当前位置: 仪器信息网 > 行业主题 > >

圆盘式研磨仪

仪器信息网圆盘式研磨仪专题为您提供2024年最新圆盘式研磨仪价格报价、厂家品牌的相关信息, 包括圆盘式研磨仪参数、型号等,不管是国产,还是进口品牌的圆盘式研磨仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合圆盘式研磨仪相关的耗材配件、试剂标物,还有圆盘式研磨仪相关的最新资讯、资料,以及圆盘式研磨仪相关的解决方案。

圆盘式研磨仪相关的论坛

  • 关于旋转圆盘电极的一些疑惑

    关于旋转圆盘电极的一些疑惑

    旋转圆盘电极上的各处的扩散层厚度一样,测LSV时,由于线性电势扫描的电势不断改变,不是稳态,扩散层厚度应该不断的改变,是不是旋转圆盘电极上的扩散层厚度也在变化,只是各处都一样?

  • 盘式振动研磨仪说明

    [url=http://www.f-lab.cn/grinders/vam3.html][b]这款盘式振动研磨仪VAM-3[/b][/url]专业为光谱分析制样和精密研磨而设计的振[b]动盘式研磨仪[/b],是进口[b]盘式振动研磨仪品牌[/b]中[b]盘式振动研磨仪价格[/b]较低的[b]研磨仪[/b]。[b]这款[b]盘式振动研磨仪VAM-3[/b][/b]特别适用于无损耗的快速精细研磨,可以通过使用来准备用于分析的精细样品。无论材料是中硬,硬,脆或纤维,[b]这款振动盘磨仪[/b]都可以在干燥条件下(即干磨)进行样品制备处理。[b]这款振动盘磨仪[/b]有五种磨削套件:硬化钢,碳化钨,玛瑙,氧化锆和高锰钢,可满足广泛和广泛的应用。[b][url=http://www.f-lab.cn/grinders/vam3.html]盘式振动研磨仪VAM-3[/url]应用[/b]陶瓷和玻璃氧化陶瓷,玻璃建筑材料灰泥,石,混凝土环境区土壤,铺路石,炉渣矿物冶金煤,蛋糕,刚玉,矿石,矿渣[img=振动盘磨仪]http://www.f-lab.cn/Upload/149632653594.JPG[/img]更多实验研磨仪:[url]http://www.f-lab.cn/grinders.html[/url]

  • 纳米圆盘简介

    纳米圆盘简介

    [font='times new roman'][size=18px] [font=宋体]纳米圆盘简介[/font][font=宋体]1 [/font][font=宋体]纳米圆盘与生物膜[/font][font=宋体]去垢剂在膜蛋白质研究中具有重要的作用,但是基于去垢剂的膜蛋白质提取方法存在一定缺陷。一方面,去垢剂种类诸多,筛选出最适合目标膜蛋白质增溶、稳定和结构表征的去垢剂费时费力;此外,去垢剂胶束固有的动态性质会导致去垢剂[/font][font=宋体]-[/font][font=宋体]膜蛋白质复合物不稳定,从而导致随着时间的推移膜蛋白质有聚集/变性的趋势。另一方面,膜蛋白质的结构和功能与其所处的膜环境即脂质分子是息息相关的。传统上用于提取膜蛋白质的去垢剂是通过破坏脂质双分子层,将膜蛋白周围的脂质剥离,以胶束的形式将膜蛋白质包裹于疏水核心,去垢剂分子的极性头部则暴露于水相环境,以此为膜蛋白质提供了另一种溶解环境,这极大地影响了膜蛋白质的结构和活性。[/font][font=宋体]显然,去垢剂分子形成的胶束远不能模拟膜蛋白质所存在的脂质双分子层环境,因而并不是膜蛋白提取、增溶、稳定的最佳工具。近年来,膜蛋白质研究的发展方向之一是开发能够提供更好的细胞膜膜模拟效果的纯化方法,新型细胞膜膜模拟系统主要有[/font][font=宋体]liposome[/font][font=宋体]s[/font][font=宋体]、bicelles、amphipols[/font][font=宋体]和nanodiscs,其中nanodiscs即纳米圆盘为细胞膜研究提供了新的工具,并被公认为是一种最佳的膜模拟系统。纳米圆盘技术最早由Sligar等人提出,纳米圆盘的组成为两亲性膜支架蛋白[/font][font=宋体](MSP)[/font][font=宋体]围绕圆盘状的磷脂双分子层,可稳定地分散于水相。将去垢剂增溶的膜蛋白质、磷脂分子、MSP混合,就可以将膜蛋白质自组装至MSP纳米圆盘中。MSP结合的纳米圆盘潜在优势包括纳米圆盘尺寸可调、可对MSP进行基因工程修饰、纳米圆盘中的脂质成分可控、纳米圆盘中的膜蛋白质可以确定的低聚状态存在等。但是,MSP纳米圆盘形成过程中仍需要去垢剂进行初始增溶步骤,如图1-7所示,不能避免去垢剂分子对膜蛋白质的稳定性和活性的影响。此外,MSP纳米圆盘中脂质的组成与天然脂质双分子层的组成不同,这可能会影响蛋白质的结构、活性及其调控。基于SMA的纳米圆盘克服了MSP纳米圆盘的局限性,没有去垢剂的情况下,SMA能够溶解脂质膜形成盘状纳米颗粒(图1-8),近年来在细胞膜研究领域受到越来越多的关注。[/font][/size][/font][align=center][img=,662,487]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071551559682_8480_3237657_3.jpg!w662x487.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]7 MSP纳米圆盘和SMA纳米圆盘的形成过程[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]7 [/font][font=宋体]The formation processes of MSP nanodiscs and SMA nanodiscs[/font][/align][font=宋体]1.2.[/font][font=宋体]2 SMA结合的纳米圆盘[/font][font=宋体]早在[/font][font=宋体]2001[/font][font=宋体]年,[/font][font=宋体]Tonge[/font][font=宋体]等人就证明了既含有疏水单元苯乙烯又含有亲水单元马来酸的[/font][font=宋体]SMA[/font][font=宋体][font=宋体]可以增溶脂质分子,并在[/font][font=宋体]2006年利用SMA将脂质双分子层转化成稳定的纳米圆盘形状的双层膜,获得专利。2009年,SMA首次被报道用于提取跨膜蛋白质,在脂质双分子层中加入SMA后,SMA与细胞膜结合,将其溶解为天然的纳米圆盘,又称为苯乙烯-马来酸脂质颗粒[/font][font=宋体]([/font][font=宋体]SMALPs)[/font][font=宋体],[/font][font=宋体]SMA包围在圆盘侧面,膜蛋白质则被包裹于圆盘之中,如图1-8所示。与去垢剂和MSP纳米圆盘相比,SMALPs的优势在于不需要去垢剂就可以直接从细胞膜上提取膜蛋白质,同时保留膜蛋白质周围的天然脂质环境。自2009年开始,[/font][font=宋体]关于利用[/font][font=宋体]SMALPs技术提取纯化膜蛋白质的文献数目[/font][font=宋体]迅速增加,(图[/font][font=宋体]1-9)。这些文献研究了多种重要的膜蛋白质,如G蛋白偶联受体、离子通道、ABC转运蛋白等,处于SMALPs中的膜蛋白质具有良好的稳定性和活性且显著优于去垢剂胶束中的膜蛋白质。此外,这些文献表明SMA对于单跨膜螺旋蛋白、多跨膜螺旋蛋白,甚至大型多亚基跨膜蛋白都具有良好的提取效果。[/font][/font][align=center][img=,662,406]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552290358_7544_3237657_3.jpg!w662x406.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]8 SMALPs示意图[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]8 [/font][font=宋体]Schematic diagram of SMALPs[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][align=center][img=,615,432]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552556903_281_3237657_3.jpg!w615x432.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]9 利用SMALPs技术纯化膜蛋白质的文献数目[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]9 Numbers of [/font][font=宋体]literatures describing membrane proteins purified by SMALPs technology[/font][/align][font=宋体][font=宋体]SMA可同时实现膜蛋白质和膜脂的提取,很多研究也对[/font][font=宋体]SMALPs[/font][font=宋体]中的脂质分子进行了定性定量分析。[/font][font=宋体]Teo等采用SMA对大肠杆菌的ZipA、FtsA和PgpB三种膜蛋白质进行提取纯化,并采用反相HPLC-MS/MS分别对三种膜蛋白质的SMALPs中的磷脂进行分离分析。结果表明,SMA本身不会优先从细胞膜中提取特定的磷脂[/font][font=宋体]。在[/font][font=宋体]ZipA和PgpB[/font][font=宋体]的[/font][font=宋体]SMALPs中,磷脂分子种类类似且单不饱和PE和PG含量较高;在FtsA的SMALPs中,磷脂分子种类与ZipA和PgpB差异较大,具有更长碳链的PE和PG含量更高。Ayub等人采用SMA对酵母细胞膜上的CD81蛋白进行增溶和纯化,并采用“鸟枪法”对酵母细胞膜总脂质提取物、空SMALPs(不含CD81)[/font][font=宋体]中脂质[/font][font=宋体]和含[/font][font=宋体]CD81的SMALPs中[/font][font=宋体]脂质进行测定。结果表明,前两者所含磷脂分子种类差异不大,含[/font][font=宋体]CD81的SMALPs中磷脂分子种类变化明显,表现为带正电荷的PE和PC减少,带负电荷的PI相对增多。[/font][/font][font=宋体]1.2.[/font][font=宋体]3 SMA与磷脂双分子层[/font][font=宋体]近年来,关于[/font][font=宋体]SMALP[/font][font=宋体]s[/font][font=宋体]自组装机制的研究[/font][font=宋体]也[/font][font=宋体]得到开展[/font][font=宋体]。简单来说,在疏水效应驱动下,[/font][font=宋体]SMA吸附到磷脂双分子层[/font][font=宋体][font=宋体],苯乙烯基团插入到磷脂双分子层中,与酰基链紧密结合,在临界浓度下,带电的马来酸基团使膜失稳,导致膜破裂并形成被[/font][font=宋体]SMA聚合物带环绕的纳米圆盘。对于SMA与其它两亲性聚合物的区别,Scheidelaar等从苯环和羧基的性质进行了详细阐述:刚性苯环基团的存在,使SMA从溶液游离状态转化成围绕纳米圆盘的另一种状态,熵变小,这是有利的;羧基的偶极矩与膜的偶极势之间有良好的相互作用。SMA的这些特性使其对磷脂双分子层具有高增溶性能,可以增溶各种不同头部基团、不同酰基链、不同构型的脂质分子。特别是苯乙烯与马来酸摩尔比在2:1到3:1之间的SMA,其疏水性和极性达到最佳平衡,对磷脂双分子层增溶效果最佳[/font][/font][sup][font=宋体][font=宋体][71][/font][/font][/sup][font=宋体]。[/font][font=宋体]1.[/font][font=宋体][font=宋体]3 SMA[/font][font=宋体]及其衍生物[/font][/font][font=宋体]1.[/font][font=宋体]3[/font][font=宋体].[/font][font=宋体][font=宋体]1 SMA[/font][font=宋体]的性质与制备[/font][/font][font=宋体]SMA是苯乙烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸酐共聚物([/font][font=宋体]SMAnh)的水解形式,SMAnh是被广泛研究的聚合物之一,由Alfey和Lavin在1945年首次制备。由于苯乙烯和马来酸酐存在极性差异,且苯环为给电子体,马来酸酐为吸电子体,在一定反应条件下两者竞聚率相近,聚合后可形成具有独特交替结构的聚合物链,经水解后,赋予SMA两亲性聚合物的性质。SMA不仅化学性质独特,还具有良好的生物相容性,可用作很多药物的载体,如坦螺旋霉素、两性霉素B等。[/font][/font][font=宋体][font=宋体]用于膜蛋白质和膜脂研究时,[/font][font=宋体]SMAnh的制备方式通常有两种,即利用传统自由基聚合或[/font][font=宋体]可控[/font][font=宋体]/“活性”自由基聚合[/font][font=宋体]。传统自由基聚合因其慢引发、快增长、易终止的特点而导致聚合反应过程、聚合度、聚合物的结构和分子量分布难以控制。可控[/font][font=宋体]/“活性”自由基聚合技术的出现使得对聚合物进行分子设计和可控聚合成为可能,特别是可逆加成[/font][/font][font=宋体]-[/font][font=宋体]断裂链转移[/font][font=宋体][font=宋体]([/font]RAFT)[/font][font=宋体][font=宋体]聚合已发展成为合成复杂聚合物结构的最通用和最强大的聚合技术之一。[/font][font=宋体]RAFT聚合中的关键试剂[/font][/font][font=宋体]-[/font][font=宋体]链转移试剂[/font][font=宋体][font=宋体]([/font]CTA)[/font][font=宋体],在聚合过程中可以形成无聚合活性的休眠种,与活性自由基链相比,对体系中其它自由基的竞争力相当,使得整个反应体系始终存在自由基的可逆链转移,很大程度上抑制了双基终止,并实现了对聚合过程的调控。[/font][font=宋体]Craig等采用RAFT聚合法制备了三组具有低、中、高分子量的SMAnh,每组分别设置了不同的苯乙烯、马来酸酐摩尔比[/font][font=宋体][font=宋体]([/font]2:1-4:1)[/font][font=宋体][font=宋体],经体积排阻色谱法分析,证明了所得聚合物的分散度指数([/font][font=宋体]PDI)在1.25-1.35之间,且所有聚合物的实际分子量与理论值相近,说明聚合过程得到了很好的控制。将SMAnh进行水解,用于磷脂分子增溶,结果发现形成SMALPs的大小与SMA分子量无关,而与两个单体的比例有关。苯乙烯、马来酸酐摩尔比为2:1、3:1、4:1时,形成的纳米圆盘尺寸分别约为28 nm、10 nm、32 nm。因此,利用RAFT聚合方法可以控制SMA结构,通过扩大纳米圆盘的尺寸可为提取更多的膜脂和体积更大的膜蛋白质提供可能性。[/font][/font][font=宋体]Smith等在蒙特卡罗模拟的基础上,通过RAFT聚合法合成了六组16种具有不同苯乙烯/马来酸酐比例和不同单体/CTA比例的聚合物,经凝胶渗透色谱、核磁共振等技术表征,证实了RAFT聚合可以控制聚合物链中单体的含量、组成、分布情况。作者进一步比较了上述聚合物在磷脂增溶和SMALPs形成方面的性能差异,筛选出了聚合物D,与商业SMA2000相比,得到的纳米圆盘分散性更小,而较低的样品分散性可能有利于结构生物学研究。[/font][font=宋体]1.3.2 SMA衍生物的[/font][font=宋体]性质与[/font][font=宋体]制备[/font][font=宋体]SMA[/font][font=宋体]LPs[/font][font=宋体]已逐渐发展成为细胞膜组成研究的可靠工具,但其应用价值受到[/font][font=宋体]pH[/font][font=宋体]值[/font][font=宋体]和二价金属离子的限制。在酸性条件下,[/font][font=宋体]SMA[/font][font=宋体][font=宋体]中的羧基[/font][font=宋体]易发生质子化使共聚物疏水性增强而极易从溶液中沉淀析出,这不利于提取在酸性环境中发挥最佳功能的膜蛋白质;此外,在毫摩尔浓度的镁或钙离子存在下,[/font][/font][font=宋体]SMA[/font][font=宋体]中的羧基可与金属离子螯合而产生沉淀,使[/font][font=宋体]SMA[/font][font=宋体][font=宋体]无法用于钙[/font][font=宋体]/镁离子依赖性膜蛋白质的研究[/font][/font][sup][font=宋体][font=宋体][82-83][/font][/font][/sup][font=宋体]。[/font][font=宋体]为了拓宽[/font][font=宋体]SMALPs[/font][font=宋体][font=宋体]技术的适用范围,利用[/font][font=宋体]SMAnh中酸酐基团的高反应活性和衍生能力,可进一步通过酯化、酰胺化等反应进行后修饰制备[/font][font=宋体]SMA衍生物[/font][font=宋体],如图[/font][font=宋体]1-10所示。后修饰基团的引入可改变SMA的特性,增强了聚合物的pH值和金属离子耐受范围,如SMI在pH值为2.5-10范围内,二价金属离子浓度高达200 mM时,仍可发挥膜蛋白质及膜脂提取功能,形成的纳米圆盘显示出超强稳定性。上述SMA衍生物为后续更广泛的膜蛋白质和膜脂研究提供了更多的选择。[/font][/font][align=center][img=,690,343]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553237687_6095_3237657_3.jpg!w690x343.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]10 SMA衍生物[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]10 [/font][font=宋体]SMA derivatives[/font][/align][align=center][/align][font=宋体]1.4 SMALPs[/font][font=宋体]的扩展[/font][font=宋体]二异丁烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸共聚物([/font][font=宋体]DIBMA[/font][font=宋体])在增溶磷脂,稳定膜蛋白质的性能上与[/font][font=宋体]SMA相当。同SMALPs一样,DIBMA以[/font][font=宋体]DIBMA[/font][font=宋体]脂质颗粒([/font][font=宋体]DIBMALPs[/font][font=宋体])的形式同时提取膜脂和膜蛋白[/font][font=宋体]质[/font][font=宋体]。[/font][font=宋体]SMA中苯基的存在使得提取的膜蛋白质不能直接进行紫外或圆二色谱等光谱学表征,而DIBMA可弥补这一缺陷。Gulamhussein等比较了SMA与DIB-MA两种聚合物对不同表达系统的具有不同形状和不同大小的膜蛋白质在增溶效率、提取纯度和稳定性能方面的差异,如图1-11所示[/font][font=宋体]。[/font][font=宋体]DIBMA[/font][font=宋体]对某些膜蛋白质的增溶效率并没有优于[/font][font=宋体]SMA,所提取膜蛋白质的纯度也不如SMA,这是由于[/font][font=宋体]DIBMALPs[/font][font=宋体]的尺寸较[/font][font=宋体]SMALPs大,提取出来的杂质随之增多。较大尺寸的DIBMALPs能包容更多的膜脂,膜脂的有序度因为空间的增大而下降,这可能不利于膜蛋白质结构和功能的稳定,但也可能为蛋白质构象变化和动力学研究提供更好的环境。[/font][/font][align=center][img=,580,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553485075_347_3237657_3.jpg!w580x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]11 比较SMALPs与DIBMALPs[/font][/align][align=center][/align][font=宋体]Tribet等开发了一类新型两亲性聚合物([/font][font=宋体]APols[/font][font=宋体]),其结构特征为低分子量聚丙烯酸的羧基被辛胺和异丙胺随机酯化。[/font][font=宋体]APols[/font][font=宋体]这一命名是为了将这类两亲性聚合物与化学或工业等其它领域的两亲性聚合物区分,其中被应用和研究最为广泛的是[/font][font=宋体]A8-35[/font][font=宋体]。[/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中有[/font][font=宋体]25%的羧基被辛胺随机酯化,40%的羧基被异丙胺随机酯化,剩下35%的游离羧基,使其具有温和的表面活性。另外,与去垢剂分子相比,聚合物链具有一定粘度,与膜蛋白质接触位点更多,能使膜蛋白质在更长时间和更高温度下保持稳定状态。[/font][/font][font=宋体]A8-35[font=宋体]主要缺点在于其[/font][/font][font=宋体][font=宋体]临界缔合浓度较低,不能像[/font][font=宋体]SMA那样直接溶解细胞膜,提取膜蛋白质。基于此,Marconnet等作出假设,用环烷烃替代[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中线性的烷基侧链,期望环烷烃能发挥[/font][font=宋体]SMA中苯环的作用,可以自发地吸附到磷脂双分子层上,这是实现生物膜增溶、膜蛋白质提取的第一步。结合SMA独特的膜增溶性能和[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]优异的膜蛋白稳定性能,[/font][font=宋体]Marconnet等制备了聚丙烯酸衍生物CyclAPols。[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]和[/font][font=宋体]CyclAPols结构如图1-12。经过一系列膜蛋白质提取实验,结果表明,所制备的CyclAPols可用于直接提取膜蛋白质和膜脂,提取速度甚至比SMA更快。例如,对于膜蛋白质YidC,CyclAPols可在1小时左右达到最大提取率,而SMA用时超过1小时。此外,CyclAPols对膜蛋白质的稳定性优于SMA。例如,对于HsBR膜蛋白质,[/font][/font][font=宋体]50[/font][font=宋体]℃加热处理6小时,在CyclAPols中可保留80-85%的原始构象,而在SMA中约保留20%。[/font][align=center][img=,412,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554112299_7819_3237657_3.jpg!w412x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体][font=宋体]12 [/font][font=宋体]A8-35和CyclAPols[/font][font=宋体]结构[/font][/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]12 Structures of [/font][font=宋体]A8-35 and CyclAPols[/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][font=宋体]Yasuhara等[/font][sup][font=宋体][font=宋体][97][/font][/font][/sup][font=宋体][font=宋体]首次报道了[/font][font=宋体]聚甲基丙烯酸酯两亲性共聚物[/font][font=宋体],如图[/font][font=宋体]1-13所示,甲基丙烯酸丁酯可提供非极性侧链,而甲基丙烯酰氧乙基三甲基氯化铵可提供带正电荷的极性侧链。动态光散射、电镜、核磁共振测试证实了制备的聚合物可以有效溶解磷脂双分子层形成纳米圆盘结构。此外,与SMA相比,[/font][font=宋体]聚甲基丙烯酸酯衍生物[/font][font=宋体]中不含苯环和酰胺键,可将提取的膜蛋白质直接进行荧光、圆二色谱表征,这些表征可用于研究淀粉样蛋白质聚集的动力学和淀粉样蛋白质聚集过程中的结构变化。因此,该聚合物被进一步用于研究人胰岛淀粉样多肽([/font][font=宋体]hIAPP[/font][font=宋体]),[/font][font=宋体]而[/font][font=宋体]hIAPP[/font][font=宋体]产生淀粉样聚集变性与[/font][font=宋体]2型糖尿病中胰岛细胞的死亡息息相关。[/font][/font][align=center][img=,690,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554363037_3318_3237657_3.jpg!w690x190.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]13 两亲性甲基丙烯酸酯共聚物[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]13 [/font][font=宋体]Amphiphilic methacrylate copolymers[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][font=宋体] [/font]

  • 寻找转动圆盘~

    电脑放在办公桌上,需要打资料的时候,就必须要坐到显示器所向的位置上面来。有没有一种圆盘,是可以放在显示器下面的,需要用电脑的时候,就可以很方便很随意地转动显示器到任何一个角度呀?

  • 【求助】关于旋转圆盘电极

    请教高手指教:旋转圆盘电极是独立装置吗,可以在所有工作站或恒电位仪上通用吗?旋转环-盘电极有成品卖吗,还是要自行设计?谁有相关资料和图片之类的给偶发一些吧:pfofp@163.com小女子不胜感激!

  • 【讨论】采购遇到了江湖骗子--揭露“北京科伟”和“上海光地”!

    1,北京科伟:马沸炉发给我一台二手马沸炉,我给商家电话,人家说发错了,你把那个递过去,我再给你发一台新的,结果发给我们的是他们给别人维修过的。2,上海光地:鄂式破碎机, 圆盘式研磨机特别是上海光地 做的就不合格,我要求的事密封式鄂式破碎机(锰钢),来了一个不完整的,是铸铁。现在这些设备全无法使用,损失该有谁承担。实验室还等着开工,设备却不能使用。

  • 矿石粉碎设备-TJ-9盘式振动研磨仪

    应用领域² 矿业 煤,矿物或矿石,物理和化学分析样品预处理² 冶金 研磨高炉熔渣、水泥或铸铁样品² 陶瓷工业研磨岩石样品生产原料粉末² 农业和生态学 为土壤,淤泥或蔬果类物质的化学分析制备样品工作原理TJ-9高效实验室振动盘式研磨仪运行是依据振动研磨机的原理,例如,研磨装置被固定在一个自由的振动结构上,在里面的研磨介质(圆片和环)在离心力的作用下加速,通过撞击力、挤压力和摩擦力把研磨材料研磨成粉。研磨装置(由硬质钢、碳化钨或玛瑙制成)在干磨或湿磨过程中是通过嵌入的密封圈密闭的,以于减少损耗主要技术参数如下: 工作电压: 单相220V/50HZ 研磨罐容量: 100-3000ml 时间设定: 0-99h 电机功率: 0.75KW 振动频率: 0~1500rpm 主机尺寸: Φ600 * 800mm 主机重量: 60kg最大进样尺寸: 15 mm最终出样尺寸: 10– 2[font='

  • 【讨论】什么是“粗玻璃圆盘布赫氏漏斗”?

    [em09509]螯合物鉴别检测方法(本实验是鉴别螯合物中未螯合金属离子含量的,是先将样品溶解,再用“粗玻璃圆盘布赫氏漏斗”过滤,收集滤液,进行离子测定。)方法:称取2克样品进行试验。在室温为21℃度时加入150毫升的去离子水并搅拌30分钟。用[color=#DC143C]粗玻璃圆盘布赫氏漏斗[/color]经过过滤,将可溶和不可溶部分分离。然后再用25毫升的去离子水冲洗漏斗内的残渣,并将滤液调节至标准容量(200毫升)。但我有些问题,那“粗玻璃圆盘布赫氏漏斗”是什么漏斗?能把螯合物都过滤出来了?有关于它的具体说明吗?有图片更好。谢谢了具体内容如下:螯合物鉴别检测方法-—离子选择电法 有机微量元素的大量商业化应用因为缺乏良好的产品分析技术而受到较长时间的限制。客户无法测定所购商品的优劣,不得不完全依赖厂家的信誉和从应用现场获得的主观反馈。最后的决定几乎完全受每千克成本的影响。他们的困扰在于他们不能确定是否所购昂贵的螯合铜实质上是廉价的硫酸铜。对于最终用户,即饲料企业来说,具有重大意义的是,最近出现的对螯合物产品质量,有了一种相对简单的检测分析方法,一种迟到了很久的方法。 大多数金属螯合物(金属蛋白或氨基酸螯合物)的生产过程是使用可溶性无机盐作为有机微量元素的来源,通常是硫酸盐与水解蛋白、肽和某种氨基酸,在某种条件下发生反应,再经后处理工艺加工而成。 如果一个金属已与一个水解蛋白或氨基酸螯合,打破这种螯合或将其一分为二是比较困难的。本分析使用了一种温和的溶剂即中性去离子水,来溶解金属蛋白,再检测溶解部分当中分离的自由金属离子的量,即未螯合或弱螯合的量,就可以判定螯合产品的优劣。 方法:称取2克样品进行试验。在室温为21℃度时加入150毫升的去离子水并搅拌30分钟。用粗玻璃圆盘布赫氏漏斗经过过滤,将可溶和不可溶部分分离。然后再用25毫升的去离子水冲洗漏斗内的残渣,并将滤液调节至标准容量(200毫升)。

  • 有没有能把矿石研磨到200目以上的盘式研磨机?

    大家好! 我公司要组建一小型实验室,寻要将矿石研磨到200目以上(最低要求200目),现在市场上是盘式研磨机出料都是在100目(0.15mm),没有能达到200目(0.074mm)的,大家能给我推荐一下吗,我的日处理量在40个,每个样要研磨1kg左右。

  • 【求助】圆盘金电极怎么处理干净啊!!!新手跪求!

    我现在用CHI800b 电化学分析仪,三电极系统(工作电极为圆盘金电极,辅助电极铂丝电极,参比电极为银溶液电极),来制作免疫传感器。想在金电极表面组装一层L-半胱氨酸,但多次实验下来结果好像不太理想! 目前怀疑是电极抛光不彻底,希望高人指点圆盘金电极抛光的方法!另外若有大侠知道检测电极抛光程度的方法的话,阿拉直接拜倒!!!!谢谢~~~~~

  • 【资料】水质浊度的测定透明度测试试管法和圆盘法

    FHZHJSZISO0002 水质浊度的测定透明度测试试管法F-HZ-HJ-SZ-ISO-002水质—浊度的测定—透明度测试试管法1 适用范围透明度测试试管法是半定量的方法,适用于测定纯水和高度污染的水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试试管,防护屏,印刷物样品(白底黑印记),恒定光源。4 过程简述将样品充分混合,转移到透明度测试试管中,平稳的降低样品液面的高度,直至从上方观察可清楚的辨认印刷符号。根据试管上的刻度记录液面高度。5 来源国际标准化组织,ISO 7027:1999(E)FHZHJSZISO0003 水质浊度的测定透明度测试圆盘法F-HZ-HJ-SZ-ISO-003水质—浊度的测定—透明度测试圆盘法1 适用范围透明度测试圆盘法是半定量的方法,适用于测定地表水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试圆盘4 过程简述将圆盘放在链上,放入水中逐渐降低,直至从上方观察几乎看不见。测量链子浸没的长度。重复实验几次。5 来源国际标准化组织,ISO 7027:1999(E)

  • 【分享】织物的耐磨性测定

    织物耐磨性是指织物抵抗与另一物体摩擦而磨损的性能。在服用过程中,织物磨损的受力一般都较小,但作用频繁,而且受磨损的方式与部位因人而异。因此,进行织物耐磨试验时,磨料类型以及磨损方式的选择尤为重要。常用的磨料有砂纸、炭化砂轮、钝刃刀片及特制的橡胶板等。磨损的方式有平磨、曲磨、折边磨、动态磨、翻动磨(更适合针织等)。本试验采用织物平磨仪。1、仪器的结构和工作原理将织物试样在一定条件下与磨料(砂轮)接触并做相对运动,使试样受到多方向的磨损。通过对比织物磨损前后的变化来评价其耐磨性。圆盘式织物平磨仪的结构如图所示:http://www.e-dyer.com/userfiles/image/aaW%2825%29.jpg1——试样 2——工作圆盘 3——左方支架 4——右方支架5——左方砂轮磨盘 6——右方砂轮磨盘 7——计数器 8——开关 9——吸尘装置其工作原理如下:织物试样1 固定在工作圆盘2 上,圆盘以70r/min 做等速回转运动。圆盘上方有两个支架3、4,其上分别装有2个砂轮磨盘5,6,它们可在自身轴上回转。试验时,工作圆盘上的试样与2个砂轮磨盘接触并做相对运动,试样受到多个方向磨损后形成一个磨损圆环。磨盘对试样的压力可通过改变支架上的加压重锤来调节(支架本身的质量为250g)。砂轮有多种类型供选择。此外,还可用吸尘装置9 来自动清除试样表面的磨屑。

  • 【求助】请问知道怎么购买或自制微碳圆盘电极吗?

    [em01] 大家好,我们现在用的是毛细管电泳电化学检测仪,仪器随带的电极无法满足实验要求,所以我们需要一种微碳圆盘电极。但是我们自己制作的效果一直不好,请问各位知道怎么自制或者购买吗?有好的建议希望大家多多发表!非常感谢!!!!

  • WXG-4圆盘旋光仪怎么读数

    买了台WXG-4圆盘旋光仪,不知道这圆盘的游标怎么读数。不知道谁还在使用这种老机器,知道的说下啊,最好能附图,谢了!

  • 【原创大赛】经典再现,拆解33年前WXG-4型圆盘旋光仪

    【原创大赛】经典再现,拆解33年前WXG-4型圆盘旋光仪

    经典再现,拆解33年前WXG-4型圆盘旋光仪 年龄大的分析人员一般都用过圆盘旋光仪测量物质的旋光度,其结构简单、操作维修方便。 早期的旋光仪是手动操作的仪器,因为用手轮转动旋光片(刻度圆盘),被称为圆盘旋光仪。由于精度不高、价格便宜,在一些要求不高的小工厂,或车间中间体检验,还在应用中,网上有销售。现在有些地方的旋光检验员考试,也有圆盘旋光仪操作内容。一、外观及技术指标 国产WXG-4型圆盘旋光仪曾经辉煌一时,下图是目前正在销售的WXG-4型圆盘旋光仪,经典的延续:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271359_524841_1807987_3.jpg技术参数:测量范围: -180°~+180°度盘格值: 1°度盘游标读数值 : 0.05°放大镜放大倍数: 4 倍单色光源波长:低压钠灯 589.44nm试管长度: 200mm,100mm 各 1 支钠灯功率 : 20W工作电流: 1.3A光源稳定时间: 5 分钟电源类型: 220V 50Hz外型尺寸: 500×135×330mm重量: 约 5Kg二、仪器结构WXG-4型圆盘旋光仪结构示意图如下:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271400_524842_1807987_3.jpg今天拆解的主角亮相,一台33年前的WXG-4型圆盘旋光仪,还能正常使用:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271400_524843_1807987_3.jpg仪器铭牌,1981年上海大庆光学仪器厂生产,车间作中间体检验,外观比较脏:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271401_524844_1807987_3.jpg各部位细节:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271401_524845_1807987_3.jpg为了减少读数误差,度盘被设计为左右同时读数,通过左右两个4倍放大镜观察。度盘内圈是定盘,外圈是动盘(带动偏振片同步旋转):http://ng1.17img.cn/bbsfiles/images/2014/11/201411271402_524846_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524847_1807987_3.jpg打开样品镜筒盒盖子,内部放置的是样品管:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524848_1807987_3.jpg取出样品管,检测时,要将被测液体装入管内旋紧:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524849_1807987_3.jpg镜筒盒是黄铜材质的,这是光源端:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271404_524850_1807987_3.jpg这是度盘端:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271404_524851_1807987_3.jpg这是钠灯,灯罩很结实:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271405_524852_1807987_3.jpg取下灯罩,内部是单色光源低压钠光灯,波长为589nm:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271405_524853_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411271406_524854_1807987_3.jpg[

  • WXG-4型圆盘旋光仪镇流器替代更换实验(方法二)

    WXG-4型圆盘旋光仪镇流器替代更换实验(方法二)

    WXG-4型圆盘旋光仪镇流器是非标产品,由各厂家自己绕制。损坏后,买不到配件维修。自行绕制镇流器对材料、工艺技术的要求不低,对大多数人来讲,没有这个能力。只有想办法找替代品进行更换。本人曾用旧40W日光灯电感镇流器替代更换WXG-4型圆盘旋光仪镇流器(见本社区帖子“WXG-4型圆盘旋光仪钠光灯镇流器替代更换实验”[font=times new roman][size=13px] [/size][/font]https://bbs.instrument.com.cn/topic/8118385,称方法一)。下面,再介绍用高压钠灯电感镇流器作为替代品进行更换的方法。一、旋光仪的情况下面这台手动WXG-4型圆盘旋光仪的历史有几十年了,现在的产品没啥变化,还这样:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347580226_7942_1807987_3.jpg[/img]打开底盖,内部就一个镇流器。镇流器内部过热,表面有焦糊现象:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347584082_2663_1807987_3.jpg[/img]仪器的电路图如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347590812_9355_1807987_3.jpg[/img]旋光仪使用的20W低压钠灯参数如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347589775_4336_1807987_3.png[/img]这款圆盘式旋光仪的镇流器采用E型铁芯漏磁变压器,是非标元件,测量其电参数为:直流电阻5.3Ω,电感0.49H,感抗153.93Ω,阻抗159.23Ω。旋光仪工作时,实测电参数为:市电电压222.5V,电流1.33A,功率因数0.13,功率40.59W。二、高压钠灯的情况高压钠灯不陌生,许多城市街道照明采用它。这里只讨论使用电感镇流器的高压钠灯。国产高压钠灯及镇流器有关参数见下面:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347592941_1790_1807987_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347592031_7719_1807987_3.jpg[/img]三、旋光仪镇流器用高压钠灯镇流器替代方案的选择高压钠灯与旋光仪GP20Na低压钠灯工作机理伏安特性是有区别的。根据高压钠灯的参数,灯管工作电压都在90V以上。以70W的高压钠灯为例,灯管电压约90V;而旋光仪GP20Na低压钠灯工作时,灯管电压只有15V。如果将高压钠灯镇流器直接用于GP20Na低压钠灯电路,将会承担更高的电压,电路中的电流会超过镇流器的额定工作电流,引起严重发热甚至烧毁。如果该电流超过了低压钠灯的工作电流,还会致使旋光灯受到损坏。所以,[b]同功率[/b]高压钠灯与GP20Na低压钠灯的镇流器是不能直接互相替代更换的。作为替代品能不能成功,关键是替代后,旋光仪钠灯的工作电流应在1.0A~1.3A范围内。电流过低,钠灯不能启动或亮度微弱无法工作;电流过高损坏钠光灯或超过镇流器本身的额定工作电流,长期超负荷、过热损坏镇流器。根据欧姆定律原理,低压钠灯工作电流=(市电电压-低压钠灯灯管电压)÷线路阻抗,只有选择合适的镇流器(线路阻抗)进行组合,才能替代原低压钠灯镇流器,使灯电流在1.0A~1.3A的工作范围内。经过多次试验,找到飞利浦有一款BSN70L(70W)的DIH灯镇流器,与国产的70W高压钠灯镇流器指标有所不同,额定工作电流为1.2A,可以直接替代使用。有以下两种替代方案:1、选用飞利浦额定工作电流1.2A、功率70W的DIH灯镇流器(型号BSN70L),直接替代,能够胜任旋光灯原镇流器的功能。2、选用飞利浦额定工作电流1.2A、功率70W的DIH灯镇流器(型号BSN70L),再串联1只台式电脑ATX电源用的PFC电感(利旧),替代后,能够胜任旋光灯原镇流器的功能。替代元件图片如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347593388_7031_1807987_3.jpg[/img]特别提醒:国产70W高压钠灯镇流器的额定工作电流为0.98A,不能直接替代使用!!!飞利浦另有一款70W钠灯镇流器,额定工作电流也为0.98A,不能直接替代使用!!!四、方案实验1、第一种方案选用飞利浦BSN70L(1.2A/70W)高压钠灯镇流器,直接替代原旋光仪镇流器,用仪表测量出它们的电参数(表一):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347596544_4774_1807987_3.png[/img]旋光仪镇流器替代前后的实测工作数据(表二):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347595468_3478_1807987_3.png[/img]经实测,镇流器替代后,旋光仪低压钠灯工作电流为1.21A,与70W高压钠灯镇流器的额定工作电流1.2A相当,旋光灯能够正常工作。工作1小时后,镇流器表面温度约90℃左右,没有超过130℃。2、第二种方案如果嫌直接替代使用的发热量较高,可将飞利浦70W高压钠灯镇流器与1只电脑台式机ATX电源用的PFC电感串联后,替代旋光仪原镇流器。替代后的电路图(2)如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347596455_9815_1807987_3.jpg[/img]替代元件的电参数如下(表三):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347599845_34_1807987_3.png[/img]旋光仪镇流器替代前后的实测数据(表四):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041348001320_3276_1807987_3.png[/img]经实测,按照第二种方案进行镇流器替代后(表四),低压钠灯工作电流为1.05A,也没有超过70W高压钠灯镇流器的额定工作电流1.20A,旋光灯能够正常工作,镇流器温度较低。六、其它替代方案如果手头有其它国产品牌高压钠灯镇流器,建议的方案:①用70W高压钠灯镇流器+2只ATX电源PFC电感串联;②用两只150W高压钠灯镇流器串联;来替代旋光仪原镇流器,效果也不错。结语:高压钠灯电感镇流器市场上销售量大,价格不高,比较适合作为旋光仪镇流器的替代更换品。第一种办法,使用1只飞利浦(1.2A/70W)高压钠灯镇流器直接替代原旋光灯镇流器,方便快捷,成本不高,可以内置。缺点是镇流器电流满负荷运行,温度较高。第二种办法,使用1只飞利浦(1.2A/70W)高压钠灯镇流器,再串联1只ATX电源PFC电感,优点是镇流器电流低、发热低,长期稳定工作。缺点是体积稍大、占地方,适合外置。可结合具体情况,选用其中一种替代办法。

  • 【原创大赛】常见实验室研磨仪简要比较

    常见实验室研磨仪简要比较近年来,随着科研工作的进度日益加快,实验室基础工作量不断加大,这就使得以往人工的工作不得不用机器来替代,以样品研磨来说,最传统的方式是通过研钵来处理。无论是哪种类型的实验室,研钵都是最为常见的工具。在处理少量样品和一些粗放条件的样品时,研钵可以满足基本要求,但目前很多实验室的样品量都在日益增大,而且样品相互之间的独立性也要求更高,用研钵去处理时,一是工作量十分巨大,再者很难保证样品之间没有交叉污染,使得工作效率和效果都不理想。实验室研磨仪出现很好的解决了这一矛盾。 最初的研磨仪是工业化的产物,都是大型机械。实验室研磨仪问世最多不过十几年的时间,而进入国内实验室的时间就更短了,真正开始普及的时间也就是近三年的时间,虽然时间短,但目前已经有很多类型、多种型号的实验室研磨仪出现,并且不断还有新的产品涌现。 目前的实验室研磨仪种类繁多,但基本上都是利用研磨珠高速运动,与样品发生碰撞摩擦,最终达到将样品粉碎、均相化的目的。大致可以分为三个类型(分类主要依据振荡方式),本文着重会对这三个类型的实验室研磨仪进行比较。 第一类,垂直振荡式这一类实验室研磨仪最早应用在种子检测行业中,因为种子检测的研磨量通常是非常大的,每个品种的种子都要有至少100个重复才行,如果用研钵人工去处理,工作量可想而知。最著名的代表是美国的一个品牌,国内也有几家采用了同样的方式。垂直振荡的研磨仪的优点是通量可以很大,最多可以同时处理4×96个样品,对于那些样品繁多的实验室无疑是很好的帮手。但由于其运动方式及结构的限制,也给其使用上带来了一些不便,因为其是垂直运动的,所以其机身为立式结构,为了稳定重心,底部会比较重,另外也是由于其垂直运动的方式,会产生纵向的振动,这就使得其不太适合放置在台面上工作,而其操作面板又处于下部,就令使用者需要蹲下或弯腰才能操作按键,如果多次重复,还是会造成疲劳。故不是很适合实验台上的使用。 第二类,水平往复振荡式这类实验室研磨仪最早是由德国的一家研磨仪厂家推出的,这个厂家大多数产品都是集中在工业领域,但其设计的实验室研磨仪却也很专业,其很巧妙的利用了水平相对运动的方式来进行研磨,这样既使仪器的结构可以扁平化,不占空间,而且一对摇臂同速相对运动刚好可以把作用力抵消,加之又是水平方向的运动,故不会产生纵向振荡波,很适合放置在实验台上,不会影响其他设备。水平振荡式研磨仪的摇臂是在仪器正前方的位置,因此工作时的状态可以一目了然,但噪音也会相对更直接的传出,随着国内厂家对于电机的改进,将有刷电机变为无刷电机,噪音也得到了较好的改善。水平振荡的研磨仪由于相互作用力同等,故其可以使用更大的容器——研磨罐,因为研磨罐一般为硬质金属,质量较大,如果采用其他运动方式都需要克服其自身的重力效应,而使得研磨效果不好以及影响仪器的寿命。因此,水平研磨仪的适用范围因有研磨罐而宽泛了许多,也许这也是因为研磨仪的厂家希望能够兼顾一些工业应用吧。随着实验室的应用增多,特别是冷冻研磨的应用,人们发现水平研磨仪的另一个好处就是冷冻操作的便利性和安全性,方便性在于适配器的安装很简单,只需要旋紧旋钮夹紧适配器即可,无需上额外的夹具,这就节省了许多时间,更大程度的保证预冷效果。而安全性则体现在冷冻研磨后冷凝水只会在仪器前部摇臂周围存在,而不会向后流到仪器内部,这也就保证了内部电机的绝对安全。因此这类研磨仪对于生物实验室用途来说更为适合,应用也比较广泛。 第三类,三维(也称八字型)振荡式这类实验室研磨仪的代表是美国的一家试剂公司为配合其提取试剂所推出的。其运动方式不同于前两种的往复式运动方式,是一种类似于涡旋振荡的运动,因此这种研磨仪可以达到很高的转速,但受其结构的限制,其通量并不能达到很高,而且其研磨管一般为专用的耗材,主要是因为其适配器是盘式结构,研磨罐是卡在上面的。普通的样品管在高速震荡过程中会从适配器上松脱甚至破裂。专用管子的好处就是质地较硬,样品可以很好的进行研磨。八字型研磨仪由于主要是配合试剂来使用,故在设计上没有太考虑到冷冻研磨的需求,其适配器不能够放入液氮环境中预冷,其降温的方法是通过冷冻护罩给腔体降温,但温度一般是在0℃左右,这也使得其不太适合植物组织的干磨处理。但动物组织的湿磨效果还是比较理想的。因此这类研磨仪在一些动物以及医学研究的实验室比较常见。简而言之,垂直振荡的研磨仪体积较大,通量最高;水平振荡研磨仪操作方便,适应性广;八字振荡研磨仪速度最快,适合湿磨。这三类研磨仪都是实验室中可以见到的,每个类型的研磨仪都有自己的用武之地。从仪器的成本上看,进口实验室研磨仪大致价位都在10万以上,国产的则在3-6万左右,技术与质量上国产实验室研磨仪虽然时间比进口推出的要短,例如垂直式国内第一台大约已有5年左右,水平式实验室研磨仪国内第一台(北京鼎昊源)大约只有3年左右,但因技术难度不高,差距实际上是很小的,真正的差距更多的是在操作感受的细节、应用经验的丰富等方面。最终的选择就要结合实验室的需求与预算综合考虑了。

  • 臼式研磨仪特点说明

    [url=http://www.f-lab.cn/grinders/pmg-100.html][b]臼式研磨仪[/b]PMG-100[/url]用于可重复的研磨,均质和混合在干燥,潮湿或低温条件的固体材料,[b]臼式研磨仪[/b]通过研磨槌与研磨碗之间的压力和摩擦力来实现样品的粉碎。适用于中等硬度到柔软样品的研磨。是制药、食品、化学制品、冶金、玻璃、陶瓷行业的样品,以及矿石和[b]土壤样品粉碎研磨[/b]的理想[b]研磨仪器[/b]。[b]臼式研磨仪特点[/b]:用于研磨,均质和捣碎[b],[/b]是实验室样品制备的理想工具,非常适合任何干燥样品磨碎,霜剂和膏剂的均质。一般地,8-10mm的样品可研磨成200ml左右的粒径为10-20微米的粉末。既可以干磨,也能够湿磨,选用不锈钢研磨组件时还可以冷冻研磨。样品通过顶部的进料窗倒入研钵和杵头之间的粉碎区。样品被研钵的内表面和杵头的底部粉碎和搅拌。在实验室样品制备领域非常重要,可用于任何干性物质的高精度研磨,和不同的粘稠度的悬浊液的分析,质量控制,样品测试等应用。尤其适合膏状物和糊状物的均质化。考虑到将最后的精度与压力所匹配及随时中止制样的要求,臼式研磨仪装配了可调节刻度的顶端压力机械装置,速度在 50-130转/分钟范围可调及灵活的刮板设置。由于这三个重要的可调节性能的综合,使广泛样品制备任务能够达到要求。当研磨处理过程结束,研钵和杵头能 被取出,可以快速方便的清洗。[img=臼式研磨仪]http://www.f-lab.cn/Upload/PMG-100.jpg[/img]更多研磨仪:[url]http://www.f-lab.cn/grinders.html[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制