当前位置: 仪器信息网 > 行业主题 > >

异味分析系统

仪器信息网异味分析系统专题为您提供2024年最新异味分析系统价格报价、厂家品牌的相关信息, 包括异味分析系统参数、型号等,不管是国产,还是进口品牌的异味分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异味分析系统相关的耗材配件、试剂标物,还有异味分析系统相关的最新资讯、资料,以及异味分析系统相关的解决方案。

异味分析系统相关的资讯

  • 新版GB5749,生活饮用水中异味物质如何分析?
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼New tab (analyteguru.com)姚超 邢江涛异味物质分析最新的《生活饮用水卫生标准》(GB5749-2022)将于2023年4月1日实施。为了满足人民生活品质不断提升的更高要求,新国标中土臭素由原来的参考指标提升为扩展指标,同时加入了2-甲基异莰醇作为感官评价的化学指标。这一变动对未来生活饮用水中异味物质的检测具有非常重要的意义。熟悉标准的老师都了解,GB5749-2006版生活饮用水标准中,只需要气相和常规的“三大件”(FID、ECD、FPD)就可以完成大部分检测工作,但新版标准中这两种异味物质采用的是SPME&GCMS分析技术,常规的气相配置已无法满足要求,意味着生活饮用水实验室即将从“气相色谱时代”进入新的“质谱时代”。饮用水异味物质检测难点:1新国标中2-甲基异莰醇和土臭素的限值均是10ng/L,较其它化合物的值高很多,需要灵敏度更高的前处理和分析技术。2《生活饮用水标准检验方法 》(GB/T5750-202×)征求意见稿中引用的方法标准《生活饮用水臭味物质 土臭素和 2-甲基异莰醇检验方法》(GB/T 32470-2016),采用手动SPME&GCMS的方式分析,前处理操作复杂,耗时较长。✦ ++赛默飞饮用水异味物质全自动化检测方案作为一家历史悠久的专业质谱厂商,赛默飞公司拥有完整的气相色谱质谱产品和TriPlus RSH SMART多功能样品处理平台,自动化RSH-GCMS/GCMSMS方案能全面满足这两种异味物质的检测,解决手动SPME-GCMS/GCMSMS前处理操作复杂等痛点。(点击查看大图)可实现包括SPME在内的液体、顶空、ITEX、SPME Arrow在内的多种进样功能,满足GB 5749生活饮用水中异味物质、消毒副产物、农药、有机物等多项指标的分析需求。轻松实现样品和标准品的自动稀释、添加内标、配制标准曲线、衍生化等样品前处理操作过程,让实验室工作更加轻松自动化。自动实现多种进样模式的在线切换,无需人为干预。标准方法:液体、顶空、SPME三合一自动进样器RSH SMART &GCMS-标准方法Triplus RSH SMART &TRACE1610-ISQ7610GCMS2-甲基异莰醇和土臭素 GCMS-SIM标准样品图(点击查看大图)2-甲基异莰醇和土臭素 GCMS-SIM标准曲线(点击查看大图)2-甲基异莰醇和土臭素 GCMS检出限测定谱图(5ng/L)(点击查看大图)滑动查看更多进阶方法:液体、顶空、SPME三合一自动进样器RSH SMART &GCMS/MSTriplus RSH SMART &TRACE1610-TSQ9610GCMS/MS2-甲基异莰醇和土臭素 GCMS/MS-SRM标准样品图(点击查看大图)2-甲基异莰醇和土臭素 GCMS/MS-SRM标准曲线图(点击查看大图)2-甲基异莰醇和土臭素 GCMS/MS检出限测定谱图 (5ng/L)(点击查看大图)滑动查看更多以上两种方案灵敏度、重复性等指标均优于方法要求,可以很好满足标准需求。另外,TriPlus RSH SMART 多功能前处理进样器和GCMS& GCMS/MS联用可实现多种进样和前处理操作的自动化,提升实验室样品通量,减小操作过程中的误差,是生活饮用水实验室必备利器。如需合作转载本文,请文末留言。
  • 浅析工业园区企业异味源
    工业园区异味源分布广泛,量大面广,本文重点针对工业企业异味源特点,研讨异味源识别和异味问题诊断的基本思路。工业企业异味源主要有装卸储存环节、车间生产环节、锅炉燃烧环节、循环水冷却环节和废水集输、储存、处理处置环节等六大类环节。(1)装卸储存环节工业企业在原辅料及产品的装卸过程中,装料罐内液位的上升,压力上升,罐中挥发的异味气体将会被挤出到罐外,从而产生异味现象。装罐后,随着环境温度的上升,罐内压力也会上升,罐内高浓度的废气同样会被挤出到罐外,导致罐区周边出现异味现象。此类废气一般称之为大小呼吸气。在此过程中,需要重点排查装卸台装卸系统密封效果、气相平衡管路、呼吸气收集情况及呼吸气治理情况。(2)车间生产环节车间是异味的主要来源,车间在正常生产过程中,混合、搅拌、反应、蒸馏、烘干、结晶等环节,会产生大量的有组织废气,该类废气往往异味较重;在压滤、粉碎、离心等环节,会产生一定量的无组织废气,该类废气异味同样较重,且废气四处逸散,对企业影响较大;除此之外,车间中的泵、压缩机、搅拌器、阀、泄压设备、采样连接系统、开口阀或开口管线、法兰、连接件等9大类设备,长期使用过程中,如管理不到位,会出现老化现象,导致接口泄漏,产生一定量无组织和异味废气。针对该场所,首先需要建立动静密封点基础台账,开展LDAR检测工作,识别出泄漏点位,推动企业整改修复;其次排查企业生产无组织废气收集情况,及时发现未收集或收集不合理的情况,督促企业合规收集,变无组织为有组织;最后排查有组织废气是否存在偷排漏排情况,是否存在未治理直接排放现象以及治理工艺是否合理。(3)锅炉燃烧环节企业锅炉一般使用天然气、煤、生物质、燃料油等作为燃料,其中煤、生物质、燃料油在燃烧过程中,将会产生二氧化硫、氮氧化物、以及少量未完全燃烧的有机物,这些组分均拥有刺激性气味。针对该环节,重点排查燃料是否能够完全充分燃烧,收集后的燃烧烟气是否进行治理,治理工艺是否合理等。(4)循环水冷却环节循环水冷却系统在生产过程中,由于设备老化,换热器破裂,导致工艺物料泄漏至冷却水中,最终进入到循环水冷却系统,在循环水池及循环冷却塔大量逸散。针对该环节,需要重点排查循环水池内循环水中是否含有原辅料,如发现循环水中存在原辅料杂质,需要企业立刻开展循环水冷却系统修复工作。(5)废水集输、储存、处理处置环节企业废水集输、存储、处理处置一般分为密闭式和敞开式。敞开式处置方式往往会导致大量异味气体从敞口处逸散,造成异味污染现象。敞开式废水处置主要包含:地漏、沟渠收集;敞开式暂存池;敞开式污水处理池等。针对该环节,需要重点排查敞开式处置环节,要求企业变敞开式为密闭式,收集无组织逸散废气,集中处置,解决废水逸散异味问题。(6)其他环节企业在开停机阶段、检修阶段、生产异常阶段,均有可能短时间内排放大量的异味废气。针对该情况,需要重点排查企业相应的操作规程,查看企业是否有效考虑应急异味处置方法。除了要了解工业企业异味源在上述六个环节的异味气体排放或逸散的原理,在实际调研排查过程中,还需要深入了解企业生产工况以便在恰当时机开展检测和监测。准确定位工业企业异味源是真正扼住工业企业的异味源头地前提,需要服务单位先扎实有效地做好异味源排查工作,以便从本质上逐步消除工业企业异味源对周边环境的不利影响。
  • 岛津应用:水中异味物质的筛查方案
    近年来我国饮用水异味问题发生频繁,异味已成为影响饮用水水质的重要指标之一。明确异味类型、识别出相应的异味物质,对于预防和控制异味问题具有重要意义。目前异味物质的检测方法一般有感官检测法、仪器检测法和其他检测方法。其中GCMS方法是应用最为广泛的,GCMS可检查出样品中含有何种成分(定性分析),以及该成分的含量(定量分析)。它在分析异味成分时,将正常品和异常品分析所得的数据进行比较,找出导致异味的成分候选,确认样品中的浓度是否高于臭气阈值。   但使用GCMS分析异味成分时需进行分析条件的研究和数据的解析工作,人力消耗大,同时也需要异味成分的感官信息和臭气阈值等信息,对于在异味方面知识和经验尚浅的分析人员而言,作业存在困难。岛津异味分析系统是由数据库(Smart Database)结合GCMS单级质谱仪或GCMSMS三重四极杆串级质谱仪构成的系统,也可以同时连接Sniffer嗅辨仪。数据库登录有对导致异味的主要成分(约150种化合物)和进行分析时所需的参数和感官信息(气味特征和臭气阈值等)。因此,即使是在异味分析方面知识和经验尚浅的分析人员,也可马上开始异味成分的分析。   本文利用HS-SPME-GCMSMS结合岛津异味数据库,可实现在无标准品的情况下快速建立饮用水中150种异味物质的筛查方法,分别进行正常水样和异常水样的筛查,并将分析所得的数据进行比较,找出导致异味的8种成分候选。采用数据库中生成的标准曲线进行半定量的分析,将估算出的浓度与臭气阈值进行比较,最后找到6种异味成分。 了解详情,敬请点击《岛津异味分析系统结合GCMSMS筛查水中的异味物质》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 土壤安全意味着人类安全 – 让NIC成为您在全国土壤普查中汞分析的得力助手
    土壤安全意味着人类安全 – 让NIC成为您在全国土壤普查中汞分析的得力助手 土壤安全是所有生物食品安全的基础。 土壤安全是食品安全的关键性决定因素之一。汞在人为排放之后,最终将沉降到土壤中,土壤在整个汞循环中起着至关重要作用。 由于土壤成分复杂,汞可以与其中的某些成分相互作用并形成不同种类的汞。这些不同种类的汞特性也各不相同。这些汞可以是无机的、有机的,或者是强结合的汞,在土壤中能够稳定而长期存在。水和土壤是所有农作物和生物的基础。为了采取补救措施,必须准确测量土壤中的汞。必须经过样品消解步骤的传统技术 湿法化学样品制备(酸消解)等常规方法可用于消解土壤样品。由于是土壤样品,有时需要使用强酸,如氢氟酸和王水来对样品进行消解。然后通过冷蒸气原子吸收法(CVAAS)对消解后的样品进一步分析。由于汞在酸性环境中的独特性质,它往往会产生记忆效应,从而引起交叉污染或残留。因此,对于许多分析人员来说,获得准确和精确的结果具有一定难度。 湿法化学样品制备繁琐、耗时,因为试剂的使用而导致成本增加。而测量结果往往达不到预期。NIC MA 系列测汞仪直接分析土壤样品样品无需前处理 – 快速准确的测量结果不需要对样品进行预消解,使用NIC直接汞分析仪可以直接分析所有类型的土壤样品。测量土壤样品的三个简单步骤:1. 确保土壤样品均匀性2. 加入适量的样品3. 在NIC MA3WIN 软件中选择合适的方法最小的处理错误 - 准确可靠的结果,自信的报告 样品提取过程或湿法化学样品制备过程可能会产生较大的误差幅度,对测量结果造成疑问和不确定性。 NIC MA 系列测汞仪,能够大限度地避免处理错误。更小的处理误差也意味着更少的维护停机时间和更快的测量周转时间。100位的自动进样器 – 可提高实验室的检测能力,提升工作效率 在全面的土壤普查中,需要分析采自不同地点的各种土壤样品,样品分析量很大。NIC MA-3000配置100位的自动进样器,可以提供高通量汞分析,大大提高实验室工作效率效率。NIC具有四十多年的直接汞分析的专业知识和经验 – 您可以信赖我们 1978 年开始生产直接汞分析仪,具有40多年的直接汞分析经验和专业知识。NIC测汞仪受到全球数千家实验室的信赖。MA系列测汞仪 – 您在实验室中高效且性能优越的助手 除了土壤样品分析外,MA系列还可以直接分析各种食物样品,如水稻,谷物,茶叶和海鲜等,这对进一步调查土壤汞污染造成的后果非常有用。应用说明免费下载: 使用 NIC MA-3 Solo测汞仪测量土壤样品中总汞含量的应用说明,可在以下网址免费下载:https://www.instrument.com.cn/netshow/SH104984/s937843.htm
  • 爱尔兰荧光免疫分析系统寻国内公司合作生产
    仪器信息网讯 近日,爱尔兰Biosensia公司开始在国内寻找企业合作生产其RapiPlex诊断仪。  据介绍,RapiPlex可用于多种用途的护理分析应用,包括感染性疾病,滥用药物(DOA)的测试和心肌标志物测试。其他还可以应用于食品安全和环境监测方面。  与市场上其他同类产品不同的是,该诊断仪能利用一个样品同时执行多达6个独立的分析,并在5分钟内得到结果并将数值结果显示在荧光屏上,不需要用户翻译和解释。RapiPlex结构紧凑,操作方便,非常适合应用于各种应用领域的不同测试点,例如在医院,医生办公室,诊所,或在外地都可方便使用。而且测试成本低。  Biosensia公司拥有的RapiPlex平板仪具有三项技术优势:  1、多通道微流控芯片;  2、强大的,完善的荧光免疫分析系统;  3、一个集成光学阅读器,能提供数值读出,而不需要用户翻译和解释。  据一位华人专家介绍,该诊断仪器属于一种便携式小型免疫发光仪,可以在很短的时间内分析10个样品,可用于传染病,心脏病等等疾病的诊断,也可以用于毒品滥用的检测等。另一位专家表示,目前我国存在样品集中化的特点,而多通道微流控芯片技术可以实现高通量检测,应该很适合我国国情。据了解,目前在这个生物化学检测领域几乎都是非常贵的大型的仪器。  该公司希望通过许可合作等方式开展合作,寻找公司共同生产,目前 已在中国科技交流中心网站登记相关技术信息,该仪器的详细资料可查询:http://www.biosensia.com/rapiplex/(撰稿:叶建)
  • 岛津推出《岛津气味分析系统应用文集》
    气味分析是一个与人们的生活息息相关的课题。环境、饮用水、食品、服装、电子、装修、接触材料等等行业都对气味有明确的检测要求,不良气味的存在直接影响人们的日常生活,损害人们的健康。气味分析也是近些年的热点研究课题。如天然产物精油和中药材中挥发性成分分析,香精香料中挥发性成分分析,食品如酒中香气成分的分析等,也有研究者通过中药材中气味和滋味的分析来辨别中药材的真伪。不同样品中气味成分复杂,含量时高时低,因此,气味分析既是一个热点问题,又是一个难点问题。随着人们对气味物质的关注日益增加,对于气味物质的检测需求呈现逐渐上升的趋势,快速明确气味类型、识别出相应的气味物质,既可有效预防和控制不良气味造成的安全问题,又可大幅提升基础研究的效率。目前气味物质的检测方法主要包括感官检测法和仪器检测法。感官检测法是靠专业人员的嗅觉来进行判断,只能判断气味的类型和强度,如果需要准确定位气味物质,仍需依靠仪器。仪器法主要采用GCMS,GCMS可对样品中的成分进行定性和定量分析,但仍然面临很多问题:样品首先需要经过萃取等复杂的前处理过程;在进行定性分析时,由于实际样品通常都非常复杂,检查出的化学成分往往非常多,很难确认是哪一个组分引起的气味;在进行定量分析时,需要购买目标化合物的标准品建立标准曲线定量;由于人的嗅觉对每种化合物的敏感程度是不同的,在获得目标化合物的定量结果后,我们还需要了解每个化合物产生气味的阈值,才能确定产生气味的化合物。这些问题都大大增加了GCMS进行气味分析的复杂性和难度,在出现气味问题的时候,往往不能准确及时地解决。气味检测法规涵盖了各行各业的方方面面。如GB/T5750.4-2006 《生活饮用水标准检验方法 感官性状和物理指标》规定的生活饮用水的气味分析方法、GB/T 5525-2008《植物油脂 透明度、气味、滋味鉴定法》、GB/T 5492-2008《粮油检验 粮食、油料的色泽、气味、口味鉴定》、GB/T 35773-2017《包装材料及制品气味的评价》、SN/T 3179-2012《食品接触材料检测方法 纸和纸板 感官分析 气味》、YY/T 0471.6-2004《接触性创面敷料试验方法 第6部分 气味控制》、GB/T 28024-2011《絮用纤维制品异味的测定》、GB/T18885-2009 《生态纺织品技术要求》规定的生态纺织品气味分析方法、GB/T 28006-2011《家用卫生杀虫用品 气味等级》、HG/T 4065-2008 《胶粘剂气味评价方法》、QB/T 2725-2005《皮革气味的测定》等,这些法规均采用感官分析法来分析评价气味。气味分析是涉及行业非常广泛的领域,包括汽车、环境、饮用水、食品、纺织、电子、建筑等等。这些行业一般都会采用感官检测法来对产品质量进行控制。比如各大汽车厂商均采用感官检测法来控制汽车零部件质量;自来水厂一般依据GB/T 5750.4-2006 《生活饮用水标准检验方法 感官性状和物理指标》来控制自来水的不良气味质量。但是当气味质量问题发生时,感官检测法无法快速确定气味物质,找到问题源头,从而快速解决质量问题。而仪器分析法主要采用的GCMS,也还缺乏相应标准和方法,来快速确定气味物质。因此,岛津气味分析系统正好可以填补这一空白,满足市场对于气味物质快速检测的需求。 岛津公司推出的气味分析系统,可基于GCMS-TQ系列三重四极杆气质联用仪和GCMS-QP2020单四极杆气质联用仪,支持顶空、Mono Trap、SPME、直接液体进样等多种进样方法,为不同需求的客户提供气味分析的解决方案。气味系统配套Smart Database数据库,气味物质质谱库,登记了约150种气味化合物的方法参数、质谱图、半定量参数和感官信息(气味特征和气味阈值等),可协助用户对气味成分进行快速、准确的筛查。为此,分析中心将使用气味分析系统进行的应用数据,收录在《岛津气味分析系统应用文集》中,供用户参考借鉴。
  • 岛津发布动态颗粒图像分析系统新品
    岛津动态颗粒图像分析系统 iSpect DIA-10采用微量池技术和先进的光学系统精确、高效地检测颗粒。如果使用普通镜头,颗粒的可检测尺寸会受到颗粒与镜头之间距离的影响。iSpect DIA-10使用远心镜头可保持恒定的图像放大倍率,这意味着无论颗粒 位于视野中的哪个位置,系统都可以准确地确定颗粒粒度。自动对焦功能提高了成像效率,从而确保能够精确 检测异物并获得重复性高的计数浓度。 粒子计数和图像测量可以用一台仪器来实现iSpect DIA-10提供了先进的粒子分析技术,将单个粒子的图像信息添加到精确的粒子计数中。采用宽聚焦区域的远心镜头与微流池技术相结合,可聚焦整个流路,大幅度减小了颗粒漏检,实现了精确的颗粒计数和可靠的颗粒检测。 可有效分析大量粒子准备样品时,用微量移液枪吸取分散在液体中的样品,将移液枪枪头固定在仪器上,然后在软件上完成数据测量。 检测能力强,几乎不会漏检iSpect DIA -10也可以检测到含有极少量的粒子,也可以检测大量粒子中的少量粗颗粒。通过检测每个粒子的检测结果和图像,可以对粒子的来源进行估计。 创新点:本产品整合了粒度和图像分析技术,在两分钟内完成颗粒成像、尺寸分析、异物检测、粒度分布同时可以得到准确的粒子计数浓度?超过90%的高效图像采集效率与传统的池技术和镜头技术相比,微量池技术可以更清晰地显示颗粒图像,同时减少通过成像区域以外的颗粒数量,传统仪器图像采集效率小于10%,DIA-10采集效率超过90%?± 5%以内的计数浓度重复性由于颗粒图像采集效率高,几乎所有粒子都被捕捉到,因此可获得超高重复性?简单易用具有无需样品即可实现自动对焦功能,只需放置样品、选择分析方法、点击测量三步即可完成测试查看结果动态颗粒图像分析系统
  • 查异味,溯来源 | 谱育科技环境大气异味管控解决方案,助力解决异味溯源难题
    7月12日,生态环境部大气环境司综合处处长石晓群在第八届全国恶臭污染监管与防治学术会议上透露,生态环境部正抓紧推动《空气质量全面改善行动计划》出台,相关文件正在修改完善中,其中将对“恶臭异味治理”作出相关部署,推进空气质量全面改善。针对恶臭异味的监测和溯源分析,谱育科技推出了环境大气异味管控解决方案,通过建设恶臭异味污染预警防控监测网络,达到恶臭异味快速排查定位、状况实时监控的目标;实现异味监测“动静结合、快速溯源”,达到“气不扰民”的效果。技术路线 方案架构本方案通过环境敏感点监测、网格化异味监测、分布式多通道自动监测、便携现场检测、异味移动监测车等多种监测手段,采用色谱、光谱、质谱、专用检测器和三维GIS技术,结合智能化信息管理平台,摸清异味污染分布特征,实现异味敏感恶臭因子24h在线监测和精准、快速溯源,协助主管部门对恶臭因子排放企业进行分级管控,制定差异化治理措施,从而改善居民异味投诉现状,提升主管部门公众形象及公信力。 典型案例 某烟卷企业异味监测预警体系建设项目 卷烟行业生产车间和固定污染源排口主要排放氨气、有机胺等恶臭异味气体。针对异味的溯源和监测,谱育科技采用先进科学装备,结合专业团队,制定一整套异味排查,异味监测和溯源方案。
  • 一味迎合需求还是科学严谨?国产分析仪器仍需在差距中找突破!
    浅谈国产分析仪器——闫 力(论坛用户:yanli197604)改革开放四十年的发展,我国的科级技术发生了翻天地覆的变化。新技术的应用为社会发展做出了巨大贡献,实验室的分析化验仪器也在发展进去。国产的分析仪器被广泛应用在各个领域,为我国国民经济发展做出了很大贡献。进步我们要看到,更要看到与国外先进技术的差距,在差距中寻找突破和改进机会。下面就来谈谈我们国产实验仪器的进步与不足。1. 常规实验仪器随着改革开放40多年的发展,现阶段我国常规的实验分析仪器,技术能力、精密度、可靠性、自主制造等能力水平,与国际上的先进技术无多大差距,在某些方面还要领先一些,比如制造成本和价格,我们有较大的优势。这里所说的常规仪器包括:电子天平、烘箱、水分仪等等,常规使用的分析仪器设备。常规的实验仪器设备需要技术改进的地方包括:自动化和数据采集储存和处理需要继续改进。例如,我们国产的万分之一分析天平,甚至更高级精密一些的百万分之一的电子天平,和国际上赛多利斯、梅特勒-托利多等品牌还有一定的差距。2. 精密实验仪器谈到大型精密分析仪器,大家都会有一个体会是。这类国产的分析仪器和国际品牌比较比来差距大、问题多、可靠性差。在行业内,只要资金稍充裕的实验室在购置大型精密仪器时,都会优先选择进口品牌。例如:离子色谱仪、气相色谱仪、质谱仪、元素分析仪等等。为什么会形成这种局面呢呢?不无外乎这么几个方面的因素:一、大型的分析化验仪器国产品牌少,能够完全生产的仪器厂家寥寥无几;二、制造工艺技术水平达不到,特别是核心部件的设计和自造,国内仪器企业差距很大;三、仪器的可靠性差,精度难以达到使用要求;四、仪器设备的设计制造技术人员匮乏。记得有次我们实验室计划采购一台电感耦合等离子体发射光谱仪,起初,公司计划购买一台国产的此类仪器。在国内调研了能够提供此类仪器的厂家后,邀请厂家销售和技术人员到公司进行技术交流,通过交流得知核心部件都是采购国际上品牌,也即是一个组装。在介绍技术方案时,国内仪器厂家的技术人员竟然讲不清楚技术问题,一味地迎合客户要求,不管仪器的功能是否能达到客户的要求,都是一口答应客户。之后在和国外品牌的交流沟通中,他们对技术的科学严谨态度,打动了我们,我们最终选择了进口品牌。总之,国产的精密大型分析仪器,与国际知名品牌比较还有很大的差距,国内的仪器厂家应抓住全球经济一体化和科技进步的大好时机,虚心学习,取长补短,我相信,在不久的将来,国产精密仪器设备一定会走出国门走向世界。
  • 从标准应对到精准预警,多方案把控饮用水异味来源!
    新版GB 5749-2022《生活饮用水卫生标准》已于3月15日正式颁布,水质检测指标变更为97项:常规指标43项,扩展指标54项,其中扩展指标中新增2-甲基异莰醇及土臭素两种嗅味物质。嗅味物质因其阈值浓度(OTC)低,且易引起消费者的感官不适,因此近年来饮用水的异味投诉日渐增多,饮用水中异味来源逐渐成为关注的焦点!然而嗅味物质因其浓度低、易挥发等特点,给嗅味分析带来众多难点;同时引起嗅味的物质众多。如何精准、快速锁定嗅味来源,也成为分析工作者应对异味突发事件中亟待解决的难题!岛津公司结合自身产品优势,从标准应对自动化嗅味检测,到现有系统嗅味应用扩展,再到专属系统精准预警水质嗅味突发事件,让您无忧应对水质嗅味分析难题!土臭素及2-甲基异莰醇 知多少?土臭素和2-甲基异莰醇是一种由地表水中蓝藻(蓝绿藻)和放线菌(细菌)产生的一种天然萜烯醇化合物。当这些生物繁殖的时候,会在水中产生一种泥土发霉的气味,这种味道很难通过传统的水处理方法去除。然而痕量的土臭素和2-甲基异莰醇却会影响到饮用水的感官特性及消费者的接受度,严格把控这两种嗅味物质成为水质保障必不可少的环节。 方案在手,应对无忧! 如何快速应对饮用水中嗅味物质测定及异味来源,别急!小编总结岛津多种检测方案,让您轻松应标,同时精准预警异味来源! 自动处理、轻松应标SPME-GCMS法测定土臭素及2-甲基异莰醇 GB/T 5750-202X《生活饮用水标准检验方法》征求意见稿中,对土臭素及2-甲基异莰醇的测定采用固相微萃取(SPME)结合GCMS的方法测定。标准中水样的处理采用手动SPME的方式富集,但手动SPME存在操作繁琐、不易自动化且重复性差等问题,成为广大水质分析工作者的分析难题。 AOC-6000 Plus+GCMS-QP2020 NX 岛津AOC-6000 Plus自动进样器提供在线全自动SPME萃取,结合气相色谱质谱联用仪GCMS-QP 2020 NX仪器可实现饮用水中土臭素及2-甲基异莰醇的自动化测定。两种嗅味物质在5~500 ng/L浓度范围内,线性相关系数均大于0.999;两种物质的检出限按照标样最低浓度的3倍信噪比计算,其均小于1 ng/L,满足GB 5749-2022对于两种物质10 ng/L的限量要求。 现有配置、更多可能P&T-GCMS测定5种嗅味物质 吹扫捕集法(P&T)是一种动态顶空技术,用流动气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹扫出来的有机物吸附,随后经热解吸将样品送入气相色谱质谱仪进行分析。吹扫捕集法具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点;同时测定饮用水中的VOCs也需要使用到P&T,因此P&T-GCMS也是众多水质分析实验室必备的分析仪器。 5种嗅味物质的TIC图(2 µg/L)1、甲硫醚;2、二甲基二硫醚;3、异氟尔酮;4、土臭素;5、2-甲基异莰醇 岛津公司与行业内用户合作,利用P&T结合GCMS-QP2020 NX仪器检测水中的5种嗅味物质,在10~500 ng/L范围内标准曲线线性良好,相关系数均在0.999以上;各组分的检出限按照最低浓度标样的3倍信噪比来计算,除异氟尔酮外,其余4个组分检出限均低于1 ng/L,同样满足GB 5749-2022对于土臭素和2-甲基异莰醇的限值要求。 专属系统,精准预警岛津Off-flavor嗅味分析系统 2-甲基异莰醇和土臭素只是众多嗅味物质中有代表性的两种,能引起异味的物质有很多,一旦发生饮用水嗅味突发事故,我们该如何快速准确的找到嗅味来源呢?今天小编为大家推荐岛津专属的Off-flavor嗅味分析系统。 AOC-6000 Plus+GCMS-TQ8040 NX+嗅辨仪 岛津Off-flavor嗅味分析系统采用的是和GB/T 5750.8-202X《生活饮用水标准检验方法》征求意见稿中相同的固相微萃取方式(SPME)富集目标组分,也是目前流行的嗅味物质萃取方法。异味分析数据库整合了目前容易引起人类感官不适的大量异味物质,其中GB 5749-2022规定的土臭素和2-甲基异茨醇以及参考指标中的二甲二硫醚、二甲三硫醚均收录其中,除此之外还兼具以下优势: 温馨提醒:嗅味分析中得到嗅味物质的含量只是分析的开始,同时也要结合嗅味物质的阈值以及嗅味样品的气味,才能真正快速锁定嗅味来源,达到精准预警的目的!!! 结 语水是我们的生命之源,与我们的生活息息相关,一旦发生问题,会导致一系列恶果。饮用水中的嗅味问题,需要尽快找到嗅味来源,采取相应措施。岛津公司针对中国饮用水标准新增的2种嗅味物质检测,推出了多种解决方案;此外还有专门为嗅味分析开发的嗅味数据库,并对引起嗅味的物质以及嗅味物质的感官信息进行了整理。一旦发生饮用水嗅味问题,可以快速找到嗅味来源,从而根治,契合了岛津公司“为了人类和地球的健康”的经营理念。 撰稿人:孙谦 *本文内容非商业广告,仅供专业人士参考。
  • GE推出新型高内涵细胞成像分析系统助力干细胞研究与应用
    20世纪60年代,自骨髓移植成功治疗造血系统疾病以来,人们对干细胞治疗的研究产生了极大的兴趣。干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞。在一定条件下,它可以分化成多种功能细胞或组织器官。干细胞治疗是把健康的干细胞移植到病人体内,以达到修复病变细胞或重建功能正常的细胞和组织的目的。 在刚刚结束的&ldquo 2011细胞治疗技术研讨会&rdquo 上, GE医疗的全球研发总监Dr. Stephen Minger做了题为《Therapeutic and Research Potential of Human Stem Cells》的演讲,分享了他对人类干细胞研究与临床应用潜力的看法。 Dr. Stephen Minger 演讲现场 干细胞疗法就像给机体注入新的活力,相比于常规方法,具有很多突出优势。目前很多细胞退行性疾病的发病机理幵不明确,如心脑血管疾病、糖尿病、肝硬化、肢体缺血性疾病等,由于干细胞具有"修复再生"的生物学特性,干细胞治疗有可能成为此类疾病的终结者。无论是自体干细胞移植还是异体干细胞移植,由于所采用的干细胞免疫原性非常低,几乎不引起排异反应,因此,干细胞治疗高效安全、无毒副作用,同时,干细胞治疗可以很好的与基因治疗相结合,还是基因治疗的良好载体。成体干细胞取自成人自体或胎盘和脐带血,因此来源十分广泛,不用担心治病"原材料"短缺的问题。 干细胞技术是当今生命科学的聚焦点,被誉为二十一世纪生物和医学技术领域可能取得革命性突破的项目,有望启动具有划时代影响的一场"医学革命",将会为社会带来巨大的社会效益。 干细胞研究和临床应用需要严格的监测细胞的属性,以确定该细胞是否保留其多能性,处于分化阶段,这对于确认干细胞性质非常重要。此外,也需要有适当的分析方法用于测试和优化干细胞的培养和分化条件。这些方法通常包括使用流式细胞仪分析生物标志物的表达,以及用RT - PCR迚行基因表达的研究。然而当前,高内涵分析技术较上述技术体现了更多的研究优势,帮助研究者更好地定量研究干细胞的多能性与分化作用,实现科研与临床的转化。 通用电气医疗集团(GE Healthcare)推出了IN Cell系列最新一代高端产品IN Cell Analyzer 6000 激光共聚焦高内涵细胞成像分析系统,它将高质量激光光源和高内涵细胞成像分析相结合的系统,使高速度和高质量细胞图像获取和分析达到统一,为客户提供了快速而精准的细胞技术分析平台。它可以满足要求更高的高内涵分析和筛选。拥有专利技术的光学系统采用了全新的设计理念:IN Cell Analyzer 6000的共聚焦光阑是可变的,类似于眼球虹膜控制瞳孔的大小;感光成像采用了新一代科研级sCMOS技术。针对不同要求和难度的实验,IN Cell Anaylzer 6000提供成像速度和图像质量最优组合。 与此同时,GE还推出了以金属卤素为荧光光源的IN Cell Analyzer 2000全自动荧光显微镜型细胞高内涵成像分析系统。该系统非常灵活,使用广泛,可以为您实现一些以前无法完成的实验设想。可实现从显微观察到自动化筛选,以及细胞器、细胞、组织和整个生物体的成像。IN Cell Analyzer 2000有着硬件和软件的独特组合,能够非常快速地获取图像,是筛选的理想选择。该仪器是利用六西格玛原理来设计的,结构坚固,能确保它在多用户环境中高通量应用的可靠性。
  • 快速应对水质异味,权威嗅味数据库来了
    导语 近年来,国内饮用水嗅味突发事件频出,受到社会广泛关注。 中科院生态环境研究中心杨敏研究员团队通过大量的科学研究和实际样品检测,采用岛津GCMS-TQ8040气相色谱-三重四极杆质谱仪,建立了水质特征嗅味物质的多组分同时定量分析方法,并构建了嗅味物质快速筛查数据库,这套水质嗅味数据库正式进入岛津的产品序列面向全国发售。 中科院生态中心-岛津水质嗅味数据库合作签约仪式 110种水质嗅味数据库 特点和优势 水质嗅味数据库结合近年来我国饮用水中经常出现的嗅味类型,选取来源于微生物、生活污染、工业化学污染等110种致嗅物质为研究的目标物质,确定了5种修正校准曲线用的内标化合物,建立气相色谱-串联四极杆质谱联用仪(GC-MS/MS)同时定性定量分析数据库。 该数据库包含了目标嗅味化合物和内标化合物进行GC-MS/MS分析时所需的最佳仪器条件(气相条件和质谱条件),包括保留指数、保留时间、选择离子监测模式(SIM)离子信息、多反应监测模式(MRM)离子对信息和两种模式下各化合物的校准曲线方程等。 即使在没有分析方法和嗅味物质标准品的条件下,该系统可帮助分析人员快速地对环境样品中的嗅味化合物进行定性和半定量分析。 水质嗅味数据库分析 流程及结果 使用液液萃取法前处理图1. 异常水样中检测到部分异味物质的MRM图谱 表1. 异常水样中检测到4种异味物质注1:红色标记的化合物估算浓度为小于气味阈值的1/10,不会对气味造成影响。 注2:气味阈值和气味特征为数据库中各个异味组分登记的信息,可以显示在结果报告中。 总结 目前环境管理主要是集中在一些常规物质的检测,而环境中还存在很多未知的风险物质,这就需要不断梳理,对未知的需要进行监管的物质进行筛查。 岛津-中科院生态环境研究中心推出的110种嗅味物质数据库可在突发性环境污染事件中嗅味化合物的应急监测方面发挥优势。使用该数据库,无需配制嗅味物质标准溶液即可得到未知水样中嗅味成分的半定量结果,不但可以节省标品配置和处理数据的时间,而且即使是在嗅味分析方面知识和经验尚浅的分析人员,也可快速对样品中的嗅味成分进行分析。 撰稿人:杜世娟、郑嘉、田菲菲
  • 外媒:《芯片法案》对半导体生态系统意味着什么?
    现在,2022年的《芯片和科学法案》已成为法律,半导体公司正在评估如何以及是否从分配给支持芯片制造的527亿美元联邦补贴中分一杯羹。这项两党立法是在半导体供应链严重中断之后制定的,标志着多年来关于如何最好地提高美国在一个被认为对国家和经济安全至关重要的行业中的竞争力的政治争论的高潮。美国半导体制造能力已从1990年占全球供应量的近40%下降到今天的12%。未来五年将分配的CHIPS资金中约有四分之三(390亿美元)专门用于建设半导体制造厂或“晶圆厂”,其中包括专门用于军事以及汽车和制造业所必需的成熟半导体的20亿美元。其余的资金将促进更强大的美国国内的半导体生产生态系统,包括研发和劳动力培养。这些补贴可以将为美国半导体公司提供必要的缓冲,不仅可以缩小他们今天面临的巨大的人才缺口,还可以提高技能和实现劳动力的多样化。该法律为数字制造和相关劳动力技能的重大变化提供了机会。这种方法可能是跟上竞争的关键,以减小芯片的尺寸和功率,同时提高性能。然而,这笔资金带来了一个问题:新的地理制造业限制。海外制造限制《芯片法案》禁止资金接受者在中国和美国法律定义为对美国构成国家安全威胁的国家扩大半导体制造。这些限制将适用于任何新设施,除非该设施主要为该国的市场生产传统半导体。此外,这些限制 - 自资助之日起10年内适用于资助接受者 - 可能会改变。为了确保这些限制与半导体技术和美国出口管制法规保持同步,法律规定,商务部长必须与国防部长和国家情报局局长协调,在行业投入下,定期重新考虑哪些技术受到此禁令的约束。企业应仔细考虑联邦资金的潜在价值是否足以抵消这些地理制造业的限制。评估《芯片法案》的价值旨在利用芯片法案资金的公司应考虑这五个关键问题。一、全球战略首先,公司应全面评估其企业战略,以确定其全球运营方式。主要考虑因素包括:●研究与开发设计和销售半导体但与代工厂签订合同制造它们的公司可能需要考虑新的合作伙伴关系,以遵守芯片法案的地理限制。这也适用于设计自己的芯片并外包制造的非半导体公司。●制造足迹随着半导体行业对地缘政治安全变得越来越重要,世界各国政府都向芯片制造商提供补贴——通常是根据他们自己的地理要求。以此为背景,公司应考虑芯片法案的资金及其附带的限制如何要求重新平衡其制造战略。●采购和供应链随着晶圆厂在美国产能的扩大,公司应该考虑是否也应该为后端组装、测试和设备包装寻找新的合作伙伴。集成设备制造商(IDM)和代工厂可能还需要考虑在美国扩大晶圆厂产能是否更具成本效益,而不是寻求代工厂合作伙伴关系。●联盟和上市能力成功扩大产能将需要公司在其合作伙伴生态系统中共同努力,包括代工厂、半导体设备、知识产权、设计服务、无晶圆厂公司和系统制造商。二、资金追踪预计获得资助的赠款机会的竞争将非常激烈。制定一份引人注目的拨款申请,不仅要描述该项目,还要描述其支撑美国供应链,就业增长,经济效益和社会影响的潜力,这将是至关重要的。此外,联邦基金需要合规和报告。公司需要了解这些要求,其中可能包括成本的资格和允许性,围绕性能和成本的大量报告,采购法规以及项目会计和跟踪。其他法律,如戴维斯 - 培根法案,规范联邦政府资助的建筑项目的劳动力,可能适用。公司将需要一个计划来获取适当的人才,或考虑聘请外部提供者来管理授予的赠款。三、资本项目管理鉴于最近供应链的动荡和持续的熟练劳动力短缺,半导体公司比以往任何时候都更加紧张。投资扩大半导体产能的公司需要保持强大的资本项目管理能力,以确认他们可以在高通胀和高行业周期性的环境中开展项目。拥有合适的人才来为大型复杂的建筑项目提供全面的风险管理和监督至关重要。四、数字化转型平衡快速将新晶圆厂上线的财务动机与创新需求至关重要。行业特定的云解决方案旨在通过提高生产力和优化资源来加快上市时间,从而提供竞争优势。五、资本融资策略在公司考虑是否申请芯片法案资金时,他们最好为多种情况进行规划。鉴于地缘政治气候在10年内可能会发生变化,公司应考虑是否能够吸收与改变制造禁令有关的任何财务损失。除了直接补贴外,该法律还包括一项临时的25%的先进制造业投资信贷,用于半导体制造资产的支出,为购买专业工具设备创造了激励措施。符合条件的纳税人需要遵守《芯片法案》的地理制造限制,并可以选择将抵免视为税款(“直接支付”)。前景《芯片法案》可能会为半导体公司带来机会,但要实现其潜力,就需要重新思考全球战略以及数字化转型、资本项目管理和财务规划计划。地缘政治的不确定性,加上最近市场的巨大变化,要求公司仔细评估自己在半导体价值链中的地位,以及如何提高自己的地位——不仅是为了今天的敏捷性,也是为了明天的稳定性。总结为了充分利用芯片法案,半导体公司应重新评估全球战略,同时规划拨款追求,数字化转型,资本项目管理和财务规划。资金接受者不得在中国或任何对美国国家安全构成威胁的国家扩大半导体制造业。这些补贴可以为半导体公司提供缓冲,以提升技能和使其劳动力多样化。一、会议概述半导体产业作为现代信息技术产业的基础,已成为社会发展和国民经济的基础性、战略性和先导性产业,是现代日常生活和未来科技进步必不可少的重要组成部分;伴随着全球科技逐渐进步,全球范围内半导体产业规模基本都保持着持续扩张态势。美国半导体产业协会(SIA)发布数据显示,2021年全球售出1.15万亿颗芯片,销售额达到创纪录的5559亿美元,同比增长26%。这也是全球半导体市场规模首次突破5000亿美元。基于此,仪器信息网联合电子工业出版社特主办首届“半导体工艺与检测技术”主题网络研讨会。会议旨在邀请领域内专家围绕半导体产业常用的工艺与检测技术,从各种半导体制造工艺及其检测技术等方面带来精彩报告,依托成熟的网络会议平台,为半导体产业从事研发、教学、生产的工作人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩的报告。主办单位: 仪器信息网 电子工业出版社直播平台:仪器信息网网络讲堂平台会议官网:https://www.instrument.com.cn/webinar/meetings/semiconductor20220920/会议形式:线上直播,免费报名参会(报名入口见会议官网或点击上方图片)二、会议日程首届“半导体工艺与检测技术”网络会议9月26-27日时间专场名称9月26日上午薄膜沉积与外延及其检测技术9月26日下午光刻与刻蚀及其检测技术9月27日上午封装及其检测技术9月27日下午半导体失效分析及沾污检测三、 会议联系 会议内容: 康编辑(仪器信息网) 15733280108 kangpc@instrument.com.cn 会议赞助: 刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 布鲁克创新性高性能系统和高水平分析解决方案亮相Pittcon 2015
    仪器信息网讯 新奥尔良,路易斯安娜,9/3/2015,布鲁克公司为Pittcon 2015带来了极具创新且激动人心的产品和解决方案,而这些产品和解决方案更注重于如下领域:医药和应用市场,质量控制,以及纳米分析和细胞生物学。  应用和医药市场  涉及到这一领域的产品和解决方案包括:  BRAVO新一代手持式拉曼光谱仪,该产品采用了专利的用于减少荧光背景的移频激发技术(SSE)。因此与上一代产品相比,该产品可测量的原材料类型被大大拓展。  用于在线核磁共振(NMR)化学过程分析的全新软件&mdash &mdash InsightMR。该产品基于布鲁克的旗舰型NMR软件TopSpin而开发,无缝集成于布鲁克NMR系统。该软件界面友好,无论是专家还是新手都可以很轻松地设置,监测和调整关键试验参数。  新型D8 ENDEAVOR是一款先进的X射线衍射仪系统,可为用户提供高效的过程和质量控制。它集准确和超快速分析于一身,同时配备了最新的LYNXEYE XE检测器,通过短的测试时间和出色的灵敏度来满足电解铝,水泥,地质,矿产,医药和染料等行业在过程和质量控制方面的需要。  针对定量元素分析,布鲁克推出新型台式S2 PUMA能量色散X荧光光谱仪。该产品采用了布鲁克首次推出的HighSense技术。通过使用更高功率的X射线管来达到低检出限和短的测量时间。同时,该产品对于轻元素的检测能力在同类产品中也是非常出色的。  用于FT-NIR光谱仪网络管理的新款ONET软件。作为一个服务器应用的范例,用户可以通过一个基于浏览器的网络界面来使用ONET,他们可以在位于世界任何一个地点的网络中心通过它来设置、管理和控制一个FT-NIR仪器&ldquo 网&rdquo 。ONET可以让中、大型公司充分利用高性能的FT-NIR技术,而无需由于要考虑到常规操作者的易用性而做出妥协。  牙膏分析仪是基于布鲁克成熟的TD-NMR minispec产品线而开发的,它可以为用户提供分析牙膏和漱口剂中氟化物的&ldquo 交钥匙&rdquo 解决方案。 食品安全和质量 涉及到这一领域的产品和解决方案包括: NMR蜂蜜分析解决方案(NMR Honey Profiling):这是一个新的NMR筛选解决方案,主要针对蜂蜜分析,是布鲁克FoodScreener产品线的一个最新的模块。该解决方案通过目标或非目标分析以实现对于一系列蜂蜜性质,包括糖份,酸度和氨基酸成分等的同步鉴别和定量。此外,该模块还可以用来鉴别假冒产品。 NMR酒类分析解决方案(NMR Wine Profiling):作为一个被充分增强的FoodScreener第二代模块,它是一个基于NMR的简易和经济的酒分析技术。除了可以用于鉴别酒的原产地,例如法国,意大利和西班牙等国家的关键地区外,该技术也可以用于测量那些真实性参数,例如葡萄种类,酿酒年份和是否兑水等。 TASQ1.0和Pacer2.0高通量质谱定量软件:通过这些强大的软件,用户可以在一个单独试验中就可以轻松完成数百个化合物的筛选,鉴别,确认和定量,尤其适用于食品,环境和法医领域。 纳米分析,显微镜和先进材料研究 涉及到这一领域的产品和解决方案包括: UNT TriboLab机械性能测试仪:该产品采用了一个通用型的基本模块,同时可以配备一系列驱动模块以达到在一个单一平台轻松实现多重,不同的摩擦学测试。较之其上一代产品,可为用户提供更高的速度,更大的扭矩,和更好的力学测量。 NanoForce纳米机械性能测试系统:可提供纳米机械性能表征领域最新的技术。超低的担载能力,动态测试和原子力显微成像是它的标准&ldquo 元素&rdquo 。同时,该产品的闭环控制可以将试验设计参数向最大的极限逼近。 BioScope Resolve生物原子力显微镜: 通过使用一个基于倒置光学显微镜上的原子力显微镜(AFM),可以为用户提供最高分辨率的成像技术和最全面的细胞机械性能测试能力。该产品采用了布鲁克专利的PeakForce Tapping技术,使AFM研究者针对生物样品,既可以获得最高分辨率的成像结果,同时也可以实现皮牛顿水平的力学测量。
  • 卷“土”而来,EXPEC 3600 移动式GC-MS帮您剖析水中异味
    随着生活质量和社会的发展地表水体富营养化情况时有发生2-MIB和GSM的浓度也随之增大从而引发水体中产生异味事件,影响居民生活例如:太湖流域水体富营养化事件注释:2-MIB(2-甲基异莰醇)和GSM(土臭素)是水体中存在的主要嗅味物质,主要由水中的蓝藻、放线菌和某些真菌新陈代谢产生。除此之外,新版《生活饮用水卫生标准》(GB 5749)报批稿正式发布,将2-MIB及GSM由原来的“参考指标”提至“扩展指标”,也反映了国家对水中臭味物质影响的重视。目前,实验室普遍采用《GB/T 32470-2016 生活饮用水中臭味物质土臭素和2-甲基异莰醇检验方法》利用顶空固相微萃取-气相色谱质谱法测定水中2-MIB和GSM的含量。由于2-MIB和GSM挥发性强,样品采集后需冷藏保存和运输,且需要在1天内完成分析,否则会造成样品的损失。因此,开发一种水中痕量2-MIB和GSM现场快速分析的仪器及方法非常必要。EXPEC 230固相微萃取综合前处理仪EXPEC 3600 移动式GC-MS谱育科技EXPEC 3600 移动式GC-MS是针对GB 5749开发的一款车载式GC-MS,结合EXPEC 230 固相微萃取综合前处理仪已实现对水中2-MIB和GSM现场快速、准确地分析。与此同时,其符合国家应急监测装备配置要求,采用快速色谱技术,分析速度快,配置多种进样方式,可用于大气、水质、土壤等中的VOCs和SVOCs的快速定性、定量分析,满足各级监测部门的执法检测、应急监测以及其它日常移动检测需求。方法参数样品前处理水样:10.0 mL;氯化钠:2.5 g;平衡时间:5 min;萃取时间:50 min;萃取温度:70 ℃。色谱条件色谱柱DB-5(20 m×0.25 mm×0.5 μm);进样口温度:230℃;质谱传输线温度:200℃;气质接口温度:200 ℃;解吸时间:1 min。程序升温:60℃保持2.5 min,以8℃/min升至180℃,以20℃/min升至260℃,保持5 min。质谱条件离子源:EI源;离子化能量:70eV;质量分析器:离子阱;离子阱温度:150℃;扫描模式:选择离子检测(SIM)。方法参数 目标物标准色谱图(1:2-异丁基-3-甲氧基吡嗪;2:2-MIB;3:GSM)标准曲线配制2-MIB和GSM浓度分别为5.00、10.00、20.00、50.00、100.00 ng/L的标准水溶液,加入20.00 ng/L的内标物2-异丁基-3-甲氧基吡嗪,在优化的条件下进行顶空萃取,萃取完成后通过EXPEC 3600测定,结果如下。用最小二乘法拟合结果表明,两种物质的线性相关系数大于0.997,线性良好。【 2-MIB和GSM线性结果表 】【 2-MIB标准曲线 】【 GSM标准曲线 】精密度分别配制2-MIB和GSM浓度为20.00ng/L和100.00ng/L的水溶液,平行测定6组,计算精密度,测定的结果RSD分别为1.91%-7.66%和2.98%-5.34%,说明该方法精密度良好。【 低、高质量浓度精密度测定结果表 】检出限根据HJ 618-2010配制2-MIB和GSM浓度为5.00ng/L的水溶液,连续分析7次,测定检出下限,结果如下。结果表明,本方法对两种物质的检出限分别为1.41和1.85ng/L,低于GB 5749中10 .00ng/L的限值要求。【 检出限测定结果表 】回收率为了验证移动式GC-MS测定水中臭味物质的准确性,采用苕溪的溪水配制了20.00 ng/L(低浓度)和100.00 ng/L(高浓度)的2-MIB与GSM混合溶液,重复测定3组,计算平均值,结果表明低、高浓度的回收率分别在100.3%-112.1%和91.36%-113.87%,与样品实际浓度偏差在0.3%-13.87%之间,说明该方法准确度良好,适用于地表水中臭味物质的检测。【 低、高质量浓度准确度测定结果表 】小结EXPEC 3600 移动式GC-MS参照GB/T 32470-2016标准建立了水中2-GSM和MIB的检测方法。该方法检出时间更短、检出限低,精密度和准确度良好,满足GB 5749(报批稿)中的限值要求,适用于水中臭味物质的日常移动监测与突发事故的应急监测。
  • 新品发布〡“源于经典,着眼未来”岛津氨基甲酸酯柱后衍生分析系统焕新上市
    各位看官大家久等啦,上周隆重介绍了岛津三款应用分析系统新品中的大小姐氨基酸分析仪,今天将继续为大家介绍秀外慧中的二小姐-全新氨基甲酸酯柱后衍生分析系统。 戳下方图片揭幕全新氨基甲酸酯柱后衍生分析系统 心系客户未来的使用需求,她采用整体性设计:将液相色谱系统-柱后衍生系统-软件控制系统三者有机整合,提供更高效便捷的全自动样品分析。 有何新意岛津基于液相色谱-柱后衍生法的氨基酸甲酸酯农残分析经验已经有30余载,迭代过多款经典的分析系统。本次升级的应用分析系统有何新意? 二小姐的三大“高”招,待我一一道来。 高规格配置采用高精度反应液输液系统基础上,搭配高灵敏度的荧光检测器,高性能化学反应器,锁定更小的脉冲、更高的灵敏度、更精确的混合精度和反应温度,是实现准确柱后衍生结果的关键。 荧光检测器检测池温控技术提高结果重现性化学反应器具有极佳的温度稳定性 高便捷性软件分析与衍生全过程图形化监控,内置分析方法包,全自动样品分析一键开启。高安全性设计应对氨基甲酸酯柱后衍生法“碱性水解,高温衍生”的特性,安全性设计必不可少。所有模块都配制漏液传感器,化学反应器更是配备了过热保护、防漏传感、气敏传感的三重全方位保护。 有何本领二小姐的看家本领是搞定高灵敏度氨基甲酸酯类农残分析,完美应对食品安全、环境、疾控等各行业检测标准的要求。 应用举例同时测定七种氨基甲酸酯类农药近期将为大家揭幕本系列最后一位新秀,敬请期待。氨基酸分析仪LC-16AAA风华绝代大小姐 氨基甲酸酯柱后衍生分析系统秀外慧中二小姐 敬请期待古灵精怪三小姐
  • 安捷伦5975T LTM GC/MSD系统应对水质应急监测分析挑战
    安捷伦5975T LTM GC/MSD系统应对水质应急监测分析挑战 近年来,水安全事件在全国多地频发,仅今年以来发生的自来水不达标和水异味事件就有十余起。四月份的兰州自来水污染事件则将“饮用水安全问题”推到了风口浪尖。饮用水安全关系到千家万户,快速准确地在污染发生地现场确定污染物种类和浓度,为应急响应提供科学决策依据至关重要。 面对水质污染事件的监测分析,传统实验室通常远离取样点,难以覆盖广泛流域,不能满足在现场快速提供分析结果的需要。而将传统实验室仪器做一些改装来应对移动检测,在使用过程中往往会面临包括运输颠簸性、供电稳定性、环境温湿度等诸多问题,无法保证结果可靠性。 针对应急检测对于可靠、快速和现场分析的需求,安捷伦推出了基于5975T低热容(LTM)气相色谱/质谱检测仪(GC/MSD)的移动实验室解决方案。作为业内首款商用车载式气质联用仪器系统,安捷伦5975T LTM GC/MSD已经多次在突发性环境污染事件和公共安全事件中应用,在现场提供快速、可靠和实验室级分析结果,帮助相关工作人员做出科学决策,为人们的生命健康和安全提供技术保障。安捷伦5975T LTM GC/MSD 系统数据可靠提供科学依据 我国对于供水水质有严格标准要求,而未知来源的水污染成分可能更加复杂。这些都要求监测分析结果必须准确可靠,否则就无法为相关政府部门和企业决策提供价值。安捷伦5975T从设计理念上就坚持和实验室检测结果的一致性,考虑到了现场检测中的各种影响因素。5975T继承了安捷伦5975系列GC/MSD和MSD Chemstation的高分析性能,保证在灵敏度、重复性和准确度等分析性上与实验室内GC-MS具有同样品质,从而在现场就可以得到准确可靠的结果,不必再送样品回实验室做第二次确证分析,真正做到了具有实验室品质的移动检测。 在未知物定性方面,安捷伦拥有全面的数据库和覆盖数百种目标化合物的分析方法,例如,安捷伦有包含796种的有毒化学品数据库(含氯代二噁英和呋喃, 多氯联苯, 挥发物,半挥发物和农药等),对于饮用水安全分析具有重要价值。分析结束后,DRS(解卷积报告软件)和RTL数据库软件可以自动从谱图中找到样品中存在的有毒化合物,自动扣除样品基体干扰,避免人工操作带来的假阴和假阳结果出现,更加简便的同时也进一步保证了结果的准确可靠性。 2013年雅安地震后,载有5975T LTM GC/MSD系统的移动水质检测车第一时间到达庐山,用于进行现场供水过程水样质量进行分析,提供了高准确度、高灵敏度和高重现的结果, 为现场科学决策提供可靠的基础和保障。基于5975T LTM GC/MSD系统的安捷伦移动实验室快速分析满足应急需求  无论是突发性水质污染事件还是如地震灾害后的水质监测,快速及时地提供分析结果至关重要。例如在兰州水污染事件中,自来水出现异常后,必须以最快速度对水质进行检测分析,排查污染源,以及时公布权威信息,引导居民用水安全。为了满足应急需求,安捷伦5975T不仅凭借出色车载性和移动性可以快速到达现场,节省来回送样时间,而且通过技术优势加速了整个分析过程,具体体现在以下四个方面: 在分析过程中,安捷伦 5975T采用拥有四项专利的低热容(LTM)技术,不同于常规GC通过加热空气再加热色谱柱,而是直接加热色谱柱。这项技术使常规分析的运行周期从原来的30多分钟缩短到5到10分钟。 在样品前处理上,5975T可以配置多种不同的进样和样品处理装置,在现场快速、简便地处理样品。如热分离进样杆(TSP)与萃取搅拌棒结合使用,可以用于低浓度的有机化和物快速分析;再如此次兰州水污染中,就是运用吹扫捕集技术很好地检测到了水质中苯超标。 在数据处理上,安捷伦5975T配套的安捷伦的DRS(解卷积报告软件)和RTL(保留时间锁定)数据库软件使几小时的数据处理工作只需2至3分钟就能完成,并产生报告。 在开机速度上,5975T采用安捷伦的真空保持技术实现30分钟内现场快速开机和做样品。真空保持3天后,开机15分钟后能够连续做4个重复样品分析的实验,化合物匹配性良好,4次连续进样保留时间重复性低于0.05%。 水的安全时刻关系到千万人的生命健康和社会的稳定运行。5975T LTM GC/MSD 系统正是通过在现场的快速分析,为用户节省宝贵时间,提供最大化的价值。提供的不只是仪器 安捷伦5975T LTM GC/MSD系统为现场车载应用设计,但是在许多方面还是保持和原有实验室仪器的关联度和一致性。对于许多熟悉安捷伦气质联用仪的用户来说,可以充分借鉴利用之前积累的经验和方法。当突发事件发生时,这就为用户节省了大量时间精力更好地应对挑战,以体现安捷伦的价值。 对于用户来说,安捷伦提供的不只是先进可靠的仪器,更是从技术、方法、经验和服务等各方面对用户强力的支持。在地震灾后、突发性环境污染事件的一线,都有安捷伦工程师和用户并肩战斗的身影。2008年汶川地震,安捷伦工程师在余震不断地危险下,边负责大量水样检测,边在检测空隙为基层工作人员讲解气质联用仪器的使用和检测方法;2013年雅安地震,安捷伦工程师随用户第一时间到达芦山,克服灾区恶劣条件,维护检测仪器正常稳定工作,保证灾区饮用水安全;在突发性事件下,很多用户往往不能够充分准备,安捷伦借助丰富的经验可以提供有力支持, 保障及时拿到准确可靠的结果,最终解决问题。 可靠的仪器产品,专业的服务以及训练有素,反应快速的售后服务工程师团队,这是安捷伦为用户提供长期价值的保障。 安捷伦5975T LTM GC/MSD系统已广泛应用于水质监测应急分析中,它在现场快速及时地提供与实验室一致的,高准确度、高灵敏度和高重现的分析结果,满足了水质监测应急分析的需求,为现场快速科学决策提供了科学依据和技术支持。连同便携和车载 FTIR(傅里叶变换红外)光谱等其他移动分析产品,安捷伦将继续在移动检测领域不断扩展应用,更好地满足用户需求,帮助用户应对挑战。   更多关于安捷伦5975T LTM GC/MSD 系统视频,请点击:http://v.youku.com/v_show/id_XNzE0NTA4MTIw.html
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 禾工仪器三聚氰胺液相分析系统验收通过率100%
    禾工科学仪器三聚氰胺分析液相色谱仪自年后不断刷新销售周纪录,自春节过后一个多月来,又有近二十家奶制品企业购买禾工科学仪器STI系列液相色谱仪作为三聚氰胺分析仪;至今为止,禾工科学仪器售出的三聚氰胺分析液相色谱仪经技术监督部门验收通过率100%。获得了广大用户的好评。 禾工科学仪器感谢众多的液相色谱仪用户为我公司推介了较多客户,我们将努力做好每一位新老客户的售后服务,同时为更多的客户提供我们超高性价比的液相色谱分析系统。 在相关国家标准推出后,禾工科学仪器在第一时间推出三聚氰胺分析液相色谱系统,并在每一个月就销售出12套相关设备,获得了良好的销售业绩。此后在众多购买的用户的推介下,禾工科学仪器三聚氰胺分析系统不断创造销售纪录。并与大量的奶制品企业建立了良好的合作关系。 禾工科学仪器三聚氰胺分析系统简介: 禾工科学仪器三聚氰胺分析系统是禾工科学仪器技术部在GB/T22388-2008《原料乳与乳制品中三聚氰胺检测方法》、和GB/T22400-2008《原料乳中三聚氰胺快速检测液相色谱法》的国家标准推出后,结合禾工历史调试相关企业液相色谱仪经验,经过大量的实验后,与相关企业合作建立的三聚氰胺检测解决方案。 禾工科学仪器三聚氰胺分析系统适用于原料乳,乳制品以及含乳制品中的三聚氰胺含量的测定。适用的客户对象有:各质检所,奶粉制造企业,乳品饮料制造企业,含乳产品制造企业。及各种奶油、奶酪、巧克力食品生产企业等。 禾工科学仪器三聚氰胺分析系统包含下列仪器与设备: STI P501/STIP5000高压输液泵系统, 1台 STI UV501/STIUV5000高灵敏度紫外可见检测器,1台 美国原装 Reodyne7725i手动进样阀,1套 VERTEX STI C18 150×4.6mm 液相色谱柱,1支 平头微量进样针 25ul/50ul,2支 N2000色谱数据工作站软件,1套 液相色谱仪维护工具包,1套 STI系列液相色谱仪三聚氰胺分析专用检测包: 电子天平(100g/0.1mg, 进口原装产品) 氮吹仪 漩涡混合器 高速离心机(10000转以上,含角转子) 。。。。
  • 盈盛恒泰-天津115个电子鼻24小时监测预警大港异味
    目前,“大港城区VOC(用来连续测量危险或工业环境中有毒有害有机气体)、恶臭监测与预警系统”项目已通过专家组验收,正式投入运行。  115个电子鼻在线监测仪全部“上岗”,它们分布在大港城区周边及所有重点异味企业厂界四周,在大港城区及周边区域形成了全覆盖的VOC、恶臭在线监测预警网络。目前,该项目是我国 大的异味监测预警溯源体系,它的建成投用为环境管理提供了可靠的技术支撑,对于大气污染的监测预警已经处于全国领先水平。 电子鼻有多厉害???“嗅觉十分灵敏” 这些电子鼻“嗅觉”十分灵敏,对异味的感知甚至超过人鼻子,不但能够随时感知周围异味情况并及时发出预警,还能够自动采样留存污染气团样品,为环境执法提供可靠依据。  它不但能够监测到周围空气中H2S(硫化氢)和NH3(氨气)、VOC(挥发性有机化合物)等大气污染物的浓度,还能够通过四个先进的恶臭传感器“感知”到周围的恶臭浓度。  “4个先进的恶臭传感器?” 这四个恶臭传感器可以模仿人的鼻子进行工作,但是远比人类的鼻子敏感,它们可以依据之前输入的数据模型对恶臭浓度进行准确的判断。  分布在各个重点异味源周边的“电子鼻”不但能够在线实时监测异味源的排放情况,还能够及时启动预警,帮助环境监察执法人员快速“锁定”排放源,对污染企业进行处罚和惩戒。   异味的发生具有瞬时性和不确定性,在大港地区异味治理过程中,存在着大气污染源定位困难、缺乏监测执法手段等问题。  比如采取人工采样与嗅辨员嗅辩方式进行执法时,在接到信访投诉到环境监察执法人员赶到现场之间存在着时间差,难以及时采集到有效证据,对于异味源的准确判断也十分困难。  115个“电子鼻”的投入使用将让这种困境得到很好的解决。  它们实现了对大港城区周边污染排放“第一时间采样、第一时间监测、第一时间预警”。“每个电子鼻收集到的数据信息都将实时传送到监控终端平台,一旦电子鼻发生预警,监控人员将立即根据实时数据进行研判,  如果排放物浓度接近超标值,将提醒企业注意,及时处理,预防污染事故发生, 大限度减少异味对居民生活的影响。  如果排放确实超标,还可以通过远程控制操作电子鼻进行自动采样,锁定证据,为下一步依法惩处提供依据。   监测预警系统已经处于全面运行状态,可实时显示来自115个电子鼻的实时数据,并能准确无误的发布预警信息,准确率达到80%以上。  “三个空气质量超级监测站全部建成”   作为“大港城区VOC、恶臭监测与预警系统”项目的重要组成部分,三个空气质量超级监测站也已经全部建成并投入使用。  三个空气质量超级监测站分别位于南环路与津港路交口、世纪大道7号以及胜利街兴华里社区,监测范围可以覆盖整个大港城区以及周边区域。  相比“电子鼻”,监测站的功能更为强大,它们可以对VOC(挥发性有机化合物)成分进行分析,更好分析判断异味源,进一步破解“异味源”难确定的难题。  同时监测站还将对空气质量进行实时监测,为研究异味对空气质量影响收集基本数据、打下良好基础。  回顾滨海新区大港城区异味问题由来已久,也是居民普遍关心的问题。2014年8月,《每日新报》连续报道了《天津大港地区南环路刺鼻气味来袭 居民“受气”难开窗》以及后续报道《新区环保市容局:将分三阶段治理》,在居民中引起了很大反响,也得到了相关部门的积极回应,推进了专项治理方案的更快出台。
  • 哈希在线水质分析仪器为山东省环境自动检测监控联网系统助力
    日前,山东省内所有的重点污染源都已经安装了全省联网的环境自动检测监控系统。 该类系统在山东省共设立了1300多个,覆盖全省100多家城镇污水处理厂、1047家重点监管企业,城市主要水源地、60条河流的116个河流断面、17个城市的空气质量也全部被纳入到监测系统中,这意味着山东省90%以上的污染源排污情况和水气环境质量都得到了实时监控。与此同时,依托省、市、县三级数据传输网络,监测数据可以直接传输到省环境监控中心,接受各级环境监管部门的监督检查。 哈希公司的水质分析仪器在中国已经有超过20年的成功应用,此次作为在线水质分析仪器的供应厂家, 共向山东省各个环境监测点提供了数百套符合国家标准方法的CODmax铬法COD分析仪、AmtaxTM Compact 氨氮分析仪等在线水质分析仪器产品。系统运行以来,凭借运行可靠、运营成本低、测量精确、操作简单的优良性能得到了众多环境监测站好评。 在很多大型项目中,各个环节都是紧密相连,如有一个环节出现问题,将可能会导致整个项目停滞。这就要求在线水质检测仪器的安装、调试乃至培训都必须要做到快速响应,按照客户要求在最短的时间内解决问题。哈希公司本地化服务模式在此次山东省环境自动检测监控联网系统项目中&ldquo 再显身手&rdquo 。以&ldquo 快速响应,高质高效&rdquo 的服务标准,在规定时间内完成了项目要求,赢得了客户的满意。 哈希公司将凭借着最先进的水质监测解决方案以及完善的服务和技术支持网络,在各个行业中扮演着不同的角色,为各行业用户的应用提供最佳的解决方案,守护着水质与人类的健康! 关于哈希 哈希公司是美国财富500强企业之一&mdash &mdash 丹纳赫集团下属的一级子公司,总部位于美国科罗拉多州的拉夫兰市。哈希公司是致力于设计和制造水质分析、监测仪器及其试剂的科研生产企业,产品涵盖实验室定性/定量分析、现场分析、流动分析测试、在线分析测试,能够广泛应用于自来水、市政污水、工业循环水、污染源排放口、地表水、地下水、半导体超纯水、制药、电力及饮料等多个领域。生产线分别分布于美国、瑞士、德国、法国和英国。
  • 光纤照明系统应用于空间站舱内的分析探讨
    光纤照明系统应用于空间站舱内的分析探讨引言:照明系统是空间站内一个重要的子系统,配套舒适的照明能为航天员的舱内生活、作业提供良好的照明环境,保障航天员的人身安全。同时,照明的功耗控制也对整个航天任务的顺利实施起到重要作用。目前绝大多数空间照明系统的供电来源于太阳能电池阵/蓄电池供电系统。在航天器光照区,通过太阳能电池的光伏效应把太阳能转换为直流电能供给负载,并将部分电能转化为化学能储存于蓄电池组中。当航天器进入地球阴影区时,则由蓄电池通过控制单元中的调节装置向负载供电。太阳能电池主要时基于光电转换实现的,其基本原理是利用电池将收集到的光能根据一定的原理转化成为可以直接使用或者可以储存的电能,目前太阳能电池的转换效率一般在10%-20%之间。当前这种技术的应用范围很广阔,但其局限性是如何提高这种光能向电能转换的效率。近年来,虽然越来越多的飞行器开始采用功率较低、性能更优的LED光源代替传统的荧光灯,但是长时间不间断的照明仍会产生较大的功耗。为了充分利用太阳光以达到节约资源的目的,基于地面上应用的光纤照明系统,提出了一种应用于空间照明的太阳能光纤照明方案,直接利用太阳光进行舱内照明。图1.空间站内的照明系统一、光纤照明可行性分析以位于赤道上空35860 Km的同步轨道为例,卫星绕地球一周的时间为23 h 56 min 4 s,与地球自转周期相同,卫星相对地球来说是静止的,一年中仅在春分和秋分前后45天,而且每天最多只有72 min被地球遮挡,其余时间内,卫星可受到太阳光的连续照射。和地面相比,用同样的面积的太阳能电池板,在同步轨道可获得6-11倍的太阳能。如果卫星处于圆形日心轨道,则不存在地球遮挡时间。如果我们能充分利用这段时间的太阳光直接进行照明,将大大节省飞船的照明用电,因此分析和探讨光纤照明系统在飞船和空间站内的应用是非常有意义的。事实上,早在1995年,美国物理科学公司和道格拉斯宇航公司在NASA的资助下,就曾对太阳光照明系统进行过相关的研究。当时这个系统是作为空间材料处理实验的热源为另一个项目研制的,将其中一部分用于空间植物照明实验。这一系统主要包括了可自主聚光镜、次级聚光镜、光纤、植物照明器和检测仪器,效率约为32%,通过采用高效率部件,系统效率可达到65%,其聚光比为1000-75000。由此可见,太阳光光纤照明系统有望于应用于未来的空间站照明。图2.空间站内的收光系统二、空间光纤照明系统关键技术典型的光纤照明系统主要由聚光装置、光纤束、末端发光装置以及辅助装置等部分组成。其中光纤束及光线跳线作为重要的组成部分,起到了光线传输何承载的重要作用。我们提供各种光纤束,并根据要求为客户定制各种光纤束。可选的标准接口及护套铠甲。40,000小时不间断测试实验表明我们光纤束可以长期保持透过率稳定。 此外,传统的光纤束均采用环氧胶来交合光纤,这一方式使光纤束的传输效率变低,我们PowerLightGuide FUSED-END BUNDLES 抗紫外光纤束(Optran UVNS光纤)则采用输入端熔融工艺从而减小光纤间的空隙,极大的提供光纤束的透过效率。在保持光纤的NA不变的情况下,PowerLightGuide FUSED-END BUNDLES传输效率提高50%。因为不含任何环氧胶,PowerLightGuide FUSED-END BUNDLES在摄氏1500度的情况下依然可以正常工作。PowerLightGuide FUSED-END BUNDLES(光纤束,光纤光导管)相对于传统的液芯光导管(Liquid Light Guide,液芯光纤)有着极大的优势,主要包括以下几点: 1.PowerLightGuide FUSED-END BUNDLES在160~1200nm范围内提供极高的透过率, 2. PowerLightGuide FUSED-END BUNDLES长度不想液芯光纤一样受限制, 3. PowerLightGuide FUSED-END BUNDLES的传导性能不会随时间而退化。 主要应用:工业及科学方面: 替换 UV液芯光纤光谱学 传感器 紫外光刻 激光焊接/锡焊/打标 激光能量传送 核等离子体诊断 分析仪器 激光二极管尾纤 Thomson散射 紫外照明及监测 紫外拉曼光谱 紫外固化 超高温应用医疗方面: 医疗诊断 激光传输 光动力疗法 医学治疗高精度定制型光纤束-昊量光电 (auniontech.com)系统的工作原理:聚光装置将入射的太阳光进行会聚,会聚后的太阳光通过光纤束传输到任何需要照明的场所,再通过合理的配光设计使传输过来的太阳光均匀地散射出去。当无太阳光照射或太阳光不足时,利用辅助照明装置进行补充照明,以保证高质量的照明环境。太阳光光纤照明系统应用于空间照明的关键技术为:聚光装置的设计;聚光装置与光纤的耦合;末端发光装置的设计;辅助照明装置的设计。研究上述应用的技术难点,将对光纤照明系统应用于空间照明并节约照明功耗具有很大作用。同时,对空间站照明的研究,也可以将其技术应用在空间植物的培养方面,未来随着人们对宇宙空间的不停探索,光纤照明将不仅仅 限于空间站的生活照明,同样可以应用在空间站内植物培养照明,为人类能够探索更遥远的宇宙提供可能性。结语:目前,地面上的太阳光光纤照明系统与传统照明技术的有机结合使得太阳能被广泛的应用,大大的节约了照明供电系统的资源和成本,具有较高的学术价值和重要的应用价值。而且,国内外关于太阳光照明与传统照明结合的性能更优的系统和新装置不断被研制出来,各国科研人员对太阳光光纤照明实用系统的开发研究正在进一步深入,各种新方案、新器件不断被运用到系统的设计和制作当中,太阳光光纤照明系统将是未来照明的一个大趋势。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 博奥生物晶芯基因芯片分析系统等产品亮相“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,博奥生物有限公司的晶芯 ArrayCompassTM基因芯片分析系统、晶芯 LuxScanTMDx/HT24高通量微阵列芯片扫描仪、晶芯 ExtractorTM36 核酸快速提取仪及博奥生物晶芯医学产品亮相国家“十一五”重大科技成就展。晶芯ArrayCompassTM基因芯片分析系统  该产品是博奥生物有限公司与Affymetrix公司经过3年的合作,共同推出的基于PEG Strip芯片(原位合成技术)的超高密度微阵列芯片反应与检测一体化系统,可用于高密度、中低通量的表达谱芯片、重测序芯片的分析,为进行此类研究的用户提供了一个高性价比的技术平台。其工业造型更是在2010年获得了具有工业设计“奥斯卡”之称的德国“红点奖”。晶芯LuxScanTMDx/HT24高通量微阵列芯片扫描仪  晶芯 LuxScanTMDx/24高通量微阵列芯片扫描仪是一款具有高通量、高自动化、高灵敏度和高分辨率的芯片扫描仪,可应用于临床检验、食品安全检测和生命科学研究等多个领域。此产品在晶芯LuxScanTM10K微阵列芯片扫描仪优质性能基础上,提高了产品自动化和扫描通量,进一步提高了产品的性价比。晶芯 ExtractorTM36 核酸快速提取仪  晶芯ExtractorTM36核酸快速提取仪适用于批量快速核酸提取,可方便快速地一次性提取36份细菌核酸样品。与配套的晶芯核酸快速提取试剂盒一起使用,可使核酸提取操作稳定可靠、简单快捷。简单两步操作即可完成核酸提取,操作时间在10min左右。博奥生物晶芯医学产品  左为晶芯九项遗传性耳聋基因检测试剂盒(微阵列芯片法),右为晶芯分枝杆菌菌种鉴定试剂盒(DNA微阵列芯片法)。  关于博奥生物有限公司:  博奥生物有限公司暨生物芯片北京国家工程研究中心成立于2000年9月30日,注册资金现为3.765亿元人民币。目前,公司拥有数十项具有自主知识产权,已研制开发出生物芯片(包括基因、蛋白、细胞芯片和芯片实验室等)及相关仪器设备、试剂耗材、软件数据库等四个系列的产品,可以为广大客户和合作伙伴提供先进的高通量生物芯片技术服务和行业应用整体解决方案。
  • 蔡司原位sem-raman关联系统助力高校分析测试青年创新
    p  strong仪器信息网讯/strong 2017年10月27-28日,由高校分析测试中心研究会主办,重庆大学理学部、重庆大学分析测试中心、重庆大学青年教师科协承办的“高校分析测试中心研究会青年部成立大会暨创新论坛”在重庆大学虎溪校区成功召开。卡尔蔡司(上海)管理有限公司作为支持单位出席本次会议,并带来题为《蔡司原位sem-raman关联系统及其在材料科学的应用》的精彩报道,以更全面的分析技术,助力高校分析测试青年创新。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/e5fae269-afc9-4a80-b745-fa126b4337fa.jpg" title="IMG_9273.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "高校分析测试中心研究会青年部成立大会暨创新论坛/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/4a86f975-5a79-4f2c-ad18-e907aa887f4c.jpg" title="IMG_9388.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "蔡司展位/span/pp  2008年,蔡司隆重推出扫描电镜 (SEM)-拉曼光谱联合平台系统,通过配置Witec、Renishaw、Horiba等多家知名品牌拉曼光谱,能够更全面地表征样品微观形貌、元素分析与分子结构、理化性质、结晶度及晶体缺陷等信息,为科研人员提供全新多维度分析平台。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/c59e3201-fec2-47a0-8d6c-4f1ea177e6eb.jpg" title="IMG_0031.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "蔡司显微镜部高校及研究机构市场片区专员任祺君做报告/span/pp  据任祺君介绍,相比传统方法,蔡司原位sem-raman关联系统最大优势在于可在不同测试手段之间精确定位样品同一位置,并实现数据之间的准确关联。平台结合了SEM快速且高分辨的表面观察与Raman的强大分析功能,能够以极高的效率对材料进行高分辨的物理、化学以及结构分析。样品保持在同一环境中,只需少量移动或操作,即可快速得到准确的样品组成数据,在纳米材料、光电子、半导体,电池等研究领域均有广泛应用。/pp  除sem-raman系统外,蔡司显微镜家族还拥有丰富产品线,可实现从cm到nm、从2D到3D、从大尺度到高分辨的全面分析,以应对材料科学研究的复杂挑战。而除关联拉曼外,蔡司多尺度、多功能关联显微镜平台还可实现微分干涉、相差、AFM等多种功能,为用户提供多样化与个性化选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/cfaccdb7-e480-47c4-bd27-1a2288220f6e.jpg" title="微信图片_20171030134857_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "蔡司设宴欢迎全体参会代表/span/pp  26日大会开幕前夜,蔡司于重庆富力假日酒店安排晚宴,欢迎远道而来的全体代表,对高校分析测试中心研究会表示衷心的感谢,同时也预祝大会取得圆满成功。/p
  • 全球首创的扫描式粒度粒形分析测量系统亮相世界制药原料中国展
    人和科仪作为获得泰洛思独家授权的代理商很荣幸能和广大客户一起分享泰洛思参加2016第十六届世界制药原料中国展的现场实况。 2016年6月21-23日在上海新国际博览中心举办了第十六届世界制药原料中国展,参与此次展会企业超过2800家。在展会上TRILOS特别带来了全球首创的扫描式粒度粒形分析测量系统,在生物医药行业被广泛应用于细胞分析反应过程监测及结晶过程监测。 参数:最小分辨率:0.12um最大量程:4000um重复性:1% span=""温度范围:-90℃~300℃压力范围:Vaccu-300 bar光纤长度:300m体系浓度:可依据不同要求,最高可达760%vol/vol防爆设计:可选食药行业认证:符合要点21CFR part 11质量:约15kg 所有产品完全根据客户实际需求进行定制且安装条件极度简便 可用于高温高压高粘度测量环境,干法湿法集成一体化(可选) 如此出色的TRILOS粒度粒形检测系统一经亮相,就吸引了无数中外观众的目光.. Trilos迄今已有十余年的发展历史,我们始终视客户满意为我们的终极目标,力求将最优秀的工艺技术结合客户的最新需求,设计出最贴近客户需求的优质产品。泰洛思正在积极开拓全球市场,目前产品已经远销美国、中国、欧洲、韩国、日本和台湾等地区,我们坚持把最优质的产品分享给全球优秀的使用者,Trilos真诚的欢迎您早日加入我们使用者的行列。如果您想了解更多的产品信息欢迎咨询,我们在中国的独家授权代理商:上海人和科学仪器有限公司。泰洛思正在举办免费体验活动,如果您对我们的产品感兴趣可以和我们预约体验!预约方式:1.扫描以下二维码添加泰洛思官方微信 在公众号上直接与泰洛思客服预约2.拨打86-13817694620直接和人和科仪的产品经理刘翀预约 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在推荐朋友关注更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:TRILOS、DRAGONLAB、FUNGILAB、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 专题约稿|汽车车内空气异味溯源方法
    p  车内空气污染的主要是由于车内零部件和内饰材料中所含挥发性有机物(Volatile Organic Compounds,缩写为VOC)的释放,世界卫生组织(WHO,1989)将总挥发性有机物(TVOC)定义为沸点范围在50~100℃到240~260℃之间的化合物。此类化合物的来源主要有油漆涂料、密封剂、胶粘剂、织物、内饰塑料、皮革等不同的零部件和材料。strongspan style="color: rgb(0, 112, 192) "VOC对人身健康危害较大,常见表现为:心脏病、哮喘等慢性疾病 气喘、皮肤等急性疾病 食欲不振、恶心等不适反应。/span/strong甲醛被世界卫生组织确定为可致癌物质,对神经系统、免疫系统、肝脏等均有毒害 短时间内吸入大量苯会导致急性中毒,主要表现为神经系统症状 总挥发性有机物会引起机体免疫功能失调,严重时可损伤肝脏和造血系统。/pp  strongspan style="color: rgb(0, 112, 192) "对于车内空气污染问题,澳大利亚将车内环境列为室内环境之一,与办公室和教室的健康标准一致 美国将车内和室内空气污染列为人类健康的五大危害之一。/span/strong我国在2002年就出台了《室内空气质量标准》(GB/T 18883-2002)的国家标准,规定了室内挥发性有机物的标准限值。2011年出台了针对汽车《乘用车内空气质量评价指南》(GB/T 27630-2011),对汽车车内8种挥发性有机化合物提出了限制要求。车内环境可以视为一种特殊的室内环境,人们乘车时间较长,而车内结构复杂、内饰较多、空气流通性差,车内空气质量会与人体健康休戚相关。/pp  随着媒体对车内环境污染事件的报道层出不穷,越来越多的人们对车内空气质量有了愈发强烈的诉求。在消费者看来,车内环境健康与否最直观的表现在于车内空气是否有异味。虽然在国家推荐标准和车厂自主标准的严格把控下,车内环境异味投诉事件确依然源源不断。strongspan style="color: rgb(0, 112, 192) "据JD Power 2015年中国新车质量研究发布报告指出无论是国内自主品牌还是国际品牌,车内异味首次成为中国车主投诉最为突出的问题。/span/strong 2016年,“汽车异味”更是连续第二年成为消费者反应最为严重和频繁的问题。车内空气异味问题已然成为汽车行业之痛,其真正的原因在于现行车内空气质量测试方法与实际驾乘环境存在以下差异:/pp  span style="color: rgb(0, 112, 192) "strong温度差异:/strong/span 《乘用车内空气评价指南》中规定测试温度在23℃,而正常使用的汽车平均室内温度在30℃。如果经过暴晒后,车内温度更会高达60-80℃。温度越高,VOC挥发量越大,相应的车内气味越强。/pp  strongspan style="color: rgb(0, 112, 192) "使用条件差异:/span/strongGB/T 27630-2011中规定整车测试时,需在被检车辆停车熄火的状态下进行测试。但是正常驾驶情况下,我们会打开发动机或是使用车内空调。如果组成空调系统的材料含有POM材质,那么空调风道散发出的甲醛和VOC挥发物质就会源源不断的吹入密闭的车内。/pp  strongspan style="color: rgb(0, 112, 192) "评价结果差异:/span/strong整车空气质量评价标准只提出了八种物质的限值要求,但是即便满足了这八种物质的限值要求,不代表汽车空气质量合格无异味。所以说8项VOC物质超标与否与气味没有必然且直接的关系。/pp  strongspan style="color: rgb(0, 112, 192) "测试对象跨度过大:/span/strong 大多数车企的气味测试标准都只针对材料与整车两部分,少有零部件气味测试标准。从材料加工成零部件,零部件再分别组装到车上,这之间使用的任何胶黏剂,润滑油等都会为整车带来气味的改变。因此造成了整车气味超标,整改却无从下手的现状。/pp  strongspan style="color: rgb(0, 112, 192) "主观评价个体差异:/span/strong孔子曾说过:入芝兰之室,久而不闻其香。气味测试评价结果基于主观判断,与每个人的生活环境,喜好厌恶,心情状态都休戚相关,因此复现性差,更无法利用客观手段记录气味信息。/pp style="text-align: center "  strongJ.D. Power 2015年本土/国际品牌前十大新车质量问题/strong/ptable width="624" border="0" cellspacing="0" cellpadding="0"tbodytr style="height: 1px " class="firstRow"td style="background: rgb(75, 172, 198) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "strongspan style="line-height: 115% font-family: 宋体 "2015/span/strongstrongspan style="line-height: 115% font-family: 宋体 "年 本土品牌/span/strong/p/tdtd style="background: rgb(75, 172, 198) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "strongspan style="line-height: 115% font-family: "PPH/span/strong/p/tdtd style="background: rgb(75, 172, 198) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "strongspan style="line-height: 115% font-family: 宋体 "2015/span/strongstrongspan style="line-height: 115% font-family: 宋体 "年国际品牌/span/strong/p/tdtd style="background: rgb(75, 172, 198) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "strongspan style="line-height: 115% font-family: "PPH/span/strong/p/td/trtr style="height: 1px "td style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "车内有令人不愉快的气味/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "15.0/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "车内有令人不愉快的气味/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "13.9/span/p/td/trtr style="height: 1px "td style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "空调开启后,发动机没力/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "5.9/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "耗油量过大/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "5.0/span/p/td/trtr style="height: 1px "td style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "胎噪声过大/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "5.2/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "胎噪声过大/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "5.2/span/p/td/trtr style="height: 1px "td style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "耗油量过大/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "5.0/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "风噪声过大/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "3.0/span/p/td/trtr style="height: 1px "td style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "风噪声过大/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "4.8/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "空调开启后发动机没力/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.7/span/p/td/trtr style="height: 1px "td style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "座椅材质容易磨损/变脏/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "3.1/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "前大灯不够亮/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.6/span/p/td/trtr style="height: 1px "td style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "发动机异响/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "3.0/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "座椅材质容易磨损/变脏/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.5/span/p/td/trtr style="height: 1px "td style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "风扇鼓风机噪音过大/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "3.0/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "刹车有噪声/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.1/span/p/td/trtr style="height: 1px "td style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "刹车有噪声/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.8/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "风扇鼓风机噪音过大/span/p/tdtd style="background: rgb(208, 227, 234) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.0/span/p/td/trtr style="height: 1px "td style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="180"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "手动变速系统,不易入挡/齿轮摩擦/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="104"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.7/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="150"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: 宋体 "发动机异响/span/p/tdtd style="background: rgb(233, 241, 245) padding: 5px 10px border: 1px solid windowtext " height="1" width="75"p style="text-align: center line-height: 115% "span style="line-height: 115% font-family: "2.0/span/p/td/tr/tbody/tablep  基于以上分析,广电计量推出汽车整车气味溯源与整改项目,帮助车企解决车内异味的投诉问题。span style="color: rgb(0, 112, 192) "strong在该项目中,我们引入嗅阈值理论、嗅辨仪、电子鼻辅助嗅辨员找到异味源头。/strong/span嗅阈值理论是将化学物质的浓度与物质本身的嗅阈值相结合预测化学混合物的气味特征。嗅辨仪借助于人的鼻子作为检测器和气相质谱相连接,清楚地将各种有气味的化合物在谱图上展示出来,使嗅辨员可以清楚地识别各种气味的来源。/pp strongspan style="color: rgb(0, 112, 192) " 与传统的气味分析相比,它可以对色谱柱流出物的的气味进行定性和定量评价,可对样品中具体的气味物质种类和含量进行检测与比较。/span/strong电子鼻是一种仿生学的仪器,模拟人的嗅觉系统,通过阵列式气体传感器对未知样品的影响,利用聚类数学算法,定性或半定量分析样品挥发出来的气体。电子鼻可分析这些气味物质作为一个整体时,对样品气味特征的贡献。三种检测方法相互配合,从微观和宏观两个维度进行气味溯源研究。利用人的主观评价与仪器客观数据把每一种气味溯源到具体的化学物质,再通过化学物质溯源到该气味来源,从而制定相应的整改方案。通过该项目,广电计量可以精确地找到车内异味源头,提出有效并且高效的整改方案,帮助各位车企和消费者打造一个低VOC低气味的车内环境。/pp style="text-align: center "img style="width: 389px height: 259px " title="1.png" src="http://img1.17img.cn/17img/images/201711/wycimg/cb731af8-58b8-4fa8-b35d-5355a3ea80e9.jpg" hspace="0" height="259" width="389" vspace="0" border="0"//pp style="text-align: center "span style="font-family: 宋体 font-size: 10.5pt mso-bidi-font-size: 11.0pt mso-fareast-theme-font: minor-fareast mso-hansi-theme-font: minor-latin mso-ascii-font-family: Arial mso-hansi-font-family: Calibri " new="" times=""嗅辨仪/spanspan style="font-family: " new="" times="" /span/pp style="text-align: center "span style="font-family: " new="" times=""img title="2.png" src="http://img1.17img.cn/17img/images/201711/wycimg/a7f8e2e2-8e3b-48d3-88f1-84c23a7b18d1.jpg"//span/pp style="text-align: center "span style="font-family: " new="" times=""/spanspan style="font-family: 宋体 "电子鼻/span/pp style="text-align: right "span style="font-family: 宋体 "供稿单位:广电计量/span/pp /p
  • NanoTemper发布NanoTemper分子互作分析系统Dianthus NT. Pico 新品
    DI (Dianthus) 系列为您提供快速、不间断、高灵敏度的筛选平台。DI (Dianthus) 系列为药物研发摒弃了传统分子互作筛选技术的繁杂操作可以轻松筛选出任意缓冲液或生物溶液中靶标hits;仅消耗非常少量的靶标分子和化合物;更高灵敏度:亲和力检测范围从皮摩尔级(pM) 到毫摩尔级(mM);更高通量检测,30 分钟内一次性完成 384 个样品亲和力检测,24h内筛选4150-8300个样品;没有液流系统,因此不需要定期维护和停机;无需固定样品,可在最接近自然条件的溶液中进行检测,不会干扰其结合位点;更精确、更高效的Hits筛选和基于亲和力的leads优化Hits 发现:无论是基于片段筛选或是小分子单点筛选,DI 都能帮助您快速发现hits,并进行确认;Hits确认:迅速生成简单、易于解释的亲和力排序表和注释,确定合适的候选分子,开始先导化合物 (leads) 的优化;先导化合物(Leads)优化:确认化合物的亲和力有无变化。这一数据与您的 ADME,毒理以及PK/PD 结果一起,可以帮助您开发最有潜力的候选药物分子。挑选最有价值的 hitsDI.Screening 软件可总结筛选结果,并可给出非常简洁易懂的排序图表。通过快速比较 Kd 值,我们可以决定哪一个候选分子应该更早地进行深入研究。筛选和测定双管齐下描述相互作用,从而理解生物学过程以及结构-功能的相关性;分析多聚蛋白、GPCR 或是适配体与它们配体的相互作用;支持和验证 X-Ray 晶体学以及冷冻电镜的检测;在抑制剂的存在下,进行竞争性实验研究;历时10 年验证的成熟技术通过 TRIC (Temperature Related Intensity Change) 温度依赖的荧光强度变化的方法,定量分析分子间相互作用,测定配体与靶标分子结合的强弱,这是一个被广泛使用的方法。实验中,我们对靶标分子进行荧光标记,并使其与配体分子混合。随后,通过激光,在溶液中制造一个精确而简单的温度变化,如果靶标分子与配体分子相结合,荧光信号强度的变化会被放大和即时记录。并以配体浓度为横坐标,荧光值为纵坐标作图,从而获得平衡解离常数 Kd 值。创新点:1.相比传统技术,Dianthus NT. Pico在针对小分子药物筛选,生物治疗药物筛选的优势非常突出,最大优势在有一下三点:a.没有液流系统,即意味着无需清洗仪器和定期维护,因此实现了更长时间的无人值守;b.无需固定样品。可以在溶液环境中直接上样分析,这一点避免了小分子、片段、离子等样品难以固定的缺点,更加适用于小分子药物筛选,以及基于片段筛选的药物开发;c.技术本身对“分子量”依赖度很低,可以灵敏监测到结合时水化层及电荷的改变。也就意味着在检测复杂样品时,灵敏度更高。2.相比于公司上一代分子互作分析仪,该仪器使用386孔板载样,因此可以轻松整合到多种自动化设备中,并实现了更高通量的检测。3.相比于同类产品,Dianthus NT.Pico在24 小时内可测量 Kd 数量可达750个,可升级至1500个,可最多筛选8300个化合物。此高通量可满足药物筛选需求;NanoTemper分子互作分析系统Dianthus NT. Pico
  • “听”安捷伦解析、布局新兴市场——访安捷伦科技化学分析集团新兴市场测量系统事业部总经理李林博士
    2012年4月,C&EN杂志在“解析2011年全球仪器市场”一文中屡次提及新兴市场,文章指出新兴市场是2011年全球各大仪器公司增长的强劲动力。而对于安捷伦而言,更是如此,2011年安捷伦收入中17亿美元即总收入的25%来自新兴市场,安捷伦化学分析集团总裁Michael McMullen表示,“新兴市场对于分析仪器市场增长的重要性是安捷伦在2011年的主要经历,而这也伴随我们来到2012年”。  在这样的背景下,作为安捷伦内部第一个以“新兴市场”命名的事业部,成立于2007年的安捷伦科技化学分析集团新兴市场测量系统事业部(以下简称为:新兴市场事业部)无疑承担着更多的重任与期望。近日,仪器信息网编辑在安捷伦上海研发制造基地采访了安捷伦科技化学分析集团新兴市场测量系统事业部总经理李林博士,就新兴市场的特点、新兴市场事业部的成绩、特色及未来发展进行了深入探讨。安捷伦科技化学分析集团新兴市场测量系统事业部总经理李林博士  新兴市场充满“新”商机 安捷伦潜心布局  新兴市场泛指相对成熟或发达市场而言目前正处于发展中的国家、地区或某一经济体,如被称为“金砖四国”的中国、印度、俄罗斯、巴西以及后来兴起的南非、越南、土耳其等。通常我们会认为“新兴市场”就意味着“中低端市场”,如此理解是否准确?安捷伦又是如何开拓新兴市场的?  谈及新兴市场特点,李林博士说到,“通常大家对于新兴市场特点的评价是市场发展比较快,对产品的技术要求不是特别高,但是对价格却比较敏感。但这其实只是对新兴市场理解的一部分,新兴市场还有一个很重要的特点就是有众多新商机,而这些商机在很多发达国家往往并不存在,例如应用于食品安全、环境污染及应急事件的移动测量等。”  正因为如此,充满新商机的新兴市场吸引众多仪器公司的关注,安捷伦更将开拓新兴市场作为安捷伦全球战略发展中最重要的一步。据李博士介绍,“安捷伦开拓新兴市场的战略也是分阶段进行的。以中国为例,二十年前,安捷伦在中国的战略是‘在中国制造,为中国’,这个时期,安捷伦只是根据中国市场的需求在中国做一些组装,但即便如此,这一举动当时对中国市场而言还是很振奋人心 十年前,安捷伦的战略转变为‘在中国设计,为中国市场’,这个时期,安捷伦在中国研发适合中国市场需求的产品,并主要在中国销售,如6820气相色谱就是很典型的例子 如今,安捷伦的中国战略升华为‘在中国设计,在中国创新,为全球’,此时期,我们强调不仅在中国研发,在中国制造,并要供应全球,服务全球。”  正是在安捷伦新的中国战略背景下,新兴市场事业部应运而生。新兴市场事业部成立于2007年3月,是安捷伦内部独立运营的实体,隶属于安捷伦化学分析集团下辖的气相集团(注:安捷伦收购瓦里安后,化学分析集团成立了气相集团、光谱集团及消耗品集团三个分集团,气相集团下又设有高端气相、气质联用、微型气相及新兴市场四个事业部),新兴市场事业部设有研发中心、市场部、质量部及产品技术支持部,其中一半以上员工是主要从事研发和技术应用开拓。李林博士说,“新兴市场事业部是具有独立经济经营权的实体,在销售方面,我们并不直接面对终端客户,更多是对安捷伦的销售和售后服务团队,公司按照产值、增长率及利润来考核我们的业绩。”  新兴市场事业部从无到有 以“快”应变  新兴市场事业部成立至今已经五年多了,谈及成绩,李林博士表示,“五年,新兴市场事业部从无到有,增长速度十分惊人,并且在过去五年中,我们相继投放市场两款主要产品——7820 GC及5975T LTM车载GC-MS——都很快被全球市场所接受,仅7820 GC的销量就比上一代产品6820 GC翻了6倍以上。此外,我们还培养了一支优秀的团队。”新兴市场事业部取得优异成绩的背后有何“独到之处”?针对新兴市场,他们又做了哪些工作?  “新兴市场事业部最核心的部分就是研发中心,它是保证不断有新产品推向市场并在市场取得成功的关键。目前,安捷伦化学分析集团在全球有五大研发战略基地,上海基地即新兴市场事业部研发中心则主要研发气相色谱和质谱等产品。上海基地与其他四大研发基地一样都秉承了安捷伦理念和体系,但是因为我们存在于新兴市场——中国,所以具有自己的独特之处。” 李林博士说到。  “上海基地的独特之处主要有以下三点:首先,以‘快’应变,新兴市场增长很快,同时新兴市场客户也面临很多新的应用,因此我们产品的研发周期要相对较短,否则等产品推出时市场可能已经发生了变化 其次,坚持本土化,我们研发的产品一定要结合新兴市场发展的特点,满足本土化的应用需求 最后,价格要具有竞争力,新兴市场对价格比较敏感,所以我们研发出来的产品在市场上要具有竞争力。”新兴市场事业部推出的5975T LTM车载GC-MS  除此之外,新兴市场事业部下设的市场部也是事业部取得优异成绩的关键因素。李博士表示,“我们市场部的职责是负责新产品研发的全球市场定位和推广及产品全球战略,为此市场部除了研究新兴国家的发展状况外,还要针对新产品研发进行定期的全球市场调研。在如何应用市场调查结果方面,我们也有独特的方式。首先我们通过各种方式从市场上收集反馈意见及需求,然后将意见与需求汇总提炼出精华,再回到市场上去确认,最终确定市场需求,并进入到新产品研发阶段。此外,在研发过程中,我们还会在研发各个阶段,邀请专家、客户对新产品进行评价,随时根据评价结果做出调整。我想这也是我们五年推出2款产品都被市场所认可的重要原因。”  扩展产品线 应对新兴市场更多需求  “目前,从绝对值上,新兴市场事业部的收入还较小,但是增长速度却很快。特别是在欧美经济低迷的情况下,我们身处的市场让我们更具竞争力。2012年预计新兴市场事业部收入仍可保持双位数的增长。”李林博士说到。那么,针对如此有增长力的市场,安捷伦总部将给与哪些支持?新兴市场事业部未来又有哪些发展规划?  据李林博士介绍,“新兴市场在安捷伦全球市场中具有举足轻重的地位,因而安捷伦对新兴市场的投资力度很大,而我们正好处于新兴市场中,得到了总部更多的支持。例如,受经济环境影响,今年安捷伦其他事业部的研发投入一般都是个位数(指研发占收入的比率),而新兴市场事业部的研发投入却是双位数,而且在增长 在人员方面,总部对于新兴市场事业部增加人员的需求也十分支持。”  对于新兴市场事业部的未来发展规划,李林博士说,“成立至今,我们推向市场的产品主要是跟气相色谱有关的仪器及附件,但当初将事业部命名为‘化学分析集团新兴市场测量系统事业部’,就希望不局限于产品的边界,因此我们也在积极扩展产品线。例如,根据新兴市场需求,我们推出与车载GC-MS配套使用的样品前处理仪器 今年5月我们又正式向市场投放了一批电化学产品等。”  “未来,我们希望能与更多中国战略伙伴合作,在秉承安捷伦品质的前提下,通过安捷伦的领先技术、市场及渠道,相信会产生更多协同效应。另外,对于安捷伦而言,这也意味着有更多的机会来满足客户的需求。”  李林博士还表示,“随着新兴市场对安捷伦贡献越来越大,我们事业部对公司所做的贡献也将越来越大。最重要的是我们可以为中国市场和中国客户提供更多更好的产品和服务,以及更充足的解决方案。”李林博士与团队成员合影  后记:  二十年前,一个偶然的机遇,李林博士加入PerkinElmer公司,成为一名高级科学家,由此进入到仪器行业。也是因为这个偶然,李林博士也成为国外仪器公司开拓中国市场的“先锋”。  在PerkinElmer工作的十四年中,李林博士历任亚太市场及技术发展总监、中国区首席代表及总经理、热分析事业部高级技术经理及全球市场经理等数个职务,正是这份经历使得李林博士对中国市场有了更深刻的理解。2007年,受安捷伦之邀,李林博士负责组建安捷伦科技化学分析集团新兴市场测量系统事业部, 对于此次选择,李林博士表示,“在PerkinElmer学习和积累了很多的知识与经验,我希望找一个更好的平台挑战自己,而新兴市场正是一个令人振奋的平台。”  采访编辑:杨娟  附录1:李林博士个人简介  李林博士现任安捷伦科技化学分析集团新兴市场测量系统事业部总经理,负责领导安捷伦科技上海的化学分析集团的职能团队,其包括市场部,新产品研发部,质量部和产品技术支持部,同时专门负责经营常规中端气相(GC)和移动测量解决方案(Mobile Measurement)全球业务及全球市场的发展。在新兴市场寻求新的化学分析仪器及技术拓展商机和集团业务增长也是他和他的团队的主要集中目标。  在加入安捷伦以前,李林博士担任珀金埃尔默(PKI)中国区事业发展总监。在这个岗位上,他领导了PKI中国公司的战略方针和增长策略,并成立了PKI在上海的中国技术中心。在PKI工作的14年中,李博士先后担任过数个战略发展及技术管理职位,其中包括:亚太市场及技术发展总监 PKI中国区首席代表及总经理 热分析事业部高级技术经理及全球市场经理 市场及技术支持经理 高级科学家等职。  李博士毕业于武汉理工大学,获聚合物学理学学士,美国布里奇波特大学(University of Bridgeport)商业管理学院工商管理及金融硕士,纽约州立布法罗大学(The State University of New York at Buffalo)材料科学理学博士。他是材料科学,热分析以及流变学等领域的专家,并曾发表过六十多科技论文和专题应用报告。业余时间,他喜欢旅游,下棋,高尔夫及多项体育运动。  附录2:安捷伦科技公司  http://www.agilent.com/chem/cn  http://agilent.instrument.com.cn/
  • 3.15海能在行动!GC-IMS技术溯源汽车内饰异味及成分
    央视315晚会,是广大消费者信赖的舆论阵地,也是维护消费者权益的代名词。今年315晚会主题为“用责任汇聚诚信的力量”。有关食品安全的话题,依然是晚会关注的重点。“销售日本辐射区食品”、“多家饲料厂商滥用兽药”、“无资质保健品向老人伸出黑手”……还有多少在暗流中蠢蠢欲动? 在今年的3.15晚会中,回顾了之前发生的MINI汽车发动机问题以及汽车内饰异味问题。发动机的问题或许我们购车时无法第一时间察觉感知,但车内异味却往往很快就会发觉,为什么会有异味?异味的原因有哪些?如何被检测呢?海能仪器汽车内饰异味的检测解决方案 1.实验仪器气相离子迁移谱联用系统 2.产品特点无需真空,在环境压力下工作无需氮气钢瓶,可使用在线净化空气作为载气和漂流气检出限低至ppbv级别 分析时间短可在线给出报警信号、报警阈值可调可在线连续进行气体监测3.实验样品某品牌汽车内饰物颗粒 4.仪器工作原理及流程样品由载气带入气相色谱柱,经预分离后进入IMS电离室,载气分子和样品分子在离子源的作用下发生一系列的电离反应和离子-分子反应,形成各种产物离子。在电场的驱使下,这些离子通过周期性开启的离子门进入漂移区。在与逆流的中性漂移气体分子不断碰撞的过程中,由于这些离子在电场中各自迁移速率不同,使得不同的离子得到分离,从而达到二次分离和鉴定的目的。 仪器工作流程取7g车内装饰材料装入20ml顶空瓶中,按照VDA 270(1992)的规定进行样品处理(80℃下加热2h)。测试时间6min,结果如下图:A:PES-NGR颗粒B:EXXTRAL CMV颗粒C:PP NOVIA颗粒D:CODO REZ颗粒 A-D四个样品的GC-IMS谱图 通过GC-IMS在6分钟内获得的色谱图显示了在所有颗粒化聚合物(A-D)中存在大量的VOCs(与蓝色背景不同的斑点)。浓度越大,峰强度越高(红色表示)。这表明这些材料是汽车舱内空气中VOCs的主要来源。此外,通过所选择的气味化合物的信号,鉴定了与气味相关的一些挥发性化合物,并比较了峰的强度。从中可以看出,样品D具有更高浓度的气味化合物。因此,我们可以通过GC-IMS快速分析、测定车辆内饰使用的聚合材料所发出的气味相关的VOCs,从而确定车内气味来源。 5.结论使用GC-IMS在线监测汽车舱内的挥发性有机物,可避免复杂采样及运输过程中的低温存放问题;使用GC-IMS检测汽车内饰、原材料及零配件中的挥发性有机物,可从源头上遏制整车舱内空气污染问题。
  • 《絮用纤维制品异味的测定》填补异味检验领域的空白
    很多人在选购服装、床上用品的时候都有闻一闻气味的习惯,很多纺织品和絮用纤维制品的国家标准也对异味检验项目提出要求,但是均没有具体的检测方法标准对异味项目进行检测。日前通过审定的《絮用纤维制品异味的测定》国家标准将填补这个领域的空白。  据了解,我国的强制性国家标准《国家纺织产品基本安全技术规范》、《絮用纤维制品通用技术要求》和《生态纺织品技术要求》等标准均要求检验异味,种类包括霉味、高沸程石油味(汽油味、煤油味、柴油味等)、鱼腥味、芳香烃味、未洗净动物纤维膻味、臊味等。对于异味这项反映纤维及纤维制品质量的重要技术指标,是以人工感官检验的方法进行检验的。在这类主观性检验中,检验人员对异味种类的正确理解、熟悉程度、对检验方法的掌握以及个体的因素,对检验结果均会产生较大的影响。尽管标准中对检验人员提出了须经培训的要求,但由于异味检验在国内开展时间不长,检验人员的实践经验相对不足,异味检验存在着一些问题。  标准的霉味、鱼腥味等都是什么味道?2009年2月发布的《纤维及纤维制品异味标准样品》就是标准的“异味”样品的国家标准。检验人员闻一闻标准样品,按相关要求,再去闻一闻检验的样品,就可以判定是否有异味。当然不是每次检验都需要闻一闻标准样品,但是需要按要求用标准样品对嗅觉进行校准。  据中国纤维检验局技术管理处处长冯平介绍,正常情况下,纺织纤维都会带有一些纤维自身固有的气味。絮用纤维制品在生产及加工过程中会产生化学物质的残留,这些残留物在纺织产品的使用过程中逐渐挥发或氧化分解会产生特殊气味 絮用纤维制品被微生物污染后,微生物的繁殖以及微生物对纤维和其上残留有机物的分解也会产生气味。有些异味达到一定程度,就会对人体健康产生不利影响,所以国内外纺织产品标准中均对异味提出了检验要求。随着《纤维及纤维制品异味标准样品》的使用越来越广泛,中国纤维检验局又联合其他实验室完成了《絮用纤维制品异味的测定》国家标准,填补了检测领域的空白。  据介绍,这项标准由国家纤维质量监督检验中心、广州市纤维产品检测院、重庆市纤维织品检验所共同完成。调查显示,异味检验的问题主要是同一个样品在同一个实验室检测,不同人员的检测结果不同 同一个样品在不同实验室检测,也会出现不同结果。其原因一是部分检验人员对异味了解不深、辨别不清 二是不同人员对气味的敏感程度不同,对气味的强度的掌握上尺度不一 三是对于异味的检验方法尚无详尽的描述,对检测的环境条件也无严格限定,而异味是由纤维及其制品中的某些物质挥发到空气中产生的,不同温度下,物质挥发的程度不同,异味的严重程度也就不同。  据标准主要起草人、国家纤维质量监督检验中心周硕介绍,标准对实验室的设备和材料、检测环境、试样准备、检验程序等方面的要求都是感官检验准确性的重要前提。尤其对检测人员进行了详尽的要求,其中包括身体健康,嗅觉正常,不吸烟,不酗酒 检测当天不使用带气味化妆品或护肤品,检测前洗手并用清水漱口去除口腔气味。并且规定了进入检测环境内需要进行2~3次深呼吸,然后静待10秒以适应检测环境。并且对检测人员的嗅觉校准提出了要求,规定了长期从事该项目检测的试验人员一个月进行一次嗅觉校准,试验人员发生变化、疾病或长期未从事该项目检测时应缩短嗅觉校准时间为一周等要求。  这项标准结合《纤维及纤维制品异味标准样品》可提高检验人员对絮用纤维制品包括纺织品中规定的异味种类的辨别,统一把握异味的强度,提高异味检验的准确度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制