或新课题,针对这些问题设计一系列科研活动获取到具有重要意义的新发现,推动该方向理论的前进,并为国计民生实现一定的经济价值。[/font][font=宋体]第六重:专业高级。[/font][font=宋体]在多方面理论创新和实践创新中,为[/font]XRD[font=宋体]应用开创新局面,凝聚新特色,引领团队解决[/font]XRD[font=宋体]领域重大问题,或为国计民生创造重大价值,引领行业前进。[/font][font=宋体]第七重:大师。[/font][font=宋体]这种人物,不是我等普通人能揣测的,所以不作评论。[/font][font=宋体]以上七重阶梯,纯属个人思考,喜欢的可以对号入座,找到下一步技能晋升的阶梯,不喜欢的也希望能借此抛砖引玉,共同促进[/font]XRD[font=宋体]应用和技术发展。[/font]

  • 固态光源+中阶梯+CCD(CID)会是ICP-OES的终结者吗?

    ICP-OES经历了电子管+罗兰圆+PMT,电子管+C-T光路+PMT及固态光源+中阶梯+CCD(CID)等发展历程,目前基本是固态光源+中阶梯+CCD(CID)一统天下,这种构型会是ICP-OES的终结者吗?再过10年20年的,下一代的ICP-OES构型会是什么样的呢?期待中。。。

  • 质谱图阶梯状毛刺,不影响响应

    一开始出现的现象是内标峰分叉,后续渐渐演变为物质组分质谱图阶梯状毛刺,调谐报告没有任何问题,色谱柱也重新连接了,进样口端做了维护,如果把分流比调很大,组分峰阶梯状就不那么明显了,但是响应会比较低。目前的情况是低碳组分阶梯状明显,高碳组分峰型会好一点,标曲线性和稳定性都比较好。

  • ICP-AES 各种光栅率是多少?

    大侠们好啊,ICP光谱法中,各种仪器的分辨率不同,光谱仪器的分辨率是由什么决定的呢?光栅刻线条数吗?具体是怎么回事呢?中阶梯光栅又是怎么回事,他的分辨率性能怎么样,和别的光栅有何不同?渴求热心人士详解,如果不好回答,也可以发点相关资料给我邮箱 (zhangwenxing928@163.com),我好好学习一下。谢谢各位了,不胜感激!我现在用的是利曼(Leeman)公司的Pordigy XP 型的ICP-AES.不知道其分辨率性能在同类仪器当中相比较如何?

  • 液相基线如阶梯般升高

    使用安捷伦1260配FLD检测器检测衍生后的甲维盐,溶剂峰过后,基线就会上升一些,如果连续进样、基线就会如同阶梯般,是为什么呢。流动相是(娃哈哈)水:乙腈=2:98 150cm的小柱子麻烦各位告知原因,本人水平有限。。。谢谢各位。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制