当前位置: 仪器信息网 > 行业主题 > >

液相催化系统

仪器信息网液相催化系统专题为您提供2024年最新液相催化系统价格报价、厂家品牌的相关信息, 包括液相催化系统参数、型号等,不管是国产,还是进口品牌的液相催化系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相催化系统相关的耗材配件、试剂标物,还有液相催化系统相关的最新资讯、资料,以及液相催化系统相关的解决方案。

液相催化系统相关的资讯

  • 看散射型近场纳米红外光谱与成像系统如何助力胶原纤维、生物催化、活体细胞等生物领域研究
    一、胶原纤维研究 胶原纤维是人体各种器官(如骨、肌肉)中关键的组成成分之一。胶原纤维拥有复杂的微纳生物结构,这种结构的有序排列使胶原纤维能够表现出优异的生理性能,同时,这种结构的改变会导致其生理特征的急剧变化。劳损、骨折等常见疾病的发病机理就与胶原微纳结构变化密切相关。如何观测并理解胶原纤维微纳尺度的结构变化是治疗相关胶原类疾病的关键所在。 近日,中国科学院物理研究所陈佳宁课题组利用散射式近场扫描显微镜(IR-neaSCOPE)对胶原纤维进行纳米分辨率红外扫描成像。该研究通过在组织切片表面近场测量紧凑排布的胶原纤维簇,对胶原纤维的纳米周期性横纹结构进行量化分析,并观察到胶原纤维发生的横纹倾斜现象。该研究借助胶原晶格模型解释其现象的产生机理,揭示了胶原纤维内部分子间可能存在的滑移位错形变。 该结果有助于人们理解胶原结构失序时胶原纤维可能发生的纳米结构变化,为解读胶原类疾病的发病机理提供了新思路。同时,该工作展示了s-SNOM在生命科学中对于生物微纳尺度结构研究的广阔应用前景。相关结果发表在近期的《Nano Research》上。该工作得到了重点研发计划、自然科学基金,中国科学院战略重点研究计划的资助。 二、生物催化(MOF体系)研究 生物催化转化在生物体中,如多酶催化联,在不同的细胞膜区隔的细胞器中高效率地进行。然而,在自然系统中模拟生物催化联过程仍然具有挑战性。 近日,华东师范大学李丽老师课题组报道了多壳金属有机骨架(MOF)可以作为一种层次化的支架,在纳米尺度上对酶进行空间组织,以提高联催化效率。 研究人员通过外延逐壳过生长的方法将多壳MOF包裹在多酶上,其催化效率是溶液中游离酶的5.8~13.5倍。重要的是,多壳MOF可以作为一个多空间隔室的纳米反应器,允许在一个MOF纳米颗粒中物理分隔多个酶,以便在一个锅中进行不相容的串联生物催化反应。研究人员使用纳米傅立叶变换红外光谱(Nano-FTIR)来解决与多壳MOF中的酶相关的纳米振动活性的不均一性。多壳MOF能够根据特定的串联反应路线方便地控制多酶的位置,其中载酶1和载酶2的壳沿内到外壳的紧密定位可以有效地促进质量传递,从而促进高效的串联生物催化反应。 这项工作有望为设计高效的多酶催化联反应提供新的思路,以鼓励其在许多化工和制药工业过程中的应用。 三、原位液相活体细胞研究 近日,德国attocube systems AG的工程师Korbinian联合德国慕尼黑大学Fritz Keilmann课题组报道了基于散射型纳米红外成像与光谱技术在液相环境关于纳米颗粒和活体细胞的定量研究。纳米红外光谱与成像的液相探测基于一个由10 nm厚度的SiN薄膜和金属液相池组成,通过扫描探针在针形成有效的红外探测近场对吸附(浸润)在SiN另一侧的纳米颗粒或活体细胞进行原位液相扫描。 液相原位纳米红外成像与光谱下的A 549癌细胞 这项工作是基于反射式光路的散射型扫描近场显微镜(s-SNOM)和nano-FTIR建立的原位液相样品池,通过搭配波长可调谐的红外激光器,有希望拓展从近红外(特别是近红外II区)到中红外(全指纹区覆盖)乃至远红外的全红外波段的液相环境下材料和细胞的纳米尺度探测。
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 述催化 促发展,天津大学-岛津高端催化学术论坛成功举办
    近年来,催化已经成为时下火热的领域。随着人们对自然资源、环境气候的重视,低碳、绿色已经成为发展不可回避的主题,而催化也是这进程中最为关键的核心技术。为推动催化研究交流、化学化工学科建设,天津大学化工学院和岛津企业管理(中国)有限公司于2023年3月25日共同举办“第二届天津大学-岛津高端催化学术论坛”,邀请国内催化相关领域的顶尖专家进行学术交流及学科建设讨论。大会现场天津大学副校长/化工学院院长 马新宾教授致辞天津大学副校长/化工学院院长马新宾教授首先对参会的催化领域专家的到来表示感谢。天津大学和岛津一起举办高端催化论坛,希望通过这种形式,催化领域的专家、学者能进行更多、更充分的交流、沟通。马新宾教授也希望通过这种交流,逐渐扩大“天津大学-岛津高端催化学术论坛”的广度和深度。岛津分析计测事业部营业部副部长马景辉致辞马景辉副部长表示,现代化学工业中有90%的产品是借助催化过程生产实现,生产总值约为工业生产总值的25%。没有催化科学的发展和催化剂的应用,就没有现代化学工艺。天津大学化工学院化学工程与技术一级学科,在领域内享有盛誉。岛津希望借助本次论坛能与行业的专家深入探讨,进一步加深相互沟通和了解;同时也希望凭借自身140年的历史积淀为催化研究提供稳定可靠的分析仪器解决方案。主题报告报告题目:生物质醇高效转化的催化基础报告人:北京化工大学 何静教授何静教授表示,人类已经进入“第四次工业革 命”即绿色工业。生物质能源产业主要有生物柴油和生物乙醇两类,全球生物柴油市场需求已经超过4000万吨/年,生物乙醇超过400万吨/年。在双碳目标导向下,能源行业也将发展重点由石油能源转向生物质能源。何静教授团队主要研究了乙醇化学中乙醇化学键的定点活化与定向转化,构建了金属-酸-碱多中心接力协同体系,大幅提升反应选择性。设计了MgAl-LDO、Ni-Li-LDO、Fe@GCN、Cu2O-SrTiCuO3-x等催化体系。此外何静教授也在甘油化学中甘油伯仲位定点活化与高效定向氧化方面有研究。报告题目:自适应催化位点调控CO2定向转化报告人:天津工业大学 仲崇立教授二氧化碳作为温室气体随着人类生产生活等活动,在近几十年内急剧增加。仲崇立教授团队基于在沸石催化体系长期积累,构建了柔性多金属单原子位点催化剂制备的平台技术,利用EDTA取代MOF材料特定位点,通过EDTA与金属的相互作用,得到了高度分散的多金属单原子催化剂。并以Cu-Ni催化体系为例,利用球差电镜、原位电子自旋共振等方法明确催化剂结构,同时说明了柔性多金属单原子催化剂在二氧化碳转化方面展现了优异的性能。报告题目:离子液体强化CO2电催化过程报告人:中国石油大学 张香平教授二氧化碳电化学还原是极具潜力的领域。离子液体不挥发、稳定、有催化、导电等特殊的性质。张香平教授团队针对离子液体的特性,在其稳定性好的基础上引入碱性官能团和多个活性位点,制备了[Bmim][Triz]等碱性离子液体和[P444][4-MF-PhO]等 芳香脂类的双位点离子液体,并对离子液体在微环境的表现以及在电极秒面的性质进行了考量。张香平教授还利用离子热法制备硫化铟催化剂和利用电沉积法制备改性Pd和Ag催化剂,以及对离子液体中二氧化碳还原过程中产生的纳米气泡的生成原理进行了探究。此外,张香平还在电化学催化的成本方面,对之前做的研究应用前景进行考量与分析。报告题目:碳基硝基加氢催化剂的设计报告人:中南大学 刘又年教授芳香胺是关键基础化学品,广泛应用于染料、医药、农药和光电材料等,对工业生产具有重要支撑作用。非贵金属由于其含量大、成本低、催化性能好,通常为硝基催化加氢的理想催化剂,但相比于贵金属催化剂也在稳定性等方面存在缺点。刘又年教授利用金属中心调节-多金属位点的方法,构建了基于Co和Zi双活性中心的金属催化剂,其性能优于已有报道的纳米粒子中心催化剂,并可以在常温下对硝基苯类化合物催化加氢有较好的选择性和催化效率。此外,在金属中心合金化方面合成了Ni-Cu合金催化剂;在金属中心单原子化方面合成了N、S共配位的Co催化剂。报告题目:烷烃芳构化研究报告人:中科院山西煤炭化学研究所 樊卫斌研究员芳烃制备传统工艺的原料通常来源于石油化工的裂解和石油馏分的重整。樊卫斌研究员通过Ga/ZSM-5分子筛催化剂实现了丙烷芳构化,BTX收率约为60%。跟据核磁共振分析,对这种Ga催化剂的结构和配位状态进行研究,明确了高度分散的Ga是实现反应高活性和高稳定性的关键。樊卫斌研究员团队通过DFT计算和原位表征技术深入分析并明确了丙烷芳构化的反应机理,解决了长期以来在反应机理方面的争议。在费托尾气芳构化方面,樊卫斌构建了两段流化床的新工艺,增加了芳构化效率;在长链烷烃芳构化方面,以beta-分子筛为基础构建了一些列催化体系,增加长链烷烃如庚烷芳构化的效率及收率。报告题目:CO2电化学转化与过程强化报告人:天津大学 张生教授张生教授团队在二氧化碳电化学多层次转化上以绿色化学为基础,构建了从催化剂到电极,到反应器再到工业点解槽的研究模式。在催化剂理性设计上设计了二氧化碳电化学制备甲酸反应途径,合成并表征了CeO2/SnO2催化剂,并在静电纺丝表面构建成异质界面纳米纤维。在电化学过程强化上,张生教授引入刚性四氟乙烯和柔性离聚物分别构建了反应物二氧化碳和质子传输通道,协同强化二者传递过程。此外尝试用其他多种材料增强点解反应过程中电子传输效率。张生教授在报告的最后,介绍了团队在二氧化碳工业化方面取得的进展。报告题目:催化剂评价系统-微型反应器搭档气质联用仪报告人:岛津分析计测事业部市场部GCMS产品专员 王子君催化已经渗入了生活的方方面面。岛津公司开发了一套适用于实验室催化剂快速筛选的系统,可以帮助催化领域的研究者加速对催化剂的研究。微型反应器μ-Reactor是简便的分析系统,可以对气体、液体和固体样品进行分析检测;高性能微型反应炉可以实现高精度温度控制和快速升降温;产物快速分析支持在线MS检测,并且可以在8个温区GC/MS分析。报告题目:单原子催化剂的配位环境和动态演化行为研究报告人:中科院大连化物所 王爱琴研究员催化自提出开始便不断受到化学家的重视。单原子催化剂是一类仅含相互孤立的个体原子作为催化活性中心的负载型催化剂。王爱琴研究员首先介绍了单原子催化剂的发展过程,标准研究规范,并将其概念进行拓展,以及单位点催化剂和单原子催化剂的区别与共通部分。这种催化剂的已经不适用于传统界面化学的定义,其带来的新概念也带来新的思考。介绍了单原子活性中心微配位环境的多样性研究、微配位环境的精细调控的研究、Ru-N-C单原子催化中心微配位环境调控研究、Ru-N-C第二壳层配位环境的研究、Co-N-C单原子催化中心微配位环境调控研究等。在报告的最后,以铜基催化剂为例,介绍了在原位表征技术的辅助下,活性位点在反应条件下由单原子到纳米颗粒再到单原子的结构动态变化。报告题目:冷等离子增强作用下CO2在碳化钼表面的定向活化与转化报告人:大连理工大学 石川教授冷等离子有能打破原有热力学平衡,低温、快速高效,但也有定向性差等特点。石川教授借助冷等离子体构建了冷等离子体-催化耦合CO2加氢催化制取CO体系。在温和条件下,冷等离子体-催化耦合表现出的催化效率是TOF颗粒催化剂的2倍。通过等离子体系的使用,避免了反应过程积碳的问题,提高了反应稳定性,解决了工程长期存在的问题。课题组进一步研究了等离子体-催化协同机制的特点,并用该方法研究了CH4-CO2重整反应的催化研究。报告题目:铁基催化材料的理论设计基础报告人: 中科院山西煤炭化学研究所 温晓东研究员催化科学是借助数据科学与量子力学之间的学科,涉及材料化学、化学工程、分析测试、配位化学、表面科学、物理化学等诸多领域。计算化学作为理论工具已经成为一种“微观层面分析的手段”。以费托合成为多相催化技术研究的典型范例,课题组研究了工业铁基催化剂的活性、选择性和稳定性。基于DFT优化模型为基础,对铁-碳催化剂形成的活性物相进行了辨析和调控研究,并对并针对新一代工业铁基催化材料的预测和开发进行了讨论。此外,温晓东研究员团队在煤炭间接液化制备油品技术方面,发明了260~290费托反应催化剂活性的碳化/氧化动态稳定化技术。报告题目:沸石分子筛上活性位与催化反应机制的固体核磁共振研究报告人:中科院武汉物理与数学研究所 徐君研究员核磁共振在固体核磁、材料科学、表面化学、生物科学等领域有诸多应用。沸石分子筛的物理化学性质特殊,在催化领域中有重要应用前景。徐君对ZSM-5分子筛骨架用借助固体NMR,对其Lewis酸性位活性进行评估。此外也用NMR观测了Zn、Mo、Ga改性后的分子筛金属活性中心,并且定了新的活性位点。徐君研究员也构建了简述协同活性中心的方法,利用NMR、IR等检测手段,跟踪了Mo/ZSM-5分子筛催化剂甲烷无氧芳构化反应、研究了Sn-分子筛Sn活性位点的醛酮交换反应。位进介绍了分子筛不同T位点区分与反应活性。此外,核磁共振也可以用于观测分子筛中相互作用研究,例如:分子筛孔道与酸性影响双分子反应、非共价键相互总用对反应活性影响等。报告题目:同步辐射X射线谱学在能源小分子催化转化中的应用报告人:中国科学技术大学 姜政教授姜政教授介绍了X射线吸收能谱,以及SRXS方法与材料结构关联的信息。目前X射线朴学表征方法学利用原位该分辨XANES、模拟计算、Δ-μXANES和亚秒/秒级时间分辨+大数据分析。在小波变换方面首次通过原位XAF研究了Co2C的形成过程;在高分辨X射线发射谱方面,借助差谱特征判断Co和Mn相关催化剂的结构变化;通过原位发射谱研究Cu基催化剂还原CO2等。同步辐射光源谱学平台已经在北京、上海、合肥等多地完成建设。其中上海光源谱学平台已经有动力学线站、能源材料线站、稀有元素线站等多条分析线。报告题目:数据驱动的工业催化剂设计报告人:天津大学 赵志坚教授催化反应工程从最远处的试错法,再到人为计算,再到如今的人工智能背景下的大数据计算,已经取得了质的飞跃。赵志坚教授介绍了其团队开发的催化剂模型的算法,对合金特征进行模拟,并在此基础上开发了CuZu纳米催化剂。其催化剂与预测理论活性有较高的相似性,为设计新一代高效催化剂提供了理论基础。此外,课题组也借助DFT计算了CuCo热还原CO2反应机理并进行了实际的实验测试。在复杂反应网络方面,利用机械学习和人工智能抽提描述符提出普适性设计准则,完成对催化剂的快速筛选等功能。在耦合多尺度计算方法上,实现跨尺度按耦合模拟。报告题目:超临界流体色谱分离技术在油品分析中的应用报告人:岛津中国创新中心高级专家 郭彦丽超临界流体是指二氧化碳流体在低超临界温度和压力下呈现的一种特殊的状态。其密度与液体接近,有良好的溶剂化能力,同时粘度和扩散能力接近气体,物质交换效率,由于二氧化碳无毒无害因此也更加环保,且其和油脂互溶性好,适合油脂样品分析。岛津SFC可以在原本GC-FID系统基础上进行合并,完成从气相色谱到超临界流体色谱仪的升级。介绍了SFC-GC-FID柴油中芳烃快速定量、汽油中烯烃分析、油脂样品在线净化实现多环芳烃检测的案例。除此超临界色谱还可以与液相色谱联用对食物油中成分进行分析测定。岛津杯学术报告后,进行了第二届“岛津杯”天津大学化工学院优秀博士生论文颁奖活动,通过post展示、现场答疑,参会的专家无记名投票选出了10篇优秀论文,岛津市场部陈志凌高级经理对10位获奖的优秀论文作者进行了颁奖。岛津为墙报获奖人员颁奖同期也举办了学科建设研讨会,天津大学化工学院的领导与部分参会学校化学和化工学院的院长/副院长一起参加了研讨,就学科建设中学科设立、人才引进、管理、考核等等各方方面进行了非常坦诚、充分的交流,与会者均表示收获颇多。高端催化学术研讨会现场参加论坛人员合影本文内容非商业广告,仅供专业人士参考。
  • 破解“黑匣子”,多功能原位空间分辨反应器让您的催化过程“透明”化!
    在多相催化中,对催化剂活性状态的测量是揭示复杂催化剂结构与活性关系的关键。目前,大多数的催化研究以测量催化剂的结构信息和分析反应器出口的产物为主,对于物质在“黑匣子”式固定床反应器内部不同位置的实时状态监测仍为研究难题。 近期,德国REACNOSTICS公司研究推出的多功能原位空间分辨固定床原位反应器,可实现测量和/或模拟反应器内的浓度、温度和流场,可视化呈现出物质在反应器不同位置的实时状态,并通过原位即时空间分辨光谱(Operando Spectroscopy)实现对催化反应动力学的监测与控制。设备有效解决了传统“黑匣子”式反应器内部动态无法监测的难题,使得催化反应各项性能指标“透明”。该催化反应器可以与拉曼光谱、质谱、气/液相色谱等仪器联用,达到不断优化催化反应的目的。多功能原位空间分辨反应器-紧凑型反应器 CPR(多种用途、小巧紧凑的设计、带光学接口) 汉堡工业大学联合德国DESY同步辐射光源使用了德国REACNOSTICS公司的多功能原位空间分辨反应器,研究监测了C2H6 在MoO3 /γ-Al2O3上氧化脱氢反应过程中的温度、气体浓度梯度和高能 X 射线衍射 (XRD)的变化过程。该设备助力科研人员实现了空间分辨的材料结构与催化活性的构效关系分析。 多功能原位空间分辨反应器通过催化固定床实时测量空间分辨气体组成、温度和X射线衍射物相。空间梯度是通过毛细管采样技术获得的,用一根带有小采样口的采样毛细管穿过催化剂固定床的中心,放置在反应器管中,如图1所示。产物通过取样孔从反应区连续抽出。毛细管以及取样孔和热电偶被固定在空间中,反应管沿被探测的样品轴方向平移。通过这种方式,整个催化剂反应区可以沿着包括取样孔、热电偶尖端和X射线束的测量区域移动,从而实现空间分辨的测量。图表 1 多功能原位空间分辨反应器实现空间分辨原位测量的工作原理示意图图表 2 实验装置示意图 如图3所示,分步测量能够有效地区分不同的气态反应物和产物及其在催化剂固定床的每个内部位置的浓度。反应物和产物的浓度比符合C2H6氧化脱氢为C2H4的预期。图表 3 (a)催化剂分布图;(b) 不同的气态反应物和产物及其在每个内部位置的浓度 随着催化剂固定床床沿线反应进程的增加,催化剂暴露在强烈变化的局部气体成分中,这导致催化剂在气相转化时的反应动力学和视觉外观发生变化。然而,这些观察结果只关注了化学反应系统的一部分。因此,作者结合空间分辨 XRD,记录了38 mm长的催化剂反应区的27 个衍射图,形成相应的 XRD 分布(图4)。图表 4 不同位置的XRD图谱 根据结构相似性,催化剂床可以分为三个区域(0-18 mm;18-24 mm;24-38 mm)。第一个工作区 (0–18 mm) 和第三个工作区 (24–38 mm) 的 XRD 图非常稳定,显示出各自相同定性的衍射结果。在第二个工作区(即中间体过渡区), XRD 揭示了一个明显的相变,如图 5 所示,超过36 mm的X射线衍射图显示,具有单斜晶系结构的MoO2是与氧化钼有关的晶相。出现MoO2衍射的同时MonO3n-x信号减少,在19 mm处开始观察到MonO3n-x还原为MoO2。图表 5 不同工作区位置的XRD结果 本项研究中作者以MoO3 /γ-Al2O3催化剂上的乙烷脱氢制乙烯为例,利用德国REACNOSTICS公司的多功能原位空间分辨反应器同时进行温度、气体组成和高能XRD的测量,验证了该装置在原位测量中的优越性。集成的全自动设计可以与一系列光束线兼容,且样品转换和操作十分简便。此外,该技术还适用于对高压和高温有要求的多种反应体系,可以搭配联用各种气/液相/质谱、红外拉曼光谱和X射线衍射、X射线吸收光谱、拉曼光谱、SAXS等表征方法,从而多角度促进对催化反应体系的优化。
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。2、原位表征ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。3、系统组件集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。ICCS催化剂原位表征系统
  • 从想法到实现,DIY您的个性化系统 --舜宇恒平携在线质谱定量方案参加稀土催化会议
    金秋九月,气候凉爽,景色宜人。在这美丽的季节,历史悠久的东北重镇沈阳迎来了第二十一届全国稀土催化学术会议。本届会议主题为“资源高效利用与环境污染控制”,来自全国近80家单位的两百多名代表参加了会议。上海舜宇恒平科学仪器有限公司(舜宇恒平仪器)应邀参加了本次会议。此次会议由中国稀土学会催化专业委员会主办、沈阳师范大学化学化工学院、能源与环境催化研究所等单位承办。会议全面展示了我国近年来在稀土催化材料以及稀土催化剂基础研究和工业应用方面所取得的最新成就,探讨了稀土催化领域所面临的机遇、挑战及未来发展方向,进一步促进和活跃了我国稀土催化以及相关领域的科学和技术的发展。 此次会议上,舜宇恒平仪器带来了SHP8400PMS-L在线质谱仪、UV2900双光束紫外可见分光光度计及AE触摸式彩屏电子分析天平等仪器。在两天会议期间,国内独家的SHP8400PMS-L在线质谱仪及多通道快速在线检测方案受到了广大与会学者老师的关注,专家教授与现场的工作人员就热分析、催化动态分析、化学吸附仪以及微型反应器等与在线质谱仪的联用技术进入了较为深入的探讨,同时对于舜宇恒平仪器满足客户个性化需求,进行仪器定制的服务方式表示出浓厚的兴趣。 舜宇恒平仪器将继续依托强大的在线与质谱技术基础以及本土化服务的优势,更加注重客户需求,根据实际应用条件,制造出更好的产品,帮助客户的新想法、新理念、新设计、新观点得以实现,以此来回馈新老客户对舜宇恒平仪器的关注与肯定。公司的市场营销和服务团队,会以更加饱满的热情为各位老师提供支持。会场气氛踊跃,此次会议非常成功。------------公司简介:上海舜宇恒平科学仪器有限公司专业从事科学仪器的开发、制造和销售。公司是上海市高新技术企业,上海市首批创新型企业、上海质谱仪器工程技术研究中心依托单位,中国仪器仪表学会分析仪器分会副理事长单位。公司通过了ISO9001国际质量保证体系的认证,全面实施SAP管理。已形成实验室分析、生物过程检测、精密称重等多个系统解决方案,拥有色谱、光谱、质谱、样品前处理、分析天平等多种科学仪器产品与技术,覆盖生物技术、环保、食品安全、制药、化学化工等众多应用领域。公司始终坚信“品质创造信赖,创新引领发展”,一直遵循 “共同创造”的核心理念,以先进的技术,优异的产品,过硬的质量和可靠的服务满足用户的专业需求。
  • 大连化物所实现电催化过程电子转移成像
    近日,大连化物所催化国家重点实验室分子催化与原位表征研究组(503组)李灿院士、范峰滔研究员等在液相原位电化学成像的研究方面取得新进展,实现了电催化过程中电荷转移过程的纳米尺度直观成像,直接观察到金属电极在微纳尺度存在空间差异的界面内电势差,突破了人们在传统电化学方面对电子转移过程的认识。  电化学反应的内在驱动力是电化学势,而电化学势的决定因素是界面内电位差,即电子转移情况。如何探测界面电势的局域分布,揭示其与电子转移动力学之间的内在关系对于纳米催化剂的反应机理的认识至关重要。一直以来,研究人员就设想通过纳米探针观测反应过程的电子转移情况,但该尺度下的电流极其微弱,常常受到外界噪音干扰。另外,液相中化学物种的扩散过程常常使电化学成像难以稳定。更重要的是,在电催化过程中,催化反应与电子转移过程卷积在一起,使得该电子转移过程难以直接探测。  本工作中,李灿团队建立了具有纳米级空间分辨率的原子力显微镜和扫描电化学成像联用的表征方法。该方法利用纳米探针的移动扫描测量了能够转移电子的外球电对分子和催化产物分子的局域分布,实现了对电子转移过程和电催化反应过程的原位反应成像。在金属纳米颗粒上的电子转移成像发现,该过程呈现位点依赖的空间异质性,突破了人们对金属电极上电子转移过程的微观认识。同时,通过解耦传质效应对界面电子转移的干扰,数学建模的有限元方法提取速率常数和内电势差测量等一系列精细的实验,揭示了空间差异的界面内电势差与电子转移速率常数对数间的线性关系。该方法在电化学领域对电子转移过程和催化反应实现原位观测,对原位成像技术的发展以及电催化过程机理探测方面提供新思路。  国际同行认为,该工作是原位扫描电化学探针技术的一个新里程碑,这也使人们可以从物理化学底层原理出发,发现纳米催化剂的结构—性能关系。  李灿团队长期致力于太阳能光催化、光电催化、电催化以及催化光谱表征的前沿科学研究,取得了系列成果,特别是利用自主研发的空间分辨的表面光电压显微镜对光催化剂表面光生电荷给出了可视化图像,在国际上最早将其应用到微纳尺度光催化材料电荷分离的成像研究(Angew. Chem. Int. Ed., 2015;Nature Energy, 2018;Angew. Chem. Int. Ed., 2020等)中。  相关研究成果以“Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism”为题,发表在《纳米快报》(Nano Letters)上。该工作的第一作者是大连化物所503组博士研究生聂伟。该工作得到国家自然科学基金委,“人工光合成”基础科学中心项目、中科院和大连化物所等相关项目的资助。  文章链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03529
  • 天美仪器亮相全国太阳能光化学与光催化会议
    2016年8月21-24日由中国可再生能源学会光化学专业委员会和中国化学会催化专业委员会主办,由山东大学、中科院兰州化物所、青岛大学、石油大学联合承办的第十五届全国太阳能光化学和光催化会议在山东大学召开。此次会议主要在光催化反应及其在环境保护中的应用、光电化学及清洁能源的开发利用、光化学与光催化新材料研究等领域展开交流,其中包括太阳能电池的开发和利用、光解水制氢系统、可见光催化降解有毒难降解有机物等热点议题,来自全国各大高校、研究院所及海内外机构的1300余人参加了会议。  北京泊菲莱科技有限公司作为会议的主赞助方全程参与了此次会议。天美(中国)科学仪器有限公司作为泊菲莱公司在光催化行业的唯一合作方受邀参加了此次盛会,并展出了在光催化及相关领域的检测仪器:赛里安气质联用仪——Scion 456-SQ、上海天美气相色谱仪——GC7980。  天美(中国)总部分析及色谱仪器市场部和济南分公司人员参加了会议,并在展会期间向广大参会者介绍了以上两款仪器的优势特点及光催化行业检测应用。   第十五届全国太阳能光化学和光催化会议在精彩的学术交流与展会活动中圆满落幕,天美公司将一如既往的致力于分析仪器在环保及新生能源的检测应用。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 想提高电催化研究效率?多电极控温流动看过来!
    电化学----“古老又年轻”电催化作为纳米材料和能源化学领域的研究热点,是未来新能源存储与转化技术的关键所在,如以电解水制氢和燃料电池为核心的氢能产业。除了可以通过小分子的活化转化将可再生能源存储为化学能,电催化更有魅力的地方在于温和、可控、绿色的化学品合成。其实,电化学的发展史是非常有渊源的。早在1893年Thompson发现电子以前,电化学的基本原理和规律就已从实验中得出。 图1:1780年Galvani发现“生物电”现象电化学的起源可以追湖到1780年Galvani从生命体系中发现的“生物电”现象,它揭示了生物学和电化学之间的深奥联系。 图2:1800年Volta发明利用电化学原理连续供电的伏打电堆1800年Volta发明了人类*个电池,它是利用电化学原理制成的*个具有实用价值的连续供电装置。(图1-2)早期,科学家主要是依赖对电流、电位、电容和电量等电化学参数的测量和分析研究,获得的宏观数据限制了对电极界面结构和反应历程的实质性认识。电化学*的进步发生在20世纪的后30年间,把光谱技术同电化学方法结合在同一电解池中工作,从而实现在分子水平上认识电化学现象和规律。随着光谱、波谱技术从60年代,特别是80年代以来的迅速发展,原位光、波谱电化学方法,以及理论计算方法在电化学过程动力学的研究方面日益受到重视并得到了广泛应用。经过近100年的发展,电催化从最初作为电化学科学的一个分支,目前已经成为一门交叉性极强的学科,科学家也在不断挖掘新的合成路径来提高电催化性能。催化剂“动起来”更有效率近期,美国化学学会Chemrxiv预印本期刊发表的一篇文章中使用Vapourtec离子电化学反应器开发了一种用于生成六元二锂盐的多相连续流,该例建立了一种生成六元二芳基碘酸盐的多步连续流动方法。这是对现有批处理方法在可伸缩性和原子经济方面的一个显著改进。该方法Friedel-Crafts类烷基化中使用容易获得的乙酸苄基酯,而随后的阳极氧化环化直接生成相应的环状碘鎓盐。* Friedel-Crafts 反应(傅-克反应)指芳香化合物在酸(Lewis酸或质子酸)催化下与卤代烃和酰卤等亲电试剂作用,在芳环上导入烷基或酰基的反应,分为Friedel-Crafts烷基化反应和Friedel-Crafts酰基化反应。* 高价碘化合物(HVI)是合成化学家公认的试剂。它们被描述为其他危险过渡金属的替代品。这是由于它们在亲电基团转移、光催化或有机催化中的巨大反应性,以及它们作为天然产物合成的构建块的实用性。在这篇研究文章中,科学家通过Brø nsted酸介导的Friedel-Crafts反应,然后进行氧化环化,以形成所需的CDIS 1,改进了碘油烯的形成。这种合成方法是以邻碘苄基醇为起始原料。它允许在短的反应时间内完成各种繁琐的合成CDIS方法。流动化学可显著提高电催化剂的抗疲劳性和稳定性,甚至可以让很不稳定的催化剂达到持久稳定的催化效果。合成挑战一个显著的缺点是使用化学计量量的化学氧化剂,这降低原子经济性并需要额外的处理程序。解决方案碘烯的阳极氧化。电化学是一种非常经济的工具,可以避免使用化学氧化剂合成高价碘试剂。碘芳烃在电池内或电池外电化学过程中都是合适且成熟的介质。HVI、DIS和CDIS通过阳极氧化产生。电化学工艺的明显优势,因为不需要进一步稀释或添加,所以其在流动中的实验操作简单直接。因此,将已经建立的针对CDIS 1的传统合成法转化为多步电化学流程,从而提高反应时间、原子经济性和可扩展性。实验过程1、建立分批优化的反应条件 在分批条件下电化学氧化和环化中间体碘油烯,通过初步观察,确定三氟甲磺酸适合环化并作为抗衡离子。2、引入流动化学在仅两当量的TfOH以74%的产率形成产物1a。但是研究人员发现由于需要额外的苯,这些反应条件不能转移到多步骤反应中,会形成堵塞流动反应器的黑色沉淀物。 3、两步流程优化 反应在Vapourtec离子电化学流动反应器中进行,分别采用玻璃碳 (GC) 阳极和铂阴极。收率是基于在各自条件下通过两个反应器体积后的20 min (0.200 mmol) 收集。4、研究不同对位取代芳烃 在Vapourtec离子电化学流动反应器中研究了不同的对位取代芳烃。通过使用仲苄基醇来衍生苄基位置,在0°C下,3g转化的Friedel-Crafts步骤缩短了约10倍。实验总结1、开发了*个多步连续流动程序,用于生成环状六元二芳基碘鎓盐;2、从容易获得的乙酸苄基酯开始,将Friedel-Crafts烷基化与随后的阳极氧化环化相结合。由于这些反应的条件相当苛刻,该方法目前受到使用的窄原料的限制;3、未来可以通过解决窄原料的限制问题,实现其他基质和更高的产量;4、缩短反应时间,提高原子经济性和可扩展性。Vapourtec电化学反应器连续电化学反应电化学反应器一旦与Vapourtec流动化学系统集成,离子电化学反应器的温度可以控制在-10º C和100º C之间,这为探索开辟了广阔的化学反应空间。历史上,绝大多数电化学反应都是在室温下进行的,很少有冷却电化学反应的例子。辉瑞公司和日本庆应义塾大学最近发表的一些重要文献也表明,加热电化学反应时,反应结果会有很好的改善。 ● 集成或独立操作选项,易于组装/拆卸,无泄漏操作 ● 与E系列和R系列系统兼容 ● -10°C~+100°C ● 在高达5bar的压力下操作 ● 20种电极材料可用,使用5 cm x 5 cm扁平电极 ● 电极间距、电极面积和反应器体积的灵活性。*封面图来源于Pexels,其他图片来源于网络,旨在分享,如有侵权请联系删除参考文献:[1] One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts Lucien D. Caspers, Julian Spils, Mattis Damrath, Enno Lork, and Boris J. NachtsheimThe Journal of Organic Chemistry 2020 85 (14), 9161-9178 DOI: 10.1021/acs.joc.0c01125[2] https://chemrxiv.org/engage/chemrxiv/article-details/634bfda24a18762789e5c3b1
  • 岛津亮相2023电催化与电合成国际研讨会
    2023年4月7-9日,2023电催化与电合成国际研讨会在长沙普瑞酒店隆重召开。本届会议由由中国化学会电化学专业委员会和湖南大学共同主办,湖南大学化学化工学院承办。会议的宗旨是共享电催化与电合成研究创新成果与前沿技术、加强学术交流与探讨、拓宽研究思路,促进学术成果转化。会议名家荟萃、大咖云集,有来自中国、加拿大、澳大利亚、新加坡等国家的相关专家、学者、产业界人士与会进行学术交流。本届研讨会围绕会议主题采取大会报告、基础电化学讲座、主题报告和优秀青年人才论坛+资深专家点评等交流模式。设立了电催化、有机电合成、环境催化、光电催化、理论机制与方法、能源电化学、优秀青年人才论坛(专家点评)多个主题分会。岛津发表岛津分析计测事业部市场部资深专家龚沿东做了题目为《射线光电子能谱技术在催化材料研究中的应用》的报告。催化剂如今已经广泛应用于化工合成以及其他很多领域(如化肥生产、各种高分子材料合成,以及汽车尾气排放等等),使得原本必须在极其特殊条件下(高温、高压等)才能发生的化学反应可以在相对宽松的条件下就可以进行,并使反应效率得到很大的提高。由于所有的催化反应都是在催化剂表面几个原子层内进行的,而催化剂材料表面的形貌特征(包括晶体取向)都对催化效果有非常大的影响,其机理在于表面能的大小对反应物的选择性吸附有决定性的作用。利用XPS可以研究催化剂表面的元素成分及其所处的状态,从而对吸附和脱附的机理进行表征;通过在真空系统内引入反应气体,可以进行原位的吸附与脱附研究;通过对失效(中毒)的催化剂的表面元素成分与价态的研究,就可以为催化剂的活化提供必要的理论依据。岛津展位本文内容非商业广告,仅供专业人士参考。
  • 【综述】电化学催化剂的透射电子显微学研究综述
    p  span style="color: rgb(112, 48, 160) "strong前言/strong/span/pp  能源问题一直是困扰人类生存发展的终极问题之一,随着时代的进步,不断革新的科学技术为解决这一问题带来了曙光。其中电催化是目前有效的手段之一,涉及诸多新能源和环境保护的研究方向,包括燃料电池、水裂解、制氢、二氧化碳资源化利用等。其中,研究电化学催化剂的微观结构,并监测电催化剂在电催化反应过程中的结构演变规律,对于设计新材料、开发新能源具有重要的意义。/pp  电子显微镜作为研究学者的“电子眼”,不但可以直接观察固体催化剂的形貌,而且可以在原子尺度提供催化剂的精细结构、化学信息和电子信息,对新型高效催化剂的发现、反应过程中催化剂结构演变及结构和性能之间关系的研究起到了重要作用。因此,电子显微学方法作为一种重要的表征技术在催化化学的发展中扮演着至关重要的角色。在过去20年中,电子显微学在电催化领域内也得到了广泛的应用。最近中国科学院金属研究所张炳森研究员课题组对电化学催化剂的透射电子显微学研究进行了总结,并指出了存在的挑战和未来发展方向。/pp strong span style="color: rgb(112, 48, 160) "1. 透射电子显微学方法对电化学催化剂的基本表征/span/strong/pp  与材料研究中其它表征技术(如:X射线衍射、X射线光电子能谱、Raman光谱等)相比,透射电子显微镜具有很高的空间分辨率,可以在纳米尺度甚至是原子尺度下对催化材料结构进行研究,极大地促进了催化化学的发展。透射电镜目前已经发展为综合型分析电镜,从催化剂的微观结构,到化学组成,以及电子结构等信息都可以利用透射电镜分析获得。/pp strong 1.1电化学催化剂微观结构表征/strong/pp  电化学催化剂的微观结构,如:颗粒形貌、尺寸、暴露晶面、表界面结构等,对催化剂的性能有非常重要的影响,利用高分辨电子显微术(HRTEM)可以获得这些信息。值得注意的是,在负载型金属催化剂中,很多情况中会有很小的纳米颗粒和原子团簇存在,利用高分辨透射电子显微术(相位衬度成像)观察时可能会忽略这些信息,而利用高角环形暗场-扫描透射电子显微术(HAADF-STEM,Z衬度像)可以很容易地观察到这些颗粒的存在。目前,亚埃尺度分辨的球差校正透射电子显微镜的发展,实现了更好地在原子尺度下观察催化剂表界面结构,同时也促进了单原子电催化剂的发展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f0f6b75a-dca5-4054-932d-4946fad9e0f5.jpg" title="1.jpg"//pp style="text-align: center "  strong图1. 纳米颗粒的HRTEM图片:(a)多面体/strong/ppstrongPtNix单晶纳米颗粒,(b,c)多晶PtNix纳米颗粒,(d)核壳结构Pt/NiO纳米线,(e)PtNi合金纳米线,(f)锯齿状的Pt纳米线。(a,c)图中右下角插图分别是对应PtNix纳米颗粒的形状模型图和原子模型图,(a-c,f)图中右上角插图为对应纳米颗粒的傅立叶变换图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/da1074c4-9a68-49ef-ad5c-007b7e4e4f96.jpg" title="2.jpg"//pp  strong图2.(a)Pt/[TaOPO4/VC]-NHT的TEM图片,(b)相同区域的HAADF-STEM图片 (c,d)球差校正透射电子显微镜获得的高分辨HAADF-STEM图片:(c)核壳结构PtPb/Pt纳米片和(d)MoS2负载单原子Pt(左下角插图是相应的构型模拟图)。/strong/pp strong 1.2电化学催化剂的化学成分及电子结构表征/strong/pp  双金属及多元金属催化剂是电催化中常用的催化剂,其化学组成及元素的分布对于催化剂的性能也有着至关重要的影响。X射线能谱(EDS)分析不仅可以对电催化剂的化学成分进行半定量分析,同时利用面扫和线扫,也可以得到相应元素在催化剂颗粒中的分布情况。除EDS表征手段,电子能量损失谱(EELS)对催化剂中的元素组分进行定性、定量和元素分布分析等也具有独特的优势,尤其在分析B、O、N等轻元素时,与EDS分析相比,会得到更精确的信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/45b9bfc5-c80a-4c25-b99d-f4a411601a16.jpg" title="3.jpg"//pp  br//pp strong 图3.(a)PtNix纳米颗粒的HAADF-STEM图和EDS面扫图,(b)核壳结构Pt/NiO、PtNi合金、锯齿状Pt纳米线的EDS线扫曲线(插图中绿线代表对应的线扫轨迹),(c)100 ?C水热条件下得到的B/P共掺杂有序介孔碳的TEM图片和B、C、O、P元素的能量过滤TEM图片。/strong/pp  影响电化学催化剂催化性能的另一个重要因素是催化剂中原子的电子结构。EELS除了可以进行成分分析,其另一个重要且常用的功能是分析催化剂中原子的电子结构,从而可以得到相应元素的价态、配位情况等,进而获取相关信息,例如:负载型金属催化剂中金属-载体间电子相互作用,纳米碳材料中掺杂原子的种类及电子结构等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/bcafabc9-8776-44d7-b3c5-0e6e40886088.jpg" title="4.jpg"//pp  strong图4.(a,b)Pt-CeOx样品中Ce-M45边和O-K边的电子能量损失谱,(c,d)N-掺杂石墨烯样品中N-K边和C-K边的电子能量损失谱,(e,f)三种B-掺杂类洋葱碳样品中B-K边和C-K边的电子能量损失谱。/strong/pp span style="color: rgb(112, 48, 160) "strong 2. “相同位置-电子显微学”方法(IL-TEM)用于电化学测试条件下电催化剂的结构演变研究/strong/span/ppstrong  2.1 IL-TEM方法简介以及其在商业Pt/C电催化剂稳定性研究中的应用/strong/pp  该方法通过将电催化剂分散在坐标微栅上,在透射电镜下准确记录反应前某一具体位置催化剂的微结构信息 随后将携带样品的微栅放到工作电极上,保证接触良好的前提下,将该工作电极置于反应环境中 待反应结束,将坐标微栅从反应体系中取出,并在透射电镜中根据具体的坐标定位追踪反应前记录的位置。通过反应前后、或反应中各个阶段相同位置催化剂结构对比和统计分析,揭示催化剂在反应条件下的结构演变规律,并结合性能测试结果精确阐述构效关系。IL-TEM方法最初应用于电化学反应体系,例如:德国马普Mayrhofer组和西班牙Feliu组等利用此方法研究了铂基催化剂在电化学处理过程中的微结构演变,如负载铂纳米颗粒的脱落、溶解、迁移、团聚长大以及碳载体的腐蚀等特征行为。通过对负载活性组分(纳米颗粒)以及载体(活性炭)结构演变的同时观察,并关联其性能,揭示了不同反应条件下催化剂的失活机制问题。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/571bfe7a-296b-4eef-a73c-e9eb15528350.jpg" title="5.jpg"//pp  strong图5.(a, b)IL-TEM方法在电化学三电极测试体系中的应用示意图,(c-f)利用坐标微栅在透射电镜下通过依次放大追踪相同位置催化剂的微结构信息。/strong/ppstrong  2.2 IL-TEM方法在电化学新材料体系中的应用/strong/pp  各类新型纳米碳材料,如纳米碳球、碳纳米管、石墨烯等,具有优异的导电性、耐酸碱性以及较高的比表面积和丰富的孔结构等特点在能源转化领域得到了广泛关注。其本身通过杂原子改性作为氧还原和二氧化碳还原反应电催化剂被大量研究。除此以外,利用表面改性纳米碳作为电催化剂载体调控活性组分与碳载体间相互作用也是近几年新兴的研究热点之一,通过使用IL-TEM方法跟踪负载纳米粒子在改性碳载体表面的迁移、团聚和溶解等行为直观揭示不同表面修饰对电催化剂的稳定作用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f57af8d7-c227-4571-8e0c-ed72ae77f569.jpg" title="6.jpg"//pp  strong图6. IL-TEM方法用于氮掺杂碳纳米球负载Pt催化剂在氧还原反应(左上)、氧官能团化和氮掺杂改性碳纳米管负载Pt催化剂在甲醇电氧化反应(左下)、及化学接枝法改性石墨烯负载Pt催化剂在氧还原反应(右)中的稳定性研究。/strong/ppstrong  2.3 IL-TEM方法拓展应用于传统液相催化反应/strong/pp  目前,IL-TEM方法已成功应用于电化学体系,直观揭示了不同反应条件中催化剂结构演变,以及碳材料载体表面性质对于负载金属电催化剂的稳定性影响及失活机制。而在环境电镜或原位透射样品杆中难以实现的传统液相催化反应体系中,IL-TEM方法也具有独特的优势。金属研究所张炳森、苏党生课题组在2016年底报道了此方法在液相催化反应(芳硝基化合物选择性加氢)中的应用,也是此方法第一次应用在传统液相催化反应体系中,通过研究反应条件下相同位置催化剂的结构演变过程,直观证明了氮物种的引入对负载的铂纳米颗粒的稳定性起重要作用,实现了铂-碳相互作用调节提升碳基负载型催化剂催化性能。该方法为精确研究液相催化反应中催化剂的构效关系,尤其是复杂液相催化反应体系,如固液、气液固等三相共存反应体系,探索复杂液相环境中催化反应活性中心的诱导产生、演变等行为规律提供了很好的手段,并更好地为新型高效催化剂的开发提供指导。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/64e15822-6ae3-433a-be3c-a0a0ff5988f2.jpg" title="7.jpg"//pp strong 图7. IL-TEM方法在液相反应体系中的应用示意图(左上) 氧官能团化以及氮掺杂改性碳纳米管负载高分散铂纳米粒子催化剂相同位置在反应前后的透射电镜对比图(左下) 氮掺杂碳纳米管负载高分散铂纳米粒子催化剂相同位置在不同反应时间的HAADF-STEM图(右图)。/strong/ppstrong  /strongspan style="color: rgb(112, 48, 160) "strong3. 原位电化学样品杆的应用前景/strong/span/pp  常规透射电镜表征,样品所处的环境是真空和室温,与实际电催化剂所处的液体环境差距较大,并且是对反应前后进行随机取样表征,不够直观准确且存在严重的滞后效应,因此需要开展原位表征。电化学原位透射样品台的出现为实时观察服役环境下电催化剂的微结构以及结构演变提供了有效研究手段,并通过与电化学工作站联用可以得到实时性能数据,为揭示电催化反应黑匣子提供重要参考依据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9dc78db6-8ef1-4d37-b32f-52ad3873eddb.jpg" title="8.jpg"//pp  strong图8.(a, b)电化学原位透射样品杆示意图,(c, d)电化学测试实时数据。/strong/ppstrong /strongspan style="color: rgb(112, 48, 160) "strong 4. 总结与展望/strong/span/pp  先进电子显微方法(分析型电子显微方法和高分辨电子显微方法)的发展提供了从微观尺度认识和理解电化学纳米催化剂结构特征的有效手段。该文通过大量研究工作全面系统地综述了透射电子显微术在揭示电催化剂纳米尺度形貌、原子尺度精细结构、化学组成以及电子结构等信息方面的重要作用,对新型高效电催化剂的设计研发、反应过程中的催化剂结构演变及结构性能间关系等的研究具有指导意义。“相同位置-电子显微学”方法的引入对于研究真实反应条件下催化剂的结构动态行为特征,揭示其稳定性和失活机理等方面提供了更直观准确的研究手段。同时,前沿性研究中电化学原位透射样品台的介绍,展望了将常规透射电镜对电催化剂的表征转变为在线可视化的电化学微型实验室的研究趋势 通过在电子显微镜中建立微纳米反应室,获取真实反应条件下催化剂活性位结构特征,使其成为电化学催化剂的创新工具。/pp style="text-align: center "---------------------------------------------------------------------br//pp  Liyun Zhang,Wen Shi,Bingsen Zhang, A review of electrocatalyst characterization by transmission electron microscopy, Journal of Energy Chemistry,DOI:10.1016/j.jechem.2017.10.016/p
  • 液态金属催化剂或撼动百年化工工艺
    据科技日报(记者张梦然)报道,液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然纳米技术》上的一项创新研究,摆脱了由固体材料制成的旧式能源密集型催化剂。催化剂是一种在不参与反应的情况下使化学反应更快、更容易发生的物质。固体催化剂,通常是固体金属或固体金属化合物,通常用于化学工业中制造塑料、化肥、燃料和原料。然而,使用固体工艺的化学生产是能源密集型的,需要高达1000℃的高温。 新工艺改为使用液态金属,在这种情况下溶解锡和镍,这赋予它们独特的流动性,使它们能够迁移到液态金属的表面并与输入分子,例如菜籽油发生反应,这导致菜籽油分子旋转、破碎和重新组装成更小的有机链,包括对许多行业至关重要的高能燃料丙烯。液态金属中的原子比固体中的原子排列更加随机,并且具有更大的运动自由度。这使得它们很容易接触并参与化学反应。在新研究中,研究人员将高熔点镍和锡溶解在熔点仅为30℃的镓基液态金属中。通过将镍溶解在液态镓中,研究人员在非常低的温度下获得了液态镍,并将之充当“超级催化剂”。相比之下,固体镍的熔点为1455℃。液态镓中的锡金属也会受到相同的影响,但程度较轻。金属以原子水平分散在液态金属溶剂中,单原子具有最高的催化表面积,这就为化学工业提供了显著的优势。这一方法还可用于其他化学反应。研究人员表示,其为化学工业降低能耗和绿色化学反应提供了可能性。 在化学反应中,催化剂往往扮演着“四两拨千斤”的角色。对化学工业而言,它更是对生产流程是否绿色、节能、高效起着举足轻重的作用。因此,催化剂是科学研究的重要领域,相关科研成果层出不穷。上述研究便是其中一个典型案例。
  • 精微高博比表面分析仪亮相第二十届全国催化学术会议
    第二十届全国催化学术会议将于2021年10月15日-20日在武汉市召开,会议的主题是“面向绿色低碳高质量经济发展的催化科学及技术”。内容涵盖催化材料、催化剂表征、均相催化、催化新反应、催化理论研究、能源催化、生物质催化转化、环境领域催化、精细化学品的催化合成原理、工业催化等与催化相关的最新研究进展及成果。 精微高博受邀参加本次会议,JW-BK系列比表面及孔径分析仪、AMI系列化学吸附仪、BenchCAT 系列定制微反应器、mixSorb系列竞争吸附仪将亮相本次展会,为广大客户带来催化剂表征全套解决方案。 JW-BK200C比表面及孔径测试仪配置1torr/0.1torr高精度小量程传感器,及10-8Pa涡轮分子泵,适合分子筛、催化剂、活性炭等多微孔样品的超微孔分析。孔径范围:0.35-500nm 比表面测试范围:0.0001m2/g中值孔径重复性:0.02nm 比表面积重复性:≤1% AMI-300旗舰型是AMI仪器公司提供的最新一代全自动化学吸附分析仪器。该仪器均是基于无人值守理念设计的全自动催化表征仪器,具有高可靠性的独立控制软件,及完善的数据处理软件,能够为表征催化剂提供必要动力学参数。可执行动态程序升温催化剂表征实验TPR,TPO,TPD,脉冲化学吸附测定金属分散度、相对活性、吸附强度蒸汽吸附动态多点BET比表面测试可使用标配TCD检测器进行气体分析或者与质谱仪或其他检测器 ( FID, FTIR, GC 等)由AMI仪器公司设计制造的 μBenchCAT仪器代表了最新的、最完整的台式催化剂反应装置。气相/液相反应研究所需的所有元件均包括在一个全自动、紧凑型的装置内。多样定制选项使得μBenchCAT适用于广泛的分析和研究范畴。台式紧凑型反应器软件全自动控制半定制、经济型多重安全保护 BenchCAT™ 是一种自动化的全定制微反应器,可在单个或多个工作站中使用, 仪器为特定应用而设计,由于BenchCAT™ 微反应器系统是根据用户需求定制设计的,因此AMI仪器会要求客户提供一些有关其预期应用的一般信息,或可能需要更详细的信息才能解决一组复杂的需求。根据客户需求量身定制定制化全自动控制软件进气系统液体进料系统反应系统产物分离&收集系统产物分析系统应用领域:柴油催化剂的研究 、燃料电池催化膜研究 、Fisher-Tropsch反应 、尾气处理、烃脱氢研究 、乙酸的催化反应等等。 mixSorb 系列竞争性吸附分析仪具备独特的设计,能够保证整个动态吸附过程安全、简单地实现。在宽泛的温度和压力范围内,用已知组分的混气对工业吸附剂和研发用样的相关性能进行研究,混气的流量可以自行调节。 目前常见的新型材料如MOF,COF等,由于其表面具有高度选择性,因此通过竞争吸附来研究该材料不失为最佳方案。 穿透曲线测定多组分吸附分离吸附动力学数据采集 精微高博(JWGB)成立于2004年,推出中国第一台静态容量法氮吸附仪JW-RB,被誉为“中国氮吸附仪的开拓者”。17年来已发展为集研发、制造、销售、服务于一体的国家级高新技术企业,专业从事比表面积及孔径分析仪、化学吸附仪、竞争性吸附仪、蒸汽吸附仪、真密度仪等物性分析设备的研究,是中国材料表征仪器的领先制造商,产品销售全球十几个国家和地区,致力于向全球客户提供高质量、高易用性、高性价比的产品和服务解决方案。
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 大昌华嘉携手”黑科技“亮相全国环境催化与环境材料学术会议
    2016年11月4日,将迎来“第十届全国环境催化与环境材料学术会议”,这是继首届研讨会后再次在杭州举办,会议以“创新引领新常态下的环境催化科学与技术”为主题,邀请众多行业专家莅临互相交流与深入讨论,大昌华嘉作为本次会议的金牌赞助商,将携手“黑科技”吸附仪参加本次会议,MicrotracBEL - 表面吸附技术专家是一家研究生产容量法/重量法气体吸附分析仪的专业制造厂商。秉承“事业让生活更享受”(Business for Enjoy Life)的理念,汲取众家之长制造高品质的仪器。“事业让生活更享受”,始发于原创的动力,不断的革新。第一台多功能催化剂表征系统,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。集“黑科技”于一身的麦奇克拜尔高精度气体和蒸汽吸附仪BELSORP-max II会议信息会议时间:11月4日-6日会议地址:杭州市西湖区莫干山路188-200号(杭州之江饭店)- 欢迎莅临大昌华嘉展位获取更多产品信息;- 关注大昌华嘉仪器部公众号,还有更多精美礼品相送;
  • 张新星团队JACS新成果:微液滴电场“催化”的化学反应
    电场,一种非实物的物理场,已被证明能对化学反应产生重大影响。使用电场作为化学反应的催化剂是当今最前沿的化学研究领域之一。早在2016年,在Nature 杂志上就有论文指出,109 V/m数量级的电场可以作为一种“非实物”的新型催化剂。当电场方向与反应中电子的重新分布或偶极矩的变化方向一致时,反应势垒将会降低,化学反应速率将会被显著提高。虽然将电场作为催化剂有很多优势,但如何在实验中产生高达109 V/m数量级的电场一直是一个棘手的问题,阻碍了该领域的进一步发展。  目前产生如此之高的电场的实验手段并不多,现存的研究包括扫描隧道显微镜,其针尖和基底之间产生的电场只能作用于有限数量的分子,导致它在反应放大和实用性方面有很多局限性 又如利用带电官能团和金属离子的净电荷可以创造分子尺度的短程电场,目前已经在光催化、酶催化等领域得到了新的认识和应用。微液滴化学是近几年来引发众多学者争相研究的新兴领域,许多实验与理论工作已经表明微液滴表面能够自发产生高达109 V/m的电场,这为研究者们提供了一个崭新且便利的创造外部电场的思路。  对于大多化学反应体系来说,宏观的水是一种非常稳定的介质。然而近几年来,众多科学家们研究发现,当把宏观的水分散成微米尺寸的微液滴后,将会出现很多与体相水截然不同的奇特性质,其中最引人注目的性质之一就是其表面能够自发形成超高电场,其产生或由于其表面水分子偶极结构的统一自发取向,或由于其内部的阴阳离子形成了双电层结构,强度可高达109 V/m(相比之下,在空气中生成闪电的击穿电压仅有106 V/m数量级),此电场是如此之高,以致于可以撕裂水中的氢氧根,进一步生成羟基自由基(•OH)和自由电子。自由电子具有极高的还原性,而•OH具有极高的氧化性,这看似完全矛盾的两种性质竟然可以同时存在,使得微液滴成为了“神奇的矛盾统一体(unity of opposites)”。在微液滴表面的两个•OH还可以重新组合进一步自发生成双氧水H2O2。然而“将纯水喷雾就可以自发产生H2O2”的说法似乎会令人感觉“天马行空”,但近几年来的多篇论文均证实了这项研究成果。  图1  近日,为了拓展微液滴表面电场的适用范围从而解决真空中电场技术的放大问题,南开大学张新星研究员通过利用微液滴表面极高的电场,实现了定向加速亲核试剂(Nu:)进攻卤素(X2)并打破卤素键(X-X)。在非极性或极性溶剂中,Nu:(吡啶或奎宁环)会与卤素(Br2或I2)迅速结合,生成卤键复合物(Nu…X-X)。在极性溶剂中,该复合物会缓慢解离为 (NuX)+和X-,前者可以再结合一个Nu:分子生成(Nu2X)+(图1)。然而,在体相溶液中,该解离过程因具有较高的能垒而进行得十分缓慢,以至于需要数天甚至数周。在该工作中,作者使用十分简便的氮气喷雾和质谱检测的方法,将Nu:与Br2或I2的混合溶液喷洒为微液滴,无需底物和水之外的任何物质的加入,随后即可在质谱中观测到 [Nu1,2(Br/I)]+的质谱峰,证明在微液滴中该反应只需微秒级的时间就可自发发生,将反应速率提高了数个数量级。当作者改变反应距离由10 mm增加至30 mm时,可以发现反应产物 (Py1,2Br)+ 的产率显著提高,进一步验证了反应是在微液滴中发生的(图2c)。由图1中的反应步骤(4)可以推断,反应的发生将会促进Br3-阴离子的生成,作者在相同条件下,持续向质谱仪中分别喷雾同一浓度的纯Br2溶液和Py+Br2混合溶液2 min,通过对比Br3-阴离子的相对强度,可以发现在Py+Br2混合溶液中Br3-阴离子的强度约为纯Br2溶液的6倍,进一步验证了该反应的机理(图2d)。为了进一步阐释气-液界面在反应中确实扮演重要角色,作者通过改变鞘气压力由60 Psi至100 Psi,由计算发现反应产物(Py1,2Br)+会随着鞘气压力的增加而显著提高,这是由于增大鞘气压力会减小微液滴的尺寸,进而能增大微液滴的比表面积,进一步说明了气-液界面在化学反应中的重要性(图2e)。  图2  在理论计算方面,作者利用密度泛函理论,分别对PyBr2、PyI2、(QNL)Br2和(QNL)I2 (将奎宁环简写为QNL) 四个不同体系进行了理论预测。当电场达到~109 V/m,且与NuX-X键断裂的方向一致时,(NuX)+上的正电荷以及X-上的负电荷能够得以稳定,从而降低甚至消除了卤素键异裂的能垒。如果将电场的方向倒置,X-X键将被重新稳定,从而会增大反应能垒(图3)。因此,这些理论结果解释了实验中的超高反应速率,证明了微液滴自发产生的超高电场可以显著降低卤键断裂的能垒,从而使反应速率明显加快。值得注意的是,在水中电场降低能垒的效应要比在气相中更明显,这可能是由于被水分子包围的NuX-X键更容易被极化导致。  图3  综上所述,通过结合实验与理论计算,作者证明了在水微液滴的气液界面处自发的高电场可以显著促进亲核试剂与卤素之间的反应。本研究不仅拓宽了微液滴电场可催化反应的适用范围,还为微液滴合成方法学的进展提供了最新的范例。  该研究成果发表在Journal of the American Chemical Society 上。值得一提的是,这已是该课题组在2023年度发表的第四篇JACS。南开大学硕士研究生朱乘慧为本论文的第一作者,澳大利亚弗林德斯大学博士后Le Nhan Pham为第二作者,南开大学硕士研究生苑旭为本文第三作者,南开大学本科生欧阳浩然为第四作者。南开大学张新星研究员和弗林德斯大学Michelle L. Coote教授为本文通讯作者。其中张新星研究员入选了本年度的国家杰出青年基金。仪器信息网在近期也专访了张新星研究员,详情点击了解(气液界面+质谱,点燃新引擎)  原文:  High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond ComplexesChenghui Zhu, Le Nhan Pham, Xu Yuan, Haoran Ouyang, Michelle L. Coote*, and Xinxing Zhang*J. Am. Chem. Soc., 2023, DOI: 10.1021/jacs.3c08818  张新星课题组官网:http://www.zxx-lab.com/
  • 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能
    1. 文章信息标题:Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation中文标题: 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能 页码:958-968 DOI: 10.1016/j.renene.2021.11.030 2. 期刊信息期刊名:Renewable EnergyISSN: 0960-1481 2022年影响因子: 8.634 分区信息: 中科院一区;JCR分区(Q1) 涉及研究方向: 工程技术,能源与燃料,绿色可持续发展技术 3. 作者信息:第一作者是 施伟龙(江苏科技大学)、孙苇(北华大学)(共同一作)。通讯作者为 林雪(北华大学),郭峰(江苏科技大学),洪远志(北华大学)。4. 光催化活性评价系统型号:北京中教金源(CEL-PAEM-D8,Beijing China Education Au-Light Co., Ltd.);气相色谱型号:北京中教金源(GC7920,Beijing China Education Au-Light Co., Ltd.)。本工作利用SiO2微米球为硬模板和三聚氰胺为前驱体,通过空气化学气相沉积 (CVD)方法合成洋葱圈状结构的g-C3N4(OR-CN),且基于溶剂热法与0D Bi3TaO7量子点(BTO QDs)复合,形成0D BTO QDs/3D OR-CN S型异质结复合物光催化剂,在λ 420 nm的可见光驱动下,讨论了不同质量比的BTO/OR-CN化合物催化剂在2小时内的析氢性能。其中,0.3wt% BTO/OR-CN样品赋予了最佳的光催化析氢速率为4891 μmol g-1,且在420 nm处的表观量子产率(AQY)为4.1%,约是相同条件下的OR-CN的3倍。其增强的光催化活性归因于0D BTO量子点与OR-CN之间形成了S型异质结,有助于促进光生电荷载流子的分散,且增强了可见光吸收强度,此外,通过4次循环实验,发现0D BTO QDs/3D OR-CN S型异质结复合物光催化剂具有优异的稳定性,有应用前景。图1. 制备BTO/OR-CN化合物的实验过程如图1所示,BTO/OR-CN的制备是通过加入0.2 g的OR-CN在BTO的合成过程中,合成的样品命名为xBTO/OR-CN,其中x代表BTO在化合物中的质量比,分别为0.1%,0.3%,0.5%,1.0%。此外,为了比较,合成了块体g-C3N4(B-CN)和0.3%BTO/B-CN复合物,B-CN的合成是通过一步煅烧3 g三聚氰胺,550 °C加热4小时,升温速率为2.3 °C/min,从而得到黄色的产物。0.3% BTO/B-CN复合物的合成类似于0.3% BTO/OR-CN复合物的合成过程,仅仅用B-CN代替OR-CN。图2. BTO、OR-CN和不同复合物的XRD图如图2示,OR-CN、BTO以及不同质量比的BTO/OR-CN化合物(0.1%、0.3%、0.5%和1.0%)的XRD图表征晶体结构和结晶度。对于BTO样品,2θ在28.2°、32.7°、46.9°和58.4°属于Bi3TaO7的(111)、(200)、(220)和(222)面(JCPDS:44-0202)。OR-CN拥有两个衍射峰在13.1°(100)和27.4°(002),分别归因于芳香单元的层内结构堆积基序和层间堆积基序。至于BTO/OR-CN化合物,引入BTO没有影响OR-CN的相结构,当负载0.1%、0.3%、0.5%和1.0%的BTO在OR-CN上,很难发现额外的BTO特征峰,这很可能是因为少量的BTO QDs。图3. OR-CN的SEM图(a)0.3% BTO/OR-CN复合材料的SEM图(b)TEM图(c)HRTEM图(d)和EDX图(e)如图3所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析制备的样品的结构和形貌。OR-CN样品呈现了洋葱圈形状,尺寸大约在150-200 nm。负载BTO QDs在OR-CN的表面上形成BTO/OR-CN复合物之后,OR-CN的洋葱圈结构没有改变,但表面变得更粗糙。为了进一步清晰地观察BTO/OR-CN化合物,0.3%BTO/OR-CN的TEM图展现了BTO QDs均匀地分布在OR-CN表面上且与OR-CN底物亲密的接触,这有助于电荷的分散和转移。同时,化合物的高分辨透射图(HRTEM)反映了BTO和OR-CN之间有好的界面接触,其中,晶格间距为0.27 nm与Bi3TaO7晶格面(200)相匹配。展现了成功地构造了0D/3D BTO/OR-CN异质结催化剂。0.3%BTO/OR-CN的EDX图揭示了C,N,Bi,Ta,O元素的存在,进一步证实BTO QDs锚定在OR-CN的表面上。图4. 光催化产氢(a)析氢速率(b)B-CN、OR-CN、及其0.3%化合物光催化产氢(c)析氢速率(d)循环实验(e)循环实验前后的XRD图(f)如图4所示,以300 W的氙灯作为光源(λ 420 nm),研究了制备的样品的光催化析氢活性。结果表明制备的BTO样品几乎不产氢,而OR-CN在2小时辐照过程中产生了相对较低的氢气,约为1736 μmol g-1,这是由于BTO对可见光的吸收较低和电子-空穴的快速重组所致。当耦合OR-CN和BTO之后,光催化析氢活性显著的增强,其中,最佳的0.3% BTO/OR-CN复合材料展现了析氢量大约是4891 μmol g-1,是单组分OR-CN样品的3倍左右。同时,0.3% BTO/OR-CN异质结光催化剂在420 nm波长表现出较高的表观量子产率(AQY)为4.11%。当BTO QDs的加入量从0.1%增加到1.0%时,光催化析氢性能呈现出先增后减的趋势,其中,最优的0.3% BTO/OR-CN样品的光催化性能优于其他复合样品,这是因为构建了S型异质结,加速了光生电荷的传输和分布。此外,在OR-CN上引入BTO QDs可以增加比表面积、提供更多的活性位点、增强光响应强度和延长光诱导电荷寿命。随着进一步增加BTO QDs的量,光催化产氢速率减小,这是因为过量的BTO QDs负载在OR-CN表面可能会影响BTO QDs的分散,且由于屏蔽效应阻碍OR-CN的光吸收效率。因此,负载合适量的BTO QDs有利于光催化产氢。此外,最优样0.3% BTO/OR-CN的产氢速率为2445.5 μmol g-1。为了比较,还合成了0.3%BTO/OR-CN复合物,制备的样品的析氢量和析氢速率的排序:0.3%BTO/OR-CNOR-CN0.3%BTO/B-CNB-CN,这表明CN的洋葱圈结构和化合物的异质结界面有利于提高光催化活性。经过四次循环实验,可以清晰地发现光催化析氢有轻微的降低。同时,XRD图也用于评价样品的稳定性,循环前后的XRD图没有发生改变。这些结果展现了制备的 BTO/OR-CN样品拥有优异的稳定性和光催化析氢活性。图5. MS图(a和b)S型异质结机理(c)BTO/OR-CN复合物光催化析氢中光生电荷分离转移机理(d)利用Mott-Schottky(MS)图确定OR-CN和BTO的能带结构。OR-CN和BTO样品的质谱图在1000、2000和3000 Hz处呈现正斜率,说明OR-CN和BTO具有典型的n型半导体特征。OR-CN和BTO在接触前的带位置存在偏差,OR-CN是一种费米能级较高的还原型光催化剂,而BTO是一种费米能级较低的氧化型光催化剂。此外,通过紫外光电子能谱(UPS)计算了OR-CN 和BTO的功函数,分析了界面电荷转移过程。确定OR-CN和BTO样品的二次电子截止边的结合能(Ecut-off)分别为16.921 eV和16.054 eV。然后,BTO和OR-CN在黑暗中密切接触后,OR-CN的CB上的电子自发地流向BTO,直到二者的费米能级达到相同水平。因此,OR-CN组分失去电子并携带正电荷,导致OR-CN的CB边缘向上弯曲,同时,BTO组分得到电子,电子在其CB上积聚,BTO带负电荷,导致CB边缘向下弯曲,从而,OR-CN和BTO界面形成内部电场。在可见光的照射下,电子在内部电场和库伦相互作用的驱动下由BTO的CB转移到OR-CN的VB上与空穴复合,此外,保留在OR-CN的CB上的电子和BTO的VB上的空穴将分别参与光催化氧化还原反应。基于以上的分析,提出了BTO/OR-CN光催化反应的可能的S型机理,在可见光的照射下,BTO和OR-CN中价带(VB)上的电子跃迁到导带(CB)上,价带上形成空穴,BTO导带上的电子可以转移到OR-CN的价带上并与空穴结合。由于OR-CN导带的电势比H+/H2(0 eV vs. NHE)更负,所以,H2O分子可以与电子反应生成H2。用三乙醇胺(TEOA)猝灭BTO价带上积累的空穴。
  • 材料领域催化类国家重点实验室汇总(附仪器配置清单)
    催化过程是化学与材料领域的重要研究方向之一,而在工业生产中,催化剂也起到了举足轻重的作用。国家基于催化领域研究的重要性,陆续批建了一系列与催化高度相关的国家重点实验室,仪器信息网对于材料领域催化类国家重点实验室进行了汇总。催化类国家重点实验室实验室名称依托单位实验室主任学术委员会主任催化基础国家重点实验室中国科学院大连化学物理研究所申文杰 李 灿绿色化工与工业催化国家重点实验室中国石化上海石油化工研究院杨为民何鸣元省部共建能源与环境光催化国家重点实验室福州大学王心晨赵进才石油化工催化材料与反应工程国家重点实验室中国石油化工股份有限公司石油化工科学研究院宗保宁韩布兴煤转化国家重点实验室中国科学院山西煤炭化学研究所樊卫斌赵东元催化基础国家重点实验室 依托单位:中国科学院大连化学物理研究所催化基础国家重点实验室于1984年由国家计委批准筹建,1987年通过国家验收并正式对外开放。郭燮贤院士、徐奕德研究员和李灿院士先后担任实验室主任;闵恩泽院士、郭燮贤院士、林励吾院士和Michel Che教授(法国皮埃尔和玛丽居里大学)先后担任学术委员会主任。现任实验室主任申文杰研究员,学术委员会主任李灿院士。  实验室现有固定人员124人,其中中国科学院院士3人、中国工程院院士1人;研究员51人;副研究员31人;助理研究员12人;高级工程师16人;工程师12人。博士后49人;博士和硕士研究生211人。其中,国家自然科学基金委杰出青年基金获得者13人、国家自然科学基金委优秀青年基金获得者4人;3人当选发展中国家科学院院士、1人当选欧洲人文和自然科学院外籍院士、1人当选英国皇家化学会荣誉会士、2人当选英国皇家化学会会士;14位研究员在十余个国际期刊任副主编、编委、国际顾问。经过30多年的学术积累和人才培养,实验室形成了老中青相结合,以中青年研究队伍为主体,并配合有精干的技术和管理人员的研究队伍。  催化基础国家重点实验室以催化基础研究为立足点、应用基础研究为结合点,瞄准国际前沿方向和我国重大应用过程的关键基础科学问题,开展深入系统的研究工作。在2004年、2009年和2014年科技部组织的国家重点实验室评估中连续三次被评为优秀实验室(A类)。(以上数据截至2019年02月28日)催化基础国家重点实验室仪器配置清单(数据自官方网站获取)仪器名称型号X射线衍射仪D/Max 2500/PCX射线衍射仪D2 PhaserX射线光电子能谱ESCALAB 250xiX射线光电子能谱EnviroESCA热重差热分析仪Diamond TG/DTA化学吸附仪AS-1-C/MS物理吸附仪AS-1-MP物理吸附仪NOVA4200e物理吸附仪ASAP2020紫外可见光谱仪UV-2600紫外可见光谱仪UV-2450扫描探针显微镜MultiMode 3D电感耦合等离子体发射光谱ICPS-8100元素分析仪EMGA-930元素分析仪EMIA-8100H电子顺磁共振仪Bruker A200扫描电镜Quanta 200F扫描电镜JSM-7900F高分辨扫描电镜S5500透射电镜HT7700高分辨透射电镜TECNAI F30透射电镜F200球差透射电镜ARM300绿色化工与工业催化国家重点实验室 依托单位:中国石化上海石油化工研究院绿色化工与工业催化国家重点实验室依托中石化上海石油化工研究组建,2015年9月30日由国家科技部正式发文批准建设(国科发基[2015]329号),2016年3月通过由国家科技部和国资委组织的专家组论证。实验室面向石油和化学工业可持续发展的国民经济重大需求,针对化工产业节能的关键技术问题,以开发绿色化工及先进工业催化新技术为目标,力争建成具有国际影响力的应用基础研究和产业化技术创新基地和人才培养基地。实验室围绕上述目标,不断凝练研究方向和研究内容,目前已形成石油资源高效利用及其副产转化技术、含氧/氮化合物绿色合成催化技术、高效煤基碳一催化转化技术、催化新材料开发、高效反应分离工程技术五大研究方向,重点开展石油资源高效利用、碳一资源清洁转化和绿色催化合成技术的研究开发,力争通过催化新材料、催化反应和分离工程等共性关键技术的突破,实现重大绿色化工技术的创新。实验室结合国家和地方重大战略需求,积极承担国家和省部级科技研发项目,截至2017年底,共牵头承担国家级项目1项、国家级课题14项,参与国家级课题4项,牵头承担省部级课题51项。此外,实验室还参与国际合作研究课题3项。经过两年的发展,实验室取得了一批创新性研究成果。截至2017年底,共获得了14项国家和省部级奖励,其中,“高效环保芳烃成套技术开发及应用”获国家科技进步特等奖(2016年),“高效甲醇制烯烃全流程技术”获国家科技进步一等奖(2017年),“苯乙烯生产过程节能降耗运行优化技术”获上海市科技发明一等奖(2016年),“适应劣质裂解汽油加氢的高效催化技术开发”获浦东新区科技进步一等奖(2016年),“芳烃氨氧化制芳腈系列催化剂及工艺技术开发”获中国石化联合会科技进步一等奖(2016年),此外,建设期内还获得中国专利优秀奖3项、中国石化集团科技进步奖和前瞻性基础性研究科学奖5项。实验室开发的全新结构分子筛材料 SCM-14,正式获得国际分子筛协会(IZA)授予的结构代码 SOR。这是我国企业第一次开发出全新结构的分子筛,实现了国内企业在新结构分子筛合成领域零的突破,对于推动我国石油化工关键核心技术的自主创新具有重大意义。能源与环境光催化国家重点实验室 依托单位:福州大学能源与环境光催化国家重点实验室(以下简称国重室)于 2013 年 12 月获国家科技部、福建省人民政府联合发文批准启动建设,依托福州大学光催化研究所组建,现任国重室主任为长江学者王心晨教授。 国重室现有固定人员37人,包括中国工程院院士、长江学者、国家杰青等国家级人才,具有海外留学经历的人数占一半以上,形成了一支以付贤智院士为学术带头人的在国内外光催化领域具有重要影响力的创新研究团队。曾入选教育部创新团队、科技部重点领域创新团队、全国专业技术人才先进集体、国家“111”引智基地,并于2017年入选首批全国高校黄大年式教师团队,2018年入选教育部首批“省部共建协同创新中心”。目前实验室拥有1万平方米的科研用房和近1亿元的专用仪器设备,是福州大学化学学科建设“世界一流学科”的重要支撑。2014年以来,国重室以第一署名单位发表论文530余篇,其中在NaturePhotonics.IF=31.1),Nat.Commun.,等高水平学术期刊上共发表48篇;承担国家科技支撑项目、国家重点研发计划、973计划等国家级和省部级科研项目70余项,申请专利141件,获授权发明专利91件,主持制定国家标准1项并获2018年福建省标准贡献奖一等奖。此外,国重室通过建立工业生产中试示范基地、产学研基地等,积极发挥对行业的科技支撑作用,服务地方经济发展和国防环保领域,研究开发的光催化自清洁涂料、光自洁高压绝缘子、光催化军用消毒剂、工业废气废水光催化深度净化技术、密闭空间大气综合净化技术等产品与技术实现了工程化与产业化,创造了显著的社会经济效益。近5年,相关成果获省部级科技奖一等奖1项、二等奖1项,军队科技进步二等奖2项。能源与环境光催化国家重点实验室仪器配置清单(数据自官方网站获取)仪器名称型号紫外-可见-近红外分光光度计(DRS)Cary 5000原子力显微镜(AFM)Dimension Icon元素分析仪荧光光谱仪Fluorolog-3-TCSPC物理吸附仪4ASAP 2020物理吸附仪3ASAP 2020 (50 YEARS)物理吸附仪2Micromeritics 3500物理吸附仪Micromeritics 3020M同步热分析仪STA449 F3离子色谱仪Dionex Aquion激光粒度仪Nano-ZS90光学接触角测量仪OCA20高分辨LCMSQ Exactive傅立叶红外光谱仪NICOLET IS50电化学工作站ZENNIUM电感耦合等离子体发射光谱仪Avio 200场发射扫描电镜su8010X射线光电子能谱仪Escalab 250XiX射线粉末衍射仪D8 Advance600M核磁共振波谱仪JNM-ECZ600R石油化工催化材料与反应工程国家重点实验室 依托单位:中国石油化工股份有限公司石油化工科学研究院石油化工催化材料与反应工程国家重点实验室(以下简称“实验室”)依托中国石油化工股份有限公司石油化工科学研究院组建,2007年7月9日由国家科技部正式发文批准建设(国科办基字[2007]50号),为首批建设的企业国家重点实验室,2012年3月29日科技部批准实验室成立。实验室主任是宗保宁正高级工程师,学术委员会主任是中国科学院院士韩布兴研究员。实验室定位针对我国经济和社会发展对资源和环境的可持续发展要求,面向能源化工领域的重大战略需求,开展石油高效转化、清洁燃料生产、绿色催化合成和新能源技术的研究开发,通过催化新材料、催化反应过程和工程等共性关键技术的突破,实现重大绿色化工技术的创新,为发展具有自主知识产权的技术提供科学和技术基础,持续引领石油化工行业发展和技术进步,成为本领域原创性成果的培育基地、人才培养基地和学术交流中心。煤转化国家重点实验室 依托单位:中国科学院山西煤炭化学研究所煤转化国家重点实验室于1991年由国家计委批准利用世界银行贷款筹建,1995年通过国家验收正式对外开放。陈诵英研究员、孙予罕研究员、刘振宇研究员和王建国研究员先后担任实验室主任,彭少逸院士、邓景发院士、何鸣元院士先后担任实验室学术委员会主任。现任实验室主任为樊卫斌研究员,副主任为覃勇研究员、温晓东研究员和白进研究员。第六届学术委员会由19名国内外专家组成,学术委员会主任为赵东元院士,副主任为李灿院士和谢在库院士。基于我国经济发展对煤炭高效洁净利用的需求,结合国际发展趋势,实验室以保障我国能源安全、协调解决煤炭利用效率和生态环境问题、为洁净煤技术的创新提供科学依据和工程化基础为目标,以煤高效洁净转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、能源环境新材料制备等领域的核心科学问题和工程技术问题。实验室主要研究领域有:煤直接转化过程的化学与工程基础、煤经合成气转化的一碳化学与工程、煤经甲醇转化的催化化学与工程、煤转化利用中的环境化学与工程、煤转化相关的能源环境新材料与新技术。煤转化国家重点实验室仪器配置清单(数据自官方网站获取)物质结构与形貌鉴定组   JEM-2010透射电子显微镜   D8 Advance X射线粉末衍射仪(原位)   Vertex 80V真空红外发射光谱仪   D8 Advance X-射线粉末衍射仪   JEM-2100F场发射透射电子显微镜   JSM-7100F热场发射扫描电子显微镜   FEI F20场发射透射电子显微镜   EMXPLUS 10/12顺磁共振波谱仪   Ultraflex MALDI-TOF/TOF基质辅助激光解吸电离质谱仪   400MHz超导液体核磁共振波谱仪   600MHz超导固体核磁共振波谱仪化合物组分与物性测试组   Evolution热重/OMNI star质谱/TENSOR27红外联用仪   ASAP2020物理吸附仪   Alliance2695-ZQ4000液相色谱-质谱联用仪   varioEL CUBE元素分析仪   ThermoiCAP 6300电感耦合等离子原子发射光谱仪   Autosorb-iQ全自动物理吸附仪   QUADRASORB evo全自动物理吸附仪   AutoChem II 2920 全自动程序升温化学吸附仪   Breeze1525液相色谱仪   X-射线光电子能谱仪 Fluorolog-2UltraFast-CCD-TCSPC荧光光谱仪煤、炭行业专业仪器设备组   ZEEnit 700P原子吸收光谱仪   L2S可见分光光度计   NXS-4C水煤浆粘度计   Rheotronic V1700旋转式高温粘度计   5E-MAG6600B工业分析仪   vario M-CUBE元素分析仪   5E-PL300B胶质层测定仪   AF700SC灰熔点测定仪   NJC-II粘结指数测定仪   5E-C5500智能量热仪   S-144DR红外定硫仪   5E-HA60X50哈氏可磨性指数测定仪
  • 分享新成果 催化新动能 第九届安捷伦能源化工、新材料行业专家研讨会在深圳举办
    能源是经济发展的关键推动力。随着人类经济活动的加速与科技的演进,能源的开发与利用也成为全球关注的议题。不久前落幕的第28届联合国气候变化大会(COP28)上,各缔约国就特别针对能源部分通过了共同行动宣言。我国属于能源消耗大国,对现有能源的高效开发与利用,对新型能源的探索,是奠定高质量发展道路所不可或缺的基础。如今,绿色低碳已成为世界能源化工未来发展的共识。与未来能源相关的产业链延伸与衍生的新材料研发,为”产、学、研、用”全域带来前所未有的挑战和机遇。本月20日,在以改革创新精神著称的深圳,安捷伦召开了两年一度的能化与新材料行业高峰论坛,多位行业顶尖专家学者和百余名嘉宾热情参与。围绕先进的能源分析技术,领域内的顶尖头脑汇聚一堂,并分享了各自研究“战线”的新成果,催化绿色能源发展的新思维。安捷伦的目标与作为在行业减油增化、促进化工新材料和高端化学品的发展政策下,行业表现出产业园区化、集聚化和一体化发展。低碳技术和绿色生产以及数字化智能化转型在成为行业共识。安捷伦是分析仪器行业领导者,始终以广受好评的气相色谱产品和先进的整体解决方案、服务体系,致力赋能产业。安捷伦有着深厚的能源化工产品和应用经验,累计200多以上化工项目成功运行,实施5000多个石化定制方案。今年更是在整体经济下行压力增大的逆境中,获得行业全部3个百台以上石化大项目,再次刷新气相色谱单次采购台数全球记录。同时拓展多种高端分析仪器低碳绿色研发和工艺新应用;以高效灵敏的分析仪器、在线检测仪器协助园区和企业进行产品及污染物检测;领先的解决方案赋能下游锂电、新兴能源产业发展。同时创新线上商城新型销售模式、推进低碳商业运行;完善的工业4.0数字化解决方案,应用创新的物联网、VR等新技术推出工业4.0数字化解决方案。安捷伦副总裁兼大中华区业务总经理 杨挺发表题为《安捷伦创新引领助力行业高质量可持续发展》的报告安捷伦聚焦全产业链提升石化行业赋能能力,将不断布局类似中石化石科院氢能检测、万华化学联合创新战略合作等前瞻性合作,继续参与全球、中国权威色谱标准制定和相关科学研究。未来,安捷伦将持续“赋能石化,合作共赢”!与会专家与安捷伦的观察与结论石化行业面临挑战,肩负着双碳目标、能源安全、美丽中国等重要国家宏观战略和愿景的执行落地,同时也是分析行业的转型升级重要机遇。徐教授认为石化分析群体要关注油品质量持续升级、新型能源发展和体系建设、循环经济和材料料再利用等新兴方向,以及燃油型炼厂向化工型炼厂转型:油转化、油转特、油转材。同时注重智能化与数字化对炼化企业提质、降本、增效的促进作用。相应地,石油资源、产品、加工过程的深度分析表征、油品质量升级关注点与检测技术、环保分析技术、智能化炼厂中的分析技术支撑、转型发展中的分析需求、氢能产业中的分析技术分析几个方向,将构成行业分析技术的发展与行业支撑。中国石化石科院首席专家、教授 徐广通博士带来题为《石油炼制与化工产业高质量转型发展中的分析技术支撑》的报告2023年8月8日,国家标准化管理相关部委发布国家层面首个氢能全产业链标准体系建设指南,明确了近三年氢能标准化工作重点任务和两大关键行动,中石化石科院领军燃料氢品质检测相关工作,成为国内首家获得燃料氢品质国家级CMA资质认定和CNAS认可单位。2022年5月,完成了国际标准ISO 14687-2019和国家标准GB/T 37244-2018氢气纯度及相关方法标准的扩项,在国内率先完成符合国家标准和国际标准燃料电池用氢气质量体系的认证。整个工作处于国家标准5项的实验室验证阶段,2024年有望颁布实施。中石化石科院专家、高级工程师 王亚敏做题为《氢能-燃料氢品质标准化工作进展》的报告安捷伦以不断创新的产品技术成为领先行业的标杆,不但有久负盛誉的全新一代智能化色谱家族,也有性能优异的石化专有装备和检测器;同时拥有40多年气相色谱柱研究和开发,为全世界各行各业的气相色谱用户提供最丰富的气相色谱柱选择;完整的石化标准方法和整体解决方案,支撑石化用户搭建稳定、可靠的色谱平台体系;大规模气相色谱应用场景,使用网络化色谱工作站来提升实验室管理效率和数据安全水平;中石化合作的智能机器人的示范项目向商业化推广,向数字化实验室、智慧实验室不断迈进。安捷伦同样出色的质谱、液相色谱、光谱和串接质谱,随着行业向下游纵深发展,也提供生产检测和科学研究更全面丰富的手段。最为重要的是,安捷伦和行业专家和用户在长期的合作之上建立的彼此信任和深厚情感,激励安捷伦团队深耕行业,矢志不渝。安捷伦大中华区能源与化工行业技术总监 管振喜博士做题为《安捷伦能源化工及新兴领域分析应用概览》的报告基于离子液体的绿色低碳新技术,可应用于新一代的溶剂、介质、催化剂、电解液、润滑、含能材料等。工艺评价和示范项目众多,有含氨尾气净化回收氨新技术、低能耗CO2捕集新技术、低能耗CO2捕集新技术、天然气提氦气体分离膜技术、催化生产碳酸酯新工艺。同时储能储氢、高性能锂浆料储能电池等高价值、热点产业的研究和产业化也在深入进行。董海峰院长还着重介绍了安捷伦气相、顶空、三重四极杆质谱、高效液相和ICP/MS/MS等众多机种担在实验研究和分析测试平台的应用。先进能源科学与技术广东省实验室惠州市绿色能源与新材料研究院执行院长 董海峰做题为《基于离子液体的绿色低碳新技术》的报告合成生物学(Synthetic Biology)是生物学和工程学的一个跨学科分支。其中生物质通常是经过发酵,可定向合成化合物应用于基础和大宗化学品、特种化学品和化合物、聚合物,以及纤维、织物和复合材料等。从长远看用生物基材料替代提取的传统原材料将加速当前全球供应链重组,对全球碳减排可持续发展产生积极影响。罗小舟博士从全球宏观视野和我国合成生物学的现状和使命讲开。他深入浅出地讲解了从农业、化学品、材料、医药等国计民生领域应用范围。同时合成生物材料是通过合成生物学设计-构建-测试-学习等方式利用基因工程等手段对生物质改造产生的材料,罗小舟博士强调了实验测试环节中自动化以及流程的标准化以及AI技术的对于行业的意义,期待行业能够测试的仪器整合到合成研究的自动化流程,实现这样一个全自动化的闭环。罗小舟博士的发表中众多新鲜知识和科学,令人耳目一新,引发与会嘉宾的极大兴趣和反响。中科院深圳先进技术研究院 合成生物学研究所研究员 合成生物化学研究中心执行主任 罗小舟博士报告主题为《合成生物学在能源化工及先进材料中的应用》乙烯装置是石油化工的龙头,气相色谱是整个产业链的主要分析支撑,覆盖烯烃生产原料、烯烃产品、副产品、下游产品、聚合产品、过程控制。李继文高工的报告梳理了已有的烯烃产品分析相关的国内和国际标准和待发布标准,尤其是近期制修订的一些标准技术说明。特别是烯烃分析相关的标准发展与思考,李继文高工分析了在色谱标准运用过程中的色谱阀切换、色谱柱对比和选择等部分,非常契合烯烃分析用户工作中的难点热点,引起广大听众嘉宾的极大兴趣。中国石化上海石油化工研究院表征分析部副部长、教授级高工 李继文做题为《烯烃产品分析相关标准方法解读中石化上海石油化工研究院》的报告煤间接液化作为实施国家能源安全战略的新型煤化工工艺,对于我国保障能源安全、平衡能源结构、缓解石油资源短缺等有着重要现实意义。正因为工艺路线的特殊性,气相色谱的应用也具有不同于其它石化工艺的应用需求和方案。刘帅工程师介绍了实验室在线多阀多柱气相、多位阀在评价装置应用、微反系统建立、费托尾气分析,以及工业在线色谱。其中全二位色谱技术在费托产物、催化裂化全馏分油、异味来源等方向的高水平应用,开拓了全二位色谱的应用领域,具有启发和推广意义。中科合成油技术有限公司分析工程师 刘帅报告题目为《多维色谱技术在煤间接液化中的应用》BDO是一种有机化工和精细化工原料,也是当前世界上需求量增长最快的化工产品之一,被广泛应用于溶剂、医药、农药、化妆品、增塑剂、固化剂、泡沫人造革等领域,锂电池电解液生物降解塑料材料、其衍生物极具高附加值。也是制备PTMEG原料、生产优良弹性纤维氨纶主要原料。贾兴龙主任介绍了BDO我国行业发展现状不同工艺路线和特点。分析仪器的应用覆盖行业的原料进厂、中间控制、成品检测中,其中安捷伦多机种在BDO-PTMEG上下游气、液样品组份定量分析、GPC分子量分布情况方面担负样品分析主力。贾主任尤其介绍在BYD催化剂、加氢催化剂活化期间,分析频率高,要求结果及时准确。安捷伦Micro GC 990微型气相色谱小巧灵便,能够在就近机柜间完成高强度分析任务,而且分析快速、准确。内蒙古华恒能源科技有限公司实验室主任 贾兴龙做题为《丁二醇BDO行业色谱应用和实验室管理》的报告更多报告主题与报告人安捷伦科技信息化部门经理 郭亮报告题目《信息化产品及智能机器人在石化行业应用》安捷伦科技渠道销售业务经理 李晓华报告题目《安捷伦在线检测产品及合作伙伴石化应用》安捷伦科技售后市场项目经理 刘田田报告题目《售后服务定制化选择推介》安捷伦科技用户服务部石化经理 张升文报告题目《构建品牌服务体系 助力客户业务发展》
  • “分享新成果 催化新动能” 第九届安捷伦能源化工、新材料行业专家研讨会12月20日在深圳举办
    能源是经济发展的关键推动力。随着人类经济活动的加速与科技的演进,能源的开发与利用也成为全球关注的议题。不久前落幕的第 28 届联合国气候变化大会(COP28)上,各缔约国就特别针对能源部分通过了共同行动宣言。我国属于能源消耗大国,对现有能源的高效开发与利用,对新型能源的探索,是奠定高质量发展道路所不可或缺的基础。如今,绿色低碳已成为世界能源化工未来发展的共识。与未来能源相关的产业链延伸与衍生的新材料研发,为“产、学、研、用”全域带来前所未有的挑战和机遇。本月 20 日,在以改革创新精神著称的深圳,安捷伦召开了两年一度的能化与新材料行业高峰论坛,多位行业顶尖专家学者和百余名嘉宾热情参与。围绕先进的能源分析技术,领域内的顶尖头脑汇聚一堂,并分享了各自研究“战线”的新成果,催化绿色能源发展的新思维。安捷伦的目标与作为在行业减油增化、促进化工新材料和高端化学品的发展政策下,行业表现出产业园区化、集聚化和一体化发展。低碳技术和绿色生产以及数字化智能化转型正在成为行业共识。安捷伦是分析仪器行业领导者,始终以广受好评的气相色谱产品和先进的整体解决方案、服务体系,致力赋能产业。安捷伦有着深厚的能源化工产品和应用经验,累计 200 多以上化工项目成功运行,实施 5000 多个石化定制方案。今年更是在整体经济下行压力增大的逆境中,获得行业全部 3 个百台以上石化大项目,再次刷新气相色谱单次采购台数全球记录。同时拓展多种高端分析仪器低碳绿色研发和工艺新应用;以高效灵敏的分析仪器、在线检测仪器协助园区和企业进行产品及污染物检测;领先的解决方案赋能下游锂电、新兴能源产业发展。同时创新线上商城新型销售模式、推进低碳商业运行;完善的工业 4.0 数字化解决方案,应用创新的物联网、VR 等新技术推出工业 4.0 数字化解决方案。安捷伦聚焦全产业链提升石化行业赋能能力,将不断布局类似中石化石科院氢能检测、万华化学联合创新战略合作等前瞻性合作,继续参与全球、中国权威色谱标准制定和相关科学研究。安捷伦将继续“赋能石化,合作共赢” !安捷伦副总裁兼大中华区业务总经理 杨挺发表题为《安捷伦创新引领助力行业高质量可持续发展》的报告与会专家与安捷伦的观察与结论石化行业面临挑战,肩负着双碳目标、能源安全、美丽中国等重要国家宏观战略和愿景的执行落地,同时也是分析行业的转型升级重要机遇。徐教授认为石化分析群体要关注油品质量持续升级、新型能源发展和体系建设、循环经济和材料再利用等新兴方向,以及燃油型炼厂向化工型炼厂转型:油转化、油转特、油转材。同时注重智能化与数字化对炼化企业提质、降本、增效的促进作用。相应地,石油资源、产品、加工过程的深度分析表征、油品质量升级关注点与检测技术、环保分析技术、智能化炼厂中的分析技术支撑、转型发展中的分析需求、氢能产业中的分析技术与分析方向,将构成行业分析技术的发展与行业支撑。中国石化石科院首席专家、教授 徐广通博士带来题为《石油炼制与化工产业高质量转型发展中的分析技术支撑》的报告2023 年 8 月 8 日,国家标准化管理相关部委发布国家层面首个氢能全产业链标准体系建设指南,明确了近三年氢能标准化工作重点任务和两大关键行动,中石化石科院领军燃料氢品质检测相关工作,成为国内首家获得燃料氢品质国家级 CMA 资质认定和 CNAS 认可单位。2022 年 5 月,完成了国际标准 ISO 14687-2019 和国家标准 GB/T 37244-2018 氢气纯度及相关方法标准的扩项,在国内率先完成符合国家标准和国际标准燃料电池用氢气质量体系的认证。整个工作处于国家标准 5 项的实验室验证阶段,2024 年有望颁布实施。中石化石科院专家、高级工程师 王亚敏做题为《氢能-燃料氢品质标准化工作进展》的报告安捷伦以不断创新的产品技术成为领先行业的标杆,不但有久负盛誉的全新一代智能化色谱家族,也有性能优异的石化专有装备和检测器;同时拥有 40 多年气相色谱柱研究和开发,为全世界各行各业的气相色谱用户提供最丰富的气相色谱柱选择;完整的石化标准方法和整体解决方案,支撑石化用户搭建稳定、可靠的色谱平台体系;大规模气相色谱应用场景,使用网络化色谱工作站来提升实验室管理效率和数据安全水平;中石化合作的智能机器人的示范项目向商业化推广,向数字化实验室、智慧实验室不断迈进。安捷伦同样出色的质谱、液相色谱、光谱和串接质谱,随着行业向下游纵深发展,也提供生产检测和科学研究更全面丰富的手段。最为重要的是,安捷伦和行业专家以及用户在长期的合作之上建立的彼此信任和深厚情感,激励安捷伦团队深耕行业,矢志不渝。安捷伦大中华区能源与化工行业技术总监 管振喜博士做题为《安捷伦能源化工及新兴领域分析应用概览》的报告基于离子液体的绿色低碳新技术,可应用于新一代的溶剂、介质、催化剂、电解液、润滑、含能材料等。工艺评价和示范项目众多,有含氨尾气净化回收氨新技术、低能耗 CO2 捕集新技术、低能耗 CO2 捕集新技术、天然气提氦气体分离膜技术、催化生产碳酸酯新工艺。同时储能储氢、高性能锂浆料储能电池等高价值、热点产业的研究和产业化也在深入进行。董海峰院长还着重介绍了安捷伦气相、顶空、三重四极杆质谱、高效液相和 ICPMSMS 等众多机种担在实验研究和分析测试平台的应用。先进能源科学与技术广东省实验室惠州市绿色能源与新材料研究院执行院长 董海峰做题为《基于离子液体的绿色低碳新技术》的报告合成生物学(SynBio)是生物学和工程学的一个跨学科分支。其中生物质通常是经过发酵,可定向合成化合物应用于基础和大宗化学品、特种化学品和化合物、聚合物,以及纤维、织物和复合材料等。从长远看用生物基材料替代提取的传统原材料将加速当前全球供应链重组,对全球碳减排可持续发展产生积极影响。罗小舟博士从全球宏观视野和我国合成生物学的现状和使命讲开。他深入浅出的讲解农业、化学品、材料、医药等国计民生领域应用范围。同时合成生物材料是通过合成生物学设计-构建-测试-学习等方式利用基因工程等手段对生物质改造产生的材料,罗小舟博士强调了实验测试环节中自动化以及流程的标准化以及 AI 技术的对于行业的意义,期待行业能够测试的仪器整合到合成研究的自动化流程,实现这样一个全自动化的闭环。罗小舟博士的发表中包含了众多新颖知识和科学观点,令人耳目一新,引发与会嘉宾的极大兴趣和反响。中科院深圳先进技术研究院 合成生物学研究所研究员合成生物化学研究中心执行主任 罗小舟博士报告主题为《合成生物学在能源化工及先进材料中的应用》乙烯装置是石油化工的龙头,气相色谱是整个产业链的主要分析支撑,烯烃产业链及气相色谱的应用范围。烯烃生产原料、烯烃产品、副产品、下游产品、聚合产品、过程控制。发表梳理了已有的烯烃产品分析相关的国内和国际标准和待发布标准,尤其是近期制修订的一些标准技术说明。特别是烯烃分析相关的标准发展与思考,李继文高工的分析了在色谱标准运用过程中的色谱阀切换、色谱柱对比和选择等部分,非常契合烯烃分析用户工作中的难点热点,引起广大听众嘉宾的极大兴趣。中国石化上海石油化工研究院表征分析部副部长、教授级高工 李继文做题为《烯烃产品分析相关标准方法解读中石化上海石油化工研究院》的报告煤间接液化作为实施国家能源安全战略的新型煤化工工艺,对于我国保障能源安全、平衡能源结构、缓解石油资源短缺等有着重要现实意义。正因为工艺路线的特殊性,气相色谱的应用也具有不同于其它石化工艺的应用需求和方案。刘帅工程师介绍了实验室在线多阀多柱气相、多位阀在评价装置应用、微反系统建立、费托尾气分析以及工业在线色谱。其中全二位色谱技术在费托产物、催化裂化全馏分油、异味来源等方向的高水平应用,开拓了全二位色谱的应用领域,具有启发和推广意义。中科合成油技术有限公司分析工程师 刘帅报告题目为《多维色谱技术在煤间接液化中的应用》BDO 是一种有机化工和精细化工原料,也是当前世界上需求量增长最快的化工产品之一,被广泛应用于溶剂、医药、农药、化妆品、增塑剂、固化剂、泡沫人造革等领域,锂电池电解液生物降解塑料材料、其衍生物极具高附加值。也是制备 PTMEG 原料、生产优良弹性纤维氨纶主要原料。贾兴龙主任介绍了 BDO 我国行业发展现状不同工艺路线和特点。分析仪器的应用覆盖行业的原料进厂、中间控制、成品检测中,其中安捷伦多机种在 BDO-PTMEG 上下游气、液样品组份定量分析、GPC 分子量分布情况方面担负样品分析主力。贾主任尤其介绍在 BYD 催化剂、加氢催化剂活化期间,分析频率高,要求结果及时准确。安捷伦 Micro GC 990 微型气相色谱小巧灵便,能够在就近机柜间完成高强度分析任务,而且分析快速、准确。内蒙古华恒能源科技有限公司实验室主任 贾兴龙做题为《丁二醇 BDO 行业色谱应用和实验室管理》的报告更多报告主题与报告人峰会期间,安捷伦公司高层代表气相分离事业部,对管振喜博士、梁文辉、王浩、张升文等团队代表在 2023 财年取得能源化工行业突出业绩进行了表彰。论坛合影
  • 用户之声丨光催化水氧化过程的分解机理研究
    韩国西江大学Kyung Byung Yoon教授 岛津拜访了韩国西江大学的Kyung Byung Yoon教授。他是人工合成领域的顶尖研究人员之一。Yoon团队曾在《Science》上报道了一种不怕水的CO2捕获新材料,为低成本捕获CO2并再利用研究提供了方向。他的实验室配备许多分析仪器,包括Tracera GC-BID系统和QYM-01光反应量子产率评价系统*,QYM-01系统可实现对吸收光子准确而快速的定量测量。 * QYM-01 为岛津今年6月刚发布的Lightway PQY-01光反应评价系统的前序机型。 Q 请介绍一下您的研究内容。 这个广泛用于均相光催化水氧化过程的系统包含作为光泵的水氧化催化剂RuⅡ(bpy)32+和作为电子牺牲受体的S2O82?。但是,因为RuⅡ(bpy)32+会发生非常快速的分解,导致在所有S2O82?消耗完之前,反应过程就停止,所以该系统还远不够理想。就这一点而言,如果能研究清楚RuⅡ(bpy)32+的分解途径和产物,就可以设计出更高效的光催化水氧化系统。 我们发现,在光-RuⅡ(bpy)32+-S2O82?系统中存在两种RuⅡ(bpy)32+分解途径。第一种是通过黑暗环境中,在pH>6条件下,RuⅢ(bpy)33+氧化OH?而下形成OH• 自由基,OH• 自由基攻击RuⅡ(bpy)32+的bpy配体。这个在黑暗中分解的途径是次要的。在辐照过程中,RuⅡ(bpy)32+和RuⅢ(bpy)33+都受到光激发,并且光激发的RuⅢ(bpy)33+与S2O82?反应生成一种中间体。当中间体浓度较低时,中间体分解为催化活性的钌μ-氧代二聚体,当中间体浓度较高时,中间体分解为催化惰性的寡聚钌μ-氧代物。光诱导分解途径是主要途径。当RuⅡ(bpy)32+浓度较低时,即使在没有任何添加催化剂的情况下,光-RuⅡ(bpy)32+-S2O82?系统也会通过类似在黑暗中生成氧气的途径产生氧气。当RuⅡ(bpy)32+浓度较高时,由于光诱导分解途径的总速率比生成氧气的暗途径的总速率要快得多,因此系统中不会生成氧气。 Q “QYM-01”和“Tracera(GC+BID检测器)”是否正高效地用于您的研究?它们有多大用处? QYM-01可以在每分钟或更短的时间内获得紫外-可见光谱。这使我们能够监测光反应过程中物质的反应速度有多快。QYM-01还可以测量光敏剂吸收的光子数量。当我们检测到产物时,通过绘制吸收光子数量与生成产物的关系曲线来计算反应的量子产率。Tracera可高效检测液体产物,检测灵敏度较高。几乎检测到了柱内所有物质。 Q 您认为“QYM-01”和“Tracera(GC+BID检测器)”有哪些优点? 我们可以在光解过程中获得紫外-可见光谱,无需改变任何其他反应系统。我们可以测量我们正在使用的激发光的功率,这就是QYM-01的优点。至于Tracera,检出限很好。 Q 请告诉我们您对“岛津”的印象。 你们提供前所未有的产品和优质服务。 我们与Kyung Byung Yoon教授的交谈很愉快,通过这次采访,我们了解了Yoon教授对我们仪器和我们公司的看法。我们必须努力,争取越来越好。也非常感谢Yoon教授接受岛津的采访! 关于采访的评论 采访之后,Yoon教授说:“虽然QYM-01还有一些地方有待改进,但是岛津拥有QYM-01等前所未有的独特性创新技术,这令我印象深刻,我也期待这些技术的未来发展。”
  • 欧世盛发布欧世盛EMC-3 双通道全自动催化剂 评价装置新品
    EMC-3 双通道全自动催化剂评价装置适用于催化剂研发与筛选阶段反应,可为您节省大量时间、人力和物力。该装置以微反应技术为核心,全自动流程控制为基础,保障气液固反应效率。这款全自动、紧凑型、具有创新控制技术的系统能够提供催化剂测试所需要的各种配置与选项。通过一套交互式软件控制系统进行一系列实验,实时获取高精度、高重现性的结果。EMC-3 双通道全自动催化剂 评价装置特点:关键技术:基于清华大学微反应器技术的气液混合器,能够控制气泡达到微米级,气液混合效率更高,传质速度是普通300倍,反应效果更好。双通道同时评价:日平均评价10-20种催化剂配方,同时根据用户需求扩展4、6、8通道同时评价。交互式系统管理软件:多任务管理模式,可视化操作界面,全流程控制,数据参数可追溯,一套软件可实现多台评价装置同时运行。反应参数更改:可通过触摸屏快速更改气液流速、反应压力、温度。一机两用:催化剂筛选及催化剂寿命评价,筛选速度快,效率高。系统平衡时间:数分钟,死体积小,不易反混,副产物少。重复性:重复性好。体积小:可将仪器放入通风橱内,节省实验室空间。输送粘性反应物或纳米颗粒悬浊液:加装双注射高压恒流输液泵,适用于粘性反应物或纳米颗粒悬浊液输送。系统压力调节器:全自动背压阀。全自动气液分离器,分离罐体积5mL。预留100位样品自动采样接口,可设置采样间隔时间,自动完成样品采样。预留在线红外、在线紫外、在线液相、在线气相接口,可根据应用需求,在线实时检测评价结果。技术参数:型 号EMC-3反应单元材 质316L反应器通道数双通道(标配)反应压力≤10Mpa反应温度室温~500℃预热器温度室温~500℃液路伴热温度(选装)室温~200℃供液单元液路数量2路(可根据应用需要扩增)液体流速0.01~3ml/min液体精度±1% F.S.供气单元气路数量3路(可根据应用需要扩增)气体流速5~100sccm气体精度±1% F.S.气液分离单元气液分离器体积5mL出液滞后体积1mL检测液体体积±0.1mL创新点:基于清华大学微反应器技术;体积小可放置通风橱,节省实验空间;系统平衡时间数分钟,死体积小,不易反混,副产物少;双通道同时评价;欧世盛EMC-3 双通道全自动催化剂 评价装置
  • 相约青年催化会,关注麦克领奖品
    2016年10月21-25日,全国青年催化会议将在湖南长沙举行,本届会议将围绕“助力经济结构快速转型的催化科技”的主题进行深入交流, 来自国内外高校和科研院所以及工业部门的900多位青年催化工作者将参加会议并就催化反应化学/工业催化、领域的最新研究成果与发展动向进行学术交流与研讨。美国麦克仪器公司作为赞助商参加了此次会议。会议期间,麦克仪器同期举行“关注麦克领奖品“活动”,只需扫扫二维码,即可领取麦克精美礼品一份,另有麦克专著《Analytical methods in fine particle technology》以及wifi移动电源等礼品送出,欢迎各地朋友莅临参观!高性能全自动化学吸附仪Autochem系列 Autochem为采用动态技术(流动气体)的全自动程序升温和化学吸附分析仪,能进行全自动脉冲化学吸附和程序升温技术,如tpr、tpd、tpo和tprx等。 标配高精度的质量流量计 抗腐蚀性检测器灯丝可分析大多数腐蚀性气体,减少灯丝氧化 可选Kwikcool冷却炉,可快速降温 可选低温Cryocooler ii 配件,可进行低温吸附可选蒸汽发生器,进行蒸汽吸附质谱仪端口和集成软件可同时在TCD和质谱仪上进行检测强大的峰编辑和数据处理软件 Microactivity effi系列-催化剂评价整体方案 Microactivity effi系列是一款可定制的高端实验室反应器,适用于催化剂表征及活性、选择性的测试。这款全自动、紧凑型、具备创新控制技术的系统能够提供催化测试所需的多种配置与选项。并通过电脑控制进行一系列的实验,实现全自动无需看管的实验状态。近零死体积,真正的实时获取气体/液体产物200℃封闭控温热箱系统,避免冷凝专利电容式测微液面传感器,自动测试液体产物体积专利高精度测微伺服阀,精确控制压力和液面高达1050℃的低热惯性效应陶瓷纤维反应炉具备远程自动控制与程序化的反应系统可升级为双站、8站或16站独立反应系统可进行各种催化反应及催化剂表征(程序升温技术、脉冲技术等)配备专用接口,可外接GC、MS 、HPLC等设备,并实现软件统一控制 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者。公司致力于生产分析粉末/固体材料物理化学性质的全自动化仪器,能够进行比表面积、孔容、孔径、孔径分布、密度、催化剂性质表征、催化剂活性测试以及粒度粒形分析,可广泛用于基础研究、产品开发及质量控制等各个阶段。 美国麦克仪器公司早在1979年就进入中国市场,是中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司.,专业为中国市场提供美国麦克仪器公司的产品和服务。2014年8月,公司在上海成立大型分析服务中心,提供全面的分析测试服务。更多详情欢迎访问美国麦克仪器公司中国官方网站:http://www.micromeritics.com.cn
  • 《科学》:新型催化式排气净化器问世
    与汽油发动机相比,柴油发动机只需要较少的燃料并释放出较少的二氧化碳,但是它们在美国却非常罕见,这部分缘于此种发动机总是无法达到美国规定的产生烟气污染物的排放量标准。如今,科学家研制出了一种新型的催化式排气净化器,从而使得柴油发动机能够满足上述条件,而无需花费太多。  据美国《科学》(Science)杂志在线新闻报道,早期的柴油发动机会喷出大量的烟雾。为了解决这一问题,工程师设计的发动机能够吸进比燃烧燃料所需还要多的空气。但这样便会产生一个副作用:排气管中剩余的氧气使得这种发动机很难去除能够形成烟雾的氮氧化物。为了找到从柴油发动机排气管中去除氮氧化物的方法,科学家们可谓绞尽了脑汁。  一种解决办法就是在催化式排气净化器中添加某种金属,例如钡。钡可以与氮氧化物反应而生成硝酸钡,后者可以在不影响性能的前提下很容易地从发动机中被去除掉。然而这种基于钡的反应仅仅与一种氮氧化物起作用。如果想要去除其他的氮氧化物还需要用铂进行催化,从而使一氧化氮氧化为二氧化氮,最终再由钡将其去除。遗憾的是,铂却是这颗星球上最贵重的金属之一。这便是为什么与它的汽油发动机“兄弟”相比,清洁柴油发动机要更为昂贵的一个重要原因。  如今黑马出现了。一种名为钙钛矿的廉价金属氧化物可以取代铂,但它通常没有铂的效率高,并且遇到柴油中的硫便容易失效。尽管硫可以通过将催化式排气净化器加热至700多摄氏度的方法加以去除,但这种做法同时也会令钙钛矿分解。  在这项新的研究中,美国密歇根州沃伦市通用汽车全球研发中心的化学工程师李伟(音译)和同事成功开发了一种混合物,这种混合物由钯——比铂便宜70%——和包含有镧、锶和锰的钙钛矿构成。当一台柴油发动机处于巡航温度下时,这种混合物至少可以像传统的铂催化剂一样去除污染物(但是当发动机冷却后,它的作用就很小了)。更棒的是,这种混合物在清除硫的温度下依然可以在排气系统中工作。研究人员在最近出版的美国《科学》(Science)杂志上报告了这一研究成果。  在过去的一年中,研究小组一直在持续研制和改进他们的催化式排气净化器设计,并且正打算将其在样车上进行试验。李伟表示:“目前的最大挑战是设法改善这种混合物在低温下的表现。”  捷克共和国布拉格市化学技术研究所的化学工程师Jan Stepanek预测了另一潜在的问题。他说:“众所周知,由于汽车催化物的降解,道路附近贵金属的浓度将是可观的。”打个比方,目前之所以没有出现环境或健康问题是缘于铂是非常稳定的。但是研究小组的新设计中包含有锶,而锶被认为会阻碍青少年的发育。Stepanek表示,如果锶从一部老化的催化式排气净化器中释放出来,那将更加危险。
  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 英都斯特发布磁场催化培养箱新品
    全球首家磁场催化类科学仪器生产商创新点:(1)以磁场催化为主要功能,比市面上常规培养箱效果更佳;(2)磁场催化有助于细胞生长,种子发芽等;磁场催化培养箱
  • 英都斯特发布磁场催化冷冻箱新品
    全球首家磁场催化类科研仪器生产商创新点:(1)以磁场催化为主要功能,比市面上常规冷冻箱保鲜冷藏冷冻效果更佳;(2)低温冷冻下磁场催化能够有效减少对细胞的损坏;磁场催化冷冻箱
  • 文献解读丨基于铁基催化剂的CO₂高效转化制备烯烃:Na,Mn催化助剂协同作用探究
    本文由北京大学分析测试中心电子能谱实验室所作,第一作者为徐尧老师,文章发表于Angewandte Chemie International Edition(Angew. Chem. Int. Ed. 2020, 59, 21736–21744)。 多相催化剂活性和选择性的优化常需借助多种组分(或助剂)来实现,充分理解这些不同组分(或助剂)在催化反应中所起到的作用机制,特别是各组分(或助剂)之间的相互影响及协同效应,对于理性设计多相催化剂具有重要的指导意义。CO2的有效转化是实现当下碳中和目标下的主要途径,Na和Mn常被用作助剂添加到铁基催化剂中以改善CO2加氢转化制备烯烃过程的活性和选择性。此前的研究通常将Na、Mn助剂作为独立的变量来考察,而对两者共存时Na、Mn助剂之间的相互作用及其对催化性能的影响尚缺乏系统性认识。 由于催化反应往往在催化剂的表面发生,XPS表征技术的发展为我们研究助剂对催化剂表面结构的影响提供了有利的检测手段。利用岛津X射线光电子能谱仪(XPS),通过设计准原位XPS实验,对不同助剂影响下铁基催化剂表面的元素组成和化学态变化进行了深入研究,明确了助剂在实现CO2高效转化过程中的关键作用,为设计合成高效CO2转化到烯烃催化剂提供了重要依据。 Axis Supra文献解析图一. Na、Mn助剂促进铁基催化剂上CO2高效转化制备烯烃示意图 表一. 不同铁基催化剂催化CO2加氢性能的比较aaReaction conditions: 100 mg catalyst, 340˚C, 2.0 MPa, CO2/H2/Ar = 24/72/4, 20 mL min-1. bThe carbon ratio of olefin to paraffin. cThe approach to equilibrium factor for the RWGS step (Eq. 1). dThe net rate of the RWGS step (i.e. the net CO2 conversion rate Eq. S1 of SI). eThe forward rate of the RWGS step (Eq. 2). fThe rate of the FTS step (Eq. S2 of SI). gCannot be calculated accurately due to the established equilibrium of the RWGS step. 通过动力学分析分别获得RWGS和FTS的本征速率,发现Mn的加入会同时抑制两步反应的活性,而Na则是调控烃类产物分布的关键因素。当两种助剂同时加入时,Na的介入使Fe和Mn的相互作用减弱,使更多的活性位得以暴露,在两种助剂的协同作用下催化剂表现出最高的反应活性和烯烃选择性。 对催化剂的准原位XAFS和XPS表征表明,Mn可以促进Fe5C2相的形成和稳定,而Na的加入减弱了Fe和Mn之间的相互作用,一定程度上抑制了部分Fe5C2相的生成。该影响使得FeMnNa催化剂中Fe5C2活性相的比例相比于FeMn催化剂明显减少,而体系中Fe3O4相的含量则相对增加。正是两种助剂的协同作用使催化剂中Fe5C2和Fe3O4相的比例达到了最优状态,从而使得该催化剂在获得高CO2加氢活性的同时也表现出最优的烯烃选择性。 图二. 反应3 h后催化剂的a)Fe k-边XANES谱图和b)Fe k-边 EXAFS 谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 图三. 反应3 h后催化剂的a)Fe 2p XPS谱图和b)C 1s XPS谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 通过上述实验,可发现对于使用共沉淀方法制备的铁基催化剂,Mn的添加可以有效地促进Fe的分散,但Fe和Mn之间的强相互作用在CO2加氢转化过程中却表现出了负面效应。这种负面效应包括对RWGS反应活性的抑制和烯烃产物生成速率的降低。造成前者的原因是Mn的加入促进了RWGS的活性相Fe3O4向FTS反应活性相Fe5C2的转变,而造成后者的原因则与Mn增加了Fe5C2活性相上FTS反应的空间位阻有关。而第三组分Na的加入不仅提高了CO2的加氢活性和烯烃的选择性,还减弱了Fe与Mn之间的强相互作用,使Mn转变成为对CO2加氢转化有利的助剂。 以上结果表明,对于类似的复杂多相催化体系,在设计催化剂时,关注多种助剂之间的相互作用(而非孤立地关注各助剂对于催化活性位的影响)或许能够为构筑高性能催化剂提供一种更为有效的策略。而应用具备特殊样品杆和配气装置的Axis Supra X射线光电子能谱仪,为以上实验的表征提供有效助力。 文献题目《Highly Selective Olefin Production from CO2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives》 使用仪器Axis Supra X射线光电子能谱仪 作者Yao Xua, Peng Zhaia, Yuchen Denga, Jinglin Xiea, Xi Liuc, Shuai Wang*,b and Ding Ma*,a a. Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University. Beijing 100871 (P. R. China) b. State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 36100 (P. R. China) c. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences P.O. Box 165, Taiyuan, Shanxi 030001 (P. R. China), and Synfuels China. Beijing 100195 (P. R. China)
  • SICS法催化氧化脱硫脱硝工艺
    p  有机催化法脱硫脱硝原理:/pp  有机催化法脱硫是利用有机催化剂L中的分子片段与亚硫酸结合形成稳定的共价化合物,有效地抑制不稳定的亚硫酸的逆向分解,并促进它们被持续氧化成硫酸,催化剂随即与之分离。生成的硫酸在塔底与加入的碱性物质如氨水等快速生成高品质的硫酸铵化肥,其反应原理和过程与工业硫酸铵化肥的生产相似。/pp  脱硝与脱硫原理相类似,当加入强氧化剂时,NO转化为易溶于水的高价氮氧化物生成亚硝酸。有机催化剂促进它们被持续氧化成硝酸,随即与之分离。加入碱性中和剂后可制成硝酸铵化肥。/pp  该工艺流程:/pp  焦炉烟气先经过臭氧氧化,烟气温度小于150℃,然后进入脱硫塔,烟气中的SO2和NOx溶解在水里分别生成H2SO3和HNO2。有机催化剂捕捉以上两种不稳定物质后形成稳定的络合物L?H2SO3和L?HNO2,并促使它们被持续氧化成H2SO4和HNO3,催化剂随即与之分离。生成的H2SO4和HNO3很容易被碱性溶液吸收,这样就在一个吸收塔内同时完成了脱硫和脱硝,该工艺采用氨水做吸收剂,涤后的烟气通过填料层、二级除雾器除去水滴后,回送至焦炉烟囱直接排放至大气。/pp  该工艺主要由以下系统组成:/pp  烟气系统:由焦炉引出焦炉烟气,经过化肥液体及喷水降温,由200℃降低到150℃以下,以适应臭氧反应温度低于150℃的要求。/pp  吸收系统:烟气自下而上进入吸收塔,循环浆液自上而下喷淋,烟气和循环浆液直接接触,完成捕捉过程,处理后的洁净气体经过除雾器除雾后,排至烟囱。/pp  脱硝氧化系统:脱硝氧化系统提供能氧化NO气体的氧化剂——臭氧。臭氧经过烟道内混合器后与烟气中的NO充分混合,将其氧化成易溶解的氮氧化物,进入吸收塔后被吸收得以去除。/pp  盐液分离及化肥回收系统:吸收塔里浆液化肥浓度达到30%左右时,开启浆液排出泵,将其送入过滤器,分离出其中的灰尘。然后浆液进入分离器,将有机催化剂和盐液分开。催化剂返回吸收系统循环利用,盐液则进入化肥回收系统。/pp  催化剂供给系统:捕捉浆液中不稳定的H2SO3和HNO2后形成稳定的络合物,在氧化空气下被持续氧化成H2SO4和H2NO3,被碱性溶液吸收,生成硫酸铵和硝酸铵。/pp  该工艺主要特点:/pp  1)脱硫效率 99%,脱硝效率 85%,氨回收利用率 99.0% 通过增加催化剂,提高亚硫酸铵的氧化效率,运行pH值低于氨法脱硫,能有效抑制氨的逃逸,氨逃逸率 1%。/pp  2)在同一系统中可同时实现脱硫、脱硝、脱重金属汞、二次除尘等多种烟气减排效果 整个过程无废水和废渣排放,不产生二次污染,同时净烟气中NH3含量小于8mg/Nm。/pp  3)对烟气硫分适应强,可用于150-10000mg/Nm3甚至更高的硫分,因此,可使用高硫煤降低成本 对烟气条件的波动性有较强的适应能力。/pp  4)可实现焦炉烟气低温脱硝,减少对设备的腐蚀 副产品硫铵质量达标,且稳定。/p
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制