当前位置: 仪器信息网 > 行业主题 > >

荧光成像相机

仪器信息网荧光成像相机专题为您提供2024年最新荧光成像相机价格报价、厂家品牌的相关信息, 包括荧光成像相机参数、型号等,不管是国产,还是进口品牌的荧光成像相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光成像相机相关的耗材配件、试剂标物,还有荧光成像相机相关的最新资讯、资料,以及荧光成像相机相关的解决方案。

荧光成像相机相关的资讯

  • 满足明场和荧光成像需求,鑫图发布新一代高灵敏彩色sCMOS科学相机Dhyana 400DC!
    近年来,鑫图全力进入sCMOS相机的开发,全方位进行相关的软硬件、算法集成等前瞻性基础研究工作, Dhyana作为鑫图高端sCMOS相机品牌,推出后受到各界人士广泛关注! 400DC是鑫图采用最新彩色sCMOS图像传感技术,结合核心色彩还原算法,推出的新一代彩色科学相机,能同时满足明场高质量色彩还原的需要,又极大拓展了色彩在荧光等暗场成像中的应用可能。 不仅如此,为满足高端科研需要,400DC同时提供诸如高速录像、荧光合成实时预览等多种高级图像处理功能!最高可达2000fps的快速录像,就算是单分子荧光自旋成像如此超高难度的挑战,也能游刃有余! 鑫图致力于为每一位用户发掘科学摄影的无限潜力, 400DC是鑫图继高灵敏科学级CMOS黑白相机后,为满足更多色彩应用需求开发的又一诚挚之作,科研级的灵敏度、极低的噪声,卓越的动态范围以及完美色彩还原能力为科学影像带来了迄今最高品质的真实色彩体验!
  • “细致入微”的荧光成像,荧光与相机的结合——光谱新品大观
    p style="text-indent: 2em text-align: justify "strong仪器信息网讯/strong 为了更全面的展现BCEIA上展出的光谱新产品、新技术,仪器信息网特别开设BCEIA之光谱新品大观系列视频,为大家分享各家厂商光谱新产品及新技术相关信息!/pp style="text-indent: 2em text-align: justify "会展期间,日立高新技术公司带来了其全新的荧光分布成像系统,仪器信息网特别来到了日立高新的展位,其产品专员曹亚南为我们详细介绍荧光分布成像系统的技术特点,以及未来可发展的应用领域。/pp style="text-indent: 2em text-align: justify "详细视频如下:/pscript src="https://p.bokecc.com/player?vid=BF315C01A626CA1A9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/script
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 国内首套芬兰SPECIM植物荧光高光谱相机AisaIBIS于河北省科学院成功安装并顺利验收
    2017年3月中旬,中国套芬兰SPECIM植物荧光高光谱相机AisaIBIS在河北省科学院地理科学研究所孙雷刚老师课题组成功安装并顺利验收,这次安装也受到了国内植物荧光研究领域的专家学者的高度关注,林业局、中科院遥感所以及北京师范大学等机构的专家亲临现场,指导参观。地理科学研究所孙雷刚老师(左三)进行植物荧光高光谱相机AisaIBIS功能体验 欧洲太空局(ESA)有一项地球探测计划“荧光探测任务”FLEX。这个计划旨在提供全球植被荧光图,用于探测植物的光合作用活力。作为此计划的子任务,ESA需要一个新型探测相机。芬兰SPECIM和德国的尤里希研究中心针对此项计划合作研发出植物荧光高光谱相机AisaIBIS。这款相机可以根据夫琅禾费荧光探测法的原理进行太阳诱导荧光的探测,微弱的荧光信号在670-780nm这段特定光谱区间中的两个氧气吸收波谷处被探测出。通过运用SPECIM的高透光率(F/1.7)的成像光谱仪以及新型的摄像探测技术SCMOS,即使快速成像的飞行状态中,AisaIBIS在拥有超高的光谱采样精度(0.11nm)和好的成像质量的同时,也具有低噪声,高动态采集范围以及的信噪比的优点。因此,这款高光谱成像仪可以在地面或空中对小到一片叶子大到整个生态系统进行光合作用活性探测。河北地理所AisaIBIS安装培训现场 河北地理所的孙雷刚老师将使用AisaIBIS着重研究地面农作物生长状态,通过检测农作物不同阶段、不同时间的荧光数据,建立生长状态预测模型,在植物荧光领域进一步开拓研究。孙老师对芬兰SPECIM及QDC工程师在高光谱领域的专业性以及对待工作高度敬业的态度表达了赞赏,我们也祝愿孙雷刚老师在未来的科研工作中取得更多的成就。相关产品链接:芬兰SPECIM高光谱航空遥感成像系统http://www.instrument.com.cn/netshow/SH100980/C160539.htm芬兰SPECIM工业高光谱相机http://www.instrument.com.cn/netshow/SH100980/C265811.htm更多产品信息请到公司在本站内主页:QUANTUM量子科学仪器贸易(北京)有限公司http://www.instrument.com.cn/netshow/SH100980/
  • 日立发布荧光分布成像系统新品
    一、荧光分布成像系统(EEM View)简介 作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到日立F-7000/71000荧光分光光度计的样品仓内。入射光经过积分球漫反射后均匀照射到样品,利用荧光光度计标配的荧光检测器可以获得样品荧光光谱,积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光成分图像。 二、 荧光分布成像系统特点: 1. 可以全面测定样品的光谱数据(反射光、荧光特性)在不同光源条件下(白光和单色光)拍摄样品图像,(区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm),同时利用先进的光谱算法,分别显示荧光图像和反射图像, 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)2. 样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具荧光分布成像系统是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。荧光分布成像系统
  • 日立发布荧光分布成像系统新品
    1. 荧光分布成像系统(EEM View)简介作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到F-7100荧光分光光度计的样品仓内。入射 光经过积分球的漫反射后均匀照射到样品,利用F-7100标配的荧光检测器可以获得样品荧光光谱,结合积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光图像。 2. 荧光分布成像系统特点:? 测定样品的光谱数据(反射光、荧光特性)? 在不同光源条件下(白光和单色光)拍摄图像 (区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm)? 利用自主研发的分析系统1),分开显示荧光图像和反射图像? 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)1) 国立信息学研究所 佐藤IMARI 教授?郑银强副教授共同研究成果荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具总结以上为荧光分布成像系统的特点和功能结束,这是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。荧光分布成像系统
  • 日立新品!荧光分布成像系统---测定万圣节贴纸
    日立新品!荧光分布成像系统---测定万圣节贴纸刚刚过去的BCEIA大会,日立发布了全球独创的荧光分布成像系统(EEM View),今天就用它来测定万圣节必不可少的南瓜贴纸。EEM View是日立全球首创在荧光分光光度计中加入CMOS相机的系统,能够同时获得样品的图像和光谱信息,突出亮点是可以获得样品图像任意区域的光谱性能。南瓜贴纸光谱信息鉴赏各式各样的南瓜贴纸中含有大量荧光粉,众所周知,这种贴纸暴露在黑暗中会发出荧光。图1所示便是这次鉴赏南瓜头贴纸的荧光分布成像系统,从图中可以清晰看到新附件的结构,CMOS相机位于积分球下方,样品安放在积分球上方,入射光经过积分球漫反射获得均匀光源,激发样品产生荧光。更多详细信息请点击:https://www.instrument.com.cn/netshow/sh102446/s913511.htm总结一般的荧光分光光度计测得的是样品区域表面平均化后的信息,只能获得一条荧光光谱,而日立荧光分布成像系统能够同时获取样品不同位置的光谱信息,有利于探究样品表面的光学性能分布。日立高新技术以‘让世界充满活力’为宗旨,致力于新技术的融合与开发,这次推出的新品荧光分布成像系统将对油墨、材料、化工、涂料以及LED等领域带来新的启发,新的探索方法。
  • 无创荧光显微技术能为大脑深度成像
    来自瑞士苏黎世大学和苏黎世理工大学的研究人员开发出一种称为漫反射光学定位成像(DOLI)的新技术,利用它可以高分辨率、无创观察活体小鼠大脑深部的微血管。该技术具有卓越的分辨率,可看到深层组织,为观察大脑功能提供了强大的光学工具,在研究神经活动、微循环、神经血管耦合和神经退化方面具有广阔的应用前景。相关研究发表在近日的美国光学学会期刊《光学》上。  这种技术利用了1000—1700纳米之间的第二近红外(NIR-Ⅱ)光谱,这一范围光谱的散射较少,可使显微荧光成像的深度达到光扩散深度极限的4倍。  在各种疾病的动物模型中,荧光显微镜经常被用来对大脑的分子和细胞细节进行成像。但此前,由于皮肤和颅骨的强烈光散射影响,荧光显微镜仅限于小体积和高度侵入性的操作。此次研究首次表明,3D荧光显微镜可帮助科学家以非侵入性方式,高分辨率地观察成年小鼠大脑。该显微镜有效覆盖了大约1厘米的视野。  研究人员首先在模仿人体平均大脑组织特性的组织合成模型中测试了这项技术,证明他们可以在光学不透明的组织中获得最深达4毫米的显微分辨率图像。然后,他们在活小鼠身上测试了这项技术。他们给活小鼠静脉注射了荧光微滴,追踪这些流动的荧光微滴可以重建小鼠大脑深部微血管的高分辨率图。观察发现,借助DOLI技术可以完全无创地观察到脑微血管以及血流的速度和方向。  研究人员表示,这种方法消除了背景光散射,并可在头皮和头骨完好无损的情况下进行。他们还观察到相机记录的斑点大小与微滴在大脑中的深度有很大的关系,这使大脑深度分辨成像成为可能。  “在生物医学成像领域,实现深部活体组织的高分辨率光学观测是一个长期的目标。”研究小组组长丹尼尔拉赞斯基说。  现在,研究人员正在努力优化DOLI技术,以提高其分辨率。他们还在开发改进的荧光剂,这些荧光剂更小、荧光强度更高,且在体内更稳定,这将大大提高该技术在清晰度和成像深度方面的性能。
  • 荧光分布成像系统(EEM View)观察荧光体树脂片
    目前,照明灯和液晶显示屏的背光源均采用白色LED灯。因此,为了进一步提升产品性能,Mini LED背光源和Micro LED显示屏的研发正在紧锣密鼓的进行中。荧光分布成像系统(EEM View)是能够同时获取样品图像和光谱信息的新附件。入射光通过照射积分球内壁,获得均匀光源,进而观察样品。利用F-7100标配的荧光检测器可以获得荧光光谱,结合积分球下方的CMOS相机装置拍摄图像,并利用AI光谱处理算法,可以同时得到反射和荧光图像。相信未来EEM View会在LED零配件内的荧光体光学特性评价中得到广泛的应用。1. 荧光体树脂片(50 mm×50 mm)的荧光特性此次实验测定了在面发光LED中使用的荧光体树脂片。对样品照射360~640nm的单色光,得到了样品特有的荧光特性。EEM View模式下,可同时获得不同光源条件的样品图像。通常,白色LED灯发光原理是采用蓝光LED发光二极管在455nm附近激发荧光体,产生580~650nm的黄色荧光,从而与LED发出的蓝光混合形成白光(图1)。由图2、图3可以看出,此次测定的样品荧光体树脂片,在455nm附近被蓝光LED灯激发,发出相当于625nm的黄色荧光。图1 白色LED发光原理 图2 三维荧光光谱图3 激发光谱和发射光谱2. 荧光体树脂片的分布均匀性确认 荧光成分图像 荧光成分图像 (分布不均匀区域) (分布均匀区域) 图4 树脂片的图像和光谱图4为树脂片的荧光成分图像,左边是荧光体分布不均匀区域的荧光图像和光谱,右边是荧光体分布均匀的荧光图像和光谱,从荧光图像中可以看出荧光体的分布情况。此外,通过不同位置计算出的荧光光谱,可以发现树脂片不同位置的荧光强度存在差异。对于荧光体分布不均匀的树脂片(左图),它的中心位置亮度偏高。而且从荧光光谱中可以看到,3个位置的荧光光谱峰值荧光强度最 大偏差15%。荧光分布成像系统是全球首创的新技术,它将有助于获得研发和应用领域的多方面信息表征,密切关注日立高新技术公司官网,更多应用持续更新中。
  • 勤翔推出冷却CCD荧光及化学发光成像系统
    ClinxChemiScope系列荧光及化学发光成像系统是一款同时适用于荧光成像分析及化学发光成像分析的仪器。系统选用高分辨率数字冷却CCD相机结合高通透镜头系统,使其能够捕获到信号极其微弱的荧光及化学发光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。激发光源及滤光片可根据用户的不同需求进行定制,扩大了荧光/化学发光成像的应用范围,是目前用于生命科学领域中功能性最强、性价比最高的研究工具之一。 随着生物科研的日益广泛和深入,客户对荧光及化学发光分析的检测仪器的需求愈来愈多,要求也越来越高。针对目前国内高端化学发光成像系统基本依赖进口的现状,我们自主研发生产了高性价比的ChemiScope系列荧光及化学发光成像系统,无疑为我们中国的生物科研人员提供了更好的选择。
  • 睿光科技发布NirVivo系列 近红外二区活体荧光成像系统新品
    非凡的成像性能评价小动物活体荧光成像系统的关键要素——所选用相机的性能水平。NirVivo系列采用深度制冷科学相机产品,CCD制冷温度(-90℃)和InGaAs制冷温度(-80℃),基于这样的硬件配置,系统具备了高灵敏度的生物发光及荧光成像性能,同时能够满足微区成像和血管动态成像。全面而先进的荧光成像解决方案高透光率滤光片为了实现高品质的荧光成像系统,NirVivo配置了丰富且优质的荧光滤光片,光谱覆盖包括从VIS至NIR I区,NIR IIa区至NIR IIb区的全部区域,并且所有滤光片均采用硬涂层技术,在保证高透光率(95%以上)的同时具备长寿命耐损伤品质。系统内部构造及组成成像暗箱● 高避光性成像箱体● 高度整合的荧光成像组件● 用于维持动物正常体温的加热载物台● 用于控制载物台升级、滤光片轮切换的电动马达● 内置的气体麻醉接口● 电磁门锁● 可滑动脚轮CCD相机● 高量子效率背照式、科学一级CCD探测器● 像素尺寸13.5um,分辨率2048x2048● 高动态范围16 bit数字转换器● 帕尔贴型制冷,制冷温度-90℃,保证极低的暗电流● 曝光时间可达60分钟InGaAs相机 ● 高量子效率InGaAs探测器 ● 像素尺寸15um,分辨率640x512 ● 高动态范围16 bit数字转换器 ● 帕尔贴型制冷,制冷温度-80℃,保证极低的暗电流● 曝光时间可达5分钟半导体激光器 ● 808nm, 980nm和1064nm可选 ● 激光输出功率15W(可定制其它功率) ● 支持高重频调制工作参考型号系统型号NirVivo-LiteNirVivo-ProNirVivo-MIX成像光谱范围900-1700nm900-1700nm400-1700nm芯片类型InGaAs, TE1制冷InGaAs, TE4制冷CCD和InGaAs,TE4制冷芯片工作温度15℃-80℃-90℃ CCD芯片-80℃ InGaAs芯片芯片尺寸9.6mm x 7.7mm9.6mm x 7.7mm27.7mm x 27.7mm像素数量640 x 512640 x 5122048 x 2048640 x 512量子效率70% @1000-1600nm70% @1000-1600nm85%@500-700nm70% @1000-1600nm像素尺寸15um x 15um15um x 15um13.5um x 13.5um CCD15um x 15um InGaAs镜头1x, 2.5x, 5x, (8-50)x1x, 2.5x, 5x, (8-50)x1x, 2.5x, 5x, (8-50)x读出噪声(RMS)30e- 30e-2.3e- CCD芯片30e- InGaAs芯片暗电流60Ke-/p/s@15℃100e-/p/s@-80℃0.0001e-/p/s@-90℃100e-/p/s@-80℃激发滤光片数量449发射滤光片数量449加热恒温载物台有有有气体麻醉接口有有有计算机及软件有有有成像暗箱内部尺寸45 x 50 x 65cm载物台温度 20 - 40℃电源要求100-240 VAC, 50-60 Hz工作温度 0 - 50℃创新点:采用-80℃深度制冷的红外探测器,独特的光路设计,可以选择三种不同的激光波长进行测量,双相机设计,兼容了从可见光,近红外一区到近红外二区的全谱段小动物荧光成像应用的需求,属于业内领先的设计及系统。NirVivo系列 近红外二区活体荧光成像系统
  • 免疫荧光显微成像详解(上)——免疫荧光原理、步骤
    前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。 4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话最好立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
  • 长光辰英超快三维荧光成像系统亮相蓉城,助力科研产出新速度
    近日,长光辰英S3000超快三维荧光成像系统,在成都四川大学生物治疗国家重点实验室装机试用,S3000凭借其快速共聚焦切片成像的核心特点,受到众多老师关注,争先申请试用。试用现场,产品经理对成像原理进行详细讲解,演示系统操作流程,并为试用过程中老师遇到的问题进行一一解答。川大重点实验室王老师:“将原来一整天的拍摄时间缩短到2个小时以内,这样的拍摄效率,要得”。S3000超快三维荧光成像系统,软件易学易用,操作简单。节省了共聚焦层扫的宝贵时间,提升实验效率及科学产出,更好地助力科研工作。S3000超快三维荧光成像系统由快速三维扫描狭缝转盘模块、高分辨率高灵敏度相机、大功率低光毒性LED荧光激发光源及自动化显微镜主机构成。超快共聚焦成像。采用结构光转盘技术,光通量比针孔式转盘提高数倍,允许LED激发光源共聚焦成像 根据相机配置、成像度可达30-50帧/秒 三种切片模式自由切换,实现快速成像和高质量成像的结合。全谱段探测。一个LED光源可应对全谱段检测应用,激发光:370-700 nm,发射光:410-750 nm 覆盖常见荧光染料的光谱范围 4位滤光块转轮,通道切换时间小于0.2s,滤光块免工具更换,可实现4+N多通道荧光拍摄。模块化设计。采用紧凑的共聚焦光路设计,仪器外形更小巧 无需庞大空间也可安装,共聚焦模块可灵活耦合在正置、倒置、体式等各种显微镜上,适应不同应用场景。高可靠性及可扩展性,兼容已有成像设备,让科学工作者从仪器维护中释放出来,把更多时间投入到科学研究本身。该仪器在四川大学生物治疗国家重点实验室试用展示一周后,还将在华西口腔医院及四川大学生命科学学院分别做试用演示。届时欢迎想了解的老师及经销商同仁莅临观摩试用。样片showtime小鼠神经突触 60X NA1.4 oil给药细胞 60X NA1.4 oil果蝇脑神经元 40X NA 0.95
  • 科适特2018年第I期荧光显微成像技术培训班顺利举办
    科适特2018年第I期荧光显微成像技术培训班顺利举办多年来,广州科适特科学仪器有限公司一直致力于为广大科研客户提供专业的显微成像产品和技术服务,2018年5月12日在科学城“科适特实验仪器服务中心”举行了2018年第I期显微成像技术培训班,参加培训人员大约50人,来自中山大学医学院,中山大学生科院,中山大学公共卫生学院,华南师范大学,华南理工大学,中山大学第三附属医院,中山大学附属眼科医院,暨南大学,珠江水产研究所,广州市脑科医院,中科院南海海洋所,广东省生物资源应用研究所,东莞东阳光药业等单位的技术人员参加了此次培训,培训过程中我们介绍了显微镜基础理论,激光共聚焦/荧光显微镜样品制备,共聚焦使用常见问题,高端显微图像三维处理及展示软件,各种细胞显微实验方法(血管生成,活细胞流体实验,细胞趋化,伤口愈合实验)介绍,显微镜活细胞培养装置,流体剪切力系统及灌流实验,上机培训了常见荧光显微镜的操作和显微成像软件相机使用,此次培训得到参加人员的高度认可,我们也将根据客户的反馈意见,完善我们的培训内容和培训安排,争取为广大用户的科研工作提供更好的服务和支持.如果有兴趣的老师和显微镜用户对培训感兴趣可以联系我们,报名参加2018年第II期显微成像技术培训班。感谢大家对我们工作的支持和积极的参与,期待着与您再次相会.
  • 卫星干涉成像光谱仪和CCD立体相机通过鉴定
    由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。  以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干涉光谱成像技术,在国际上首次对月球成功实施了可见-近红外宽谱段连续光谱及光谱图像探测,是国内首台成功应用的星载干涉成像光谱仪 该仪器具有很高的信噪比(S/N)与调制传递函数(MTF),是一台集光、机、电、算为一体的高端光学遥感设备 该项目在“行平场”、“不同光谱仪的对比方法”、“干涉仪胶合时剪切量的精密控制”以及“具有特色的付氏光学系统设计”方面形成一批自主知识产权,申请发明专利四项,已授权三项 该仪器成功应用于嫦娥一号探月卫星,获取了全月面79%区域清晰的多光谱图像,是国际上第一次获取480nm-960nm范围的32谱段的连续光谱和图像,为月球科学家研究月表物质成份提供了具有自主知识产权的原生信息源,并产生了大量的应用成果。  以杨元喜院士为组长的专家鉴定委员会认为,嫦娥一号卫星CCD立体相机优化集成了光、机、电等高新技术,确保了月面高精度成像和摄影测量,获得了与国外现有月球图像相比更为清晰、层次更加丰富的全月面图像 该相机采用广角、远心、消畸变光学系统及带有掩模板的面阵CCD立体成像等技术,有效减小了附加曝光影响、系统体积及定标压力 相机的立体成像系统具有高的信噪比(S/N)与调制传递函数(MTF) CCD立体相机已经成功应用于嫦娥一号探月卫星工程,申请发明专利2项(公开中),授权实用新型1项,为月球科学家研究月球的地形地貌与地质学构造提供了具有自主知识产权的原生信息源,产生了大量的应用成果。  鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪和CCD立体相机总体水平为国际先进,并建议这些技术在国防、民用及深空探测等领域进一步推广应用。
  • SPECIM发布世界上成像速度最快的高光谱相机-FX 10
    2016年6月15日,芬兰SPECIM(Spectral Imaging Ltd.)正式发布上成像速度快的高光谱相机FX系列-FX 10。新产品FX 10 为可见光近红外波段VNIR(400-1000nm)高光谱相机,具有高灵敏度和高信噪比,灵活的波段选择使相机速度快可达9900FPS(frames per second),十分适合高速的工业生产应用。芬兰SPECIM公司FX10样机展示1、相机简介 i.成像速度快,具有快速光学结构:全谱段采集速度为330行/秒,选择波段采集速度高可达9900行/秒ii.采集方式灵活,波段可选:即可选择采集400-1000nm的全部220波段,也可选择感兴趣的任一波段iii.光谱数据稳定,每个相机数据相同:每个FX10相机经过相同方式标定,提供相同的光谱数据iv.结构紧凑小巧,操作简便:相机大小为150*85*71mm(L*W*H),重量仅为1.4kg2、相机性能参数 Spectral Range400 – 1000 nmSpectral Bands220Spatial Sampling512 pxFrame Rate330 FPS with full 220 bands selectedMore than 9900 FPS with 1 band selectedFOV40 °ApertureF/1.7SNR (Peak)600:1Camera InterfaceCameraLinkGigE (coming at the end of 2016)Weight1.4 kgDimensions150 x 85 x 71 mm FX 10 高光谱相机的发布,揭开了高速的工业流水线生产新的篇章,为光电探测、食品分拣、废固回收等工业应用提供了新的选择。了解详细配置及报价,请致电010-85120280。 相关产品: SPECIM高光谱航空机载系列:http://www.instrument.com.cn/netshow/SH100980/C160539.htmSPECIM高光谱化学成像系列:http://www.instrument.com.cn/netshow/SH100980/C160497.htmSPECIM高光谱矿石成像系列:http://www.instrument.com.cn/netshow/SH100980/C160538.htmSPECIM高光谱艺术品成像系列:http://www.instrument.com.cn/netshow/SH100980/C237971.htm
  • 显微镜技术新跨越:无标记、两次曝光、改造荧光成像
    2021年伊始,显微镜技术也迎来新的跨越。光物理学家开发出一种新方法,利用现有显微镜技术,无需添加染色剂或荧光染料,就能更详细地观察活细胞内部。这是一种荧光寿命显微镜技术,能够使用频率梳而不是机械部件来观察动态生物现象。其中一项研究的领导者、日本东京大学光子科学与技术研究所副教授Takuro Ideguchi表示,“我认为无标签技术将是一个重要的研究方向。特别是以无标签的方式对细胞内外病毒和外来体等小颗粒进行测量的技术将是未来成像设备的一个趋势。”更大范围 更小相位变化由于单个细胞几乎是半透明的,因此显微镜照相机必须能探测到穿过部分细胞的光线的极其细微的差异。这些差异被称为光的相位。相机图像传感器则受到它们能检测到的光相位差的限制,即动态范围。“为了使用同一图像传感器看到更详细的信息,我们必须扩大动态范围,这样就可以探测到更小的光相位变化。”Ideguchi说,“更大的动态范围允许我们测量小型和大型的相位图像。例如,如果测量一个细胞,细胞的主干会产生大的相位变化,而细胞内的小颗粒/分子会产生小的相位变化。为了使两者可视化,我们必须扩大测量的动态范围。”该研究小组开发了一种技术,通过两次曝光分别测量光相位的大小变化,然后将它们无缝连接起来,制造出详细的最终图像。他们将这种方法命名为自适应动态范围偏移定量相位成像(ADRIFT-QPI)。相关论文近日发表于《光:科学与应用》。一直以来,定量相位成像是观察单个细胞的有力工具,它允许研究人员进行详细的测量,比如根据光波的位移跟踪细胞的生长速度。然而,由于图像传感器的饱和容量较低,该方法无法跟踪细胞内及周围的纳米颗粒。而新方法克服了定量相位成像的动态范围限制。在ADRIFT-QPI中,相机需要两次曝光,并产生一个最终图像,其灵敏度是传统定量相显微镜的7倍。两次曝光 告别光毒第一次曝光是用常规的定量相位成像产生的——平的光脉冲指向样品,并在它通过样品后测量光的相移。计算机图像分析程序基于第一次曝光的图像,快速设计一个反射样品图像。然后,研究人员用一个叫做波前整形装置的独立组件,用更高强度的光产生一种“光雕塑”,以获得更强的照明,并向样品发出脉冲,进行第二次曝光。如果第一次曝光产生的图像是样品的完美代表,第二次曝光的雕刻光波将以不同的相位进入并穿过样品,最终只能看到一个黑暗的图像。“有趣的是,我们在某种程度上抹去了样本的图像。实际上,我们几乎什么都不想看到。我们去掉了大的结构,这样就能看到小的细节。”Ideguchi解释道,由于第一次测量中存在较大的相位对象,受动态范围的限制,无法对较小的相位对象进行可视化,研究人员称之为“洗掉”。他们需要第二次测量观察动态范围移位的小相位物体的细节。此外,该方法不需要特殊的激光、显微镜或图像传感器,研究人员可以使用活细胞,而且不需要任何染色或荧光,出现光毒性的可能性很小。光毒性是指用光杀死细胞,这也是其他成像技术如荧光成像面临的一个问题。另一篇论文的通讯作者、日本德岛大学Post-LED光子学研究所教授Takeshi Yasui指出,在传统的激光扫描共焦显微镜中,强激发光聚焦在一个焦点上,并对焦点进行二维机械扫描,使光毒性的影响较强。 Yasui等人的荧光成像新方法中,激发光被聚焦为一个二维焦点,因此每个焦点的光强度变得非常弱。“光毒性高度依赖于入射光的强度,我们的方法也可以显著降低。”改造荧光成像荧光显微镜广泛用于生物化学和生命科学,因为它允许科学家直接观察细胞及其内部和周围的某些化合物。荧光分子能吸收特定波长范围内的光,然后在较长的波长范围内重新发射。然而,传统荧光显微技术的主要局限性是其结果难以定量评价,而且荧光强度受实验条件和荧光物质浓度的显著影响。现在,一项新研究将彻底改变荧光显微镜领域。当荧光物质被一束短脉冲光照射时,产生的荧光不会立即消失,而是随着时间的推移“衰减”。但荧光衰减非常快,普通相机无法捕捉到它。虽然可以使用单点光电探测器,但必须在整个样本区域进行扫描,才能从每个测量点重建出完整的二维图像。这个过程涉及到机械部件的运动,这极大限制了图像捕捉的速度。在最近发表于《科学进展》的一项研究中,科学家开发了一种不需要机械扫描就能获得荧光寿命图像的新方法。领导这项研究的日本德岛大学Post-LED光子学研究所教授Takeshi Yasui说,“我们能在2D空间上同时映射44400个‘光秒表’来测量荧光寿命——所有这些都在一次拍摄中,不需要扫描。”“到目前为止,光频率梳被广泛地用作测量光频率的标尺,但我们一直在考虑其他的用途。”Yasui讲到,“我们意识到,如果将光学频率梳视为具有超离散多光谱结构的光,通过维数转换将被测物理量叠加在光谱上,可以从双梳光谱获得的模式分辨光谱中共同获得被测物理量。”研究人员使用光学频率梳作为样品的激发光。一个光学频率梳本质上是一个光信号,它们之间的间隔是恒定的。研究人员将一对激发频率梳信号分解为具有不同强度调制频率的单个光拍信号(双梳光拍),每个光拍携带单个调制频率,辐照到目标样品上。而且,每束光束都在一个不同的空间位置击中样本,在样本二维表面的每个点和双梳光拍的每个调制频率之间形成一一对应的关系。研究人员用数学方法将测量信号转换为频域信号,根据调制频率处的激发信号与测量信号之间存在的相位延迟,计算出每个像素处的荧光寿命。Yasui表示,这将有助于动态观察活细胞,还可以用于多个样本的同时成像和抗原检测——这种方法已经被用于新冠肺炎的诊断。该技术还有助于开发出新的顽固性疾病疗法,提高预期寿命。同样,Ideguchi也提到,ADRIFT-QPI能够在整个活细胞的背景下看到微小颗粒,而不需要任何标签或染色。“该技术可以检测到来自纳米级粒子的细小信号,比如病毒或在细胞内外移动的粒子,这样就可以同时观察它们的行为和细胞的状态。”相关论文信息:https://doi.org/10.1038/s41377-020-00435-zhttps://doi.org/10.1126/sciadv.abd2102
  • 飞秒激光照相机可在生物成像等领域广泛应用
    据美国物理学家组织网11月17日报道,美国麻省理工科学家最近研制出一种照相机,能拍摄到来自非正面的目标。这种照相机安装了一个飞秒激光器,当其发出的极短暂光脉冲被某个物体(比如门或镜子)反射后,可在光线返回之前拍摄第二个目标图像,然后利用数学算法将这些像素信息重建,就能获得那些隐蔽景物的图像。  激光照相机由麻省理工教授拉瑞马斯瑞斯卡及其研究小组设计,称为“飞秒瞬间成像系统”(femtosecond transient imaging system)。这种相机能在极短时间内捕获光线,大约是千万亿分之一秒。他解释说,通过不断收集光线,计算每个像素到达照相机的时间和距离,就能按照所处环境生成一种“三维实时图像”。  “这就像不用X射线却有了X射线般的眼睛,”瑞斯卡说,“我们将围绕着目标,而不是通过它。”  这种相机目前仍处于早期研发阶段,研究人员正在探究如何精确合成更复杂的图像。该相机系统将有广泛的应用,比如用于搜救任务,在垮塌或失火建筑中寻找幸存者,也能避免汽车在隐蔽拐角处相撞,在工业上还可用于机械探测以检查隐蔽物体。此外,它和生物医学图像也有相似之处,可让医生用内窥镜观察身体内部被遮住的区域,便携式的内窥镜成像系统再过两年就可能出现。
  • 科适特2017年第一期荧光显微成像技术培训班圆满结束
    科适特2017年第一期荧光显微成像技术培训班圆满结束2017年7月20日在科学城“科适特实验仪器服务中心”举行了2017年第一期显微成像技术培训班,参加培训人员大约35人,来自中山大学,广州医科大学,暨南大学,珠江水产研究所,广州市脑科医院,深圳第三人民医院等单位的技术人员参加了此次培训,培训过程中我们介绍了激光共聚焦/荧光显微镜样品制备及常规细胞实验方法介绍,介绍了荧光显微镜的基本原理和操作维护相关知识。上机培训了常见荧光显微镜的操作和显微成像软件ZEN和Axiovision, Photometrics相机使用。活细胞培养装置及各种实验方法。此次培训得到参加人员的高度认可,我们也将根据客户的反馈意见,完善我们的培训内容和培训安排,争取为广大用户的科研工作提供更好的服务和支持.如果有兴趣的老师和显微镜用户对培训感兴趣可以联系我们,报名参加第二期显微成像技术培训班。广州科适特科学仪器有限公司自成立之日起,就一直致力于为广大客户提供优质的荧光显微镜产品和专业的技术服务,我们公司业务的发展离不开大家的支持,对此我们深表感谢。参加这次培训的主要是各科研医疗以及生物公司的技术人员,感谢大家对我们工作的支持和积极的参与,期待着与您再次相会.
  • 应用分享 | 近红外二区荧光成像技术用于血管靶向光动力治疗的深层组织成像和动态监测
    论文摘要△图1 论文部分截图。血管靶向光动力治疗(V-PDT)是治疗血管相关疾病的一种有效手段,但是目前对深层血管在V-PDT过程中形貌及功能变化的实时、高分辨可视化监测依然是一个重大挑战。近红外二区 (NIR-II) 荧光成像具有背景干扰低、分辨率高及穿透深度深等优点,近年来被广泛应用于深层组织成像及血管相关变化的动态监测。应用报道近期,中科院理化技术研究所开发了一种明亮、高稳定的聚集诱导发射(AIE)荧光团(PTPE3 NP),用于V-PDT期间超过1300nm窗口的血管功能障碍的动态荧光成像。△图2 PTPE3纳米粒子对多尺度血管系统的近红外二区荧光体内成像。PTPE3 NP具有高亮度和高分辨率,不仅可以获得全身和局部血管系统(后肢、肠系膜和肿瘤)的高清晰度图像,而且可以实现跟踪血液循环过程的高速视频成像;由于NP血液循环时间长以及良好的光/化学稳定性,在V-PDT过程中shou次通过荧光成像成功显示肠系膜和肿瘤血管功能障碍。此外,可以实时监测血流速度的降低以用于精准评估V-PDT的疗效。目前,这篇论文已在《Biomaterials》进行了发布,想要查看完整英文版全文的读者,可以复制下方链接获取。https://linkinghub.elsevier.com/retrieve/pii/S0142961223001382△图3 论文部分截图。值得一提的是,论文中拍摄的近红外二区荧光图像所使用的设备为北京睿光科技有限责任公司自主研发的NirVivo-Pro近红外二区小动物活体荧光成像系统。产品推荐NirVivo-Pro 活体荧光成像系统是北京睿光科技自主研发的一款专门用于近红外二区的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点:采用-80℃科学级红外相机,曝光可达5分钟;支持电动切换显微成像和宽视野成像镜头;多路光纤匀化照明,支持多种波长激光器;自主知识产权软件,支持自动曝光,自动对焦;
  • 工物系李亮课题组在X射线荧光成像领域取得新进展
    癌症是全球范围内严重危害人类健康的疾病,对其发病、发展原因、病理机制的研究已经成为人类生命科学和临床医学研究中的重大科学难题。近年来,基于靶向纳米颗粒药物的肿瘤精准诊疗研究越来越受到人们的关注。X射线荧光成像技术被认为是获取目标物体中纳米颗粒药物分布的一种有前途的方法,它通过获取特定元素的特征X射线荧光光子进行高灵敏度成像。与传统的CT技术相比,X射线荧光成像可以获得目标物体的分子和功能信息,并且X射线荧光成像使用的示踪剂不具有放射性,制造、使用成本更低,更安全。图1.建设的X射线荧光康普顿成像实验平台图2.包含钆元素溶液的X射线荧光康普顿成像结果显示近日,清华大学工物系李亮课题组在知名期刊《电气与电子工程师学会医学成像会刊》(IEEE Transactions on Medical Imaging)在线发表了题为“首例X射线荧光康普顿成像示范”(First demonstration of Compton camera used for X-ray fluorescence imaging)的研究论文。该论文展示了首例使用康普顿相机成像系统对X射线荧光进行三维成像的案例,与其他传统的X射线荧光成像的模式相比,该康普顿成像模式下可进行无旋转扫描的单视角成像,这将为X射线荧光成像带来更多潜在的应用场景和成像可能性。在这项工作中,展示了主要由传统X射线管和Timepix3光子计数探测器组成的X射线荧光康普顿成像系统,开发了一套完整的名为CCFIRM的成像重建算法,来解决X射线荧光康普顿成像中存在的关键算法问题。创新性成果包括有多普勒展宽校正的低能量列表模式最大似然期望最大化算法和基于光子偏振统计分布信息的散射校正算法。该研究给出了钆元素的X射线荧光康普顿成像实验结果,成像结果表明,该课题组所提出的X射线荧光康普顿成像系统可以对35.14mg/ml以上浓度的钆元素实现有效测量。清华大学工物系李亮副教授为该文章的通讯作者和项目负责人,清华大学2018级博士生武传鹏为该文章的第一作者。该研究得到国家自然科学基金、科技部重点研发计划、清华大学自主科学研究计划的大力支持。
  • 如何使用Phasics SID4相位成像相机进行表面测量?
    使用Phasics SID4相位成像相机进行表面测量Phasics SID4相位成像相机,可以集成在商业或者自制的光学显微镜装置上。为了提高样品的整体性能,测量物体表面特性是一种有效的方法。对于此类应用,Phasics的软件可以分析光程差,并且实时转化为物体表面的形貌。硬件方面,Phasics相机体积小、结构紧凑,并且易于使用。事实上,Phasics的波前分析仪能够与实验室常用的相机一样易于集成。整个相机可以轻松集成到生产线或者实验室中。表面测量结构Phasic SID4相位相机利用的是一种四波横向剪切技术,将入射光分成剪切的4束,然后再互相干涉形成干涉图,通过傅立叶逆变换可以得到入射光的相位谱和强度信息,这是一种消色差的技术,因此白光和LED光源非常适合。此外,可以使用任何显微镜进行测量,并且不依赖于偏振。如上图光路所示,SID4相机位于被测物体的成像面进行探测,使用简单。SID4相位成像相机可以集成在商业反射显微镜或专用光学系统上。SID 和 AFM 测量比较图中红线部分是Phasics测量结果,黑线位AFM测量结果。使用AFM测量表面缺陷,和使用SID4相位成像相机一次测量成型的结果对比。SID4 与 光学轮廓测量仪 对比使用SID4 HR定量测量,以及白光光学轮廓仪测量结果的对比。两个报告中,第yi个侧重于轮廓,第二个侧重于深度测量。测量结果Phasics是一家专门从事相位测量的法国公司。Phasics向其客户提供全系列的产品,所有这些都是基于独特的技术,即四波侧向剪切干涉技术。Phasics公司的专长在于对这项技术的深刻理解,以及将其应用于从激光和光学计量到生物样品成像等多个领域的能力。对于每一个领域,Phasics都提供了专门的硬件和软件的解决方案。在生物学方面,Phasics提供了SID4Bio,这是一种独特的用于活细胞成像的设备,依赖于定量相位成像。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 新颖的3D光学成像技术提高了荧光显微镜效率
    p style="text-align: justify text-indent: 2em "数十年来,科学家一直在使用荧光显微镜来研究生物细胞和生物的内部运作。但是,这些平台中的许多平台通常太慢,无法跟随3D的生物学作用,并可能在强光照射下对生物样本造成破坏。/pp style="text-align: justify text-indent: 2em "为了应对这些挑战,由香港大学(HKU)电气与电子工程学系副教授兼生物医学工程学学士学位课程主任、项目负责人Kevin Tsia博士领导的研究团队开发了一种新的光学成像技术——编码光片阵列显微术(CLAM)。它可以高速进行3D成像,并且具有足够的功率效率和柔和度,能够在扫描过程中以现有技术无法达到的水平保存活体标本。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 360px " src="https://img1.17img.cn/17img/images/202004/uepic/8b848a8f-6895-4507-a695-f4520371e1c7.jpg" title="1.jpg" alt="1.jpg" width="600" height="360" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strongspan style="font-size: 14px "Kevin Tsia博士(右一)和他的团队开发了一种新的光学成像技术,可以使3D荧光显微镜更高效,更不损坏。/span/strong/pp style="text-align: justify text-indent: 2em "这项先进的成像技术最近发表在《光:科学与应用》上,这项创新已经提交了美国专利申请。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong新光学成像技术——编码光片阵列显微术(CLAM)/strong/span/pp style="text-align: justify text-indent: 2em "现有的3D生物显微镜平台速度较慢,因为必须依次扫描标本的全部体积,并逐点、逐行或逐平面成像。在这些平台上,单个3D快照需要在标本上重复照明,标本的光照强度通常是日光的数千倍至百万倍,这很可能会损坏标本本身,因此不利于长期用于各种解剖学、发育生物学和神经科学等领域的生物成像。/pp style="text-align: justify text-indent: 2em "此外,这些平台通常很快耗尽有限的荧光“预算”——这是一个基本限制,即荧光灯只能在有限的时间内通过照明产生,然后在一个称为“光漂白”的过程中永久消失,这就限制了在一个样本上可以执行多少图像采集。 /pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 360px " src="https://img1.17img.cn/17img/images/202004/uepic/3ca9166f-5215-4fb8-b0e0-a6eee546de6d.jpg" title=" 编码光片阵列显微镜(CLAM).jpg" alt=" 编码光片阵列显微镜(CLAM).jpg" width="600" height="360" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strongspan style="font-size: 14px "编码光片阵列显微镜(CLAM) 香港大学/span/strong/pp style="text-align: justify text-indent: 2em "Tsia博士说:“ 样品上的重复照明不仅会加速光致漂白,而且还会产生过多的荧光,最终无法形成最终图像。因此,荧光' 预算' 在这些成像平台上被大大浪费了。而CLAM允许以高帧速率进行3D荧光成像,与最先进的技术(每秒约10倍的体积)相当。更重要的是,它比科学实验室中广泛使用的标准3D显微镜更节能,比标准3D显微镜温和1000倍以上,这大大减少了扫描过程中对活体标本造成的损害。” /pp style="text-align: justify text-indent: 2em "据介绍,CLAM的核心技术是使用一对平行反射镜将单个激光束转换成高密度的“光片”阵列,以荧光激发的方式将其扩散到整个样品区域。/pp style="text-align: justify text-indent: 2em "整个3D体积内的图像可以同时(即并行化)拍摄的,而无需按其他技术的要求逐点、逐行或逐平面扫描样本。这样的CLAM中的3D并行化可产生非常柔和而有效的3D荧光成像,而不会牺牲灵敏度和速度,CLAM在降低光漂白效果方面也胜过普通的3D荧光成像方法/pp style="text-align: justify text-indent: 2em "同时,为了在CLAM中保持图像分辨率和质量,团队转向了码分复用(CDM),这是一种图像编码技术,已广泛应用于电信领域,用于同时发送多个信号。/pp style="text-align: justify text-indent: 2em "开发该系统的另一位博士后研究员Queenie Lai博士解释说:“这种编码技术使我们能够使用2D图像传感器同时捕获和数字重建3D中的所有图像堆栈。CDM以前从未在3D成像中使用过,我们采用了这项技术,并取得了成功。”/pp style="text-align: justify text-indent: 2em "作为概念验证的演示,该团队应用CLAM以每秒超过10体积的体积速率捕获微流体芯片中快速微粒流动的3D视频。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong挑战极限 提高CLAM扫描速度 /strong/span/pp style="text-align: justify text-indent: 2em "CLAM对成像速度没有根本的限制,唯一的限制来自系统中使用的检测器(即用于拍摄快照的相机)的速度。随着高速相机技术的不断发展,CLAM始终可以挑战其极限,以达到更高的扫描速度。/pp style="text-align: justify text-indent: 2em "该团队进一步采取了行动,将CLAM与HKU LKS医学院新开发的组织清除技术相结合,以高帧频对小鼠肾小球和肠血管系统进行3D可视化。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 280px " src="https://img1.17img.cn/17img/images/202004/uepic/f453719f-bebb-406d-8486-fef778022593.jpg" title="2.jpg" alt="2.jpg" width="600" height="280" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strongspan style="font-size: 14px "使用CLAM进行3D高速成像。学分:香港大学 /span/strong/pp style="text-align: justify text-indent: 2em "蔡医生说:“我们预计,这种组合技术可以扩展到档案生物学样本的大规模3D组织病理学研究,例如在大脑中绘制细胞组织以进行神经科学研究。由于CLAM成像比其他所有方法都要温和得多,因此它独特地有利于对生物样本以其活体形式进行长期和连续的' 监视' 。这可能会影响我们对细胞生物学许多方面的基本了解,例如不断跟踪动物胚胎发育成成年形式;实时监测细胞/生物如何被细菌或病毒感染;观察癌细胞如何被药物杀死,以及当今现有技术无法实现的其他挑战性任务。”/pp style="text-align: justify text-indent: 2em "CLAM可以通过最少的硬件或软件修改就适用于许多当前的显微镜系统。利用此优势,该团队计划进一步升级当前的CLAM系统,以进行细胞生物学、动植物发育生物学研究。/pp style="text-align: left text-indent: 2em "原文链接:a href="https://www.sensorexpert.com.cn/article/7303.html" _src="https://www.sensorexpert.com.cn/article/7303.html"https://www.sensorexpert.com.cn/article/7303.html/a /pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong附:/strong/span/pp style="text-align: justify text-indent: 2em "讲座:《四合一数码显微镜,多种难题一机解决!》/pp style="text-align: justify text-indent: 2em "主讲人:夏天齐 基恩士/pp style="text-align: justify text-indent: 2em "时间:4月22日10: 00/pp style="text-align: justify text-indent: 2em "主要报告内容:此次讲座希望让更多使用显微镜的客户,了解到数码显微镜能解决的常规问题,作为技术储备,认识到VHX系列产品的一些功能和应用场景。/pp style="text-align: left text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meeting_13067.html" target="_self"span style="color: rgb(0, 112, 192) "点击报名,免费听课:https://www.instrument.com.cn/webinar/meeting_13067.html/span/a/p
  • 鑫图sCMOS相机 | 全自动推扫式高光谱显微成像系统设计与研究
    为了将光谱成像技术更方便地引入显微成像领域,本文介绍了高光谱成像技术与显微成像技术相结合,搭建出一套全自动推扫式高光谱显微成像系统。该系统以倒置显微镜为主体进行设计,采用棱镜-光栅元件进行光谱分光,利用高精度二维电动运动平台进行推扫,同时结合电动对焦组件完成对焦,最终成像在高灵敏sCMOS科学相机上。根据大多数生物样本光谱检测需求,系统的光谱范围选择为420~800 nm,并引入激光自动对焦系统作为主动对焦模块,以HE染色的乳腺癌病理切片为研究对象。通过对全自动推扫式高光谱显微成像系统的设计与研究,解决了高光谱显微成像中无法实时对焦的难题,实现了在40倍显微物镜下3.25 mm × 3.25 mm范围内的全自动成像。这有助于促进光谱技术在生物医学等领域中的应用,特别是对需要高分辨率和高灵敏度的场景中,提供了有效的解决方案。图1 整机图片图2 基于主动对焦的大视场推扫成像推扫式高光谱显微成像系统的光谱探测器采用了鑫图背照式sCMOS科学相机Dhyana 400BSI。该相机像元大小为6.5 μm,非常适配于40x~60x的成像系统。相机的宽光谱响应范围涵盖了190 nm~1100 nm,可以适用于生物样本的光谱检测需求,峰值量子效率高达95%,读出噪声仅为1.1e-。这些性能在高分辨率成像和灵敏度之间实现了平衡,并能大幅提高信号检测能力,非常适合部分光谱应用的需求。参考文献唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. 中国光学, 2021, 14(6): 1486.该文章旨在为大家提供先进成像技术相关应用参考,部分内容摘抄于相关论文研究成果,版权归原作者所有,引用请标注出处。
  • Teledyne收购工业相机制造商Adimec,继续扩大成像产品组合
    近期,Teledyne宣布了收购荷兰工业相机制造商Adimec的交易,这进一步扩大其成像技术组合产品。Adimec由Just Smit、Bas Heijn和Jochem Herrmann于1992年创立,研发和销售各种用于机器视觉、医疗保健和国防应用的相机,其产品在可见光、红外和X射线光谱区域工作,包括自定义选项。Adimec一款典型产品是该公司用于高分辨率检测的1.03亿像素“DIAMOND D-103A12-T”相机:面向LCD、OLED和MicroLED检测的显示器行业。Adimec另一个专业领域是主动镜头对准系统,该系统使用实时测量来辅助图像传感器的定位,以优化国防应用中使用的短波红外(SWIR)图像传感器性能。Adimec的'TMX'相机系列Adimec的技术将增强Teledyne成像产品阵容,该产品阵容在过去十年中通过一系列相机和图像传感器制造商的收购而大幅扩展。Teledyne Technologies首席执行官Edwin Roks在谈到最新交易时表示:Adimec在医疗保健、全球国防以及半导体和电子检测等共同战略重点领域拥有独特的互补技术、产品和客户。Adimec的两位联合首席执行官之一Alex de Boer评论道:“几十年来,在我们总部位于荷兰埃因霍温的X射线成像业务中,我见证了Adimec成长为利基应用领域的领导者,这些应用需要非常准确的图像,以便在时间关键的流程中做出精确的决策。”Alex de Boer继续说道:“作为工业和科学市场先进成像技术的领导者,Teledyne是在创始人和管理层过去三十年建立的坚实基础上进一步发展的完美公司。整个Adimec团队期待与Teledyne一起创造令人兴奋的未来,同时扩展成像技术边界,为我们的客户提供相机支持,并根据他们的应用需求进行完美优化。”Joost van Kuijk自2014年起与Alex de Boer一起领导Adimec,他补充道:“我们非常高兴能够公开宣布Adimec将成为Teledyne的一部分。”Teledyne最新的销售数据显示,其数字成像部门2023年的年销售额为31.4亿美元,占该纽交所上市主体公司总收入56.4亿美元的一半以上。2010年,成像业务仅占Teledyne年销售额16.4亿美元的7%,略高于1亿美元。然而,此后Teledyne收购了Dalsa、e2v Technologies以及Roper子公司Princeton Instruments、Lumenera和Photometrics等公司。然后在2021年,该公司完成了该行业最重大的举措,以约80亿美元的现金加股票成本收购了红外热成像巨头FLIR。Teledyne执行董事长Robert Mehrabian在Teledyne最近一次投资者电话会议上发表讲话时表示,他预计今年整体业务的销售收入将增长4%左右,其中FLIR部门的增长速度将略高于其它成像子公司。“特别是FLIR国防应用领域,正在经历非常好的订单接收,我们预计该领域的增长将超过成像业务部门的其它产品部分。”Robert Mehrabian补充道。
  • 滨松红外荧光定位观察相机PDE助力乳腺癌术后乳房再造技术
    第十届全国乳腺癌术后乳房重建学习班于2018年5月11日至5月12日在天津肿瘤医院举办,围绕乳腺癌术后乳房再造技术,行业专家们进行了学术交流和演示示教。 因可对皮瓣血运情况判断便捷易行、清晰准确,荧光定位显像技术作为会议的重要话题之一被提出。除了深入的学术探讨以外,还实施了现场手术演示。滨松红外荧光定位观察相机PDE作为本次会议中荧光定位显像技术的提供者,充分展示了该技术对皮瓣血运判断发挥的重要作用。滨松红外荧光定位仪(Photodynamic Eye,PDE)是一套医学荧光显像系统,主要用于医用荧光显像,通过观看示踪剂的流动状态,帮助临床医生实时观察血管、淋巴管的状况,从而判断血运状态。在皮瓣血运、穿支定位、穿支选择时起到直观判断、实时显示的作用,在整形领域有广泛的应用空间。
  • 鑫图sCMOS相机 | 基于高光谱成像建立多维胆管癌数据库的方法
    组织病理学分析通常被认为是肿瘤诊断和临床治疗的“黄金标准”。近年来,人工智能(AI)在病理诊断中的应用取得了显著进展。然而,目前大多数AI方法使用的数据源是由传统光学显微镜捕获的彩色图像,这种图像所包含的病理信息有限,影响了诊断的准确性。随着二维图像处理算法的逐步成熟,研究人员开始转向三维算法,以期获得更准确的结果和更丰富的信息。本文提出了一种新的多维胆汁数据库,该数据库包含在同一视场下捕获的显微镜高光谱图像和RGB彩色图像,专门用于深度学习研究。该数据库中的所有图像均经过经验丰富的病理学家评估和标记,适用于训练神经网络。由于该数据库包含了样本的形态、光谱和生化变化信息,对研究人员开发新型多维深度学习算法用于病理诊断具有重要意义。图1 数据集的多维图像场景(a) RGB图像 (b) 显微镜高光谱数据立方体 (c) 从高光谱数据立方体中提取的16个单波段图像本实验旨在建立一个多维胆汁数据库,为此开发了一种显微镜高光谱成像系统,用于采集胆汁组织的高光谱图像。胆总管组织切片的透射光通过显微镜被收集,并在sCMOS相机上成像,最终合成高光谱数据立方体。该成像系统使用的鑫图sCMOS相机Dhyana 400D,具有6.5 μm的像素尺寸,适用于高倍显微镜。此外,其低读出噪声和在制冷条件下的低暗电流,使其在弱光成像时仍能获得高信噪比的图像。同时,USB 3.0的接口能够提供高达35 fps的帧率,满足了高光谱成像所需的高速采集性能指标。参考文献Zhang Q, Li Q, Yu G, et al. A multidimensional choledoch database and benchmarks for cholangiocarcinoma diagnosis[J]. IEEE Access, 2019, 7: 149414-149421.该文章旨在为大家提供先进成像技术相关应用参考,部分内容摘抄于相关论文研究成果,版权归原作者所有,引用请标注出处。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制