当前位置: 仪器信息网 > 行业主题 > >

直线光栅系统

仪器信息网直线光栅系统专题为您提供2024年最新直线光栅系统价格报价、厂家品牌的相关信息, 包括直线光栅系统参数、型号等,不管是国产,还是进口品牌的直线光栅系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合直线光栅系统相关的耗材配件、试剂标物,还有直线光栅系统相关的最新资讯、资料,以及直线光栅系统相关的解决方案。

直线光栅系统相关的论坛

  • 光纤光栅测温系统(电力 石化)

    光纤光栅测温系统(电力 石化)作者:曹虎 邮箱caohu666@126.com 手机:13581899064 座机:010-58858423-111一引言背景随着现代工业化的蓬勃发展,自动化管理水平也越来越高,我们所研究的ts125测温系统就是针对当前 电力行业 石油行业 屡次发生火情隐患,号召国家政策而开发的一套全方位测温系统。在温度监测中,温度传感头通常安装在户外,并且在电力方面还会有很强的电磁干扰,环境比较恶劣,传统测温技术如红外线测温、热电耦、热电阻、半导体温度传感、感温电缆等技术由于受各种因素的影响,经常会产生误差大、漏报、误报等现象。TS125 系列工业热点监测系统可在各类恶劣环境中,,进行实时、准确、安全、方便的温度监测。光纤光栅传感器作为目前国际上最新一代的光纤传感器,具有本质防爆、抗强电磁干扰、电绝缘性好、防雷击、高精度、重量轻、体积小,能方便地使用波分复用技术在一根光纤中串接多个光纤光栅温度传感器进行分布式测量等优点。因此受到了世界范围内的广泛重视,并进行广泛应用。系统功能说明本系统采用最新工艺生产技术,长期稳定性好,使用寿命长;光纤光栅信号处理器采用国际最先进地数字化解调技术,具有大容量实时在线信号采集处理和自检功能;监控计算机用户组态画面,可生动地显示传感器运行状况;系统可以综合各种安全监控参数,进行分析,有利于及时发现事故苗头,及时安全控制,实现生产和安全的双重监控功能。 从传感器到控制室感温测量及信号传输全部采用光信号,实现无电检测,本质安全防爆; 管理模块可实时显示各传感器的位置、温度信息,用户可通过此界面直观地了解设备的安全情况。报警时发生报警的传感器位置转为红色并闪烁。如系统配置声光报警器,则声光报警器同时动作; 光纤光栅感温火灾探测信号处理器可根据用户要求,设置预警和报警两种温度监测。并输出控制触点信号,作为报警和火灾情况,可与消防系统联动,及时进行检修; 监控计算机上的组态软件,在线显示开关柜温度变化并进行声光报警二 电力温度在线监测系统1测温系统重要性国电发[2000]589号文说,做好防止电力生产重大事故的措施,是保证电力系统安全稳定经济运行的重要条件,是制造、设计、安装、调试、生产等各个单位的共同任务。因此,各有关方面都应认真贯彻落实二十五项重点要求。本重点要求并不覆盖全部反事故技术措施,各单位应根据本要求和已下发的反事故技术措施,紧密结合各自实际情况,制定具体的反事故技术措施,认真贯彻执行。 随着现代电力工业不断向着大机组、大容量和高电压的迅速发展,运行条件更加苛刻,故障率逐渐增加,排除故障时间越来越长,造成的经济损失越来越大。为了保障发电和输变电系统的安全、,国内外电力行业普遍对电力设备运行的可靠性,提出了越来越高的要求。所以,对电力设备运行状态的在线检测、故障诊断和及时维修日益受到人们的高度重视。在电厂与变电站,有大量的室内室外高低压开关设备、变压器、电阻排、母线、隧道电缆、地下电缆,这些电力设备在长期的运营中会由于各种原因引起温度的异常而导致各类事故的产生。以电缆为例,美国在1965~1975年统计有3285次电气火灾事故,直接损失约4000万美元。 日本曾对电力、钢铁、石油化学、造纸等工厂企业调查,有78%的单位发生过电缆着火。近20年来,我国火电厂发生电缆火灾140多次,有24个电厂发生过2次及以上电缆火灾事故,造成直接和间接损失达50多亿元。引起火灾的原因分析2引起火灾原因分析引起电缆沟火灾的直接原因是电缆过负荷 电缆中间头过热两个诱惑。电缆过负荷是设计上人为过错可避免,而电缆头过热是物质上的问题是无法预测的。这时需采用测温系统来解决三 石油在线温度监测系统根据中华人民共和国国家标准中第7.8.1条 石油化工企业必须设置火灾报警系统。消防站内应设接受火灾报警的设施。可也看出防止火灾的重要性。我们的测温系统关于石油行业主要有以下几点:油罐测温 输油管道井下测温 地热井1油罐介绍石化系统,大型储罐属于易燃易爆场所,在火灾发生的初期能及时进行预报,采取相应措施,可以将事故损失降低到最低。但是,由于技术的原因,配套设施始终没有得到根本的解决,火灾事故时有发生,因此对大型储罐进行温度火灾探测受到关注与重视。光纤光栅感温火灾探测系统使用光栅作为温度检测单元,其性能稳定,可靠性高;采用光纤进行信号传输,本质安全防爆;检测探头进行灵巧性设计,结构简单,可以进行带油无电安装,安装与维修方便;同时系统设计时充分考虑了现场使用的特殊性,现场测量单元能够有效地耐油防腐。在镇海炼油化工股份有限公司的使用过程中,光纤光栅感温火灾探测系统运行正常。传统的电传感器虽都符合防暴标准,但在某些情况下仍然可以成为点火源。因此,光纤光栅感温火灾探测系统在石油、化工等部门具有良好的应用前景,必将成为易燃易爆场合下温度火灾探测的理想产品。2油井介绍长期监测油井温度,测量次数不受限制减少关井次数,增加原油累计产量减少修井作业,减少原油泄漏对人员和环境所造成的危害自控系统自控系统在罐区、汽车发油区设监控分站,各监控分站之间采用工业以太网连 接,实现信息共享。在行政区设一监控管理总站,监控管理总站可以对各监控分站进行监控,从而管理整体的生产情况。。储备管理信息化系统储备管理信息化系统共分为自控、安防、网络三大系统。自控系统与安防系统在监控管理总站通过局域网实现信息共享,对各个监控点实行授权管理,以确保整个系统的安全性。同时各个系统都具有独立性,当监控管理总站出现故障时,自控监控系统、安防监控系统能独立工作。

  • TS125光纤光栅粮库测温系统

    TS125光纤光栅粮库测温系统作者:曹虎010-58858423-111 13581899064 caohu666@126.com系统简介:随着大型粮食专储房仓的不断增加,粮库实时在线多点温湿度监控和防火监控愈来愈重要。这时必须采用寿命长,精度高、无零漂、本质安全防暴、体积小维修更换方便、扩容性好的监测系统来完成这项艰巨的任务。一般的传感器采用电信号满足不了以上要求,因此我们开发了TS125光纤光栅测温系统。TS125工业热点监测系统可在各类恶劣环境中,进行实时、准确、安全、方便的温度监测。光纤光栅传感器作为目前国际上最新一代的光纤传感器,具有本质防爆、抗强电磁干扰、电绝缘性好、防雷击、精度高、重量轻、体积小,系统采用波分复用技术能方便的在一根光纤中串接20个以上光纤光栅温度传感器进行分布式测量等优点。因此受到了世界范围内的广泛重视,并进行广泛应用。本系统可以实现网络化,在服务器端可以显示出每一点的温度。本系统实现网络话可采用两种方式进行连接,一种为有线方式可达50km远远大于传统的传输距离,另一种为无线(GPRS)方式。由于一个大型的粮库往往面积很大,需要很多点的温度测量和湿度测量,如果采用有线连接方式,则布线复杂,连接不便,使得系统增加测量节点很不方便,而且会使工程量很大。如各个测量节点都采用无线连接,这使得安装非常方便,而且增减测量节点很容易,工程量很小。 本系统通过计算机检测粮食储备库中粮食的基本情况(包括温度、湿度等);以多种方式(数字、三维图形、表格等)显示和打印温湿度信息,并将全部数据保存于硬盘内备查,配合其它粮情(如入仓时间、品种、仓型、熏蒸记录等)管理软件进行综合分析,增加储备粮安全,使粮库管理实现自动化、智能化。 整个系统采用集散式设计,两级控制:第一级控制主机放在微机室,管理多达上百个分机,通过通讯光缆缆连接若干分机;第二级分机安装在粮仓,每台分机连接温度传感器。主分机间通讯最大距离不大于五十公里,系统采用星型或环型方式布线、维护简单、工作稳定。硬件采用工业级原器件设计,可靠性高、检测速度快,精度高。系统功能说明本系统采用最新生产工艺,长期稳定性好,使用寿命长;光纤光栅信号处理器采用国际最先进地数字化解调技术,具有大容量实时在线信号采集处理和自检功能;监控计算机用户组态画面,可生动地显示传感器运行状况;系统可以综合各种安全监控参数,进行分析,有利于及时发现事故苗头,及时安全控制,实现生产和安全的双重监控功能。 ◎.从传感器到控制室感温测量及信号传输全部采用光信号,实现无电检测,本质安全防爆;◎管理模块可实时显示各传感器的位置、温度信息,用户可通过此界面直观地了解设备的安全情况。报警时发生报警的传感器位置转为红色并闪烁。如系统配置声光报警器,则声光报警器同时动作;◎.光纤光栅感温火灾探测信号处理器可根据用户要求,设置预警和报警两种温度监测。并输出控制触点信号,作为报警和火灾情况,可与消防系统联动,及时进行检修;◎.监控计算机上的组态软件,在线显示温度变化并进行声光报警◎.网络分析仪具有丰富的输出方式设置功能,以及控制权限限的设置功能,用户可随时根据需要通过按键更改、设置。◎仪表具有软、硬件保护措施,使仪表具有较高的安全性、稳定性。◎.光纤光栅传感器使用寿命较长一般为15-30年,这样可以减少维修的成本。◎ 实时检测、定时检测、本地检测、联网管理;◎ 温度测量、湿度测量、;◎ 动态数字、图形显示、表格显示;◎ 单仓报表打印、汇总报表打印;◎ 自动检测故障,自动隔离,◎ 超温、超湿报警◎ 低压直流24V供电◎本质防雷,确保可靠◎ 全封闭外壳设计,防雨、防尘,适合室外安装◎ 历史事件记录功能,方便查询适用范围: TS125粮仓温度监测系统是我中心研发的具有国内先进水平的一个大型项目,适用于由房式仓、筒式仓、浅圆仓等仓型构成的大中小粮库,也适用于工业、农业上实时检测环境温度。该系统长期运行稳定、监测数据准确。操作软件是基于windows环境编写的应用程序,测温软件实用、操作简单,另外可与粮库储运管理系统集成在一起构成粮库综合管理系统,亦可独立安装成为独立系统。技术指标 供电电源:220VAC±10%环境温度:主机0℃~50℃环境湿度:20%~98%RH 温度检测范围:-30℃~+200℃ 温度检测精度:±0.1℃测温重复误差:±0.2℃ 湿度检测范围: 90%RH 以内检测速度:一秒种循环一次主机与分机之间最大传输距离:不大于50Km 最大测温点数:无限 最大测湿点数:无限防尘,防水,抗雷电,抗熏蒸腐蚀

  • 近红外光谱仪器的光栅分光系统

    [font=宋体]光栅作为分光器件的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器所占比例很大,由于使用全息光栅,[/font][font=宋体][font=宋体]使光栅的质量大大提高,没有鬼线,杂散光很低,使光栅分光系统的光学性能有很大的提高。其中一种光栅分光系统采用精密波长编码技术的扫描技术,通过精密控制光栅的转动实现单色光的获取,如图[/font][font=Times New Roman]2-4[/font][font=宋体]所示;另一种技术路线是采用固定凹面光栅的同时配上多通道检测器,如图[/font][font=Times New Roman]2-5[/font][font=宋体]所示,检测器的不同通道单元接收不同波长的单色光,该方式改变了光谱扫描的方式,光谱读取的速度大大提高。上述两种光栅分光光谱仪器价格适中,对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的普及与推广起很大作用。其中采用阵列检测器的光栅光谱仪因为没有任何移动部件,一般认为仪器的稳固程度较高,非常适宜用于在线系统。[/font][/font][align=center][img=,228,183]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251642251485_5277_4070220_3.png!w397x413.jpg[/img][font=宋体] [/font][img=,229,183]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251642298588_3148_4070220_3.png!w491x346.jpg[/img][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2-4[/font][font=宋体]光栅扫描型分光系统示意图图[/font][font=Times New Roman]2-5[/font][font=宋体]固定光栅[/font][/font][font='Times New Roman']—[/font][font=宋体]多通道传感分光系统示意图[/font][/align]

  • 光栅中闪耀角度

    各位版友,请问光栅中闪耀角度的定义是法线和刻线槽面垂直线之间的角度吗?

  • 一种光栅衍射性能检测系统的设计

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[b][b]黄燮晨[/b][/b][/b][*]【题名】:[b][b][b][b]一种光栅衍射性能检测系统的设计[/b][/b][/b][/b]【期刊】:[font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://gb.global.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1021876992.nh&uniplatform=OVERSEA&v=hC9l4pVFuZEGvvJ4-a9BxUY9xXN5HiosRNu8ngAS85i1zvdobSQWmBhOaYktl6yg]一种光栅衍射性能检测系统的设计 - 中国知网 (cnki.net)[/url][/b]

  • 光栅尺工作原理

    光栅尺工作原理及详细介绍光栅:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。 光栅尺:其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补偿作用,其实就象人眼睛看到我切割偏没偏的作用,然后可以给手起到一个是否要调整我是否要改变用力的标准。 【相当于眼睛】 一、引言 目前在精密机加工和数控机库中采用的精密位称数控系统框图。 随着电子技术和单片机技术的发展,光栅传感器在位移测量系统得到广泛应用,并逐步向智能化方向转化。 利用光栅传感器构成的位移量自动测量系统原理示意图。该系统采用光栅移动产生的莫尔条纹与电子电路以及单片机相结合来完成对位移量的自动测量,它具有判别光栅移动方向、预置初值、实现自动定位控制及过限报警、自检和掉电保护以及温度误差修正等功能。下面对该系统的工作原理及设计思想作以下介绍。 二、电子细分与判向电路 光栅测量位移的实质是以光栅栅距为一把标准尺子对位称量进行测量。目前高分辨率的光栅尺一般造价较贵,且制造困难。为了提高系统分辨率,需要对莫尔条纹进行细分,本系统采用了电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫尔条纹也随之上下移动。这样就把对光栅栅距的测量转换为对莫尔条纹个数的测量,同量莫尔条纹又具有光学放大作用,其放大倍数为 : (1) 式中:W为莫尔条纹宽度;d为光栅栅距(节距);θ为两块光栅的夹角,rad 在一个莫尔条纹宽度内,按照一定间隔放置4个光电器件就能实现电子细分与羊向功能。本系统采用的光栅尺栅线为50线对/mm,其光栅栅距为0.02mm,若采用四细分后便可得到分辨率为5μm的计数脉冲,这在一般工业测控中已达到了很高精度。由于位移是一个矢量,即要检测其大小,又要检测其方向,因此至少需要两路相位不同的光电信号。为了消除共模干扰、直流分量和偶次谐波,我们采用了由低漂移运放构成的差分放大器。由4个滏电器件获得的4路光电信号分别送到2只差分放大器输入端,从差分放大器输出的两路信号其相位差为π/2,为得到判向和计数脉冲,需对这两路信号进行整形,首先把它们整形为占空比为1:1的方波,经由两个与或非门74LS54芯片组成的四细分判向电路输入可逆计数器,最后送入由8031组成的单片机系统中进行处理。 三、单片机与接口电路 为实现可逆计数和提高测量速度,系统采用了193可逆计数器。假设工作平台运行速度为v,光栅传感器栅距为d,细分数为N,则计数脉冲的频率为: (2) 若v=1m/s,d=20μm,N=20,则f=1MHz,对应计数时间间隔为[font=Times New Roman

  • 直线电机双轴联动平台在锂电池激光焊接的解决方案

    直线电机双轴联动平台在锂电池激光焊接的解决方案

    为了解决日益突显的能源、环保问题,新能源行业越来越受到世界各国的关注。锂电池行业作为国家重点扶持新能源项目发展较为迅速。近两年,中央和地方各项扶持政策协同效果逐渐显现,我国的新能源汽车市场出现了超预期发展和增长,并带动了产业链上下游企业的高速增长尤其是锂电池行业, 随着新能源汽车销量的进一步提高,业内预计,2018年锂电池或将进入供应紧张的阶段,强烈的需求对锂电池的产品技术、工艺、性能提出了更高的要求,更进一步凸显了产能的不足。目前国际上大多采用先进的激光焊接技术对锂电池的电池芯及保护板进行焊接。随着制造业的不断发展,大力发展高端制造技术,如何提高激光技术在锂电池制造领域的技术水平、如何升级优化激光焊接设备的整体性能,成为目前各个厂家研究的重点。在运动平台部分,直线电机相较于滚珠丝杆有更优的动态性能,更精密的定位精度及重复定位精度,更高的稳定性,更低的维护成本。用直线电机传动平台替换滚珠丝杆运动平台已成为必然趋势。激光焊接技术特点及难点: 激光焊接是一个将正负极材料、隔膜和电解液等原材料化零为整的融合制造过程,是整个锂电池生产流程中的关键工艺。激光焊接是利用激光束优良的方向性和高功率密度等特点来进行工作的。激光焊接有以下特点:激光功率密度高,可以对高熔点、难熔金属或两种材料进行焊接 聚焦光斑小,加热速度快,作用时间短,热影响区域小,热变形可忽略;激光焊接属于非金属焊接,无机械应力和机械变形;激光焊接装置易于计算机联机,能精确定位,实现自动焊接。锂电池模组通过高效精密的激光焊接可以大大降低接触电阻,降低能耗,提高电池的安全性、可靠性和使用寿命。但激光焊接要求焊件装配精度高,且要求激光束在工件上的位置不能有显著偏移。若焊件装配精度以及激光束定位精度达不到要求,很容易造成焊接缺憾,影响焊接质量。激光焊接技术的特点以及锂电池的结构性能对激光焊接设备的运动平台提出了更高更精密的要求。双轴联动直线电机平台技术特点及难点: 直线电机的本质是把旋转电机平放展开并直接连接到驱动负载上。它能替代例如滚珠丝杠、齿条与齿轮、皮带与皮带轮和减速箱的所有机械传动部分,从而消除了齿隙以及与机械传动相关的问题。具有结构简单、调速范围宽、动态性能优良、定位精度高、安全可靠、运行噪声低、无磨损、免维护以及无限行程等优点。灵猴双轴联动直线电机平台加速度可达5g、重复定位精度可达1μm并且在深度优化结构设计的基础上采用独特自主编写控制算法,跟踪检测速度波动,并作出后续补偿,使双轴直线电机在高速度走曲线小圆弧运动条件下,速度波动在3%以下,轨迹偏差更是在微米级别。完全满足锂电池激光焊接对平台精度、加速度、速度等性能的要求。日前有某激光焊接设备厂商客户的设备运动平台采用的是丝杆模组,但在其加速度为1g、速度提到100mm/s时其设备的焊接质量将无法保证,现需求双轴联动直线电机平台以替代丝杆平台模组并明确要求提供包括圆弧转角在内的跟随误差测试报告,但该客户对直线电机运动平台并不了解,故向我公司寻求解决方案。经过与客户的数次技术交流,在完全理解掌握客户设备的特性信息后设计了初版双轴联动直线电机运动平台模组,但是其要求的运动平台的运动轨迹的圆弧转角要求较小,且其速度及精度要求较高,经过我司对双轴联动直线电机平台的结构优化,定制化编写算法控制上下两轴的耦合,经过详细的系统测试,最终满足客户的需求,升级优化了客户的激光焊接设备,使其设备的焊接速度、精度以及稳定性在同行业处于领先地位。客户要求如下:[b]直线电机需求表 [/b]客户名称:[u] 某激光焊接设备集成 [/u]运用行业:[u] 锂电池激光焊接 [/u]联系人电话:[u] [/u]电子邮箱:[u] [/u]运动轴运动方式 :□水平 √ □垂直速度规划曲线:□1/3-1/3-1/3梯形波 √ □1/2-1/2三角形波总的运动行程:[u] 上轴270mm、下轴300mm [/u]mm总的运行时间:[u] 1.8s [/u]s最大运行速度:[u] 0.5 [/u]m/s最大运行加速度:[u] 3g [/u]m/s2负载重量:[u] 30 [/u]kg精度定位精度:[u] ±5 [/u]μm重复定位精度:[u] ±1 [/u]μm分辨率:[u] 0.1 [/u]μm放大器和电源最大电流:[u] 6.3 [/u]A电压:[u] 220 [/u]VAC □50 Hz √ □60Hz使用环境环境温度:[u] 室温 [/u]℃最大允许温升:[u] 130 [/u]℃是否在无尘环境中: □是 √ □否是否允许水冷或空气冷却:□是 □否 √是否是真空环境: □是 √ □否硬件总体设计及验证系统配置: 双轴联动直线电机运动平台主要由:直线电机、检测反馈、驱动控制,防护装置四部分组成。该运动平台选用无铁芯直线电机,运动平滑无齿槽力;检测反馈由光栅或磁栅、霍尔、温控组成;此平台模组选用的是高创驱动器,防护装置由风琴防护罩、高性能拖链、光电传感器、优力胶硬限位组成,充分保护运动平台的安全可靠性。模型效果如图2所示: [img=十字滑台,554,415]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311009_01_3294819_3.jpg[/img][align=center]图1:双轴联动模组模型[/align]双轴联动直线电机主要性能参数如图3所示: [img=,327,290]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311010_01_3294819_3.jpg[/img][align=center]图2:双轴联动模组性能参数[/align]验证测试根据客户设备的运动特点及轨迹,为保证客户设备在运行过程中的稳定性及可靠性,我们多次做了过需求验证并出具了相关的验证报告,运动平台的各项参数均符合客户需求,并做了相当于设备连续运行1.5年的耐疲劳测试,各项参数均无异常。经过多次技术交流、结构优化、测试验证,灵猴双轴联动直线电机运动平台仅在两周的时间就达到了客户的要求,满足了交付条件并实时在客户现场调试安装,直到客户设备完全出货,我们还积极跟踪我司产品在客户设备终端的运行状况以及各项数据,实时为客户设备提供可靠性报告。该客户“非标私人订制”的双轴联动直线电机运动平台模组上下两轴均采用自主研发的BUM系列无铁芯直线电机,该系列直线电机具有高推力、低运动质量、无齿槽效应、无磁吸力等特点,特别是在走曲线圆弧轨迹时,可实现高速度小圆弧转角下的低速度波动。在使用了双轴联动直线电机运动平台后,使其焊接速度提高50%,提高了其圆弧转角处的焊接质量,升级优化了客户整体设备的性能,提高客户设备销量的同时也增加了直线电机模组的销量,真正实现了双赢价值。直线电机平台模组除上述应用外,还有在医疗行业应用的超薄十字蛇形运动平台模组,其整体尺寸大小仅有圆珠笔大小;在3C行业中的视觉检测以及点胶平台上的快速移动的四轴联动直线电机模组;在机床以及快速搬运行业的LPS系列单轴平台模组;可以完全直接替换丝杆的SP标准系列单轴平台模组等等。随着制造行业越来越苛刻的要求,现代先进制造装备向着高速度、高精度、快响应、大行程的趋势发展。这必然要求一个反应灵敏、高速、轻便的驱动系统,由于传统的进给方式—“旋转电机+ 滚珠丝杠”需要联轴器、丝杠等中间传递环节,造成整体系统刚性不够、弹性变形严重,又因为该“间接传动”中丝杠精度很难提高、存在反向间隙等缺点,使得传统的进给系统无法达到上述要求。相对而言,直线电机具有结构简单、安装方便、无接触、无磨损等优点,并在精度、重复定位精度、刚度、工作寿命等其他性能指标上都优于旋转电机。其主要推广与高速、高精等旋转电机无法满足要求的场合。现代直线电机技术日益成熟,其势必取代传统的“旋转电机+ 丝杠”的传动模式。

  • 【讨论】微小型光栅光谱仪的内光路系统。

    在一个文档里看到的,贴出来分享下。摘自:文献1光谱仪微型化设计的实现得益于摄谱结构,最初的光学平台采用对称式 Czerny-Turner 分光结构, 荷兰 Avantes 公司生产的微小型光纤光谱仪即使用了这种光学平台设计 (图 1 所示) 。光信号由光纤传导经过一个标准的 SMA905 接口进入光谱仪内部,经球面镜准直,然后由一块平面光栅分光后,将入射光分成按一定波长顺序排列的单色光,再由聚焦镜聚焦到一维线性 CCD线性阵列探测器上进行检测。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902072108_131755_1786353_3.gif[/img][/center]全球最大的光纤光谱生产商美国 Ocean Optics 公司的 Michaeal J.Morris 等人研制的微小型光纤光谱仪则使用非对称交叉式 Czerny-Turner 分光结构(图 2 所示) ,此光学平台的设计是在 Czerny-Turner 结构基础上进行光路的改进,使光谱仪内部构件布局更紧凑,可进一步小型化(USB4000 系列光谱仪的尺寸规格仅为 89.1×63.3×34.4mm, 可以安装在一个小到足以放入手掌的测量平台)。与对称式 Crerny-Turner 结构相比,由于缩短了光程,使聚焦镜投射到线性CCD 阵列检测器的平行排列单色光展成呈一定角度的圆弧排列,会对光信号的检测会产生一定的非线性误差。 [center][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902072108_131756_1786353_3.gif[/img][/center]摄谱结构的光学平台设计使微小型光纤光谱仪内部无活动构件,光学元件都采用反射式,可在一定程度上减少像差,并使工作光谱范围不受材料影响。仪器小型化全固定件的光学系统设计可适应高震动、狭窄空间等复杂的工况环境检测的需要。文献1:微小型光栅光谱仪在过程检测中的应用 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=131782]微小型光栅光谱仪在过程检测中的应用 [/url]pdf格式的。

  • 光栅面积越大光学系统性能越好是否是伪命题?

    光栅面积越大光学系统性能越好是否是伪命题?

    http://ng1.17img.cn/bbsfiles/images/2014/07/201407261151_507963_1638724_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407261152_507964_1638724_3.jpg将一张纸放在光线进入入口狭缝前,看光斑很小,直径差不多5mm,这很小的光斑,在光栅只能水平旋转,无法上下左右移动的情况下,如何利用的上那么大面积的光栅?1800线/mm的刻线数指标主流仪器都可以达到。

  • 求助:光栅摄谱仪照明系统其及调整

    请问这里有没有 北京光学仪器厂 的朋友?现在急需一本仪器说明书:WPP-2平面光栅摄谱仪 仪器说明书 或者帮找一篇文章: (到处查都查不到,遗憾)非常感谢.cyxcsu@gmail.com

  • 【资料】光栅尺位移传感器安装指导及安全使用注意事项

    光栅尺,也称为光栅尺位移传感器(光栅尺传感器),是利用光栅的光学原理工作的测量反馈装置。光栅尺经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。 光栅尺线位移传感器的安装比较灵活,可安装在机床的不同部位。 一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。 1、光栅尺线位移传感器安装基面 安装光栅尺传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。 基座要求做到:(1)应加一根与光栅尺尺身长度相等的基座(最好基座长出光栅尺50mm左右)。(2)该基座通过铣、磨工序加工,保证其平面平行度0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±0.2mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为1-1.5mm左右。 2、光栅尺线位移传感器主尺安装 将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。 在安装光栅主尺时,应注意如下三点: (1)在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。(2)在有基座情况下安装好后,最好用一个卡子卡住尺身中点(或几点)。(3)不能安装卡子时,最好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。 3、光栅尺线位移传感器读数头的安装 在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。最后调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在1-1.5mm以内。 4、光栅尺线位移传感器限位装置 光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。 5、光栅尺线位移传感器检查 光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。 在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。 高创传感器公司生产的高精度位移传感器具有良好的电磁兼容性,技术指标优于国家标准,处于国内绝对领先地位。 通过以上工作,光栅尺线位移传感器的安装就完成了。但对于一般的机床加工环境来讲,铁屑、切削液及油污较多。因此,传感器应附带加装护罩,护罩的设计是按照传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。 使用注意事项 (1)光栅尺传感器与数显表插头座插拔时应关闭电源后进行。 (2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 (3)定期检查各安装联接螺钉是否松动。 (4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。 (5)为保证光栅尺传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。 (6)光栅尺传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅尺传感器即失效了。 (7)不要自行拆开光栅尺传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 (8)应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 (9)光栅尺传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。

  • 原子吸收:关于光栅的知识

    1 衍射光栅  平行、等宽而又等间距的多缝装置称为衍射光栅。它是利用光的衍射和干涉现象进行分光的一种色散元件,衍射光栅有透射式和反射式两种,光谱仪常用的是反射光栅,它的缝是不透明的反射铝膜。在一块极其平整的毛坏上镀上铝层,刻上许多平行、等宽而又等距的线槽,每条线槽起着一个“狭缝”的作用,每毫米刻线有1200条、2400条或3600条,整块光栅的刻线总数几万条到几十万条。  反射光栅从形状上可分为平面光栅,凹面光栅和阶梯光栅,  从制作方法上又可分为机刻光栅和全息光栅。  在一般的反射光栅中,由于光栅衍射中没有色散能力的零级衍射的主极大占去衍射光强的大部分(80%以上),随着主极大的级次增高,光强迅速减弱(见下图)。因此,使用这种反射光栅时,其一级较弱,二级衍射更弱。为解决这个问题,将光栅的线槽刻成锯齿形,使其具有定向“闪耀”能力,把能量集中分布在所需的波长范围。光栅复制技术的发展,大大降低了生产成本并缩短生产周期,使光栅得到广泛应用1.1平面反射光栅  1) 光栅方程  根据光的衍射和干涉原理,当平行光束以α角入射于光栅时,则在符合下述方程的角β方向上获得最大光强。  d(sinα+sinβ)=ml (m=0 ±1 ±2)  其中d-光栅常数,即相邻两缝的间距,α-入射角,β-出射角,m-衍射级次,或称为光谱级次,l-衍射光的波长。  2) 平面反射光栅的特点  a) 根据光栅方程,当光栅常数d为定值时,对于同一方向(α一定)入射的复合光在同级光谱(m一定)中,不同波长l有不同的衍射角β与之对应,因而可在不同的衍射方向获得不同波长的谱线(主极大)。这就是光栅的色散原理。  b) 对一定波长l的单色光而言,在光栅常数d和入射角α固定时,对于不同级次m(m=0 ±1 ±2……)可得到不同角β的衍射光,即同一波长可以有不同级次的谱线(主极大)。  c) 对于复合光,当m=0时,在β=-α的方向上,任何波长都可使光栅方程成立,即在此方向上,光栅的作用就象一面反射镜一样,将得到不被分光的零级光谱,入射光束中的所有波长都叠加在零级光谱中。当d和α为固定值时,对于不同波长、不同级次的光谱,只要其乘积ml等于上述定值,则都可以在同一衍射角β的方向上出现,即  m1l1=m2l2= m3l3=……  例如,一级光谱中波长为l的谱线和波长为l/2的二级谱线,波长为l/3的三级谱线…… 重叠在一起(如图)。这种现象称为光谱级次的重叠。它是光栅光谱的一个缺点,对光谱分析不利,应设法予以清除。在平面光栅光谱仪中,常用不同颜色的滤光片来消除这种级次重叠。同时为了获得足够的光能量,在ICP光谱分析中,通常选择第一级次(m=1)或第二级次(m=2)的光谱谱线。  3) 平面光栅光谱仪的主要性能  a) 色散率:光谱在空间按波长分离的程度称为色散率,其表示方法有角色散率(dβ/dl)和线色散率(dl/dl)两种,通常以线色散率倒数dl/dl表示仪器的色散能力,其单位为nm/mm。  光栅的角散率:dβ/dl=m/(d٠cosβ)  由此可见,角色散率与光谱级次m成正比。对于给定的波长范围,由于平面光栅的β较小(0-8°),cosβ变化不大(1-0.99),因而在同一个级次下,角色散率几乎不变;二级光谱的角色散率为一级光谱角色散率的两倍。  在Ebert装置的平面光栅仪中,焦平面与光轴垂直, β=0-8°时,cosβ»1。此时线色散率倒数为:  dλ/dl@d/(f·m) f为成像物镜的焦距。  可见,线色散率倒数与成像物镜的焦距f、衍射光谱级次m成反比,即采用长焦距和高衍射级次的光谱有利于提高线色散率。同时平面光栅光谱仪的线色散率倒数只有在β角很小的情况下才接近常数,即随波长的增加,线色散率倒数几乎不变。  b) 分辨率:仪器的分辨率又称分辩本领,是指仪器两条波长相差极小的谱线,按Rayleigh原则可分开的能力。所谓Rayleigh原则,指一条谱线的强度极大值恰好落在另一条强度相近的谱线的强度极小值处,若此时这两条谱线刚能被分开,则这两条谱线的平均波长λ与波长差Δλ之比值,称为仪器的理论分辨率 R,即R=λ/Δλ。对于平面光栅,理论分辨率R=λ/Δλ=m·N,由此表明光栅的分辨率为光谱级次m与总刻线N的乘积,不随波长改变而改变。  当级次m增加时,角色散率、线色散率及分辨率均随之增加。这时光栅偏转的角度也越大,它在衍射方向的投影也越少,因而光栅的有效孔径也随之越小,因此,光谱强度也相应减弱。  实际分辨率由于受许多客观误差因素的影响,总是比理论分辨率差,一台单色仪的分辨率是它能分辨的最小波长间距,这个波长间距不但有赖于仪器的分辨本领,而且也与狭缝的宽度、狭缝的高度及光学系统的完善性有关。在扫描式单色仪中,分辨率通常用半强度带宽值报出  1.2闪耀光栅  前面介绍的一般光栅具有色散能力。但衍射能量的80%左右集中在不分光的零级光谱中,而有用的一、二级光谱依次减弱,因而实用价值很低。为了克服这一缺点,适当地改变反射光栅的刻槽形状,使起“狭缝”作用的反射槽面和光栅平面形成一定的倾角e,如图,即可将入射光的大部分能量集中到所需衍射级次的某个衍射波长附近,该波长称为“闪耀波长”,这种现象称为光栅的闪耀作用,这种光栅称为闪耀光栅,也称小阶梯光栅,倾角e为闪耀角。  闪耀光栅的主要好处在于可使光能量集中在第一光谱级次(m=1)的λb与第二光谱级次(m=2)的λb/2附近。  a) 在“自准”条件下(a=b=e),闪耀波长与闪耀角的关系为2dSine=m·λbm,可根据需要的闪耀波长λbm来设计相应的闪耀角e。  b) 光栅的闪耀并非只限于闪耀波长,而是在该闪耀波长附近的一定范围内也有相当程度的闪耀。  c) 闪耀光栅的特性。这种光栅的一级闪耀波长λb1=560nm,有86%的光强集中在一级,而其余14%被分配在零级和其他各级中。从该图可以看出,该光栅的二级光栅光谱的闪耀波长λb2=560/2=280nm,实际上,光强的分布难与理论值完全相符,因为光栅刻线形状不可能精确

  • 光谱仪用光栅知识简介 !

    光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。◆如何选择光栅选择光栅主要考虑如下因素:1、光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择;2、闪耀波长,闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。如实验为可见光范围,可选择闪耀波长为500nm;3、使用范围,3、光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。◆光栅方程反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽,一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。光栅沟槽表面反射的辐射相互作用产生衍射和干涉。对某波长,在大多数方向消失,只在一定的有限方向出现,这些方向确定了衍射级次。如图所示,光栅刻槽垂直辐射入射平面,辐射与光栅法线入射角为α,衍射角为β,衍射级次为m,d为刻槽间距,在下述条件下得到干涉的极大值:Mλ=d(sinα+sinβ)定义φ 为入射光线与衍射光线夹角的一半,即φ=(α-β)/2;θ 为相对于零级光谱位置的光栅角,即θ=(α+β)/2,得到更方便的光栅方程:mλ=2dcosφsinθ从该光栅方程可看出:对一给定方向β,可以有几个波长与级次m 相对应λ 满足光栅方程。比如600nm 的一级辐射和300nm 的二级辐射、200nm 的三级辐射有相同的衍射角,这就是为什么要加消二级光谱滤光片轮的意义。衍射级次m 可正可负。对相同级次的多波长在不同的β 分布开。含多波长的辐射方向固定,旋转光栅,改变α,则在α+β 不变的方向得到不同的波长。http://ng1.17img.cn/bbsfiles/images/2017/03/201703121735_01_1841897_3.jpg

  • 反射光栅在紫外检测器中的原理与应用

    反射光栅在紫外检测器中的原理与应用

    下图为一检测器光栅衍射分光的实拍图:http://ng1.17img.cn/bbsfiles/images/2015/01/201501280955_533330_2960432_3.png上述反射光栅的光路原理应该和下面的原理相似,但也有不同之处:http://ng1.17img.cn/bbsfiles/images/2015/01/201501281105_533343_2960432_3.png图F5-1是离轴抛物镜光学系统图。光源或照明系统发出的光均匀地照亮位于离轴抛物镜焦面上的入射狭缝S1,光经过离轴抛物镜6fl平行照射到光栅G上,经光栅衍射回到M1,经反射镜M2会聚到出射狭缝S2,最后经过滤光片M3到接收元件上。由于光栅的分光作用,从出射狭缝出来的光束为单色光。当光栅转动时.使不同波长的光束经出射狭缝S2射出。http://ng1.17img.cn/bbsfiles/images/2015/04/201504201928_542753_2960432_3.jpg简单说,光栅是将光源射出的不同波长混合在一起的复色光分开为一个扇形分布的光谱带,狭缝的作用是只让这个扇形光谱带中的某一部分波长通过。这两个部件组合起来使用才能获得检测用的“单色光”。对于单色器的详细解读下面一贴更详细:主题:【讨论】说说大家所知道的光栅单色器 昵 称:xiejun110 网址:http://bbs.instrument.com.cn/shtml/20130716/4853417/index_1.shtml file:///c:/documents and settings/aaa/application data/360se6/User Data/temp/2015013102041867.png

  • 说说大家所知道的光栅单色器

    说说大家所知道的光栅单色器

    单色器的作用是从各种波长组成的复合光中,分离出具有特定波长的单色光。单色器分离出来的某种波长的单色光,不可能是真正的单色光,而是包含某一狭窄波段的复合光。由于此区间的波长范围很小,因此被认为是单色光。 我了解的单色器类型有以下2种: 1、Czerny-Turner 单色器,简称C-T型单色器。主要由入射狭缝、准直镜、色散元件(光栅)、物镜、出射狭缝组成。呈现典型的“M”形状。这种光栅单色器是一种采用两块球面镜作为准直镜和成像物镜的系统。两块球面镜可相互补偿彗差,具有较好的成像质量。C-T单色器如下图所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307161008_451646_1455520_3.jpg 2、Seya-Namioka单色器,简称S-N型单色器。主要由入射狭缝、色散元件(光栅)、出射狭缝组成。呈现倒“V”形状。这种单色器由于采用凹面光栅,具有聚光作用,光的能量比较高。另外,由于它没有准直镜或反射物镜,因此,减少了出故障的概率。Seya单色器如下图所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307161009_451647_1455520_3.jpg附: 上述2种单色器对比表单色器类型结构光栅类型特点C-T型光栅单色器入射狭缝、准直镜、色散元件(光栅)、物镜、出射狭缝平面光栅消像差,成像质量高S-N型光栅单色器入射狭缝、色散元件(光栅)、出射狭缝凹面光栅聚光,光的能量高;出故障概率低 还有哪些常见的单色器呢?希望大家能一起来探讨一下。

  • 【讨论】PLC结合光栅电子尺使用的自动化控制

    【讨论】PLC结合光栅电子尺使用的自动化控制

    http://ng1.17img.cn/bbsfiles/images/2012/04/201204270907_363661_2523522_3.jpg光栅尺的工作原理光栅尺是通过摩尔条纹原理,通过光电转换,以数字方式表示线性位移量的高精度位移传感器.光栅尺是由读数头、主尺和接口组成。玻璃光栅上均匀地刻有透光和小透光的线条,栅线为50线对/mm,其光栅栅距为0.02mm,采用四细分后便可得到分辩率为5μm的计数脉冲。一般情况卜,线条数按所测精度刻制,为了判别出运动方向,线条被刻成相位上相差90°的两路。当读数头运动时,接口电路的光电接收器分别产生A相和B相两路相位相差90°的脉冲波.输出信号再经过数显系统细分处理,分辨率是光栅周期除以信号细分数,经过电子信号细分处理分辨率可为5um或1um 光栅尺的适用领域:加工用的设备:车床、铣床、镗床、磨床、钻床、电火花机、线切割等 测量用的仪器:投影机、影像测量仪、工具显微镜等 也可对数控机床上刀具运动的误差起补偿作用 配接PLC,用于各类自动化机构的位移测

  • 中阶梯光栅的介绍

    线色散率、分辨率、集光本领是评价光谱仪性能的重要指标,而这些性能又主要取决于所采用的色散元件—光栅,制造高性能的光栅一直是光谱仪技术追求的目标。ICP分光系统中,全直谱图的很多都是采用中阶梯光栅。从光栅色散率公式可知,在自准条件下(a=b=e)dl/dλ=(m·f)/(d·cosb)提高线色散率可采用长焦距f、大衍射角b、高光谱级次m、减少两刻线间的距离d(提高每毫米刻线数)。从光栅分辨率公式可知R=λ/Dλ=m·N提高分辨率可增加光栅刻线总数N、用高衍射级次来解决。在常规的光栅设计中,都是通过增加每毫米刻线数来提高线色散率和分辨率。事实上由于制造技术及成本原因,精确、均匀地在每毫米刻制2400条线已很困难,采用全息技术制造的全息光栅最高可达10000条,但由于槽面成正弦形,使闪耀特性受影响,集光效率下降。1949年美国麻省理工学院的Harrison教授摆脱常规光栅的设计思路,从增加衍射角b,利用“短槽面”获得高衍射级次m着手,增加两刻线间距离d的方法研制成中阶梯光栅(Echelle),这种光栅刻线数目较少(8~80条),使用的光谱级次高(m=28~200),具有光谱范围宽、色散率大、分辨率好等突出优点。但由于当时无法解决光谱级次间重叠的问题,在五、六十年代未受到重视,直到七十年代由于实现了交叉色散,将一维光谱变为二维光谱,方得到实际应用。随着九十年代初二维半导体检测器(CID)和(CCD)的应用,中阶梯光栅的优点才在ICP光谱分析中充分的展现出来。光栅方程d(Sina+Sinb)=mλ 同样也适用于中阶梯光栅。在“自准”(a=b=e)时,m=2d·Sine/λ。中阶梯光栅不同于平面光栅,采用刻槽的“短边”进行衍射,即闪耀角e很大(60°- 70°);采用减少每毫米刻线数,即增大光栅常数d,因此,光谱级次m大大增加。例如IRIS Ad.全谱直读ICP的光栅刻线为52.6条/mm,闪耀角e=64°,可计算出对应λ=175nm的光谱级次m=189级,对应λ=800nm的光谱级次m=42级。对于衍射级次从42~189时,其闪耀波长分别在800~175nm光谱分析段内,且这些闪耀波长间隔较近,即形成全波长闪耀。中阶梯光栅的角散率:db/dλ=(2·tgb)/λ线色散率 dl/dλ=(2·f·tgb)/λ分辨率 R=λ/Dλ=2·W/(λ·Sinb)从上面三个公式可知,中阶梯光栅的角色散率、线色散率和分辨率都与衍射角b有关,并随着b增大而增大。因此,只要取足够大的b值(取闪耀角接近衍射角b=64°),即相当于在较高级次下工作,就能获得很大的角色散率、线色散率和分辨率。对于一般平面光栅,线色散率dl/dx =(f·m)/d,必须依靠增大仪器的焦距f,减小刻线间距d(增加刻线条数)来增加线色散率。而中阶梯光栅由于角色散率很大,不必依赖焦距的增加,就能获得较大的线散率。例如焦距1米,3600条/mm的平面光栅在200nm处,一级光谱的倒数线色散率仅为0.22nm/mm,而0.5米焦距,52.6条/mm的中阶梯光栅光谱仪在168级处同一波长的倒数线色散率可达0.14nm/mm。由于中阶梯光栅的角色散率足够大,焦距反而可缩小(如0.5米),因此,仪器光室的体积大为缩小,使相对孔径变大,光谱光强也得到提高。由于线色散率大,中阶梯光栅每一级光谱的波长范围相当小,在这个范围内各波长的衍射角基本一致,而且各级基本上是在同一角度下(闪耀角)观察整个波长范围,所以均可达到很大闪耀强度,即“全波长闪耀”。另外,这种中阶梯光栅它们相邻的衍射光谱级次之间的能量分布如上图所示,从图中可以看出,同一波长的入射光的能量多被分布在两个相邻衍射光谱的级次里,由于最佳闪耀波段两侧能量锐减,如图中虚线下方所示。故入射光强能量几乎都被集中到如图中虚线上方的闪耀波段中的该波长上,由此可知,中阶梯光栅在175~800nm全波段范围内均有很强的能量分布,中阶梯光栅其光谱图象可聚焦在200 mm2的焦面上,非常适合于半导体检测器来检测谱线。中阶梯光栅光谱仪各级之间的重叠用交叉色散棱镜的办法来解决,即棱镜的色散方向与中阶梯光栅的色散方向互相垂直,这样在仪器的焦面上形成二维光谱图象。

  • 【分享】光栅线位移传感器的结构原理及安装与维护

    光栅数显测量系统是一种能自动检测和自动显示的光机电一体化产品,是改造旧机床,装备新机床以及各种长度计量仪器的重要配套件,是用微电子技术改造传统工业的方向之一。由于光栅数显测量系统具有精度高,安装及操作容易,价格低,回收投资快等优点而得到大量使用。为使广大用户能够更好地掌握运用好这一产品,本文以我公司生产的BG1/KG1型系列光栅线位移传感器为例,就其结构、原理、安装与维护作一介绍。一、结构 BG1/KG1系列光栅线位移传感器是我公司生产的主导产品之一,分为BG1型闭式结构和KG1型开启式结构两种类型。BG1型闭式结构的光栅尺为5线/mm,KG1型开启式结构的光栅尺为100线/mm。 KG1型开启式传感器的标尺光栅裸露在外,微型发光器件和接收器件都装在传感头里。它的精度较高,要求的工作环境条件高,通常运用于精密仪器及使用条件较好的数控设备上。BG1型闭式传感器的特点是发光器件、光电转换器件和光栅尺封装在紧固的铝合金型材里。发光器件采用红外发光二极管,光电转换器件采用光电三极管。在铝合金型材下部有柔性的密封胶条,可以防止铁屑、切屑和冷却剂等污染物进入尺体中。电气连接线经过缓冲电路进入传感头,然后再通过能防止干扰的电缆线送进光栅数显表,显示位移的变化。闭式光栅线位移传感器的结构及输出波形见图1、图2。 http://www.newmaker.com/nmsc/u/art_img1/200612/200612271602699406.gif图一http://www.newmaker.com/nmsc/u/art_img1/200612/200612271604153434.gif图二 BG1型闭式传感器的传感头分为下滑体和读数头两部分。下滑体上固定有五个精确定位的微型滚动轴承沿导轨运动,保证运动中指示光栅与主栅尺之间保持准确夹角和正确的间隙。读数头内装有前置放大和整形电路。读数头与下滑体之间采用刚柔结合的联接方式,既保证了很高的可靠性,又有很好的灵活性。读数头带有两个联接孔,主光栅尺体两端带有安装孔,将其分别安装在两个相对运动的两个部件上,实现主光栅尺与指示光栅之间的运动进行线性测量。二、基本原理 光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90o的正弦波或方波,送入光栅数显表计数显示。三、安装方式 光栅线位移传感器的安装比较灵活,可安装在机床的不同部位。 一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。1、安装基面 安装光栅线位移传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。基座要求做到:①应加一根与光栅尺尺身长度相等的基座(最好基座长出光栅尺50mm左右)。②该基座通过铣、磨工序加工,保证其平面平行度0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±0.2mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为1~1.5mm左右。2、主尺安装 将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。在安装光栅主尺时,应注意如下三点: (1) 在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。 (2) 在有基座情况下安装好后,最好用一个卡子卡住尺身中点(或几点)。 (3) 不能安装卡子时,最好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。3、读数头的安装 在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。最后调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在1~1.5mm以内。4、限位装置 光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。5、检查 光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。 在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。 通过以上工作,光栅传感器的安装就完成了。但对于一般的机床加工环境来讲,铁屑、切削液及油污较多。因此,光栅传感器应附带加装护罩,护罩的设计是按照光栅传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。四、使用注意事项(1)光栅传感器与数显表插头座插拔时应关闭电源后进行。 (2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅传感器壳体内部。 (3)定期检查各安装联接螺钉是否松动。 (4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。 (5) 为保证光栅传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。 (6) 光栅传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅传感器即失效了。 (7) 不要自行拆开光栅传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 (8) 应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 (9) 光栅传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。高创传感器公司生产的高精度位移传感器具有良好的电磁兼容性,技术指标优于国家标准,处于国内绝对领先地位。五、常见故障现象及判断方法1、接电源后数显表无显示 (1)检查电源线是否断线,插头接触是否良好。 (2)数显表电源保险丝是否熔断。 (3)供电电压是否 符合要求。2、数显表不计数(1)将传感器插头换至另一台数显表,若传感器能正常工作说明原数显表有问题。 (2)检查传感器电缆有无断线、破损。3、数显表间断计数(1)检查光栅尺安装是否正确,光栅尺所有固定螺钉是否松动,光栅尺是否被污染。 (2)插头与插座是否接触良好。 (3)光栅尺移动时是否与其他部件刮碰、摩擦。 (4)检查机床导轨运动副精度是否过低,造成光栅工作间隙变化。4、数显表显示报警(1)没有接光栅传感器。 (2)光栅

  • 【杨啸涛研究员】回用户【zhangxm】关于中阶梯光栅的问题并推荐一本好书

    Zhangxm,您一共有六个问题,先回答一个。关于中阶梯光栅,我的回答是抄书。以下的文字是邓勃,何华昆老师的《[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析》中抄下来的,改了改段落号和图号,改了一二个印刷错误。《[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析》化学工业出版社2004年9月第一版。这是十分好的教科书。许多问题可以从中得到解答。参考文献我就不列了。希望大家都能看到,看完这本书。[color=red]【4077注】[/color]本网《仪器书店》有这本书出售,用户可在此购买:[url]http://www.instrument.com.cn/book/shtml/20040922/1008299.shtml[/url]1. 中阶梯光栅与棱镜构成的双单色器中阶梯光栅的特点一是每毫米的刻线数目较少,都在100以内;二是以较大的衍射角和较高级数的谱线工作,且多与棱镜或低色散的光栅构成高色散中阶梯光栅单色器。G.R.Harrson开创了这项工作。 由前面的光栅的角色散率与分辨率各式可知,在波长一定时,光栅的角色散率与衍射角β、光栅常数d和光谱级次n有关,分辨率取决于光栅的刻线面宽度W和光谱级次n。当衍射角β确定后,用小的光栅常数d(即大的刻线密度)和低谱级次(n小),或者采用大的光栅常数d(小的刻线密度)高谱级次(n大),可以得到相同的角色散率。缩小d,即增加刻线密度是有物理限度的。所以采用大的衍射角β和高谱级次n是增大角色散率的实际有效途径。至于要提高分辨率,除了要增大衍射角β外,还要增大光栅的刻线面宽度W,因为与分辨率直接相关的通光孔径A会随衍射角β的增大而缩小(A=Wcosβ)。Harrson据此发明了刻线密度小(例如100刻线/mm),主要用于高谱级(例如n等于几十至一二百)的光栅,并命名为echelle,中文译名是中阶梯光栅。图1是中阶梯光栅示意图。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211444_2819_1868106_3.gif[/img]图1中阶梯光栅示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211445_2820_1868106_3.gif[/img]图2 中阶梯光栅的色散的重叠多级谱线位于最佳闪耀区 当衍射角β=0时,通光孔径A=O,此时分辨率虽达到分辨率的理论极限值Rmax,但光栅无法使用。目前,一般的中阶梯光栅采用a=β=63。26’(实际上β是有一定角度范围的),此时,R= O.89Rmax。此外,为了使光栅在β方向有最大的闪耀效率,必须使光栅的闪耀角ε=β=α。并且,光栅刻槽的衍射面s须与入射、衍射光谱线垂直,s面的光学平整度要达到1/10干涉条纹(“光圈”),否则不可能使上百级的光谱都有足够的光强。这就是说,在β方向的闪耀效率很高,只要有一两度的偏离,闪耀效率就会迅速下降。目前中阶梯光栅各级光谱中央的闪耀效率可以达到70%以上(如图2所示)鬼线强度也只有母线的O.005%以下。中阶梯光栅的特点是:a.衍射角β大,由nλ=2 sinβ可知,将不同的λ和不同n级的谱线重叠在同一位置;b.这些重叠的谱线都集中在最佳的光栅闪耀区;c.对中阶梯光栅光谱,需用辅助色散元件在垂直方向进行谱级色散,再在水平方向进行波长色散,即可获得高色散的良好结果。表1列出了3个元素的谱线在不同级数次中的相对强度。表1不同级次中光谱线的相对强度[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211446_2821_1868106_3.gif[/img]2. 中阶梯光栅、棱镜两次色散一维分光双单色器 用中阶梯光栅和棱镜作色散元件构成的双单色器分光系统,如图3所示。这种单色器具有体积小,线色散率高的特点。第一个单色器用中阶梯光栅作色散元件,能得到大衍射角高级次角色散率大的谱线。由于众多衍射级次的谱线分布在很小的角度范围内,不同级次的谱线发生重叠较严重,第二个单色器将不同级次间重叠区分离开并对相应级次谱线进行色散。因第二个单色器用了石英棱镜色散元件,其紫外光谱区线色散倒数小。如Thermo-Elemental公司M系列[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]就是采用这种分光系统,其线色散倒数为0.5 nm。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211447_2822_1868106_3.gif[/img]图3 中阶梯光栅、棱镜两次色散一维分光光路系统示意3.二维分光工作方式 二维分光是指在X轴与y轴两个方向色散分光,经分光后谱线在二维的焦面上成像。由上述对中阶梯光栅工作过程分析可知,对中阶梯光栅的色散,再加用辅助的色散元件,在被色散谱线的垂直方向进行色散,即可获得高色散的良好结果。图4为中阶梯光栅与棱镜组成的交叉色散(即二维色散)分光过程示意,为简化问题,只标出了在垂直方向的色散,即不同衍射级次谱线的色散。图5为多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]实验装置中用的中阶梯光栅两次分光交叉色散多色器分光系统,分光系统的焦面为二维谱线图像,检测器亦由多个光电倍增管组成的二维阵列。在检测器阵列与谱线焦面之间经严密测算制作的与多条分析波长谱线图像对应的多个狭缝专用板,分析线的数目多于光电倍增管的数目,专用板也有多块。工作时根据分析者选定的分析元素,采用相应的专用板,再通过转动机构将光电倍增管阵列移至分析谱线波长位置。这种固定光学系统,采用更换专用狭缝板和移动光电倍增管的工作方式,不仅免除了要将中阶梯光栅和棱镜十分精确地转动一个极小角度的困难,还可得到与多道同时测定一样的精度,而且在接近检出限工作时也不会找错谱线。这种交叉色散系统能提供高分辨的二维光谱信息,最先是应用在原子发射光谱仪器中。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211449_2823_1868106_3.gif[/img]图4 为中阶梯光栅与棱镜组成的交叉 色散(二维色散)分光过程示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211450_2824_1868106_3.gif[/img]图5 为连续光源多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]实验装置中用的 中阶梯光栅两次分光交叉色散多色器分光系统4 电子扫描二维分光工作方式由于中阶梯光栅经交叉色散后能给出面积较小,并有较宽波长范围的高分辨率二维光谱,所以人们就容易想到用成像器件来做二维检测器,最先是用于原子发射光谱仪器中,如国外若干大分析仪器公司的原子发射光谱仪器商品都是用紫外增强型CMOS、 CCD或CID等半导体图像检测器。对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器采用此项先进技术的是SIMAA6000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],有文献详细报道过,采用了具有高分辨率的二维光谱焦面的中阶梯光栅分光系统和紫外增强型分段式PDA检测器。其分光光路和检测系统如图6所示,中阶梯光栅刻线是79槽/mm,闪耀角63.4o,棱镜是人造熔融石英,顶角25.15o,成像球面镜的焦距501 mm,面积是120 mmxl20 mm。线色散倒数是O.1 nm/mm(200 nm,113级)和O4nm/mm(800nm,28级)。入射狭缝选用2.3 mm×1O mm时,对于As 193.7 nm光谱通带0.2 nm,Ba 553.5 nm光谱通带约为O.55 nm。二维光谱线焦面约为50 mm×60 mm,覆盖波长范围190~900 nm。半导体图像体检测器从日本Hamamatsu定制,专门设计加工成分段式单片检测器,称分段式PDA[又称分段式CMOS-PDA]检测器],整个检测器结构如图6所示。可提供的分析线数目为:39个主要常用元素的主灵敏线,16条次灵敏线和3条用于波长校正的氖线。关于波长的检查和校正,使用装在仪器内的充氖辉光放电灯,由计算机控制一面反射镜使氖灯发射光谱线进入光路,用位于图6左上角的607.43 nm[607(A)]和左下角的614.31 nm[614(A)]和Zn空心阴极灯的202.55 nm[位于图6右上角的202(A)]三条谱线来进行。此三条谱线处于二维焦面三个重要位置,包罗了全部分析线。具体操作程序是通过在X和Y方向分别在2 mm和4 mm范围内扫描,用峰拟合程序测量三条谱线轮廓的半宽度与相对位置。SIMAA型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]的这种分光系统,用电子扫描代替了分光元件转动的机械扫描,不但缩短工作时间和减少机械磨损,而且提高了波长精度。由于光源数量的限制,以及其他技术难点,多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器还在研究开发中,上述的中阶梯光栅分光系统应属较好的方案之一。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211451_2825_1868106_3.gif[/img]图5 SIMAA6000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]光学系统示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211451_2826_1868106_3.gif[/img]

  • 衍射光栅与闪耀光栅的原理?

    衍射光栅与闪耀光栅的原理有何不同?   现在紫外分光光度计都是用闪耀光栅吧?   有人说闪耀光栅是一种衍射光栅,也有人说是反射光栅,我觉得是属反射。   但为何有的书上在闪耀光栅上又提到衍射角?   请高手解释下。

  • 【求助】全息光栅和凹面光栅的优缺点

    之前只是简单的知道这两种光栅,别人问这两种光栅有什么优缺点的时候,我就不会了。为什么现在很多分子荧光选用凹面光栅,而不选用全息光栅那。我认为全息光栅在光的分光作用上,应该比凹面的好才对啊!!!

  • 定量分析中直线方程应用的几个重要问题参考

    定量分析中直线方程应用的几个重要问题参考(OWOO)  来自OWOO的作品,发上来共享的同时,希望各位专家高手继续讨论! 因为上课的原因,经常会有学生问到标准曲线的问题,现把对直线方程的几个重要需要问题的理解总结如下,供参考:  1、回归方程的应用前提。不是任何情况都去回归,从最小二乘的定义上只考虑了响应的误差,使该直线到参与回归点的垂直距离的和最小,换句话说就是只考虑了响应(Y轴)上的误差,并假定该误差是服从正态分布的,才有不确定度计算中那个经典的直线回归的不确定度计算公式。从另外的角度讲,譬如分段拟合,最小一乘拟合就不能用我们不确定度的公式了。如果考虑浓度(X轴)的误差应该采用最小似然比的方法。  2、关于标准曲线的个数的问题。这个问题实际上是对于不确定度的把握。做几个点就对应多大的不确定度,单从公式上分析,点数增加不确定度就减少。点数增加可以是浓度点的增加,也可以是同一浓度的测定次数的增加。这个意义上讲,一个浓度多测几次,用平均值算出来的方程和完全按单独点计算的方程是一致的,但不确定度不一样。  3、标准曲线应该是每个点重复1-3次,随机安排标准点的实验顺序。重复是降低不确定度,随机可以避免仪器测定的系统误差。  4、加不加(0,0)点的问题。一般的仪器是默认加入(0,0),如果你做了空白的就应该用(0,0)管调整仪器的基线。加入(0,0)点不代表该回归曲线一定过(0,0)点,有时我们会采用强制过(0,0)点的回归方法,这时的直线就是Y=bX,同样采用最小二乘的方法。这样回归与普通的回归有不同的不确定度。  5、先减空白的响应带入回归方程,还是先算出空白浓度再用样品浓度减空白浓度。有时两种计算的结果差别非常的大。先减空白的响应比先用空白响应带入直线的方法要引入少一步的不确定度。先减空白所引入的不确定度为:空白不确定度+样品不确定度+带入直线方程的不确定度,而先算出空白的浓度的话:空白不确定度+空白带入直线的不确定度+样品不确定度+样品带入直线方程的不确定度,并且标准曲线接近空白的不确定度非常的大。

  • 全息光栅的特点

    全息光栅的特点为:(1)无鬼线,杂散光极小。(2)衍射效率较低,全息光栅的槽形通常为近似正弦波形,这种槽形不具备闪耀条件,没有明显的闪耀特性。据称,采用“离子蚀刻”技术的全息光栅,使光栅衍射效率得到较大提高。(3)分辨率高。由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度得到提高。

  • 光栅知识问询

    你好,请问光栅有多少类型?有什么差别吗?查资料是有平面光栅、反射光栅、透射光栅、闪耀光栅、中阶梯光栅、小阶梯光栅、阶梯光栅,它们的原理是什么。

  • 直线度测量仪在现代工业中有广泛的应用前景

    [font=Tahoma, &][size=16px][color=#444444]在现代的生产中,传统的产品直线度尺寸检验是直尺法、准直法、重力法和直线法等离线检测方法。这种检测方法具有滞后性,检测效率低,而生产企业要想得到快速高质量生产,一台在线直线度测量仪是必不可少的。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪是可进行在线无损直线度尺寸检测的设备,可在生产线上监测直线度的微小变化,提供及时的检测数据,在超差时进行声光提醒,从而实现高质量的生产。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪由3台测量仪构成,每台测量仪内采用成90°交叉分布的2路光电测头测量棒材边缘的位置,利用2路测头的位置数据计算测量点在坐标系中的实际偏差。因此,无论被测物的弯曲方向如何,测量仪均可测得真实的直线度尺寸。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]测径工作介绍:棒材通过测量仪的测量区,每台小型测量仪分别实时采集直径数据。当外径测量的数据超过设定的公差范围时,声光报警器自动声光报警。测量的数据传输到控制柜中进行存储、显示、分析等。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度工作介绍:3台小型测量仪同时采集各截面边沿的位置,计算圆棒的直线度误差,与测径数据采集不冲突。当直线度超过设定的公差范围时,声光报警器自动声光报警,达到合格判定的目的。测量的数据传输到控制柜中进行存储、显示、分析等。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪可兼顾直径与直线度的检测,直线度测量精度≤±0.5mm。整个系统中测量仪安装在轧制现场,控制柜安放在控制室或其它环境适合电脑工作的室内。测量仪的供电电源由控制柜引入,测量仪的测头采用串口服务器合并成1路数据后通过网线或光缆传输至控制柜内的工控机。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪具有检测精度高、响应速度快、抗干扰性好、可靠性高等特点,能够满足棒材生产现场条件的使用要求。能安装于生产线上进行测量,它可实现长距离大范围的连续测量,同时具有精度高,测量准确性好的特点,这种自动化的在线直线度测量仪在现代工业及国民经济建设中有广泛的应用前景。[/color][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制