当前位置: 仪器信息网 > 行业主题 > >

旋转圆盘圆柱

仪器信息网旋转圆盘圆柱专题为您提供2024年最新旋转圆盘圆柱价格报价、厂家品牌的相关信息, 包括旋转圆盘圆柱参数、型号等,不管是国产,还是进口品牌的旋转圆盘圆柱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合旋转圆盘圆柱相关的耗材配件、试剂标物,还有旋转圆盘圆柱相关的最新资讯、资料,以及旋转圆盘圆柱相关的解决方案。

旋转圆盘圆柱相关的论坛

  • 【求助】关于旋转圆盘电极

    请教高手指教:旋转圆盘电极是独立装置吗,可以在所有工作站或恒电位仪上通用吗?旋转环-盘电极有成品卖吗,还是要自行设计?谁有相关资料和图片之类的给偶发一些吧:pfofp@163.com小女子不胜感激!

  • 关于旋转圆盘电极的一些疑惑

    关于旋转圆盘电极的一些疑惑

    旋转圆盘电极上的各处的扩散层厚度一样,测LSV时,由于线性电势扫描的电势不断改变,不是稳态,扩散层厚度应该不断的改变,是不是旋转圆盘电极上的扩散层厚度也在变化,只是各处都一样?

  • 寻找转动圆盘~

    电脑放在办公桌上,需要打资料的时候,就必须要坐到显示器所向的位置上面来。有没有一种圆盘,是可以放在显示器下面的,需要用电脑的时候,就可以很方便很随意地转动显示器到任何一个角度呀?

  • 【求助】圆盘金电极怎么处理干净啊!!!新手跪求!

    我现在用CHI800b 电化学分析仪,三电极系统(工作电极为圆盘金电极,辅助电极铂丝电极,参比电极为银溶液电极),来制作免疫传感器。想在金电极表面组装一层L-半胱氨酸,但多次实验下来结果好像不太理想! 目前怀疑是电极抛光不彻底,希望高人指点圆盘金电极抛光的方法!另外若有大侠知道检测电极抛光程度的方法的话,阿拉直接拜倒!!!!谢谢~~~~~

  • 【资料】水质浊度的测定透明度测试试管法和圆盘法

    FHZHJSZISO0002 水质浊度的测定透明度测试试管法F-HZ-HJ-SZ-ISO-002水质—浊度的测定—透明度测试试管法1 适用范围透明度测试试管法是半定量的方法,适用于测定纯水和高度污染的水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试试管,防护屏,印刷物样品(白底黑印记),恒定光源。4 过程简述将样品充分混合,转移到透明度测试试管中,平稳的降低样品液面的高度,直至从上方观察可清楚的辨认印刷符号。根据试管上的刻度记录液面高度。5 来源国际标准化组织,ISO 7027:1999(E)FHZHJSZISO0003 水质浊度的测定透明度测试圆盘法F-HZ-HJ-SZ-ISO-003水质—浊度的测定—透明度测试圆盘法1 适用范围透明度测试圆盘法是半定量的方法,适用于测定地表水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试圆盘4 过程简述将圆盘放在链上,放入水中逐渐降低,直至从上方观察几乎看不见。测量链子浸没的长度。重复实验几次。5 来源国际标准化组织,ISO 7027:1999(E)

  • 纳米圆盘简介

    纳米圆盘简介

    [font='times new roman'][size=18px] [font=宋体]纳米圆盘简介[/font][font=宋体]1 [/font][font=宋体]纳米圆盘与生物膜[/font][font=宋体]去垢剂在膜蛋白质研究中具有重要的作用,但是基于去垢剂的膜蛋白质提取方法存在一定缺陷。一方面,去垢剂种类诸多,筛选出最适合目标膜蛋白质增溶、稳定和结构表征的去垢剂费时费力;此外,去垢剂胶束固有的动态性质会导致去垢剂[/font][font=宋体]-[/font][font=宋体]膜蛋白质复合物不稳定,从而导致随着时间的推移膜蛋白质有聚集/变性的趋势。另一方面,膜蛋白质的结构和功能与其所处的膜环境即脂质分子是息息相关的。传统上用于提取膜蛋白质的去垢剂是通过破坏脂质双分子层,将膜蛋白周围的脂质剥离,以胶束的形式将膜蛋白质包裹于疏水核心,去垢剂分子的极性头部则暴露于水相环境,以此为膜蛋白质提供了另一种溶解环境,这极大地影响了膜蛋白质的结构和活性。[/font][font=宋体]显然,去垢剂分子形成的胶束远不能模拟膜蛋白质所存在的脂质双分子层环境,因而并不是膜蛋白提取、增溶、稳定的最佳工具。近年来,膜蛋白质研究的发展方向之一是开发能够提供更好的细胞膜膜模拟效果的纯化方法,新型细胞膜膜模拟系统主要有[/font][font=宋体]liposome[/font][font=宋体]s[/font][font=宋体]、bicelles、amphipols[/font][font=宋体]和nanodiscs,其中nanodiscs即纳米圆盘为细胞膜研究提供了新的工具,并被公认为是一种最佳的膜模拟系统。纳米圆盘技术最早由Sligar等人提出,纳米圆盘的组成为两亲性膜支架蛋白[/font][font=宋体](MSP)[/font][font=宋体]围绕圆盘状的磷脂双分子层,可稳定地分散于水相。将去垢剂增溶的膜蛋白质、磷脂分子、MSP混合,就可以将膜蛋白质自组装至MSP纳米圆盘中。MSP结合的纳米圆盘潜在优势包括纳米圆盘尺寸可调、可对MSP进行基因工程修饰、纳米圆盘中的脂质成分可控、纳米圆盘中的膜蛋白质可以确定的低聚状态存在等。但是,MSP纳米圆盘形成过程中仍需要去垢剂进行初始增溶步骤,如图1-7所示,不能避免去垢剂分子对膜蛋白质的稳定性和活性的影响。此外,MSP纳米圆盘中脂质的组成与天然脂质双分子层的组成不同,这可能会影响蛋白质的结构、活性及其调控。基于SMA的纳米圆盘克服了MSP纳米圆盘的局限性,没有去垢剂的情况下,SMA能够溶解脂质膜形成盘状纳米颗粒(图1-8),近年来在细胞膜研究领域受到越来越多的关注。[/font][/size][/font][align=center][img=,662,487]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071551559682_8480_3237657_3.jpg!w662x487.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]7 MSP纳米圆盘和SMA纳米圆盘的形成过程[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]7 [/font][font=宋体]The formation processes of MSP nanodiscs and SMA nanodiscs[/font][/align][font=宋体]1.2.[/font][font=宋体]2 SMA结合的纳米圆盘[/font][font=宋体]早在[/font][font=宋体]2001[/font][font=宋体]年,[/font][font=宋体]Tonge[/font][font=宋体]等人就证明了既含有疏水单元苯乙烯又含有亲水单元马来酸的[/font][font=宋体]SMA[/font][font=宋体][font=宋体]可以增溶脂质分子,并在[/font][font=宋体]2006年利用SMA将脂质双分子层转化成稳定的纳米圆盘形状的双层膜,获得专利。2009年,SMA首次被报道用于提取跨膜蛋白质,在脂质双分子层中加入SMA后,SMA与细胞膜结合,将其溶解为天然的纳米圆盘,又称为苯乙烯-马来酸脂质颗粒[/font][font=宋体]([/font][font=宋体]SMALPs)[/font][font=宋体],[/font][font=宋体]SMA包围在圆盘侧面,膜蛋白质则被包裹于圆盘之中,如图1-8所示。与去垢剂和MSP纳米圆盘相比,SMALPs的优势在于不需要去垢剂就可以直接从细胞膜上提取膜蛋白质,同时保留膜蛋白质周围的天然脂质环境。自2009年开始,[/font][font=宋体]关于利用[/font][font=宋体]SMALPs技术提取纯化膜蛋白质的文献数目[/font][font=宋体]迅速增加,(图[/font][font=宋体]1-9)。这些文献研究了多种重要的膜蛋白质,如G蛋白偶联受体、离子通道、ABC转运蛋白等,处于SMALPs中的膜蛋白质具有良好的稳定性和活性且显著优于去垢剂胶束中的膜蛋白质。此外,这些文献表明SMA对于单跨膜螺旋蛋白、多跨膜螺旋蛋白,甚至大型多亚基跨膜蛋白都具有良好的提取效果。[/font][/font][align=center][img=,662,406]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552290358_7544_3237657_3.jpg!w662x406.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]8 SMALPs示意图[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]8 [/font][font=宋体]Schematic diagram of SMALPs[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][align=center][img=,615,432]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552556903_281_3237657_3.jpg!w615x432.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]9 利用SMALPs技术纯化膜蛋白质的文献数目[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]9 Numbers of [/font][font=宋体]literatures describing membrane proteins purified by SMALPs technology[/font][/align][font=宋体][font=宋体]SMA可同时实现膜蛋白质和膜脂的提取,很多研究也对[/font][font=宋体]SMALPs[/font][font=宋体]中的脂质分子进行了定性定量分析。[/font][font=宋体]Teo等采用SMA对大肠杆菌的ZipA、FtsA和PgpB三种膜蛋白质进行提取纯化,并采用反相HPLC-MS/MS分别对三种膜蛋白质的SMALPs中的磷脂进行分离分析。结果表明,SMA本身不会优先从细胞膜中提取特定的磷脂[/font][font=宋体]。在[/font][font=宋体]ZipA和PgpB[/font][font=宋体]的[/font][font=宋体]SMALPs中,磷脂分子种类类似且单不饱和PE和PG含量较高;在FtsA的SMALPs中,磷脂分子种类与ZipA和PgpB差异较大,具有更长碳链的PE和PG含量更高。Ayub等人采用SMA对酵母细胞膜上的CD81蛋白进行增溶和纯化,并采用“鸟枪法”对酵母细胞膜总脂质提取物、空SMALPs(不含CD81)[/font][font=宋体]中脂质[/font][font=宋体]和含[/font][font=宋体]CD81的SMALPs中[/font][font=宋体]脂质进行测定。结果表明,前两者所含磷脂分子种类差异不大,含[/font][font=宋体]CD81的SMALPs中磷脂分子种类变化明显,表现为带正电荷的PE和PC减少,带负电荷的PI相对增多。[/font][/font][font=宋体]1.2.[/font][font=宋体]3 SMA与磷脂双分子层[/font][font=宋体]近年来,关于[/font][font=宋体]SMALP[/font][font=宋体]s[/font][font=宋体]自组装机制的研究[/font][font=宋体]也[/font][font=宋体]得到开展[/font][font=宋体]。简单来说,在疏水效应驱动下,[/font][font=宋体]SMA吸附到磷脂双分子层[/font][font=宋体][font=宋体],苯乙烯基团插入到磷脂双分子层中,与酰基链紧密结合,在临界浓度下,带电的马来酸基团使膜失稳,导致膜破裂并形成被[/font][font=宋体]SMA聚合物带环绕的纳米圆盘。对于SMA与其它两亲性聚合物的区别,Scheidelaar等从苯环和羧基的性质进行了详细阐述:刚性苯环基团的存在,使SMA从溶液游离状态转化成围绕纳米圆盘的另一种状态,熵变小,这是有利的;羧基的偶极矩与膜的偶极势之间有良好的相互作用。SMA的这些特性使其对磷脂双分子层具有高增溶性能,可以增溶各种不同头部基团、不同酰基链、不同构型的脂质分子。特别是苯乙烯与马来酸摩尔比在2:1到3:1之间的SMA,其疏水性和极性达到最佳平衡,对磷脂双分子层增溶效果最佳[/font][/font][sup][font=宋体][font=宋体][71][/font][/font][/sup][font=宋体]。[/font][font=宋体]1.[/font][font=宋体][font=宋体]3 SMA[/font][font=宋体]及其衍生物[/font][/font][font=宋体]1.[/font][font=宋体]3[/font][font=宋体].[/font][font=宋体][font=宋体]1 SMA[/font][font=宋体]的性质与制备[/font][/font][font=宋体]SMA是苯乙烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸酐共聚物([/font][font=宋体]SMAnh)的水解形式,SMAnh是被广泛研究的聚合物之一,由Alfey和Lavin在1945年首次制备。由于苯乙烯和马来酸酐存在极性差异,且苯环为给电子体,马来酸酐为吸电子体,在一定反应条件下两者竞聚率相近,聚合后可形成具有独特交替结构的聚合物链,经水解后,赋予SMA两亲性聚合物的性质。SMA不仅化学性质独特,还具有良好的生物相容性,可用作很多药物的载体,如坦螺旋霉素、两性霉素B等。[/font][/font][font=宋体][font=宋体]用于膜蛋白质和膜脂研究时,[/font][font=宋体]SMAnh的制备方式通常有两种,即利用传统自由基聚合或[/font][font=宋体]可控[/font][font=宋体]/“活性”自由基聚合[/font][font=宋体]。传统自由基聚合因其慢引发、快增长、易终止的特点而导致聚合反应过程、聚合度、聚合物的结构和分子量分布难以控制。可控[/font][font=宋体]/“活性”自由基聚合技术的出现使得对聚合物进行分子设计和可控聚合成为可能,特别是可逆加成[/font][/font][font=宋体]-[/font][font=宋体]断裂链转移[/font][font=宋体][font=宋体]([/font]RAFT)[/font][font=宋体][font=宋体]聚合已发展成为合成复杂聚合物结构的最通用和最强大的聚合技术之一。[/font][font=宋体]RAFT聚合中的关键试剂[/font][/font][font=宋体]-[/font][font=宋体]链转移试剂[/font][font=宋体][font=宋体]([/font]CTA)[/font][font=宋体],在聚合过程中可以形成无聚合活性的休眠种,与活性自由基链相比,对体系中其它自由基的竞争力相当,使得整个反应体系始终存在自由基的可逆链转移,很大程度上抑制了双基终止,并实现了对聚合过程的调控。[/font][font=宋体]Craig等采用RAFT聚合法制备了三组具有低、中、高分子量的SMAnh,每组分别设置了不同的苯乙烯、马来酸酐摩尔比[/font][font=宋体][font=宋体]([/font]2:1-4:1)[/font][font=宋体][font=宋体],经体积排阻色谱法分析,证明了所得聚合物的分散度指数([/font][font=宋体]PDI)在1.25-1.35之间,且所有聚合物的实际分子量与理论值相近,说明聚合过程得到了很好的控制。将SMAnh进行水解,用于磷脂分子增溶,结果发现形成SMALPs的大小与SMA分子量无关,而与两个单体的比例有关。苯乙烯、马来酸酐摩尔比为2:1、3:1、4:1时,形成的纳米圆盘尺寸分别约为28 nm、10 nm、32 nm。因此,利用RAFT聚合方法可以控制SMA结构,通过扩大纳米圆盘的尺寸可为提取更多的膜脂和体积更大的膜蛋白质提供可能性。[/font][/font][font=宋体]Smith等在蒙特卡罗模拟的基础上,通过RAFT聚合法合成了六组16种具有不同苯乙烯/马来酸酐比例和不同单体/CTA比例的聚合物,经凝胶渗透色谱、核磁共振等技术表征,证实了RAFT聚合可以控制聚合物链中单体的含量、组成、分布情况。作者进一步比较了上述聚合物在磷脂增溶和SMALPs形成方面的性能差异,筛选出了聚合物D,与商业SMA2000相比,得到的纳米圆盘分散性更小,而较低的样品分散性可能有利于结构生物学研究。[/font][font=宋体]1.3.2 SMA衍生物的[/font][font=宋体]性质与[/font][font=宋体]制备[/font][font=宋体]SMA[/font][font=宋体]LPs[/font][font=宋体]已逐渐发展成为细胞膜组成研究的可靠工具,但其应用价值受到[/font][font=宋体]pH[/font][font=宋体]值[/font][font=宋体]和二价金属离子的限制。在酸性条件下,[/font][font=宋体]SMA[/font][font=宋体][font=宋体]中的羧基[/font][font=宋体]易发生质子化使共聚物疏水性增强而极易从溶液中沉淀析出,这不利于提取在酸性环境中发挥最佳功能的膜蛋白质;此外,在毫摩尔浓度的镁或钙离子存在下,[/font][/font][font=宋体]SMA[/font][font=宋体]中的羧基可与金属离子螯合而产生沉淀,使[/font][font=宋体]SMA[/font][font=宋体][font=宋体]无法用于钙[/font][font=宋体]/镁离子依赖性膜蛋白质的研究[/font][/font][sup][font=宋体][font=宋体][82-83][/font][/font][/sup][font=宋体]。[/font][font=宋体]为了拓宽[/font][font=宋体]SMALPs[/font][font=宋体][font=宋体]技术的适用范围,利用[/font][font=宋体]SMAnh中酸酐基团的高反应活性和衍生能力,可进一步通过酯化、酰胺化等反应进行后修饰制备[/font][font=宋体]SMA衍生物[/font][font=宋体],如图[/font][font=宋体]1-10所示。后修饰基团的引入可改变SMA的特性,增强了聚合物的pH值和金属离子耐受范围,如SMI在pH值为2.5-10范围内,二价金属离子浓度高达200 mM时,仍可发挥膜蛋白质及膜脂提取功能,形成的纳米圆盘显示出超强稳定性。上述SMA衍生物为后续更广泛的膜蛋白质和膜脂研究提供了更多的选择。[/font][/font][align=center][img=,690,343]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553237687_6095_3237657_3.jpg!w690x343.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]10 SMA衍生物[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]10 [/font][font=宋体]SMA derivatives[/font][/align][align=center][/align][font=宋体]1.4 SMALPs[/font][font=宋体]的扩展[/font][font=宋体]二异丁烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸共聚物([/font][font=宋体]DIBMA[/font][font=宋体])在增溶磷脂,稳定膜蛋白质的性能上与[/font][font=宋体]SMA相当。同SMALPs一样,DIBMA以[/font][font=宋体]DIBMA[/font][font=宋体]脂质颗粒([/font][font=宋体]DIBMALPs[/font][font=宋体])的形式同时提取膜脂和膜蛋白[/font][font=宋体]质[/font][font=宋体]。[/font][font=宋体]SMA中苯基的存在使得提取的膜蛋白质不能直接进行紫外或圆二色谱等光谱学表征,而DIBMA可弥补这一缺陷。Gulamhussein等比较了SMA与DIB-MA两种聚合物对不同表达系统的具有不同形状和不同大小的膜蛋白质在增溶效率、提取纯度和稳定性能方面的差异,如图1-11所示[/font][font=宋体]。[/font][font=宋体]DIBMA[/font][font=宋体]对某些膜蛋白质的增溶效率并没有优于[/font][font=宋体]SMA,所提取膜蛋白质的纯度也不如SMA,这是由于[/font][font=宋体]DIBMALPs[/font][font=宋体]的尺寸较[/font][font=宋体]SMALPs大,提取出来的杂质随之增多。较大尺寸的DIBMALPs能包容更多的膜脂,膜脂的有序度因为空间的增大而下降,这可能不利于膜蛋白质结构和功能的稳定,但也可能为蛋白质构象变化和动力学研究提供更好的环境。[/font][/font][align=center][img=,580,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553485075_347_3237657_3.jpg!w580x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]11 比较SMALPs与DIBMALPs[/font][/align][align=center][/align][font=宋体]Tribet等开发了一类新型两亲性聚合物([/font][font=宋体]APols[/font][font=宋体]),其结构特征为低分子量聚丙烯酸的羧基被辛胺和异丙胺随机酯化。[/font][font=宋体]APols[/font][font=宋体]这一命名是为了将这类两亲性聚合物与化学或工业等其它领域的两亲性聚合物区分,其中被应用和研究最为广泛的是[/font][font=宋体]A8-35[/font][font=宋体]。[/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中有[/font][font=宋体]25%的羧基被辛胺随机酯化,40%的羧基被异丙胺随机酯化,剩下35%的游离羧基,使其具有温和的表面活性。另外,与去垢剂分子相比,聚合物链具有一定粘度,与膜蛋白质接触位点更多,能使膜蛋白质在更长时间和更高温度下保持稳定状态。[/font][/font][font=宋体]A8-35[font=宋体]主要缺点在于其[/font][/font][font=宋体][font=宋体]临界缔合浓度较低,不能像[/font][font=宋体]SMA那样直接溶解细胞膜,提取膜蛋白质。基于此,Marconnet等作出假设,用环烷烃替代[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中线性的烷基侧链,期望环烷烃能发挥[/font][font=宋体]SMA中苯环的作用,可以自发地吸附到磷脂双分子层上,这是实现生物膜增溶、膜蛋白质提取的第一步。结合SMA独特的膜增溶性能和[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]优异的膜蛋白稳定性能,[/font][font=宋体]Marconnet等制备了聚丙烯酸衍生物CyclAPols。[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]和[/font][font=宋体]CyclAPols结构如图1-12。经过一系列膜蛋白质提取实验,结果表明,所制备的CyclAPols可用于直接提取膜蛋白质和膜脂,提取速度甚至比SMA更快。例如,对于膜蛋白质YidC,CyclAPols可在1小时左右达到最大提取率,而SMA用时超过1小时。此外,CyclAPols对膜蛋白质的稳定性优于SMA。例如,对于HsBR膜蛋白质,[/font][/font][font=宋体]50[/font][font=宋体]℃加热处理6小时,在CyclAPols中可保留80-85%的原始构象,而在SMA中约保留20%。[/font][align=center][img=,412,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554112299_7819_3237657_3.jpg!w412x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体][font=宋体]12 [/font][font=宋体]A8-35和CyclAPols[/font][font=宋体]结构[/font][/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]12 Structures of [/font][font=宋体]A8-35 and CyclAPols[/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][font=宋体]Yasuhara等[/font][sup][font=宋体][font=宋体][97][/font][/font][/sup][font=宋体][font=宋体]首次报道了[/font][font=宋体]聚甲基丙烯酸酯两亲性共聚物[/font][font=宋体],如图[/font][font=宋体]1-13所示,甲基丙烯酸丁酯可提供非极性侧链,而甲基丙烯酰氧乙基三甲基氯化铵可提供带正电荷的极性侧链。动态光散射、电镜、核磁共振测试证实了制备的聚合物可以有效溶解磷脂双分子层形成纳米圆盘结构。此外,与SMA相比,[/font][font=宋体]聚甲基丙烯酸酯衍生物[/font][font=宋体]中不含苯环和酰胺键,可将提取的膜蛋白质直接进行荧光、圆二色谱表征,这些表征可用于研究淀粉样蛋白质聚集的动力学和淀粉样蛋白质聚集过程中的结构变化。因此,该聚合物被进一步用于研究人胰岛淀粉样多肽([/font][font=宋体]hIAPP[/font][font=宋体]),[/font][font=宋体]而[/font][font=宋体]hIAPP[/font][font=宋体]产生淀粉样聚集变性与[/font][font=宋体]2型糖尿病中胰岛细胞的死亡息息相关。[/font][/font][align=center][img=,690,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554363037_3318_3237657_3.jpg!w690x190.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]13 两亲性甲基丙烯酸酯共聚物[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]13 [/font][font=宋体]Amphiphilic methacrylate copolymers[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][font=宋体] [/font]

  • 【原创】圆度仪圆柱度仪常见故障与排除

    圆柱度仪圆度仪常见故障分两大部分,即机械部分和电气部分故障。机械部分的故障多发生在轴系上,特别是静压和气静压轴系更易出毛病。一. 圆柱度仪液静压轴系的维护与修理1) 圆柱度仪静压轴系寿命长,能较长期保持其精度。但是必须有适当的维护制度,定期清洗和换油,严格按照操作规程操作。重视维护工作是延长轴系寿命和保持轴承精度的极重要的措施。由于维护和使用不当,静压轴承可能出现划伤或咬粘,这时应细心的将主轴打出或将工作台卸下来,检查事故原因。首先检查油路是否堵塞,然后再检查支撑面的损伤情况,根据损伤情况拟定修复方案。只要轴承的封油面没有大面积或严重损伤,油腔未穿通,一般都可修理后继续使用。2) 圆柱度仪主轴和轴承的修理方法:圆柱度仪主轴一般采用优质材料,硬度较高。当发生咬粘时,主轴表面上常常粘附有轴承材料,形成高出原表面的损伤表面。出现划伤时,伤痕一般很浅,通常采用修复的方法而不是更换新的主轴,修理时将主轴一段装卡在车床卡盘中,另一端用尾架顶住。旋转起来以后,先用细油石修去突出的表面,和原来轴的表面齐平。然后用可长式研环或铸铁长板研磨器将主轴外圆研光滑,达到轴转动时用手触摸无突出的感觉即可。如果损伤较严重,可将主轴再精磨一次,按新的尺寸配做轴承。二、圆柱度仪电气系统常见故障与排除1) 圆柱度仪电气系统工作不正常首先检查信号电缆是否牢固,联接是否正确,是否有损坏,是否按规程操作微机及配套设备。如果微机出现死循环。可以采用热启动方法再次启动微机。2) 圆柱度仪保险丝易断检查电源压力是否在规定范围内,电压不能太高,也不能太低;检查保险管的电流值是否在规定范围内。3) 圆柱度仪电源不能接通关断电源开关,按电源电缆联接图检查联接情况,看联接是否牢固,保险丝是否熔断。

  • 【求助】请问知道怎么购买或自制微碳圆盘电极吗?

    [em01] 大家好,我们现在用的是毛细管电泳电化学检测仪,仪器随带的电极无法满足实验要求,所以我们需要一种微碳圆盘电极。但是我们自己制作的效果一直不好,请问各位知道怎么自制或者购买吗?有好的建议希望大家多多发表!非常感谢!!!!

  • 【讨论】什么是“粗玻璃圆盘布赫氏漏斗”?

    [em09509]螯合物鉴别检测方法(本实验是鉴别螯合物中未螯合金属离子含量的,是先将样品溶解,再用“粗玻璃圆盘布赫氏漏斗”过滤,收集滤液,进行离子测定。)方法:称取2克样品进行试验。在室温为21℃度时加入150毫升的去离子水并搅拌30分钟。用[color=#DC143C]粗玻璃圆盘布赫氏漏斗[/color]经过过滤,将可溶和不可溶部分分离。然后再用25毫升的去离子水冲洗漏斗内的残渣,并将滤液调节至标准容量(200毫升)。但我有些问题,那“粗玻璃圆盘布赫氏漏斗”是什么漏斗?能把螯合物都过滤出来了?有关于它的具体说明吗?有图片更好。谢谢了具体内容如下:螯合物鉴别检测方法-—离子选择电法 有机微量元素的大量商业化应用因为缺乏良好的产品分析技术而受到较长时间的限制。客户无法测定所购商品的优劣,不得不完全依赖厂家的信誉和从应用现场获得的主观反馈。最后的决定几乎完全受每千克成本的影响。他们的困扰在于他们不能确定是否所购昂贵的螯合铜实质上是廉价的硫酸铜。对于最终用户,即饲料企业来说,具有重大意义的是,最近出现的对螯合物产品质量,有了一种相对简单的检测分析方法,一种迟到了很久的方法。 大多数金属螯合物(金属蛋白或氨基酸螯合物)的生产过程是使用可溶性无机盐作为有机微量元素的来源,通常是硫酸盐与水解蛋白、肽和某种氨基酸,在某种条件下发生反应,再经后处理工艺加工而成。 如果一个金属已与一个水解蛋白或氨基酸螯合,打破这种螯合或将其一分为二是比较困难的。本分析使用了一种温和的溶剂即中性去离子水,来溶解金属蛋白,再检测溶解部分当中分离的自由金属离子的量,即未螯合或弱螯合的量,就可以判定螯合产品的优劣。 方法:称取2克样品进行试验。在室温为21℃度时加入150毫升的去离子水并搅拌30分钟。用粗玻璃圆盘布赫氏漏斗经过过滤,将可溶和不可溶部分分离。然后再用25毫升的去离子水冲洗漏斗内的残渣,并将滤液调节至标准容量(200毫升)。

  • 【原创大赛】经典再现,拆解33年前WXG-4型圆盘旋光仪

    【原创大赛】经典再现,拆解33年前WXG-4型圆盘旋光仪

    经典再现,拆解33年前WXG-4型圆盘旋光仪 年龄大的分析人员一般都用过圆盘旋光仪测量物质的旋光度,其结构简单、操作维修方便。 早期的旋光仪是手动操作的仪器,因为用手轮转动旋光片(刻度圆盘),被称为圆盘旋光仪。由于精度不高、价格便宜,在一些要求不高的小工厂,或车间中间体检验,还在应用中,网上有销售。现在有些地方的旋光检验员考试,也有圆盘旋光仪操作内容。一、外观及技术指标 国产WXG-4型圆盘旋光仪曾经辉煌一时,下图是目前正在销售的WXG-4型圆盘旋光仪,经典的延续:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271359_524841_1807987_3.jpg技术参数:测量范围: -180°~+180°度盘格值: 1°度盘游标读数值 : 0.05°放大镜放大倍数: 4 倍单色光源波长:低压钠灯 589.44nm试管长度: 200mm,100mm 各 1 支钠灯功率 : 20W工作电流: 1.3A光源稳定时间: 5 分钟电源类型: 220V 50Hz外型尺寸: 500×135×330mm重量: 约 5Kg二、仪器结构WXG-4型圆盘旋光仪结构示意图如下:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271400_524842_1807987_3.jpg今天拆解的主角亮相,一台33年前的WXG-4型圆盘旋光仪,还能正常使用:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271400_524843_1807987_3.jpg仪器铭牌,1981年上海大庆光学仪器厂生产,车间作中间体检验,外观比较脏:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271401_524844_1807987_3.jpg各部位细节:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271401_524845_1807987_3.jpg为了减少读数误差,度盘被设计为左右同时读数,通过左右两个4倍放大镜观察。度盘内圈是定盘,外圈是动盘(带动偏振片同步旋转):http://ng1.17img.cn/bbsfiles/images/2014/11/201411271402_524846_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524847_1807987_3.jpg打开样品镜筒盒盖子,内部放置的是样品管:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524848_1807987_3.jpg取出样品管,检测时,要将被测液体装入管内旋紧:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524849_1807987_3.jpg镜筒盒是黄铜材质的,这是光源端:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271404_524850_1807987_3.jpg这是度盘端:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271404_524851_1807987_3.jpg这是钠灯,灯罩很结实:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271405_524852_1807987_3.jpg取下灯罩,内部是单色光源低压钠光灯,波长为589nm:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271405_524853_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411271406_524854_1807987_3.jpg[

  • WXG-4圆盘旋光仪怎么读数

    买了台WXG-4圆盘旋光仪,不知道这圆盘的游标怎么读数。不知道谁还在使用这种老机器,知道的说下啊,最好能附图,谢了!

  • 圆度仪圆柱度仪改造帮助企业节约仪器成本

    真圆度仪 圆柱度仪这些圆度测量仪器都有一定的使用寿命,使用时间长了机械主件及相关的电气部分都会出现各种障碍。在出现的各种故障的时候我们会通过维修改造的方法来继续完善利用这些仪器。今天汇智就给大家总结了在真圆度仪 圆柱度仪的仪器改造 应对的一些策略。 圆度仪是用于测量工件圆度误差的一种精密圆度圆柱度测量设备 ,此类设备属机电一体化产品 ,主要由机械与电气两大部分组成。其中 ,关键部件是仪器的主轴与传感器 ,但这两部分均属耐用精密部件 ,故障率较低 ,绝大多数设备故障出现在仪器的电气部分。针对电气故障 ,提出几点具体做法。 首先对圆柱度仪圆度仪进行分析与测试,由于电子元器件存在一个使用寿命问题 ,超过一定的期限 ,电气性能下降 ,故障率上升 ,此时有针对性的维修 ,将陷入困境 ,不但故障频繁 ,有时因技术已落后连配件都难以买到 ,事倍功半。由于圆柱度仪的主轴使用寿命大大超过电气部分 ,因电气故障报废或闲置整台仪器均是一种极大的浪费 ,此时最佳维修办法是实行技术改造。方法是 :利用现有圆柱度仪一切有利用价值的资源 (如仪器主轴、基座、工作台、传感器等 ) ,去掉已老化的电气等部分 ,采用新技术、新方法研制与之配套的部分 ,这样 ,改造成本将远远低于购买一台性能相当的新设备 ,而各项性能指标与新设备相当。通常 ,使用时间不超过十年的设备 ,可有针对性地进行维修 ,十年以上的设备 ,则应考虑技术改造。

  • 【原创大赛】岛津自动取样器AOC-20s旋转圆壳倾斜的调整

    【原创大赛】岛津自动取样器AOC-20s旋转圆壳倾斜的调整

    岛津自动取样器AOC-20s初始化时报错,E02.[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261806057473_8105_2592430_3.jpg!w690x920.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261806469854_7052_2592430_3.jpg!w690x517.jpg[/img]GCsolution上报“AOC-20s expansionand control error”。看起来是水平方向错误。检查AOC-20s,用手抓住样品臂拉伸,感觉并无太大问题。上下移动也可以。但是旋转时明显感觉到下图中标红位置附近阻力较大,可能偶尔会使初始化不能正常运行从而报错。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261808092414_8608_2592430_3.jpg!w690x920.jpg[/img]仔细观察阻力来自底盘和旋转圆盘之间的接触。并且摩擦面随着样品臂旋转的角度而变化,可以初步分析摩擦是由于圆壳整体向某一个方向倾斜所致。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261809105713_3420_2592430_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261810159214_3530_2592430_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261811117494_7814_2592430_3.jpg!w690x920.jpg[/img]在经过多次旋转观察后,确认摩擦位置正如上图中红色圈中所示,若从黑色箭头方向观察,在图中所示旋转位置时,倾斜状态示意图如下图。左为正常状态,右为倾斜状态。[img=,200,200]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261811590803_2337_2592430_3.png!w200x200.jpg[/img][img=,200,200]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261812017893_2292_2592430_3.png!w200x200.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261812385043_3170_2592430_3.jpg!w690x920.jpg[/img]小心取下上图中所示的两半圆盘(方法是,抠开一条缝之后小心撬开)。注意不要碰到另一侧的黑色的部分。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261814024343_6193_2592430_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261814138063_415_2592430_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261814241273_7735_2592430_3.jpg!w690x920.jpg[/img]取下两块圆盘之后,两侧分别如图所示。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261815145113_8867_2592430_3.jpg!w690x517.jpg[/img]拆下底部三个螺丝,两边各一个,顶部有一个。将样品臂水平移至一端,然后小心地取下底盘。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261815556303_5729_2592430_3.jpg!w690x920.jpg[/img]拆下上边蓝色圈中两个螺丝。然后松开下边蓝色圈中两个螺丝。考虑需要将低的一边加了一个垫圈(如果用纸片可能时间久了之后高度又会发生变化)。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261816063614_7712_2592430_3.jpg!w690x920.jpg[/img]开始时放在了中间偏左的位置。复原测试,发现摩擦位置发生了变化,由下图黄色区域变到了黑色区域。说明垫圈位置有些偏左了,应该适当向右移动一下。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261816177524_4542_2592430_3.jpg!w690x920.jpg[/img]于是重新调整垫圈,至下图中红色区域。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261816251543_8284_2592430_3.jpg!w690x920.jpg[/img]复原后试验,旋转时圆盘与底盘之间的缝隙较为均匀,并且较大的摩擦消失,多次试验自检和进样都正常。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261816347083_647_2592430_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907261816496394_1136_2592430_3.jpg!w690x920.jpg[/img]小结:AOC20s取样器圆旋转圆盘位置的调整,需要耐心多次尝试。

  • 有圆柱形的可以高压灭菌的瓶子吗?

    做实验用的盐水和BPW量太大了,用三角瓶装不多少又占空间,请问一下大家有没有圆柱形的瓶子或者耐高温高压的袋子,可以大批量的灭菌又节省高压锅空间的?大神们有别的什么解决办法吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制