当前位置: 仪器信息网 > 行业主题 > >

效应实验系统

仪器信息网效应实验系统专题为您提供2024年最新效应实验系统价格报价、厂家品牌的相关信息, 包括效应实验系统参数、型号等,不管是国产,还是进口品牌的效应实验系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合效应实验系统相关的耗材配件、试剂标物,还有效应实验系统相关的最新资讯、资料,以及效应实验系统相关的解决方案。

效应实验系统相关的资讯

  • 磁光克尔效应系统再发Nature:全反铁磁隧道结新突破!
    巨磁阻效应自发现以来就被广泛应用于MRAM、磁传感器等自旋电子器件中。目前,基于巨磁阻效应的自旋电子器件主要是铁磁体磁隧道结,其研究和发展受限于铁磁体的使用。因此,为进一步提升自旋电子器件的磁阻比等性能,探究其他磁体开发的高效自旋电子器件的研究非常有必要。近期,东京大学的Satoru Nakatsuji团队对手性反铁磁体Mn3Sn组成的磁隧道结进行了深入探究。作者首先对Mn3Sn手性反铁磁态中自旋正极化、负极化和磁八极的投影态密度进行了表征,发现八极矩的大多数和少数能带之间存在明显的能量漂移,与铁磁性铁中自旋矩的大多数和少数能带的漂移非常相似,并根据第一性原理进行了模拟验证,结果表明Mn3Sn在基于隧穿磁阻(TMR)的器件(如MRAM)中具有巨大的应用潜力。此外,为了更好的观测其TMR效应,作者制备了基于Mn3Sn的磁性隧道结( MTJ ),测得室温下的隧穿磁阻(TMR)比率约为2%,出现在手性反铁磁状态下簇磁八极的平行和反平行构型之间。该成果以《Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction》为题发表在Nature上。图1 带簇磁八极的反铁磁隧道结(a)铁磁(FM)隧道结示意图(b)反铁磁(AFM)隧道结示意图(c)(d)铁磁隧道结和反铁磁隧道结的投影态密度图(pDOS) 本文中,作者使用了英国Durham公司的磁光克尔效应系统-NanoMOKE3,通过系统自带的磁滞回线测量功能,对反铁磁隧道结顶部和底部Mn3Sn电极的矫顽力进行了测量。图2 室温基于手性Mn3Sn反铁磁体的磁隧道结表征图 (a)高分辨率TEM表征图(b)磁光克尔测量示意图(c)顶部和底部Mn3Sn反铁磁体的磁滞回线图 英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国科学院院士)设计并研发了灵敏度能到10-12 emu兼具Kerr显微镜与回线测量功能的高精度磁光克尔效应系统——NanoMOKE3。相比于历代MOKE系统,NanoMOKE3系统将磁光克尔的光路部分集成在光学盒中,避免了实验人员测试前搭建光路的工作,大大减少了实验人员操作量。另外,光学盒中的光路经过特殊设计,可以同时实现极向克尔和纵向克尔的测量,无需调整光路,只需更换镜片即可完成极向克尔和纵向克尔的切换。左)NanoMOKE3磁光克尔效应系统;右)NanoMOKE3光学集成盒因其高集成度的系统设计和开放式的样品环境,NanoMOKE3具备丰富的拓展性。实验人员可以以NanoMOKE3系统为基础,与其他实验设备组合搭建,进行其他领域方面的测量。一、低温磁光克尔系统NanoMOKE3系统允许用户在样品台部分搭建低温恒温器,实现低温磁光克尔的测量。例如,下图所示为NanoMOKE3与美国Montana Instrument无液氦低温恒温器进行了组合使用,从而实现了10K以下的磁光克尔测量。NanoMOKE3的低温磁光克尔测量性能在国内外领域内具有极高的水平。此低温MOKE方案已在南方科技大学安装使用。NanoMOKE3 磁光克尔系统与 Montana Instrument无液氦低温恒温器组合使用示意图二、晶圆扫描探测系统如今,越来越多的晶圆检测设备采用非接触式的光学测量,取代了传统的接触式晶圆测试方法。其中,以磁光克尔效应原理进行晶圆检测的方法就因其操作简单、检测速度快而被广泛使用。Durham公司在现有磁光克尔系统基础上改造升级,推出了超高灵敏度的晶圆扫描探测系统(wafer mapper),专门用于测量整个晶圆表面的磁滞回线和磁畴图像。系统中集成的磁光克尔能对整个晶圆样品区域(可按X和Y轴自由移动)进行磁滞回线扫描和区域Mapping的测量,最终绘制得到晶圆样品整体区域的磁性分布图,从而完成晶圆样品的检测。该款晶圆级磁光克尔测绘仪选用NanoMOKE3特创的光学盒,继承了其测量速度快,操作简单的优点。整个测量过程可以通过系统自带的LX PRO3软件完成,无需进行繁琐的实验预设值,大大增加了实验效率。晶圆扫描探测系统装配图 Durham公司特创的NanoMOKE3磁光克尔光学集成盒是Cowburn教授从事MOKE系统研发和深耕多年的结晶。不但减轻了实验人员的操作繁琐度,更重要的是以磁光克尔效应为基础,为更丰富领域的测量提供了可能,有望助力各个领域科研人员实现更高水平的突破!参考文献:[1]. Chen, X., Higo, T., Tanaka, K.et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
  • 我国自主研发的质子位移损伤效应模拟试验装置建成出束
    8月9日,我国自主研发的质子位移损伤效应模拟试验装置(PREF)——60MeV质子加速器建成出束,首次成功储存、加速、慢引出质子到实验终端。质子位移损伤效应模拟试验装置(PREF)由中国科学院近代物理研究所承担建设,可提供10-60MeV能量段连续精确可调、高流强、高占空比、大扫描面积的高品质质子束流,是目前国内唯一的位移损伤效应模拟试验专用装置。质子位移损伤效应模拟试验装置——60MeV质子加速器全景图。受访者供图基于几代离子加速器设计、建造的技术和经验积累,近代物理研究所加速器团队首次在超小型质子同步加速器中采用了钛合金瓷环内衬极高真空室及全储能非谐振大功率电源新技术,研发了快上升全波形动态磁场补偿和全系统同步性实时测量技术,实现了加速器全过程数字模拟和束流的精准操控。同时,团队还通过工程全系统BIM(建筑信息模型)建模,严控工艺规范和流程,实现了工程质量大幅提升,为装置的高效运行打下了良好基础。据了解,该装置基于重大基础前沿研究需求而研发,将填补我国空间辐射效应试验能力缺项,成为承载我国空间科学、空间技术和国产宇航元器件发展的重要试验平台。同时,该装置的建成出束也将为我国应用加速器的进一步推广打下坚实基础。PREF质子同步环束流强曲线。受访者供图
  • 赛默飞与暨南大学达成合作 共建效应导向新污染物筛查合作实验室
    2022年12月8号,赛默飞世尔科技(以下简称:赛默飞)与专注于环境化学、污染生态学、环境暴露与健康风险等研究方向的暨南大学环境学院签署战略合作协议。本次战略合作,立足新污染筛查与监测,依托赛默飞的质谱创新技术优势和新污染物领域的服务能力,以及暨南大学环境学院特色学科优势和强大的科研力量,携手共同打造效应导向新污染物筛查合作实验室,助力我国打好新污染防治攻坚战!赛默飞色谱和质谱业务中国区商务副总裁沈严先生表示:赛默飞在新污染物领域顺应国家“十四五”发展战略,创新的色谱质谱技术,为客户提供解决方案和价值。此次与暨南大学环境学院紧密合作,加大对学校科研平台的支持,以更好的产品、服务支持特色学科建设,赋能环境科学研究,促进中国生态环境质量改善。践行赛默飞人的使命:携手客户,使世界更健康,更清洁,更安全。暨南大学环境学院曾永平院长表示:在国务院发布的《新污染物治理行动方案》和“十四五”规划下,学校也承担着攻克新污染难题的重任。希望借此合作实验室的成立,暨南大学环境学院能够加强新污染相关研究,在新污染物非靶向筛查和微塑料定性定量等方向借助赛默飞高端色谱质谱仪攻克技术难关,能够获得更多的科研成果。暨南大学设备处张龙钊科长代表暨南大学对本次战略合作实验室的成立表示祝贺,期待暨南大学环境学院和赛默飞能够强强联合,攀登科研高峰!2022年5月24日,国务院正式发布《新污染物治理行动方案》,对新污染物治理工作进行全面部署。同时在2022年11月2日科技部、生态环境部等五部门公布《“十四五”生态环境领域科技创新专项规划》,重点强调了新污染物的分析监测、毒性测试和暴露评估等方向。赛默飞持续关注环境行业新污染物筛查和监测,借由本次合作,赛默飞丰富的色谱质谱平台将能够更好,更广泛地服务于中国的环境事业,在广东地区逐步形成一个依托暨南大学环境学院,发挥示范带动作用,助力新污染物攻坚战的胜利。
  • 天然双层石墨烯内发现新奇量子效应
    由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。
  • 新型有机场效应管研究:PFN+Br-中间层的引入极大提高C60单晶场效应管的性能
    有机场效应晶体管(organic field—effecttransistors)作为新一代电子元器件,自1986年问世以来,引起了学术界和工业界的广泛关注。与传统的无机半导体材料相比,有机半导体具有材料来源广,制备工艺简单,可与柔性衬底兼容等优点,在众多领域具有广泛的应用。有机场效应管性能的调解可以采用两种不同的手段:一、通过化学修饰来调解分子聚集态结构与界面电荷陷阱;二、提高载流子注入电的效率,通常方法为采用钙、镁等低功函数材料或采用复合电,减小接触电阻。Science China Chemistry近发表的一篇文章,报道了一种基于C60单晶的新型有机场效应管。通过PFN+Br-中间层的引入,大大地减小了电与半导体层的接触电阻,提高了载流子注入电的效率。其电子迁移率高达5.60cm2V-S-,阈值电压能够低至4.90V,性能远远高于没有PFN+Br-中间层的器件。 图1. C60带状晶体的形貌与晶体结构图:(a)C60晶体光学成像图;(b)C60晶体的AFM形貌图;(c)C60晶体的TEM成像图;(d)C60晶体的SAED图本研究采用美国Delong公司生产的超小型低电压透射电镜—LVEM5来表征C60的单晶带结构(如图1c所示),其主机采用Schottky场发射电子枪,能够提供高亮度高相干的电子束,并可直接放置于实验室的桌面上。在输出曲线中可以看出,IDS与VDS具有良好线性,表现出良好饱和特性。(如图2所示)。图2. 场效应管的性能表征:C60单晶不涂覆(a-c)/涂覆(d-f)共轭聚电;(a,d)转移曲线图;(b,e)45个器件电荷迁移率柱状图;(c,f)输出曲线图LVEM5加速电压只有5KV,但可以实现1.5 nm的分辨率,纳米结构可以获得高质量的电镜照片,且直接保存Tiff格式,无需转码。无需液氮,无需专人操作管理,操作维护简单快捷,是实验室的理想选择。* 展会快讯:Quantum Design中国子公司参加了 10月17-22日 在 成都 举办的“2017年电镜年会”,欢迎各位感兴趣的老师、同学亲临展台,参观指导,我们随时期待与您相会! * 参考文献:Enhanced performance of field-effect transistors based on C60 single crystals with conjugated polyelectrolyte. Sci China Chem. April (2017) Vol.60 No.4.相关产品及链接:LVEM5 超小型透射电子显微镜 http://www.instrument.com.cn/netshow/SH100980/C157727.htmRHK 扫描探针显微镜 http://www.instrument.com.cn/netshow/SH100980/C44442.htm电导率-塞贝克系数扫描探针显微镜 http://www.instrument.com.cn/netshow/SH100980/C71734.htm美国RHK无液氦低温STM/qPlusAFM系统 http://www.instrument.com.cn/netshow/SH100980/C205015.htm超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm
  • 纳米毒理学家加入雾霾健康效应研究阵营
    10月13日,北京持续几天的雾霾刚刚散去。  此时,国家纳米科学中心中科院纳米生物效应与安全性重点实验室的科学家们正在实验室里忙碌着。作为纳米毒理学研究者,中科院纳米生物效应与安全性重点实验室主任赵宇亮和同事们最近开始了一项新的研究计划。他们计划利用在纳米颗粒健康效应研究中所积累的经验,开展大气雾霾颗粒的健康效应研究。  这也是我国纳米毒理学家首次参与雾霾健康效应研究。  搞清机制迫在眉睫  今年3月,世界卫生组织公布:2012年全球因为空气污染致死700万人,超过了恶性肿瘤的致死人数。然而,雾霾中到底哪些成分是导致健康损害的关键因素,细/超细颗粒物到底产生何种生物效应,这些问题仍然困扰着科学家。  以&ldquo 雾霾颗粒物的健康效应&rdquo 为主题的第504次香山科学会议日前在北京召开,会议主题吸引了环境科学、纳米毒理学、分析科学、医学等多学科跨领域的科学家前来参会。  专家们发现,目前,不同粒径、不同来源的大气雾霾细/超细颗粒物,尤其是纳米尺度的超细颗粒的健康效应尚不明确,粒径、来源与健康效应相关性的研究也存在空白。  身为此次会议执行主席之一的赵宇亮告诉《中国科学报》记者:&ldquo 长期的流行病学统计研究结果表明,雾霾的健康危害已有定论,但对雾霾危害的机制和定量化研究还很少。&rdquo   大气环境学家也意识到,如果对雾霾颗粒物的健康危害缺乏深入的认识,容易造成雾霾防治的盲目性。因此,我国著名环境科学家、中国工程院院士唐孝炎呼吁:&ldquo 为了今后能制定更有效的控制措施,开展这方面的研究十分重要,也迫在眉睫。&rdquo   借鉴纳米毒理学  唐孝炎经常到各地考察大气污染情况。&ldquo 每到一处,老百姓最关心的就是健康问题。&rdquo 她说。  在大气雾霾中,细颗粒物对健康的影响可能最大,这在学界已基本形成共识。作为此次香山科学会议的执行主席,唐孝炎提出,在纳米科学领域,科学家们为了研究人造纳米颗粒的健康效应,已经建立了较为系统的研究方法和实验技术,因此,环境科学家应与从事纳米颗粒、超细颗粒物研究的专家合作,共同解答科学难题。  近年来,科学家已在纳米材料的毒性研究上取得诸多进展。例如,我国学者发现,人体内存在的生物体膜泡结构可以介导纳米颗粒引起机体免疫活化,成为易感人群呼吸系统疾病发生的重要信号转运体,被学术界称为&ldquo 特洛伊木马效应&rdquo 。进入血液的纳米颗粒会吸附血液蛋白分子形成&ldquo 蛋白冠&rdquo ,从而直接影响纳米颗粒在体内的分布、吸收、转运和生物毒性等。  国家纳米中心研究员陈春英向记者表示:&ldquo 纳米毒理学的研究方法和已有知识,将促进对大气雾霾超细颗粒物健康效应作用机制的认识。&rdquo   在纳米毒理学的研究中,为了模拟研究人呼吸纳米颗粒后的健康效应,赵宇亮、陈春英等在国家纳米科学中心建立起一套计算机控制的动态呼吸暴露系统,是目前国内最先进的研究呼吸暴露的实验系统之一。除了细胞暴露,这套装置还能向动物暴露舱和鼻吸入暴露单元发生纳米、亚微米和微米级的颗粒物,开展全身暴露和口鼻吸入暴露的定量实验研究。  如今,这套系统正用于大气雾霾颗粒物健康效应研究中,一系列呼吸暴露实验即将开展。研究人员将致力于揭开雾霾健康危害的谜题。  更复杂的研究手段  不过,在纳米毒理学家看来,相对于人造纳米材料,大气雾霾中的超细(纳米级)颗粒物的组分更加复杂,结构更加复杂,尺寸更加复杂,还需要发展一套专门的研究方法。  在此次香山科学会议上,科学家们经讨论提出了研究大气雾霾颗粒物健康效应的基本框架,包括分子水平、细胞水平、动物水平及模式生物系统的选择等方面。  一些高通量、定量检测分析技术的兴起,也为开展雾霾健康效应研究提供了&ldquo 利器&rdquo ,如蛋白质组学、基因组学、金属组学等新兴方法。此外,同步辐射X射线技术和单细胞荧光成像技术,已经快速发展到纳米毒理学研究体系中,也为雾霾颗粒物健康效应研究提供了独特的超高分辨成像分析技术,能够实现三维观察、化学元素原位解析研究雾霾颗粒在单细胞内的行为。  纳米毒理学的研究者们期待与环境科学家一起,为阐明我国大气雾霾污染问题作出贡献。
  • 【安捷伦】网络讲座回放 | 制药实验室仪器和软件法规风险剖析及有效应对措施
    众所周知,近年来美国FDA 和其它法规监管机构持续关注数据完整性,这在全球范围内(包括中国)提高了实验室合规的地位和重要性。许多制药行业实验室必须寻找一种合适的办法,通过执行实验室法规差距分析和改善实验室合规的某些项目,来平衡整个实验室持续良好的运营,以满足当前实验室合规和数据完整性要求。继安捷伦前期隆重推出在线法规风险评估工具指南后,相信您对实验室仪器法规认证AIQ和软件验证方面所存在的法规风险,已经有了一个基本的认识。然而,您是否了解在真正的美国FDA、欧盟EMA等法规审计中, 这些风险点是如何体现的?以及您是否清楚如何有效地应对这些潜在的风险点,以降低实验室的合规风险?本次讲座,我们邀请了制药行业资深法规专家丁恩峰老师,以及安捷伦实验室合规专家方敏,从各国管机数据的完整性管理法规切入,结合美国FDA、欧盟EMA等法规审计中警告信、缺陷项等, 重点剖析实验室仪器法规认证AIQ和软件验证方面所存在的法规风险,以及提供如何有效应对的科学建议!点击下方链接,即可免费观看本次会议回放视频https://live.polyv.cn/splash/1928064关注安捷伦微信公众号,获取更多市场资讯
  • 国科大在近场光学邻近效应研究中获进展
    表面等离子体光刻(Plasmonic lithography)作为一种近场成像技术,具有可打破衍射极限的特性,能够为发展高分辨率、低成本、高效、大面积纳米光刻技术提供重要方法和技术途径,是下一代光刻技术的主要候选方案之一。目前,虽然已通过实验验证表面等离子体光刻可以满足微纳制造领域对14 nm及以下技术节点分辨率的要求,但随着集成电路特征尺寸的进一步缩小,严重的近场光学邻近效应(Near-field optical proximity effect,near-field OPE)不仅会降低曝光图形的分辨率,而且会增大曝光图形的失真现象,造成纳米器件物理性能及电学特性的偏差,进而影响到产品的功能和成品率,限制了表面等离子体光刻技术的实际应用性。为满足集成电路中对纳米结构器件的尺寸及质量的高性能要求,有效地解决表面等离子体光刻技术中存在的near-field OPE问题,中国科学院大学集成电路学院教授韦亚一课题组通过对表面等离子体光刻特有的近场增强效应进行定量表征,从物理根源上揭示了near-field OPE的产生机理,以及倏逝波(Evanescent waves)复杂的衰减特性和场分布的不对称性对曝光图形边缘特征尺寸的影响,并从光刻参数与表征光刻图形保真度的指标之间的数学关系出发,通过对曝光剂量和目标图形的联合优化,提出了基于倏逝波场强衰减特性进行空间调制的近场光学邻近效应矫正(Near-field optical proximity correction,OPC)的优化方法。相比于传统的OPC优化方法,该方法能够实现对近场高频倏逝波信息的空间调制,可提高优化自由度,能够更有效地提高表面等离子体光刻系统的成像及曝光图形质量,为批量生产低成本、高分辨率和高保真度的任意二维纳米图形奠定了技术基础,并为微纳米光刻加工技术的发展提供了理论支持。 3月30日,相关研究成果以Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulationh为题,发表在Microsystems & Nanoengineering上。研究工作得到中科院和中央高校基本科研业务费专项资金资助项目的支持。
  • 创新工作:多铁性六角铁氧体中的巨磁电耦合效应
    多铁性是指铁电性、铁磁性、铁弹性等多种有序的共存。多铁性材料与磁电耦合效应不仅蕴含着丰富的基础物理问题,而且具有重要的应用前景,是近年来凝聚态物理和材料科学的一个研究热点。多铁性材料分为复合材料和单相材料两大类,复合材料的磁电耦合是利用界面效应实现的间接耦合,单相材料的磁电耦合是一种本征的体效应。在过去的十多年里,人们已经发现了种类繁多的单相多铁性材料。然而,已知的单相多铁性材料的磁电耦合效应(磁场控制电化或者电场控制磁性)通常比较微弱,这大地限制了单相多铁性材料在未来磁电子学器件中的应用。如何大幅度提高单相材料的磁电耦合效应成为该领域面临的一个重大挑战。近期,中国科学院物理研究所/北京凝聚态物理实验室孙阳研究员(Quantum Design产品用户)、柴一晟副研究员和博士生翟昆等在一种Y-型六角铁氧体Ba0.4Sr1.6Mg2Fe12O22中实现了巨大的磁电耦合效应,获得了高达33000 ps/m的正磁电耦合系数和32000 ps/m的逆磁电耦合系数,创造了单相材料磁电耦合效应的新记录。图1. 六角铁氧体Ba2-xSrxMg2Fe12O22在 10 K下的正磁电耦合效应六角铁氧体是一类具有六角晶系的铁基氧化物,按照结构单元的不同,可进一步划分为M, W, X, Y, Z, 和U型六角铁氧体。由于存在多种磁性相互作用的竞争,在六角铁氧体中可以通过部分元素替换产生丰富的非共线螺旋磁结构。对于一些特定的螺旋磁结构,非共线的自旋之间可以通过逆Dzyaloshinskii-Moriya相互作用产生宏观电化,从而导致磁有序驱动的二类多铁性与磁电耦合效应。在以往的研究中,虽然人们已经在一些六角铁氧体中观察到较强的磁电耦合效应,但是,对于如何在六角铁氧体中进一步实现巨大的磁电耦合效应,还缺乏清晰的认识和思路。 图2. 六角铁氧体Ba2-xSrxMg2Fe12O22(x = 1.6)在 10 K下的逆磁电耦合效应为了理解Y-型六角铁氧体Ba0.4Sr1.6Mg2Fe12O22中巨磁电耦合效应的物理起源,博士生翟昆合成出Ba2-xSrxMg2Fe12O22 (0.0≤x≤1.6) 一系列单晶样品,系统研究了其宏观磁性和磁电耦合效应随Sr含量的变化关系。同时,孙阳研究组与美国橡树岭实验室曹慧波博士等合作,利用中子散射技术详细研究了这一系列单晶样品的磁结构,给出了Ba2-xSrxMg2Fe12O22体系中圆锥状螺旋磁结构随Sr含量及外加磁场变化的相图。图3. 六角铁氧体中自旋锥对称性与磁电耦合系数的关系研究结果发现,六角铁氧体中磁电耦合效应的强度与自旋锥的对称性密切相关:当自旋锥的对称性从四重对称性降低到二重对称性时,在外加磁场驱动下自旋锥可以发生180度翻转;同时,自旋结构产生的电化也会随之发生180度反向。通过元素替换调控磁各向异性使得这一相变发生在零磁场附近,就会导致巨大的磁电耦合系数。因此,该项研究不仅获得了迄今为止单相材料中大的正逆磁电耦合系数,也为如何提高多铁性六角铁氧体中的磁电耦合效应指明了方向。以上研究成果发表于Nature Communications 8,519(2017)。该工作得到了自然科学基金(11534015,11374347),科技部(2016YFA0300701)和中国科学院项目(XDB07030200)的支持。文章来源:(中国科学院物理研究所磁学重点实验室,终解释权归中国科学院物理研究所磁学重点实验室官网所有) 相关产品: SuperME 多铁材料磁电测量系统:http://www.instrument.com.cn/netshow/SH100980/C148929.htmTEGeta 多功能热电材料测量系统:http://www.instrument.com.cn/netshow/SH100980/C277658.htm完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/SH100980/C18553.htmMPMS3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/SH100980/C19330.htm
  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style="text-align: center " img src="https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title="00.jpg" alt="00.jpg" style="text-align: center "//pp style="text-align: center "研究人员在观察胚胎培养情况。中科院神经科学研究所供图br//pp  “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。/pp  据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。/pp  然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。/pp  近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。/pp strong 难题:/strong/ppstrong  如何有效检测基因编辑工具的安全性/strong/pp  CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。/pp  中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。/pp  “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。/pp  由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。/pp  然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。/pp  strong突破:/strong/ppstrong  GOTI技术精准捕捉“脱靶”逃兵/strong/pp  要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。/pp  为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。/pp  同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。/pp  随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。/pp  实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。/pp  杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。/pp  strong未来:/strong/ppstrong  完善基因编辑治疗手段、建立行业标准/strong/pp  杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。/pp  中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。/pp  “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。/pp  中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。/pp  针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。”/p
  • 韦亚一教授课题组在近场光学邻近效应研究中获进展
    表面等离子体光刻(Plasmonic lithography)作为一种近场成像技术,具有可打破衍射极限的特性,能够为发展高分辨率、低成本、高效、大面积纳米光刻技术提供重要方法和技术途径,是下一代光刻技术的主要候选方案之一。目前,虽然已通过实验验证表面等离子体光刻可以满足微纳制造领域对14 nm及以下技术节点分辨率的要求,但随着集成电路特征尺寸的进一步缩小,严重的近场光学邻近效应(Near-field optical proximity effect,near-field OPE)不仅会降低曝光图形的分辨率,而且会增大曝光图形的失真现象,造成纳米器件物理性能及电学特性的偏差,进而影响到产品的功能和成品率,限制了表面等离子体光刻技术的实际应用性。为满足集成电路中对纳米结构器件的尺寸及质量的高性能要求,有效地解决表面等离子体光刻技术中存在的near-field OPE问题,中国科学院大学集成电路学院教授韦亚一课题组通过对表面等离子体光刻特有的近场增强效应进行定量表征,从物理根源上揭示了near-field OPE的产生机理,以及倏逝波(Evanescent waves)复杂的衰减特性和场分布的不对称性对曝光图形边缘特征尺寸的影响,并从光刻参数与表征光刻图形保真度的指标之间的数学关系出发,通过对曝光剂量和目标图形的联合优化,提出了基于倏逝波场强衰减特性进行空间调制的近场光学邻近效应矫正(Near-field optical proximity correction,OPC)的优化方法。相比于传统的OPC优化方法,该方法能够实现对近场高频倏逝波信息的空间调制,可提高优化自由度,能够更有效地提高表面等离子体光刻系统的成像及曝光图形质量,为批量生产低成本、高分辨率和高保真度的任意二维纳米图形奠定了技术基础,并为微纳米光刻加工技术的发展提供了理论支持。 3月30日,相关研究成果以Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulationh为题,发表在Microsystems & Nanoengineering上。研究工作得到中科院和中央高校基本科研业务费专项资金资助项目的支持。 论文链接 近场光学邻近效应对表面等离子体光刻曝光结果的影响及基于高频倏逝波信息空间调制式的OPC优化方法
  • 2020默克财报:新冠效应推动 生命科学业务优势再显
    仪器信息网讯 近日,默克集团发布2020年财报。2020财年,默克集团净销售额为175.34亿欧元,2019年为161.52亿欧元,增长1383百万欧元,增长率为8.6%。三个业务部门的情况,生命科学业务净销售额为75.15亿欧元,同比增长9.5%,并实现11.8%的有机增长,生命科学是默克公司销售额最高的业务部门,占集团销售额的43%(2019年:42%);2020财年,医疗保健业务部门的净销售额为66.39亿欧元,同比下降1.1%(2019年:67.14亿欧元),主要原因是负汇率和投资组合效应超过了3.4%的有机增长,最终医疗保健业务在集团总销售额占比下降4%,为38%(2019年:42%);性能材料销售额为33.8亿欧元(2019年:25.74亿欧元),同比增长31.3%,是三个业务部门中增长率最高的业务部门,主要原因是收购Versum Materials,性能材料业务占集团总销售额的19%(2019年:16%),增加了3个百分点。高层变动去年10月,默克公司发布公告,进行董事会成员的更迭,任命 Belén Garijo 为执行委员会主席兼首席执行官,于今年5月接替现任管事人 Stefan Oschmann 的职位。同 Oschmann 在 2016 年的任命模式一样,此次任命是副首席执行官的直接晋升。上任后,Belén Garijo 将为默克公司首位女性CEO。此外,默克将任命 Amirall SA 的首席执行官 Peter Guenter 接替 Garijo 的医疗保健部门职位。任命现化学巨头公司 DuPont 的营养与生物科学业务总裁 Matthias Heinzel 担任默克密理博生命科学业务的首席执行官,接替刚刚离职的 Udit Batra,于4月1日开始任职。发展展望生命科学业务2021财年,默克预测生命科学业务部门增长率在低百分比范围内,其中,流程解决方案业务部门仍将是增长的最强劲驱动力,并将受到新冠效应的进一步推动。应用和研究解决方案中的有机增长也将为生命科学的整体表现做出积极贡献。此外,预计收购法国AmpTec和Resolution Spectras Systems S.A.S.不会对投资组合产生重大影响,预测外汇会有轻微至中度负效应。医疗保健业务在2020财年,新冠疫情对医疗保健行业造成了重大负面影响,默克预计2021年净销售额将出现强劲的有机增长,这将主要由Mavenclad和Bavencio驱动,核心业务预计将稳定发展。尽管2020年在中国生效的集中采购的负面影响将在2021年全面显现,但根据预测,医疗保健相关产品在普通医学和内分泌特许经营中的有机发展将大致稳定。性能材料业务在调整投资组合之后,默克预计2021财年,性能材料业务部门的净销售额将实现稳健的有机增长,特别是半导体解决方案业务部门,预测将有强劲增长势头,中期内将超过市场增长。除了半导体材料,交付系统和服务的项目业务预计将对有机增长作出重大贡献。此外预计表面解决方案业务将在2021年看到积极的有机发展。2020财年的默克生命科学默克生命科学业务部门是科研实验室、制药和生物技术生产以及工业和测试实验室产品、仪器和服务的供应商。2020年新冠疫情对许多行业和全球经济造成了巨大影响,但生命科学市场在此期间表现良好。2020年,实验室产品市场、研究解决方案和应用解决方案业务部门增长了6.1%(2019年:+4.4%),主要由于新冠病毒检测及研究、疫苗相关产品的研究需求激增,从而极大抵消了因新冠疫情导致的实验室封锁或相关活动暂时减少。默克生命科学过程解决方案业务部门在制药和生物技术生产市场上十分活跃,药物和疫苗开发及制造对默克相应产品产生巨大需求。到2020年,生物制药终端市场增长了9.9%,达到3160亿欧元(占全球的32.3%)医药市场)。单克隆抗体是生物制药的领先领域,2020年的该领域增长10.8%。新冠疫情相关的治疗方法和疫苗给制药和生物技术生产带来了新的机遇相当大的提升。截至2021年1月21日,共有1083个项目用于开发和生产数十亿剂疫苗正在进行中。在生命科学领域,默克目标是进一步扩大在过程解决方案和电子商务领域的优势地位。坚定地认识到新的增长机会,如在基因组编辑和新技术方面模式,端到端生物处理和连接实验室。
  • 理论物理所等在超导量子芯片上模拟黑洞的量子效应研究中获进展
    黑洞是爱因斯坦广义相对论预言的一类特殊天体。20世纪70年代初霍金、贝肯斯坦等的研究表明黑洞具有热力学性质:黑洞具有正比于其视界面积的熵;黑洞会以热辐射的形式向外辐射粒子,其辐射温度正比于其表面引力;黑洞的质量、熵和温度等满足热力学第一定律。黑洞的热力学揭示了引力的量子效应。因而普遍认为,黑洞是通向量子引力理论的窗口。   实验检验黑洞的量子效应是颇具挑战性的任务,这是由于这些效应非常微弱,且极难观测。比如一个太阳质量大小的黑洞,其对应的霍金温度只有10-8K ,远低于宇宙微波背景辐射的温度(≈3K)。缺少直接的实验检验也是”引力量子化“理论研究迟滞不前的原因之一。在这样的情形下,人们试图在实验室系统中创造出一个等效的“弯曲时空”并研究相关的效应。这一研究被称作“类比引力”(analogue gravity)。它是由Unruh效应(一个在平坦时空中作加速运动的观测者将看到他处于一个热浴中)的提出者William Unruh于1981年首先提出。近日,中国科学院理论物理研究所研究员蔡荣根和理论物理所博士毕业生、现天津大学理学院量子交叉中心副教授杨润秋,与物理所研究员范桁、副研究员许凯及博士研究生时运豪等合作,在”类比引力“的研究中取得重要进展。该工作在超导量子芯片上观察到“模拟黑洞”的霍金辐射并研究了弯曲时空对量子纠缠的影响。相关研究成果发表在《自然-通讯》【Nature Communications 14, 3263 (2023)】上。这一工作的理论基础是基于蔡荣根和杨润秋等在前期研究提出的模型,即在爱丁顿-芬克尔斯坦坐标下对空间坐标离散化,1+1维的无质量标量场和狄拉克场可以被量子化,并等价于耦合强度随格点位置变化的XY晶格模型;弯曲时空的度规信息则被编码在耦合强度的分布函数中。然而,如何在实验中实现这样一个耦合强度具有特定分布的XY晶格模型是颇有挑战性的问题。本研究利用一个具有10个量子比特与9个耦合器构成的一维阵列超导量子芯片,通过精确控制耦合器使比特之间的等效耦合强度按照从负到正分布实现了1+1维的弯曲时空背景,并观测了准粒子在弯曲时空背景下的传播行为。结果表明,在模拟黑洞的内部准粒子总是有一定概率通过视界辐射出去,其辐射概率满足霍金辐射谱。该团队利用量子态层析技术重构出黑洞外部所有比特的密度矩阵,计算了相应的辐射概率,证实了存在类比的霍金辐射。此外,该团队还在黑洞内部制备了一个Bell纠缠态并对比了平直和弯曲时空背景下的纠缠动力学。这一实验研究为在超导量子芯片中模拟弯曲时空和黑洞的量子效应开辟了新路径。该工作所使用的可调耦合器件由超导国家重点实验室SC5组研究员郑东宁和副主任工程师相忠诚提供。研究工作得到国家自然科学基金、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。日本理化学研究所和北京量子信息科学研究院的科研人员参与研究。超导芯片上的黑洞、弯曲时空耦合强度分布以及部分实验脉冲序列
  • 科学家发现增强干扰素抗病毒效应新分子新机制
    p  中国工程院院士、中国医学科学院院长曹雪涛团队日前发现,甲基转移酶分子SETD2能够显著增强干扰素的抗病毒效应,促进机体抵抗病毒能力,提高干扰素疗法清除乙肝病毒效果。该发现为抗病毒免疫应答效应机制提出了新观点,也为有效防治病毒感染性疾病提供了新思路。相关成果发表于新一期《细胞》杂志。/pp  干扰素是机体抵抗病毒感染的关键性细胞因子,可通过激活免疫细胞内信号通路而诱导出一系列抗病毒效应分子,从而激活和维持免疫系统抗病毒能力。干扰素是目前临床治疗乙型肝炎的常用药物之一,然而其疗效有限,因此,揭示干扰素抗病毒效应的具体机制以寻找有效防治病毒感染的新型免疫措施具有重要意义。在国家基金委、科技部973项目等资助下,曹雪涛院士与浙江大学医学院免疫学研究所陈坤博士以及第二军医大学医学免疫学国家重点实验室联合攻关,针对表观遗传机制参与免疫应答过程与免疫性疾病发生,而目前尚不清楚表观遗传分子如何调控干扰素抗病毒免疫功能这一重要科学问题,通过高通量RNA干扰筛选体系分析了700余种表观遗传酶分子在干扰素抑制乙肝病毒中的作用,发现了甲基转移酶分子SETD2对于干扰素抑制乙肝病毒复制至关重要。通过制备肝细胞特异性敲除SETD2基因小鼠模型的体内实验,证实SETD2能显著增强干扰素抑制乙肝病毒以及其他多种病毒复制的体内效应。机制研究表明,SETD2分子通过其甲基转移酶活性,直接催化干扰素关键性信号蛋白分子STAT1的第525位赖氨酸发生单甲基化修饰(STAT1-K525me1),从而促进干扰素效应信号的活化,诱导出更高水平的抗病毒蛋白,发挥更强抗病毒效应。/pp  该研究揭示了甲基转移酶SETD2分子能够直接诱导干扰素信号蛋白分子的甲基化并促进干扰素抗病毒效应的重要功能,表明该发现丰富了人们对于机体抗病毒免疫调控机制的认识也为下一步开展相关研究提供了新思路。鉴于干扰素信号调控异常与炎症性疾病、慢性感染疾病发生发展等密切相关,该研究也为研发抗病毒、抗炎药物提供了潜在靶标,为干扰素临床应用方案的优化提供了新方向。/pp/p
  • “曼”谈光谱——荧光效应与抑制
    “曼”谈光谱——荧光效应与抑制大家好,我是曼曼,好久不见,甚是想念。之前在介绍拉曼光谱的波长选择时,我们曾提到过“荧光效应”日常生活中荧光类物品随处可见,荧光笔、荧光粉、荧光灯等等,这些日常用品在为我们带来便捷的同时也给予了我们美的视觉享受。荧光效应是光与物质之间的一种作用方式,当紫外-可见光照射到物质时,物质可以重新释放出吸收的光,并且其波长大于入射光的波长。有色样品和大生物分子的荧光特性非常强,荧光分析法可以直接利用这些物质自身发射的荧光进行测定分析;还可以通过荧光试剂把不发射荧光的物质转化成能发射荧光的物质,再进行测定。但对于拉曼光谱而言,荧光却是一个致命的干扰,由于拉曼信号很弱,荧光信号又宽又强,会覆盖拉曼信号。所以选择适当的方式抑制荧光效应尤为重要。安东帕Cora家族抑制荧光的方式 【1064nm激发光波长】荧光物质在长波长激光照射下不容易发出荧光,图中蓝色曲线为785nm下物质的拉曼光谱图,拉曼信号几乎全部被荧光覆盖,红色曲线是1064nm下该物质的拉曼光谱图,没有荧光的干扰。【基线校正】拉曼光谱基线校正的示意图引自“白静. 拉曼光谱预处理关键技术研究[D].合肥工业大学,2019. ”荧光背景并不像拉曼峰那样的尖锐,一般较为平缓,可以通过多项式拟合或是其它方式拟合出荧光背景曲线,然后在光谱图中将其扣除,达到去除荧光干扰的目的。但是,该方法只能处理一些拉曼信号本身比较强的光谱,由于拟合误差的影响,系统会将一些强度弱小的拉曼峰误判为荧光背景加以扣除。如何保证质量? 要保证洗手液达到消毒杀菌的要求,产品的浓度配比必须正确,快速、精确地获得产品成分的浓度数据,这是保证质量的关键。安东帕Abbemat 折光仪,只需一滴样品,按下按钮,10秒内即可得到准确数据。Abbemat折光仪可以显示浓度的质量和体积。其测量符合所有sop的要求及FDA的规定,无需专门知识或专业操作人员,简单操作。测量步骤 1、从Abbemat菜单中根据您的样品选择方法2、滴样品(0.1mL或更多)在折光仪上3、按下开始按钮4、见测量结果(如乙醇浓度)如此简单,安东帕折光仪可以在几秒钟内得到洗手液成分浓度数据,保证产品质量。
  • 中科光电应邀参加“气溶胶-云-辐射相互作用及其气候效应会”
    2016年7月1-2日,由中国气象局气候研究开放实验室、中国气象局气溶胶与云降水重点开放实验室、南京信息工程大学大气物理学院和江苏省气象学会大气物理与人工影响天气委员会联合举办的“气溶胶-云-辐射相互作用及其气候效应”学术研讨会在南京隆重召开。 来自南京大学、中国科学技术大学、南京信息工程大学、兰州大学、华东大学、中国海洋大学、美国爱荷华州立大学等高校,中国科学院大气物理研究所、中国科学院遥感与数字地球研究所、国家气候中心、中国气象科学研究院、荷兰皇家气象研究所、江苏省气象科学研究所、无锡中科光电技术有限公司等近20个单位的130余位国内外相关研究领域的专家、学者和研究生济济一堂,共同研讨气溶胶-云-辐射相互作用及其气候效应的科学问题。南京信息工程大学副校长江志红教授出席了会议,并在开幕式上致辞。 中国气象局气候研究开放实验室首席专家张华研究员、中国气象局气溶胶与云降水实验室主任银燕教授和朱彬教授、中国气象科学研究院龚山陵研究员、中国科技大学傅云飞教授、美国爱荷华州立大学吴小青教授、南京大学王体健教授、中科院大气物理研究所韩志伟研究员、荷兰皇家气象研究所pieternel教授和ronald教授等15位专家应邀作大会主题报告。 气溶胶-云-辐射相互作用及其对气候和气候变化的影响已成为近年来的研究热点。对气溶胶-云-辐射-气候相互作用的研究,以及了解气候系统变化规律、提高气候模拟水平和预测水平都具有重要的意义。但由于云的不确定性、气溶胶时空分布的不确定性及气溶胶理化特性的多变性,加上观测资料的限制,使得气溶胶-辐射相互作用、尤其是气溶胶-云相互作用问题成为当今气候变化与模拟研究中一个非常重要的科学难题。此次会议旨在追踪国际上该领域的最新研究动态,总结我国在该领域的研究结果,加强科研成果的业务化应用,提升气候模拟准确度,加强部门间研究成果的交流。 会议主要围绕“气候模式中的云、气溶胶和辐射物理过程和卫星资料在气候中的应用”;“污染物对天气气候的直接和间接效应”;“污染物与亚洲季风系统的相互作用”;“污染物-辐射-云相互作用及其对天气气候与大气环境的影响及反馈”等四个主题展开交流。会议共收到投稿50余篇,22位代表在分会做口头报告,墙报展示30余幅,评比出7个优秀。 本次会议由中国气象局气候研究开放实验室主办,中国气象局气溶胶与云降水重点开放实验室承办,会议取得圆满成功。(转自中国气象局 气候研究开放实验室:http://ncclcs.cma.gov.cn/website/index.php?channelid=8&newsid=3480)
  • 赛默飞与暨南大学环境学院达成战略合作,携手共建效应导向新污染物筛查合作实验室
    车金水 董丹赛默飞 × 暨南大学环境学院2022年12月8号,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与专注于环境化学、污染生态学、环境暴露与健康风险等研究方向的暨南大学环境学院签署战略合作协议。从左至右:张龙钊 暨南大学设备处科长,游静 暨南大学环境学院教授,曾永平 暨南大学环境学院院长,沈严 赛默飞色谱质谱中国区商务副总裁,赵素丽 赛默飞色谱质谱应用总监,周昕 赛默飞色谱质谱高级商务总监本次战略合作,立足新污染筛查与监测,依托赛默飞全球领先的质谱创新技术优势和新污染物领域的服务能力,以及暨南大学环境学院特色学科优势和强大的科研力量,携手共同打造效应导向新污染物筛查合作实验室,助力我国打好新污染防治攻坚战!暨南大学环境学院院长 曾永平(左)与赛默飞色谱质谱中国区商务副总裁 沈严 签署战略合作协议并合影留念赛默飞色谱质谱中国区商务副总裁 沈严致辞赛默飞色谱和质谱业务中国区商务副总裁沈严先生表示:赛默飞在新污染物领域顺应国家“十四五”发展战略,创新的色谱质谱技术,为客户提供全方位解决方案和价值。此次与暨南大学环境学院紧密合作,加大对学校科研平台的支持,以更好的产品、服务支持特色学科建设,赋能环境科学研究,促进中国生态环境质量改善。践行赛默飞人的使命:携手客户,使世界更健康,更清洁,更安全。暨南大学环境学院院长 曾永平致辞暨南大学环境学院曾永平院长表示:在国务院发布的《新污染物治理行动方案》和“十四五”规划下,学校也承担着攻克新污染难题的重任。希望借此合作实验室的成立,暨南大学环境学院能够加强新污染相关研究,在新污染物非靶向筛查和微塑料定性定量等方向借助赛默飞高端色谱质谱仪攻克技术难关,能够获得更多的科研成果。暨南大学暨南大学设备处科长 张龙钊致辞暨南大学设备处张龙钊科长代表暨南大学对本次战略合作实验室的成立表示祝贺,期待暨南大学环境学院和赛默飞能够强强联合,攀登科研高峰!结语2022年5月24日,国务院正式发布《新污染物治理行动方案》,对新污染物治理工作进行全面部署。同时在2022年11月2日科技部、生态环境部等五部门公布《“十四五”生态环境领域科技创新专项规划》,在十大任务中重点强调了新污染物的分析监测、毒性测试和暴露评估等方向。赛默飞持续关注环境行业新污染物筛查和监测,借由本次合作,赛默飞丰富的色谱质谱平台将能够更好,更广泛地服务于中国的环境事业,在广东地区逐步形成一个依托暨南大学环境学院,发挥示范带动作用,助力新污染物攻坚战的胜利。往期推荐_● 新污染物分析无从下手?我们为您准备好了一整套的GCMS工具 ► 点击阅读 _● 双剑合璧,一锤定音——赛默飞微塑料分析全面解决方案 ► 点击阅读 _● 警惕“氟”污染-赛默飞CIC燃烧离子色谱助力PFAS分析 ► 点击阅读 _● PFAS检测新方案 GCMS大有可为 ► 点击阅读 如需合作转载本文,请文末留言。
  • 研究揭示层间拖拽输运中的量子干涉效应
    中国科学技术大学教授曾长淦、副研究员李林研究团队与北京大学教授冯济课题组合作,通过构筑氮化硼绝缘层间隔的多种石墨烯基电双层结构,首次揭示了在层间拖拽这一复杂的多粒子输运过程中存在显著的量子干涉效应。相关研究成果日前在线发表于《自然-通讯》。量子干涉效应是量子力学中波粒二象性的直接体现。在固体材料中,弱局域化、普适电导涨落和Aharonov-Bohm效应等独特量子输运现象,都源于载流子扩散路径之间的量子干涉。然而这些量子干涉行为均发生在单一导体内的载流子输运过程,可以在非相互作用的单粒子框架下很好地解释。与之相比,诸如层间拖拽效应这种路径更为复杂的多粒子耦合输运中是否会展现出类似的量子力学行为,是一个重要的基础科学问题。所谓拖拽效应,是指对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的动量/能量转移会诱导另一层(被动层)载流子移动,从而在被动层产生一个开路电压或闭路电流。此前,拖拽效应被广泛用于研究载流子长程耦合特性,发现如间接激子波色爱因斯坦凝聚等层间关联量子态。然而,对这一独特输运过程本身的外场响应特性及可能的量子效应研究还十分缺乏。石墨烯基二维电双层结构为在二维极限下深入相关研究提供了很好的平台,作为天然且理想的二维电子气,石墨烯本身载流子类型和浓度均高度可调,且利用氮化硼作为绝缘层,两层石墨烯之间的间距可以低至数纳米,从而使得在更广阔参数空间内表征层间拖拽特性成为可能。此次研究中,研究团队构筑了双层石墨烯/氮化硼/双层石墨烯(以下称双层/双层)、单层/单层以及单层/双层等多个石墨烯基电双层结构。通过系统的外磁场下拖拽响应特性测试,研究团队发现在很大的温度/载流子浓度范围内,低磁场区间内拖拽磁电阻均会明显偏离经典库伦拖拽行为,并且这种偏离的符号直接取决于石墨烯层的能带拓扑性。如对于双层/双层和单层/单层体系,拖拽电阻在电子-电子区间的修正均表现为低场的电阻峰,而对于双层/单层体系,则为电阻谷。通过对拖拽输运过程的系统性分析,研究团队发现观察到的低场修正可以很好地归因于由时间反演和镜面对称联系起来的两个层间拖拽过程之间的量子干涉,而其干涉路径则由空间分隔的两个石墨烯层层内载流子扩散路径共同组成。这种层间量子干涉的产生依赖于两层石墨烯中空间重叠的扩散路径的形成,其中中间绝缘层的杂质势散射起到至关重要的作用。研究人员认为,这一新型量子干涉效应的发现,将固体材料中的量子干涉行为,从单一导体内单一粒子输运行为,拓展到多个导体间多粒子耦合输运过程,进一步丰富了量子干涉的物理内涵。此外,相比于传统层内量子干涉导致的磁阻修正,层间量子干涉导致的拖拽磁电阻的修正显著增大,从而有望为发展新原理存储器件提供新的思路。
  • 上海光机所在液晶光学相控器件激光辐照效应方面取得新进展
    近期,中国科学院上海光学精密机械研究所薄膜光学实验室赵元安研究员团队与上海理工大学、苏州科技大学合作在液晶光学相控器件激光辐照效应方面取得新进展,研究厘清了液晶可变相位延迟器(LCVR)在连续激光加载下相位调控性能退化机理,并提出了性能退化补偿的预配置方法,为相关器件设计以及在高功率激光中的实际应用提供了指导方向,相关研究成果发表于Optical Materials 。   液晶相控器件可以实现对光束振幅、偏振、波前和指向等参数的调节,在激光点火、激光加工、光电对抗等高功率激光系统中有着广泛应用和研究,激光加载产生的热效应造成器件性能退化及失效的问题一直困扰着其在激光系统中的应用。   在该研究中,研究人员集成相位、温升在线测量技术并结合温度场建模分析,证实加电工作状态下LCVR的相位调控能力退化归因于连续激光加载导致的温升不但改变了液晶折射率,还影响了液晶分子在加电状态下的偏转角。上述性能退化可通过事先绘制不同激光功率下的相位响应曲线,通过降低电压进行预配置补偿,从而实现LCVR在更高功率激光辐照下按照预设相位调控参数输出。这些结果阐明了热沉积引起液晶相位器件相位调控能力退化的基本机制以及相应的补偿手段,为液晶相控器件的设计优化和实际应用提供了重要参考。   相关研究得到了国家自然科学基金、脉冲功率激光技术国家重点实验室开放基金的支持。图 1 (a)不同激光功率加载下LCVR的温度随时间的变化;(b)不同激光功率加载下LCVR的相位延迟随电压的变化;(c)不同激光功率加载下LCVR的相位延迟随电压的变化(第二次实验)。
  • 应对重金属污染,检测汞污染的利器-塞曼效应原子吸收测汞仪
    重金属污染是我国当前危害最大的环境污染问题之一。重金属主要通过矿山开采,金属冶炼,化石燃料的燃烧,金属加工及化工生产废水,施用农药化肥和生活垃圾等人为污染源,以及地质侵蚀、风化等天然源的形式进入环境,严重威胁人类和其他生物的生存。目前由于监测及检测条件的制约,有许多地区存在着重金属的污染问题,并导致了一系列的生态灾难。 重金属具有毒性大,在环境中不易被代谢,易被生物富集并有生物放大效应等特点,对环境以及生物的危害是深远的,其中尤以汞及其化合物的毒性最大列居各重金属毒性之首。汞在常温下即以液态的形式存在,气化后的无机汞可以随着大气环流循环至全世界的任何角落,是一种全球性的污染物质。而人为污染源产生的价态汞在排放进入大气后,会结合空气中的水分、粉尘,降落到地面及水体之中,通过微生物的一系列作用,转化成为毒性极强的甲基汞,对当地的生态环境及人口造成严重的影响。 日常生活中我们接触最多的含汞产品即是水银温度计,温度计一旦打破,其中的无机汞不仅会影响室内的空气,对处于汞蒸气暴露下的人体造成危害,同时气化后的无机汞将进入大气,开始一段全球的旅程,其影响甚至可以达到几万公里外的无人区。无机汞沉降至地面或湖泊后,经过微生物的一系列作用,通过生物链的富集放大效应,最终仍会导致食物链顶端的人类遭受甲基汞的毒害。也就是说,我们日常生活中可能会吃到受污染的鱼类,而污染的来源可能是数年前远在大洋彼岸破碎的一支温度计。 事实上,对于普通民众来说危害最大的并不是来自遥远地区的污染,而是近在眼前的含汞产品泄露带来的危害。破碎的温度计让这些水银颗粒散落一地,普通的清扫工作难以彻底清除,尤其是当水银滴藏匿于地毯或者某些角落之中。这些残留的水银滴犹如一剂慢性毒药,缓慢而持久的对处于其中的人体造成影响。而在医院等含汞产品较多的地方,这样的隐患非常之多。而近期流感疫情的爆发,温度计已是家庭和学校的必备,许多学校甚至给小学生每人发放一支,其带来的隐患非常之大。 有如下一篇报道对日常生活中的汞污染进行了描述,《水银温度计:我们身边的定时炸弹?》(来源:中国青年报 赵涵漠) &ldquo 中国科学院地球化学所研究员冯新斌从事&ldquo 汞研究&rdquo 已逾10年。最近,他不小心在卧室内打破了两支水银温度计。这位专业人士在开窗通风前,先是兴致勃勃地将测量汞浓度的仪器搬进卧室,发现&ldquo 比室外大气中的汞浓度高出了1000倍&rdquo 。尽管他迅速撒硫磺并开窗通风,但直到一个月后室内汞浓度才慢慢恢复正常。可是这些办法并不会使那些泄漏的汞消失,它们只是进入了一个更加复杂的循环系统。&rdquo 无机汞进入体内的主要途径是呼吸、口腔摄取和皮肤吸收。高浓度的汞蒸汽可对口腔、呼吸道和肺组织造成损伤,还会引起呼吸衰竭并死亡。无机汞的毒性主要表现为神经毒性和肾脏毒性。吸入的汞蒸汽有80%左右被肺部组织吸收。这些蒸汽也很容易穿过血脑屏障,现已经被充分证实是一种神经毒剂。中枢神经系统可能是汞蒸气暴露的最敏感的靶器官,比较典型的症状包括:震颤、情绪不稳定、注意力不集中、失眠、记忆衰退、说话震颤、视力模糊、肌肉神经功能变化、头痛以及综合性神经异常等。肾脏和中枢神经系统一样,是汞蒸气暴露的要害器官。其他毒性包括致癌性、呼吸系统毒性、心血管疾病影响、消化系统毒性、免疫系统影响、皮肤毒性和生殖毒性等。而长期的低浓度汞蒸气暴露引起症状与甲基汞对人体造成的影响类似,甲基汞能引起神经系统的严重缺陷,表现出强烈的致畸、致癌和致突变活性。 因此,检测并消除室内环境中的汞污染,对于保障人员的安全来说是十分必要的。但是,我们往往是因为不清楚自己所处环境的状况,因而延误了最佳的处理时机。文章中提到冯新斌研究员搬进卧室的测量汞浓度的仪器,即是我们今天的主角:便携式塞曼效应原子吸收测汞仪RA-915+。该仪器采用原子吸收中去除干扰最理想的方式,塞曼效应校正技术,使得气体当中的汞含量的测量能够摈弃常规的金汞齐吸附技术,让测量变得迅速并且准确,仅需1s的响应时间。而该款仪器独有的多光程检测池技术,使得原子吸收检测池的有效光程长达10m,极大的提升了仪器的灵敏度,使得体积轻巧,重量仅为7.5kg的便携式仪器同样拥有实验室仪器般的精准度及良好的稳定性。该款仪器对大气中的汞浓度的实时检测限低至2 ng/m3,接近全球大气汞含量的背景值1.5 ng/m3。对于检测痕量的汞污染也游刃有余。因其卓越的产品优势,被联合国UNEP组织选定为指定消除汞污染的检测仪器,并将其广泛应用在家庭环境、工作场所、学校和医院等场地进行汞污染和溢出的浓度检测,保证人体所处环境当中的汞含量处于可接受的范围。 通过与不同配件的搭配,LUMEX的测汞仪能够适用于各种用途,完成其他测汞仪无法完成的任务。而其独特的设计原理,使其具有其他测汞仪所不具备的特殊优势,如在线测量,连续实时监测,超高精确度和稳定性。彻底颠覆了传统便携式仪器给人的固有印象,轻松胜任来自野外或者实验室的测汞要求。RA-915+的应用,让重金属汞污染监测和检测不再是一件麻烦的事情,让以前需要数人才能完成的工作如今由一个人就能轻松完成。LUMEX便携式气体测汞仪为世界范围内的消除汞污染组织所广泛采用,为保证人们免受重金属汞污染而做出其应有的贡献。
  • 哈工大采购光的衍射实验系统等74台仪器
    4月11日,中国政府采购网消息,哈尔滨工程大学就光的衍射实验系统、密立根油滴系统 、波尔共振实验系统等发布采购公告,设计仪器共计74台。详情如下:  一、招标编号:设备ZB[2012]8号  二、招标名称及数量:  名称:1、光的衍射实验系统 数量:20套   2、密立根油滴系统 数量:10套   3、波尔共振实验系统 数量:10套   4、金属线膨胀系数测量系统 数量:10套   5、磁场综合实验系统 数量:20套   6、朴克尔斯效应演示仪 数量:1套   7、核磁共振实验仪 数量:1套   8、法拉第效应演示仪 数量:1套   9、巴克豪森效应演示仪 数量:1台   三、资质要求:  1、符合《中华人民共和国政府采购法》第二十二条之规定   2、具有设计、研制生产或经销所采购的设备相关资质的企业。  3、具有生产及供货能力、资信良好的企业。  四、报名时应提供的资料:  1、营业执照副本复印件(加盖公章)   2、法定代表人授权委托书(加盖公章)   3、报名者的身份证复印件、电子邮箱和联系人电话(四号字打印,拒收手写体)。  上述材料均以传真方式报名,待资质审查通过后以电子邮件形式免费发放含有详细技术参数的招标文件,正式参与投标开标前半小时再交纳所有费用。  五、报名时间及地点:  1、报名截止时间:2012年4月17日  2、开标时间:2012年5月8日下午2:30时  3、地点:哈尔滨市南岗区南通大街145号哈尔滨工程大学1号楼316房间。  联系人: 刘海才  电话:0451-82519862  传真:0451-82589279  2012年4月11日
  • 中国科大揭示针尖增强拉曼光谱中的化学增强效应新机制
    近日,中国科学技术大学董振超研究小组在探究针尖增强单分子拉曼光谱的化学增强与猝灭机制方面取得新进展。相关成果以“Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy”为题作为热点文章发表在Angew. Chem. Int. Ed.上。   表面增强拉曼光谱(surface-enhanced Ramanspectroscopy, SERS)具有显著的信号增强特性,能够在单分子尺度提供目标材料丰富的化学指纹信息,因此被广泛应用于物理、化学、材料、生物等领域的物种识别与结构研究。SERS增强机制通常分为两种:局域等离激元场激发产生的物理增强以及分子–金属之间电荷转移诱导的化学增强。物理增强在SERS信号增强中起主导作用,对其电磁场物理增强图像的理解已经比较透彻。化学增强不仅能在物理增强的基础上进一步增强分子拉曼信号,而且往往会对谱型产生影响。然而,尽管经过近半个世纪的大量SERS研究,化学效应对拉曼信号的具体影响机制仍然不够清晰。这主要是因为化学机制比较复杂,跟单个分子与金属表面之间的局域相互作用密切相关,而且其贡献相对较小,并常常与物理增强效应共存,难以分割和评估。存在这些困难在一定程度上是因为SERS技术难以对这种局域相互作用进行精准表征和控制。因此,迫切需要开展局域环境清晰明确的单分子拉曼实验,以便精确调控单个分子的局域化学环境,深入研究化学效应对拉曼信号的影响。   2013年,董振超研究小组首次在超高真空和液氮温度下展示了亚纳米分辨的单分子拉曼成像技术[Nature 498, 82 (2013)],通过针尖局域电磁场调控将具有化学识别能力的光学成像空间分辨率提高到了一个纳米以下(~0.5nm)。这一结果在一定程度上颠覆了当时人们对于光学成像分辨率和光场限域性的固有认知,极大推动了针尖增强技术和相关纳米光子学领域的发展。在此基础上,2019年,该研究小组通过发展液氦条件下工作的低温超高真空针尖增强拉曼光谱(tip-enhanced Ramanspectroscopy, TERS)系统,进一步对针尖尖端高度局域的等离激元场进行精细调控,将空间分辨率提高到了1.5 Å的单个化学键识别水平,并基于这项技术提出了一种重构分子化学结构的新方法¾埃级分辨的扫描拉曼显微术[National Science Review 6, 1169−1175 (2019)]。   最近,为了深入探究化学效应对拉曼信号的影响机制,该研究小组利用所发展的高分辨TERS技术,通过精心设计和构建四种不同的清晰明确的单分子局域接触环境(图1),探究了单个ZnPc酞菁分子在不同接触环境下的拉曼响应,并结合理论计算揭示了基态电荷转移引起的TERS增强以及界面动态电荷转移诱导的拉曼猝灭的新机制(图2)。图1.单分子TERS实验示意图和四种不同的分子局域接触环境。图2.基态电荷转移引起的TERS增强与界面动态电荷转移诱导猝灭效应。他们发现,当针尖与氯化钠表面单个平面型ZnPc分子进行“弱”的点接触时,TERS信号会被显著增强,与此同时,针尖增强光致荧光(tip-enhanced photoluminescence, TEPL)信号迅速猝灭。TERS和TEPL信号演化表明针尖与分子之间的接触产生了化学相互作用。他们对此提出一种新的物理化学联合作用机制,即针尖与分子的点接触会产生基态电荷转移过程,在与表面垂直的方向上诱导出可观的拉曼极化率,而且该垂直极化偶极还会进一步与纳腔等离激元的垂直电场耦合产生增强的拉曼信号。这种新的增强机制不仅超越了传统的纯化学效应机制,而且也不同于之前普遍认为的在化学增强过程中占主导地位的共振电荷转移机制。另一方面,当分子与金属衬底进行“强”的面接触后,TERS信号严重猝灭,特别是对于分子的面内振动信号。结合DFT理论计算表明,这是由于分子与金属衬底之间的轨道杂化引起的动态界面电荷转移以及表面电磁场屏蔽效应所导致的拉曼极化率的减弱,并且前者起主导作用。但是,通过进一步与针尖产生“弱”的点接触,猝灭的拉曼信号能够被有效“拯救”,这同样是因为上面所提及的基态电荷转移诱导的物理化学机制的联合作用所致。需要强调的是,如果分子与金属衬底的相互作用很弱(例如物理吸附的情况),或者分子垂直吸附在金属表面,这时由于动态界面电荷转移诱导的拉曼极化率的减弱效应会变得很小,预计将不会出现拉曼猝灭现象。   该研究小组还进一步开展了偏压和波长依赖的TERS光谱演化研究,证明了基于基态电荷转移的物理化学联合作用机制的正确性。值得注意的是,对于非共振情况下的针尖−分子点接触构型,体系的拉曼信号在纳腔等离激元场增强的基础上,还将获得超过300倍的极大电荷转移化学增强。   该工作不仅为理解化学效应诱导的TERS/SERS增强与猝灭现象提供了新的视角,澄清和深化了人们对化学增强机制的认识,而且展示了一种通过针尖−分子原子级点接触增强拉曼信号的方法,将对本征拉曼信号微弱的分子(例如生物分子)的化学探测和识别具有重要意义。   文章的第一作者是中国科学技术大学博士后杨犇和特任副研究员陈功。该研究工作得到了基金委、科技部、中科院、教育部、安徽省等单位的支持。
  • 缓解城市热岛效应 | 实现节能措施
    缓解城市热岛效应 | 实现节能措施 ——功能性材料的光学特性评价 在城市住宅和商业楼宇密集地区,往往可以观测到“热岛效应”(Heat Island Effect)的存在。由于城市建筑群密集、柏油路和水泥路面比郊区的土壤、植被具有更大的吸热率和更小的比热容,使得城市地区升温较快,并向四周和大气中大量辐射,造成了同一时间城区气温普遍高于周围的郊区气温。这种现象尤其在北京、上海、东京、纽约等大城市较为显著。它严重危及着人们的生活与健康,而且高温促使人们更多的使用空调、电扇等制冷设备,而这些都需要消耗大量的电力,这完全有悖于节能理念。因此,现在很多住宅和大厦等建筑物的屋顶、外墙涂料以及道路施工材料都采用可以把太阳光中红外线产生的热量返辐射回去的特殊材料,以此来抵挡室外热量传入室内。比如,目前已研发出可降低红外线透射率的玻璃膜等。艺术家兼摄影师 Nikolay Lamm 通过一组热成像照片,对比展现了纽约市的另一面 日立紫外可见近红外分光光度计UH4150,作为分析光学材料性能的重要工具之一,可用于研究解决“热岛效应”和能源浪费问题的功能性材料的光学特性。应用1:隔热涂料隔热涂料和普通涂料颜色一样,它可以反射太阳光中的红外线,防止热辐射进入到建筑物内部。将这种隔热涂料涂于住宅或大厦的屋顶,不但可以起到隔热的作用,还不影响建筑物外观。解决“热岛效应”的同时实现了空调系统的高效节能。因此,近年来隔热涂料的光学特性测定受到广泛的关注。这里,我们准备了黑色隔热涂料和普通涂料两种样品,通过UH4150的检测,对比它们的光学反射率。详细解决方案:https://www.instrument.com.cn/netshow/SH102446/s898101.htm应用2:调光膜以建筑物内部损耗热量较大的窗户为例,太阳光通过窗户射入室内,会使室温升高。为此,我们通过采用能够阻断红外光射入,只允许可见光射入的窗户玻璃专用功能性薄膜。这种薄膜就是调光膜,它可以大幅降低太阳能热量进入室内。与传统的百叶窗和窗帘不同,调光膜依然保证室内光照充足、房间明亮,而且室外风景一览无余。此外,它还可以间接提高室内空调系统的制冷效率,达到高效节能的效果。下面,我们也对调光膜的透射率作了进一步的分析。详细解决方案:https://www.instrument.com.cn/netshow/SH102446/s898100.htm城市“热岛效应”,由于人为原因,改变了城市地表的局部温度、湿度、空气对流等因素,加之近年来空气污染的雾霾现象,现已应引起人们的高度重视,治理刻不容缓。多个城市社区现已积极修复生态体系、改造新建城市基础设施建设,全面推进海绵城市建设。日立集团基于“通过开发先进的自主技术和产品为社会做贡献”这一企业理念,希望通过自主研发技术对解决“热岛效应”问题这一重要的社会课题做贡献,实现可持续发展社会的目标。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。
  • 二维拓扑材料内发现新奇电子效应,为研发新型量子材料奠定基础
    德国尤利希研究中心领导的一个国际研究团队在最新一期《自然通讯》杂志上撰文指出,他们首次证明了在二维材料中存在一种奇异的电子态——费米弧,这为新型量子材料及其在新一代自旋电子学和量子计算中的潜在应用奠定了基础。  研究人员解释说,他们检测到的费米弧是费米面的一种特殊形式。费米面在凝聚态物理中用于描述金属内电子的动量分布。通常这些费米曲面代表闭合曲面,而费米弧等例外情况非常罕见,通常与超导性、负磁电阻以及异常量子传输效应等奇异性质有关。  科学家们目前面临的技术挑战是“按需”控制材料的物理特性,但这种实验测试在很大程度上仅限于大块材料,针对纤薄的拓扑二维(2D)材料开展相关研究是凝聚态科学领域的重大挑战。  由于电子和晶体结构的相互作用,拓扑材料具有特殊的性质,而且免受干扰的影响。另一方面,二维材料是仅由一层原子或分子组成的材料,其中大名鼎鼎的二维材料是石墨烯,其由单层碳原子组成。由于其拥有不同寻常的特性,科学家们目前正在对其开展深入研究。  最新研究使用的材料是二维铁原子层。与石墨烯相比,这些二维混合磁体也有其独特的特性,如它可以为设备内的手性异常找到潜在的用武之地;也有望为强关联拓扑材料开辟新的研究领域。  研究人员在位于意大利的Elettra同步辐射实验室进行了实验,发现了材料内新奇的电子效应——费米弧。这一发现表明,科学家们可以通过外部磁场对低维系统中的拓扑状态进行量子控制,未来可以利用外部磁场让二维材料在人工智能和信息处理领域“大显身手”。
  • 半导体所观测到各向异性平面能斯特效应
    磁性材料是构成现代工业的重要基础性材料,在永磁电机、磁制冷、磁传感、信息存储、热电器件等领域扮演着重要角色。在自旋电子学前沿领域,利用磁性材料中的磁矩引入额外对称性破缺效应是一个研究热点。最近,中国科学院半导体研究所半导体超晶格国家重点实验室的朱礼军团队在单晶CoFe (001)薄膜器件中观测到各向异性的平面能斯特效应(Planar Nernst Effect),其强度随 (001) 晶面的晶格方向强烈变化并呈现面内双轴各向异性(见图1)。当磁矩在外磁场驱动下在薄膜材料平面内旋转时,电流产生的温度梯度导致的平面能斯特电压表现为一个sin2φ依赖的二次谐波横向电压信号(φ为磁矩相对电流的夹角)。这种有趣的各向异性平面能斯特效应被认为主要起源于内禀的能带交叠效应,可能对谐波霍尔电压、自旋扭矩铁磁共振、自旋塞贝克等自旋电子学实验的分析产生重要影响(见图2),有望应用于能量收集电池和温度传感器等。然而,这种平面能斯特效应的各项异性并没有导致任何极化方向的非平衡自旋流(Spin Current)或自旋轨道矩(Spin-Orbit Torque)的产生。该工作以“Absence of Spin-Orbit Torque and Discovery of Anisotropic Planar Nernst Effect in CoFe Single Crystal”为题发表在期刊Advanced Science上 [链接:https://doi.org/10.1002/advs.202301409]。朱礼军研究员为通讯作者,博士后刘前标为第一作者,博士生林鑫作为合作者完成了有限元分析并参与了器件的加工测量。该工作的完成离不开中国科学院半导体研究所赵建华研究员(单晶CoFe样品生长)、周旭亮副研究员(光刻工艺)、北京师范大学熊昌民副教授(PPMS测试)、袁喆教授(能带理论讨论)的支持和帮助。相关工作得到了科技部国家重点研发计划、国家自然科学基金委面上项目和中国科学院战略先导专项的资助。图1. (a)双十字霍尔器件中的平面能斯特效应;(b)CoFe (001)平面能斯特电压的各向异性。图2. 各向异性平面能斯特效应对(a)谐波霍尔电压、(b)自旋塞贝克、(c)自旋扭矩-铁磁共振等自旋电子实验的广泛影响及其在(d)热电器件方面的应用案例。
  • 科学仪器界的“蝴蝶效应”
    p “蝴蝶效应”一只南美洲亚马逊河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周以后引起美国得克萨斯州的一场龙卷风。而这种现象在科学仪器界同样屡见不鲜。/pp  近期,受中美贸易战影响,苜蓿草价格有所上涨。由于优质苜蓿干草是高产奶牛日粮必需,这势必对乳品行业有所影响,乃至波及科学仪器相关市场。因为在这种背景下,乳制品厂商必须要寻找对策以应对原料成本提升造成的影响。对于企业而言,减价促销意味着利润空间被不断挤压,绝非长久之计。此种环境下,乳品企业需要在技术创新、产品研发以及渠道拓展等方面提升增强。其中,行业领头企业伊利就走在了前列。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/6d0f2fc0-bd80-4898-8a5c-c3895988029d.jpg" title="milk 600 450.jpg" alt="milk 600 450.jpg"//pp  伊利作为中国乳制品领头企业,2017年在乳制品行业占有率达到22%,旗下的“金典”“安慕希”“畅意100%”“畅轻”“Joy Day”“金领冠”“巧乐兹”“甄稀”等品牌都已经家喻户晓。这些品牌产品的推出,背后无疑有着强大的研发力量支持。根据伊利近三年披露的年报数据,研发支出同比增长15.39%,114.25%和21.63%。这其中,必然少不了相关乳品实验室的建设。乳品实验室一般需实现乳品理化检测、功能物质分离纯化、功能研究、分子生物学研究、蛋白组学分析、微生物研究、发酵工程、产品中试研发等功能。为了实现这些功能,strong乳品实验室一般会配置液相色谱/质谱联用仪、气相色谱、实时定量PCR仪、多肽合成系统、流变仪、粒径仪、质构仪、差式热量扫描仪等仪器设备。/strong/pp  可以想见,随着国民消费升级的影响和对乳品健康和口味越来越看重,中高档乳制品相对较高的利润率,都势必会促进乳品行业厂商进一步加强乳品实验室的软硬件建设,以研究生产新品和提升工艺。对相关仪器厂商来说,这无疑是中美贸易战阴影下,一片待发掘的新市场。/pp  而就2017年中国乳制品市场总体形势看,情势并不十分乐观。根据国家统计局数据,2017年全国液态奶产量2691.66万吨,同比下降1.66%;2017年全国干乳制品产量243.38万吨,同比下降4.97%。综合来看,2017年乳品消费需求稳中略降。因此,未来,如何通过加大创新研发的投入力度,进一步激发市场活力,不断向市场推出适销对路的乳制产品,已成为摆在我国上千家乳制品企业面前的迫切课题。/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201811/attachment/f126030f-98f8-451e-bef7-af6310cba99a.docx" title="2017中国乳制品市场总体形势分析.docx"2017中国乳制品市场总体形势分析.docx/a/ppbr//p
  • 中国科学家首次发现量子反常霍尔效应 影响重大
    图一,量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应     图二,理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导     图三,在Cr掺杂的(Bi,Sb)2Te3拓扑绝缘体磁性薄膜中测量到的霍尔电阻  中新社北京3月15日电 (记者 马海燕)北京时间3月15日凌晨,《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。  这一发现由清华大学教授、中国科学院院士薛其坤领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。  由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。  美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。  相关链接  “量子反常霍尔效应”研究获突破  中国科学网  由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。  量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。1980年,德国科学家冯克利青(Klaus von Klitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦(Daniel CheeTsui)、美国物理学家施特默(Horst L. Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(Rober B. Laughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”——不需要外加磁场的量子霍尔效应。  “量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应 同时它的实现也更加困难,需要精准的材料设计、制备与调控。1988年,美国物理学家霍尔丹(F. Duncan M. Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329, 61(2010)]。他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。该理论与材料设计的突破引起了国际上的广泛兴趣,许多世界顶级实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。  在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了极高的要求:材料必须具有铁磁长程有序 铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构 同时体内的载流子浓度必须尽可能地低。最近,中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。他们克服了薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,利用分子束外延方法生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功地观测到了“量子反常霍尔效应”。该结果于2013年3月14日在Science上在线发表,清华大学和中科院物理所为共同第一作者单位。  该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功典范。前期,团队成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十大进展和中国高校十大科技进展,团队成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了中国科学院、科技部、国家自然科学基金委员会和教育部等部门的资助。(中科院物理研究所 作者:薛其坤等)
  • 仿生超疏液涂层可解决5G天线罩“雨衰效应”
    记者从中国科学院兰州化学物理研究所获悉,该所环境材料与生态化学研究发展中心硅基功能材料组与山东鑫纳超疏新材料有限公司合作,研发出了兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,能有效解决5G信号在降雨时的“雨衰效应”。相关研究论文近日发表于《自然通讯》。5G天线罩是5G基站的重要组成部分,用来保护天线系统免受外界复杂环境干扰,提高天线精度和使用寿命。但是,雨水会在5G天线罩表面形成水滴或水膜产生“雨衰效应”,即水的介电常数很高,会吸收、反射大量电磁波,导致5G信号严重衰减。“避免雨水在5G天线罩表面形成水滴或水膜是解决‘雨衰效应’的关键。”中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副主任、研究员张俊平介绍,仿生超疏液涂层(超疏水、超双疏涂层)具有液滴接触角高(大于150°)、滚动角低(小于10°)等特点,液滴易从表面滚落,在自清洁表面、抗液体黏附、防液体铺展等领域具有广阔的应用前景,有望用于5G天线罩表面,解决其“雨衰效应”。然而,采用仿生超疏液涂层解决5G天线罩“雨衰效应”尚需突破涂层不能同时具有优异的耐压性、机械稳定性及耐候性的技术瓶颈。张俊平团队与山东鑫纳超疏新材料有限公司合作,研发了一种兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,该涂层能够避免雨滴在5G天线罩、雷达罩表面黏附,有效解决了其“雨衰效应”,并在全国多地5G天线罩、雷达罩上进行了实际应用。张俊平介绍,黏结剂的引入虽然能够提升涂层的机械稳定性,但也同时将低表面能纳米粒子包埋,导致涂层具有较高的表面能,进而使得涂层的超疏水性和耐压性较差。通过调研大量文献,并结合此前的研究经验,该团队对涂层进行了系统设计,成功制得兼具优异耐压性、机械稳定性和耐候性的仿生超疏液涂层。“首先,涂层的三级微/微/纳米结构以及致密的纳米结构,使其具有优异的耐压性。其次,涂层的近似各向同性结构及黏结剂的黏结作用,使其具有优异的机械稳定性。同时,我们选用具有化学惰性的原材料制备涂层,使其具有优异的耐候性。”张俊平说。此外,5G天线罩、雷达罩基材大多为ABS塑料。“这类基材具有较低的表面能,导致涂层与基材的黏结强度较弱。”张俊平说,团队通过对黏结剂的种类进行优化,筛选出与ABS等基材具有优异黏结强度的黏结剂来制备涂层,成功克服了涂层与ABS等基材黏结强度弱的缺陷。经过3年的研发、产业化和规模化应用,该涂层性能已取得大幅提升。张俊平告诉记者,未来,团队将探索更多仿生超疏液涂层的潜在应用领域,实现其在高压输电线路、桥梁、隧道防结冰,5G天线罩、雷达罩防雨衰,抗危化液体黏附,电子产品防水防油膜,自清洁市政工程等方面的工程化应用。
  • 二次青藏科考,兰大团队厘清气溶胶辐射效应
    兰州大学青藏高原大气粉尘气溶胶科考团队分别于2020年和2021年在喜马拉雅区域的亚东站和珠峰大本营站开展了粉尘气溶胶综合科学考察,获得了第一手观测资料,在喜马拉雅区域气溶胶辐射效应方面取得新认识。兰州大学青藏高原大气粉尘气溶胶科考团队于2020年6月11日至8月31日以及2021年5月20日至6月13日分别在亚东站和珠峰大本营站开展大气粉尘气溶胶综合科学考察课题组供图相关研究成果以《大气气溶胶粒径谱分布通过改变单次散射反照率影响喜马拉雅区域气溶胶的辐射效应》为题,于近日在《自然》旗下期刊《气候与大气科学》发表。大气气溶胶的光散射和吸收通过气溶胶-辐射和气溶胶-云相互作用对地气系统产生重要的辐射效应。气溶胶的单次散射反照率(散射与散射和吸收之和的比值)不仅影响辐射强迫的大小,还可能决定气溶胶在大气层顶的加热或冷却效应。喜马拉雅区域是南亚人为污染物向青藏高原输送的重要通道。南亚地区人为排放的黑碳等强吸收性气溶胶导致南亚和喜马拉雅区域单次散射反照率较低。以往在喜马拉雅和南亚开展的观测和数值模拟研究工作,仅用气溶胶吸收性来解释单次散射反照率的变化,其结果和结论存在矛盾和错误,给该区域气溶胶辐射效应的评估带来较大不确定性。青藏高原大气粉尘气溶胶科考团队研究发现,喜马拉雅区域气溶胶粒径谱分布决定了气溶胶的散射效率,从而决定了单次散射反照率的变化,而单次散射反照率的变化又影响气溶胶的直接辐射强迫效率。因此,大气气溶胶的粒径谱分布通过调节单次散射反照率影响喜马拉雅区域气溶胶的辐射效应。这项新认识将对理解全球范围内气溶胶的辐射效应具有重要意义。据悉,论文第一作者为兰州大学大气科学学院青年研究员田鹏飞,通讯作者为中国科学院院士、兰州大学教授黄建平和兰州大学教授张镭。
  • 科学家在集成光子芯片上实现人工合成非线性效应
    中国科学技术大学郭光灿院士团队在集成光子芯片量子器件的研究中取得新进展。该团队邹长铃、李明研究组提出人工合成光学非线性过程的通用方法,在集成芯片微腔中实验观测到高效率的合成高阶非线性过程,并展示了其在跨波段量子纠缠光源中的应用潜力。相关成果10月20日在线发表于《自然—通讯》。  自激光问世以来,非线性光学效应已经被广泛应用于光学成像、光学传感、频率转换和精密光谱等领域中。对于新兴的量子信息处理来说,它也是实现量子纠缠光源以及量子逻辑门操作的核心元素。然而受限于材料非线性极化率随阶数呈指数衰减这一本征属性,人们对光学非线性的应用主要局限于二阶和三阶过程,多个光子同时参与的高阶过程很少被研究。一方面,低阶过程限制了传统非线性与光量子器件的性能,比如量子光源的可扩展性;另一方面,人们也好奇高阶非线性过程所蕴含的新颖非线性与量子物理现象。  利用集成光子芯片上的微纳光学结构可以增强光子间的非线性相互作用,这已经成为目前国际上集成光学与非线性光学方向的研究热点。邹长铃研究组李明等人长期致力于集成光子芯片量子器件的研究,开拓微腔增强的非线性光子学,提出并证实了微腔内多种非线性过程的协同效应,开辟了室温下少光子、甚至单光子级的量子器件的新途径。现阶段,该研究组已经能够将非线性相互作用强度随阶次的衰减速率从10-10提升到10-5。即使如此,在集成光子芯片上实验观测到阶次大于三的高效率非线性效应依然极具挑战。  针对该难题,李明等人另辟蹊径,提出一种新颖的非线性过程人工合成理论,即利用材料固有的较强的二阶、三阶等低阶效应,通过人工调控多个低阶过程级联形成的非线性光学网络来实现任意形式、任意阶次的光子非线性相互作用。这种方法避免了在原子尺度去修饰材料的非线性响应,而仅需要控制微纳器件的几何结构就可实现高效率、可重构的高阶非线性过程。  利用集成的氮化铝光学微腔,该团队在实验上同时操控二阶的和频过程和三阶的四波混频过程,合成了更高阶的四阶非线性过程。实验证明,该人工合成的过程比材料固有的四阶非线性效应强500倍以上。如果进一步提升微腔的品质因子,该增强倍数可达1000万以上。  该团队将人工合成的四阶非线性应用于产生跨可见-通信波段的量子纠缠光源。通过测量跨波段光子间的时间-能量纠缠验证了人工合成过程的相干性。相比于传统跨波段量子纠缠光源的产生方法,该工作极大降低了相位匹配的困难,并且仅需要通信波段单一泵浦激光,展现了人工合成非线性过程的优势和应用潜力。审稿人高度肯定了该工作的创新性。  中科院量子信息重点实验室博士研究生王家齐、杨元昊为论文共同第一作者,李明副研究员、邹长铃教授为论文通讯作者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制