当前位置: 仪器信息网 > 行业主题 > >

显微测量系统

仪器信息网显微测量系统专题为您提供2024年最新显微测量系统价格报价、厂家品牌的相关信息, 包括显微测量系统参数、型号等,不管是国产,还是进口品牌的显微测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微测量系统相关的耗材配件、试剂标物,还有显微测量系统相关的最新资讯、资料,以及显微测量系统相关的解决方案。

显微测量系统相关的资讯

  • 安东帕发布荧光显微-流变学同步测量系统
    安东帕公司已向市场推出的光学显微流变系统,已得到广大客户的认可和应用,标准的光学显微流变系统使用普通白光作为光源,并可选配偏振光功能。而最新推出的荧光显微-流变学同步测量系统,利用荧光染料在样品内部不同相之间的选择性分布,并且受到激发后可发出荧光的特点,为普通光学显微系统无法观测样品的研究,提供了一条途径,比如不透明样品、界面边界不清晰样品、高浓度样品等。可以测量样品在静止或剪切状态下的结构。如下图: 可以根据样品特点选择合适的荧光指示剂,根据指示剂的激发波长和发射波长选择合适的滤色片。 值得骄傲的是,安东帕将荧光显微和原先的光学显微系统整合在一起,共用光学平台、只需增加荧光附件和光源,使光学显微系统的用户可以花很小的代价、很方便的升级到荧光显微平台。 可应用行业或领域:聚合物溶液乳液食品化妆品生物材料粒子示踪
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称扫描探针显微镜宽动态范围电流测量系统的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。应用前景:扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 科学家为环境条件下的多维测量定制原子力显微镜
    原子力显微镜(AFM)是一种表面表征方法。AFM中的关键元件是一个锋利的探针尖端,连接在力传感换能器上。在测量产生的相互作用力的同时,尖端相对于样品进行扫描。作为样品位置函数的映射原则上允许对表面结构进行成像。此外,还可以获得许多其他相互作用,如局部化学力和静电力。此外,将不同刺激整合到AFM测量中的能力(例如,温度依赖性、紫外线照射等)使得能够研究不同的实验效果。按时间顺序,AFM操作可分为两种:静态(也称为接触)和动态模式。接触操作模式依赖于探针的直接偏转测量。通过了解力传感换能器(即悬臂)的弹簧常数,可以直接恢复力。因此,接触模式易于操作,结果直观。然而,局部程度是由尖端和样品之间建立的接触面积定义的,该接触面积可以多达数百纳米正方形。此外,还有机械不稳定性,其中吸引的尖端-样品相互作用克服了悬臂的刚度,也称为跳跃接触。引入了动态操作模式来解决接触模式的局限性。动态操作模式的基本思想依赖于对悬臂的谐波振荡的解调,以控制尖端-样本分离。调幅(AM)是最广泛使用的动态操作模式之一。AM基于振荡的解调以恒定的激励信号驱动悬臂时,激励信号和振荡信号之间的相位差、振幅和/或相位差。仅涉及一个控制回路来控制AM-AFM中恒定激励信号的尖端-样本分离。因此,AM-AFM的使用相对简单。尽管AM-AFM易于实现,但它在机械上受到限制,特别是在真空条件下。更具体地说,振荡幅度的稳定时间与悬臂的质量因子成比例。因此,由于在真空条件下缺乏粘性阻尼,AM调制的使用是不可行的。此外,超出现有AFM硬件能力的机械不稳定性和振幅变化阻碍了传统AM-AFM在真空条件下的使用。AM-AFM的替代品是调频原子力显微镜(FM-AFM),它基于尖端-样品相互作用下悬臂共振频率的解调。FM-AFM消除了AM-AFM的限制;然而,它需要一个相对复杂的控制架构,因为激励信号由于尖端-样本相互作用而变化。FM-AFM通常在真空条件下使用,因为信噪比随着高质量因子的提高而提高;然而,它也可以在环境下甚至在液体环境中使用。FM-AFM能够以高分辨率测量尖端-样本相互作用力,即作用力为皮牛顿,距离为皮米。此外,随着原子工程尖端的最新进展,有可能评估不同原子侧的直接化学表征。除了FM-AFM的精确力和距离控制外,FM-AFM还利用其时间分辨测量的潜力覆盖了AM-AFM,其中尖端-样本相互作用力是作为时间的函数测量的。然而,已经从理论上证明并通过实验验证了基于FM的测量的时间分辨率不受机械限制。在这里,科研人员展示了具有新的硬件和软件集成的商业原子力显微镜系统的定制。尽管最初的设置,VEECO的EnviroScope扫描探针显微镜(SPM)带有NanoScope®IIIa控制器,具有用户友好的功能(例如,易于访问样品和尖端以及样品和/或尖端的温度控制),但它只能进行接触模式和基于AM AFM的形貌测量,并具有原始的力谱能力。我们实现了一个锁相环、一个高压放大器和一个新的显微镜控制器,用于FM-AFM的自动测量。我们用环境条件下的实验来说明我们的定制。更具体地说,我们进行了FM-AFM形貌实验、接触电势差测量、基于FM AFM的力谱测量、时间分辨原子力显微镜测量和跨台阶边缘的二维力谱测量。尽管每个商业系统都有自己的特点(例如,驱动步进电机进行粗略处理,访问所有数据信号以及高压信号的能力,以及用于样本定位的摄像头连接),但许多(商业)系统也可以进行类似的升级/定制。因此,我们相信我们的方法将对其他扫描探针显微镜有用。
  • 弯月面法测量纤维润湿性
    方法介绍弯月面法是一种基于弯月面接触角测量纤维润湿性的光学方法,弯月面的接触角是由垂直浸入纤维上的毛细力而产生的。纤维接触角与哪些问题有关?许多工艺和产品都涉及纤维和液体之间的作用。通常,润湿性扮演着重要的作用。例如,在开发护发产品时,了解洗发后头发的润湿行为是研发配方过程中至关重要的一环。在复合材料中,纤维与聚合物基体相容性也可以通过润湿性来表征。除此之外,接触角对于纺织品的制造和护理也很重要。弯月面法是什么原理?采用弯月面法测量纤维时,需将附着在支架上的纤维样品垂直浸入液体中。纤维上形成的弯月面在三相点形成接触角,通过该接触角可表征纤维和液体间的润湿性。相机将全程记录浸入的过程,并且通过视频图像进行轮廓分析以测定接触角。在浸入的纤维处形成弯月面,轮廓分析以测定接触角KRÜ SS设计的纤维支架与任何液滴形状分析仪的针头滴定系统都兼容,由于是直接连接到针头,因此不需要更换整个滴定装置。如果滴定装置可通过软件进行高度调节,则在纤维浸入和拉出的过程中也可以动态测量接触角,以测定前进角和后退角。纤维接触角既然可由张力仪测量,为什么还需要有新的纤维测量方法?事实上,采用张力仪的Wilhelmy方法测量基于润湿力的纤维接触角通常是标准做法。弯月面法不会取代Wilhelmy法测纤维的接触角,但这种方法对光学接触角测量仪的用户来说是一个很好的补充,他们可以使用该模块来扩大他们的样品的测量范围,而无需采用另一台仪器,投资也很少。除此之外,采用这种新的方法的优势在于:与Wilhelmy方法不同,这种测量方法在测量时不要输入纤维直径和液体的表面张力,因为接触角是直接通过光学法测量的,这也减少了测量前的准备工作,避免了这两个容易出现测量误差的参数造成测试不准确的可能性。在什么情况下应该用张力仪测量纤维接触角?弯月面法不适用于润湿性差的样品,即接触角大于90°的样品,比如防水纺织品。在这种情况下,没有毛细管粘附,而是毛细管凹陷,即弯液面反转,三相点低于水平面。在这种情况下,光学测量很难实现。另一个极端情况是测量特别小的接触角,因为通过图像分析无法精确测定到三相点。而对于张力仪的Wilhelmy方法来说,润湿性的好坏对样品的测量不会产生影响。
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 开发深度学习超分辨显微成像方法 陌讯科技数字显微形态分析系统正式发布
    近日,陌讯科技正式宣布其自主研发的数字显微形态分析系统正式上线。陌讯数字显微形态分析系统是陌讯科技自主研发的科研形态分析系统。能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片。陌讯显微形态分析系统支持图像栈(stack)功能,即在一个窗口里以多线程的形式层叠多个图像, 并行处理。只要内存允许,陌讯显微形态分析系统能打开任意多的图像进行处理。除了基本的图像操作, 比如缩放,旋转, 扭曲, 平滑处理外,陌讯显微形态分析系统还能进行图片的区域和像素统计, 间距,角度计算, 能创建柱状图和剖面图,进行傅里叶变换。陌讯显微形态分析系统可计算选定区域内分析对象的一系列几何特征。分析指标包括:长度、角度、周长、面积、长轴、短轴、圆度、最佳椭圆拟合、最小外接矩形拟合以及质心坐标等。 陌讯显微形态分析系统首席工程师陈侃介绍说,我司通过“陌讯数字显微形态分析系统”项目研制的科研数字形态分析软件,目前已在多项科研实验中投入使用。陌讯显微形态分析系统在科研实验中支持神经元追踪、神经元分支统计、曲率计算与拟合、基于机器学习的自动细胞分割、图形的量化分析、3D细胞自动分割、线粒体网络形态分析、图像自动配准、细胞划痕实验分析、3D渲染动画生成、图像抖动自动校正、接触角测量、基于深度学习的细胞核自动分割、自动细胞计数、利用宏记录器自动化处理、自动统计气泡的面积直径、荧光共标细胞计数、荧光照片的合并分割、明场图片白平衡、荧光比率图的制作等一系列功能。 陌讯科技自主研发“陌讯数字显微形态分析系统”这一数字显微形态分析软件项目立项以来,项目科研团队历时5年攻关,全面突破在对显微镜图像进行定量分析时的一系列科研难题。支持荧光照片的平均荧光强度分析、径向平均荧光强度检测、荧光共定位分析、计算图片的孔隙率、分析脑片不同分层的灰度值、单个细胞平均荧光强度自动检测、3D体积与表面积测量、免疫组化分析、细胞膜荧光强度检测、Western Blot条带定量、面积测量综述、细胞计数综述等多种定量分析场景应用。还培养出一支集光学、机械、电子、计算机、软件、材料等领域的显微光学软件技术研发与工程化开发团队。业内专家认为,“陌讯数字显微形态分析系统 ”项目的成功实施,极大改善了国内显微成像软件自主研发缺失的状况,对满足中国生物医学等前沿基础研究的定制化需求、提升创新能力,以及推动中国显微成像分析软件行业转型升级具有重要战略意义。陌讯科技CTO赵卓然透露,下一步将结合该工程化及成果转化创新模式,实现“陌讯数字显微形态分析系统”项目科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接,通过系列化、组合化的产品布局,推动该项目显微形态分析系统实现工程化、产业化。
  • 原位电子显微技术盘点:测量设备、应用案例及热点市场需求探讨
    p  近年来,透射电子显微镜(TEM)已达到划时代的亚埃级分辨率( 0.1nm),这为科学家们对物质的探索带了新的可能。而传统TEM测试仅仅是“看”,随着科技水平的发展,人们越来越不仅仅满足于在原子级别观察样品,更希望能用“手”去操纵和测量样品,这便引入了原位测量的概念。/pp  原位技术将电镜的应用扩展到金属合金、催化剂、能源材料、纳米颗粒和材料、低纬度材料、薄膜和涂层、缺陷和故障分析、半导体、细胞生物学、纳米医学和纳米生物技术、生物化学、癌症生物学遗迹神经科学等领域,研究学者可以通过原位透射电子显微技术捕获样品对环境的动态感应,包括尺寸、形态、晶体结构、原子结构、化学健、热能变化等重要信息。因而,原位透射显微镜已经不仅仅是一个成像工具,而进化为原子尺度下的一个实验平台或称之为纳米反应器。随之,原位电子显微学也成为时下的研究热点之一。/pp  前不久,a style="color: rgb(112, 48, 160) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/zt/microscope"span style="color: rgb(112, 48, 160) "strong2017年全国电子显微学学术年会/strong/span/a在成都星宸皇家金煦酒店圆满落幕。作为合作媒体,仪器信息网也真切感受到与会者对‘原位电子显微学’的关注热情。为方便广大网友对原位电子显微学相关设备、技术及应用有更直观的认识,仪器信息网编辑随机选择DENSsolutions、安徽泽攸科技有限公司、厦门芯极科技有限责任公司等3家相关参展设备商,根据其提供的资料,将各自产品技术优势、典型案例、技术发展趋势等情况整理成文,供读者参考。/pp span style="color: rgb(255, 255, 255) "strongspan style="background-color: rgb(112, 48, 160) "电镜原位检测技术及应用的未来发展趋势/span/strong/span/pp 近年来,微纳米材料的液-固、气-固,固-液-气界面反应广泛应用于能源、环保等重要国计民生领域。深入研究这些界面反应机理,开辟创新技术新途径,例如XPS,XAS,XRD, FTIR, Raman等各种原位光谱技术, 能够实现原位表面或者体相结构变化动态研究,不再依赖“主要依靠理论模型给出相应关联”的研究模式,但仍然无法实现“原位、清楚观测”,做到“所测即所见”。为了达到这一目标,微结构可视化、原位多通道、实时观测手段便成为最佳选择之一,最为典型的是原位透射电镜TEM技术。/pp  随着微纳米加工技术的发展,液体池的出现,电镜内仅仅实现原位观察液体环境微纳米材料的动态生长和电化学过程。与在高分辨和高衬度成像两方面所取得的广泛进展相比,对液体和常压气体环境中的高分辨原位观察还远未能够在电镜中彻底实现。更甚者,外场作用下材料在原子尺度的形态变化越来越成为材料研究和开发的根本。/pp  因此,外场的引入是未来电镜发展的趋势之一,比如热场、电场、磁场、力场、光场、电化学场等施加到样品上,对其进行原位观察,对于开展材料的结构-性能关系研究具有重要的指导意义。在诸如催光电化反应氧化-还原机制、半导体电输运性质、超结构有序自组装、磁性材料磁畴取向、活性位晶面选择性暴露、纳米材料的力学性能方面展开深入系统有针对的研究。当前的核心技术主要体现在原位样品杆的设计和制作上,针对体系进行优化设计能够在同类型的电镜上通用,体现相当大的实用性和灵活性,针对性。/pp  对于原位电镜技术而言,最需要解决的,还是观察的稳定性与分辨率之间的平衡,因为很多原位技术还是以损失分辨率为前提的。因此,对于微纳米加工技术的发展,推动液体池的设计创新,显得尤为重要。目前,采用最多的液体池,窗口都是SiNX或者石墨烯。目前的SiNX厚度已经接近极限,分辨率且已达原子级。而石墨烯池,只能限于针对的特定体系,对于光热等外场引入,显得困难较大。寻求合适的材料代替,也是方向之一。此外,针对体系进行特定体系的原位池制作,与原位杆子进行配合使用,也是创新之一。相应地,电镜的内部构造在保证安全可靠的前提下逐渐朝着适应原位研究的功能进行升级与改造,从而实时高分辨高时空分辨率原位检测也是未来的趋势之一。/pp  strong材料领域/strong:通过对电镜样品室抽真空系统的改造或者对电镜样品杆的特殊设计,使得透射电镜中的样品可以处于气体环境或液体环境之中。这种电镜特别适用于与气-液-固体相互作用及反应有关的物理或化学过程并能揭示原子层次的反应机制,在诸如纳米材料生长、催化反应、纳米电学,纳米力学、以及高温相变等现代材料研究领域中具有广泛的应用前景和独特的价值。/pp  strong生物医疗等领域/strong:人类利用电镜技术可以实时观察生物膜的结构和细胞内各种西细胞器的形态学结构。也可以发现和识别肿瘤病毒,如SARS病毒是首先在电镜下观察实现和确认的。目前电镜也可实现肾活检,肿瘤真诊治。对于临床病例诊断也是极大的促进作用,如电镜技术与免疫学技术的结合产生免疫电镜技术,可针对细胞表面及其内部的抗原进行定位。/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "1、得视奥达科技有限公司/span/strong/pp  span style="background-color: rgb(255, 192, 0) "strong公司简介/strong/span——公司成立于2014年,是荷兰原位显微学公司DENSsolutions在大中国地区总代理,负责DENSsolutions原位样品控制平台(原位样品杆)的销售和服务并支持该公司在中国地区推广品牌。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/3d561611-ce04-40db-b130-e6923a902a4c.jpg" title="1.jpg.png"//pp  DENSsolutions的原位样品控制系统主要包括对样品的温度、电场、电流、液体、以及气氛种类、比例、流速和压力的控制。该公司为荷兰Delft理工大学投资,自2012年成立,核心团队利用欧洲完备的产业链将实验室内的原位控制技术商业化、标准化,推出了热力学Wildfire、电学Lightning、液体环境Ocean、气氛环境Climate四大系统。/pp  span style="background-color: rgb(255, 192, 0) "strongDENS产品技术优势/strong/span——1)strong稳定性/strong:采用金属丝加热的芯片实验室设计保证高温下优异的TEM性能 在1300℃时,样品漂移低至0.5nm/min,优秀的电学稳定性和温度稳定性 纳米反应器支持高达1个大气压的压力和加热到1000℃高温,并实现亚埃级分辨率(0.1nm)。2)strong准确获取实/strongstrong时动态/strong:高温、高压或高电场时观测材料纳米级别的实时演变。纳米池内观测液体中反应过程,获取实时动态,记录化学反应过程、纳米颗粒生长,沉积原理及团聚过程。3)strong自然还原生态环境/strong:高精度可控的温度环境,高温下提供高电场,支持高偏压,高电流,保持样品的液体环境,可控的液体类型、流速、静态与动态的液体环境,结合加热和偏压的功能,简化实验过程,可控的研究材料特性。4)strong全面采集完整信息/strong:高达200℃/ms加热与淬火的急速响应,高温下实现高质量的EDX和EELS分析,高精度电压电流测量、pA的电流测量精度,关联电学特性和结构变化。5)strong安全性/strong:先进的三重保障检漏测仪保障TEM及样品的安全,自对齐以及高等级的实验安全性。/pp  strongspan style="background-color: rgb(255, 192, 0) "国内典型用户及案例/span/strong——据厂商提供资料,典型用户单位包括清华大学、北京大学、浙江大学、上海交通大学、武汉大学、中科院物理所、大连化物所、沈阳金属所、中石化研究所、中科合成油等。/pp style="text-align: center"img style="width: 450px height: 253px " src="http://img1.17img.cn/17img/images/201711/insimg/5424d963-0cb3-4eb3-b634-38d3f6a89d3d.jpg" title="2.jpg.png" hspace="0" height="253" width="450" vspace="0" border="0"//pp  strong案例1/strong:热处理可以提高合金硬度,处理的温度对合金的性能影响很大,传统研究只能做处理后的表征。据厂商提供资料,某教授团队按照一定的处理工艺在电子显微镜中做热处理,实时观测沉淀相生长的状况。观察到沉淀相长大的过程与快慢,及针状沉淀相与弯曲的位错圈在生长过程中的相互作用,且这些现象与工艺性能曲线符合的很好。在长达10个小时实验条件下获得良好数据,并将相关结果发表在Nature 子刊。/pp  strong案例2/strong:据厂商提供资料,在催化研究方面,过去为了解加入气体对晶体形态的影响已经有了很多的进展,然而,大部分的工作仅限于低气压下,远远低于现实环境。某教授团队通过原位技术观察纳米反应炉内在一个大气压的氢气环境里面的形态的动态变化过程。基于校正后的表面能的全面Wulff结构和实验完全一致。这样的发现为今后加入气体的处理能用来塑造纳米催化剂形态提供了新的可能。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong2、安徽泽攸科技有限公司/strong/span/pp  span style="background-color: rgb(255, 192, 0) "strong公司简介/strong/span——安徽泽攸科技有限公司(Zeptools)是一家具有自主知识产权的先进装备制造公司。公司致力于向客户提供原位透射电镜解决方案、纳米操纵手、MEMS传感器、高精度源表等产品,也是目前为数不多自主研发、生产并提供整套国产原位TEM解决方案的公司。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/a3dc7754-44cc-4ae2-869d-b3524072fbf3.jpg" title="initpintu_副本.jpg"//pp style="text-align: center "strong从上至下,从左至右:AL-insitu系列、Z-insitu系统、Ap-insitu系统、H-insitu系统/strong/pp  公司拥有广泛的原位TEM解决方案,涵盖五大系列:基于MEMS技术的原位TEM解决方案、基于纳米操纵探针的原位解决方案、原位光学-电学测试系统、原位力学-电学测试系统。据悉,除以上四大系列产品外,公司的原位气氛解决方案也在抓紧研发中,预计在2018年上半年正式推出。/pp  span style="background-color: rgb(255, 192, 0) "strongZeptools产品技术优势/strong/span——基于MEMS技术的AL-insitu系列产品特色是一杆多用,通过一根多功能样品杆搭配不同MEMS芯片和附件,可以实现电学、低温、加热、液体、电化学、双倾等功能,产品性能指标和稳定性均很优秀。基于纳米操纵探针的原位解决方案不仅可以在亚纳米级别精确操纵样品,还有装样相对简单、不消耗耗材等优势,可以进行原位电学、电化学等实验。如Z-insitu系统可以实现原位电学、低温、电化学、双倾等功能。原位光学-电学测试系统,在TEM中实现原位电致发光或光谱测试。如Ap-insitu系统可以实现原位光学、电学等功能。该方案也是目前世面上最优的原位TEM光学解决方案。原位力学-电学测试系统的H-insitu系统可以实现原位电学、力学等功能,该解决方案可以实现载荷分辨率5 nN的精确力学测试。/pp  strongspan style="background-color: rgb(255, 192, 0) "国内典型用户/span/strong——据厂商提供资料,公司客户如中国科学院物理研究所、北京工业大学、中国科学院过程工程研究所、北京大学、浙江大学、清华大学、中国科学院硅酸盐研究所、厦门大学、电子科技大学、苏州大学、苏州科技大学、郑州大学、中国石油大学、北京交通大学、中国科学院大连化学物理研究所、Queesland University of Technology等数十家研究机构。相关成果发表于Nature及其子刊/PRL/JACS/Adv. Mater./Nano Lett.等杂志。/pp span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong 3、厦门芯极科技有限责任公司/strong/span/pp  strongspan style="background-color: rgb(255, 192, 0) "公司简介/span/strong——厦门芯极科技有限责任公司是一家留学人员回国创业的集研发、生产、销售为一体的高新科技企业。公司建立了完备的微流控芯片研发与生产工艺流程,掌握了国际前沿原位芯片生产技术,与美国Berkeley Nanolab,美国Bipolar-Tech LLC和厦门大学建立了产品研发合作伙伴关系。产品涵盖通用材料化学分析芯片、集成式通用医疗诊断芯片、集成式通用环境保护分析监测芯片、集成式通用食品安全分析检测芯片和基于微流控芯片的新能源体系四大系列数十个品种,以及各类科研类芯片。/pp strong span style="background-color: rgb(255, 192, 0) "产品技术优势/span/strong——公司提供的产品和服务按市场可分为科研类芯片、仪器标配芯片、应用类芯片及系统和芯片实验室解决方案。科研类芯片服务于基于微流控芯片的科研工作者,提供包括聚硅基各种不同材质的微流控芯片的设计与制备,用户配置必要的辅助设备即可使用 仪器标配芯片是针对国内市场上微流控芯片仪器开发的标准芯片,为微流控芯片仪器的核心组件,应用类芯片及系统是利用微流控芯片的技术优势开发的分析检测装置,应用于环保、食品安全、药物筛选等领域 芯片实验室解决方案为客户提供一对一微流控芯片科研或应用的解决方案,分为产品和科技咨询两个方面:产品包括微流控芯片加工、检测仪器设备配置及微流控芯片配件配置 科技咨询为客户提供组建芯片实验室的整体方案、解决微流控芯片应用中的技术难题、微流控芯片项目研发服务等。/pp  strongspan style="background-color: rgb(255, 192, 0) "厂商提供/span/strongspan style="background-color: rgb(255, 192, 0) "strong典型应用案例/strong/span——strong1)高分辨静态池在纳米材料液相合成高分辨研究中的应用/strong:通过使用高分辨静态原位池芯片,首次实现了高分辨率实时原位观察纳米晶体在溶液中的成核生长及形貌演变过程,研究工作发表在Science 期刊。发现了包括一维铁铂纳米棒的 3 步生长过程,形状诱导附着组装机理,及生长过程中的形貌结构自我修正等机理。并通过原位液体环境 TEM 研究了表面活性剂在胶体纳米晶体生长中形貌控制的实现过程及机理,首次发现了邻位粒子在胶体纳米粒子生长过程中对粒子的形貌的巨大影响。2014年进一步实现了每秒 400-1600 帧原子级高分辨率的图像采集,观察到纳米立方体晶体的生长及各个晶面的演变过程,发现在纳米尺度晶体生长过程中表面能最小化的原则不再适用。这一研究对纳米尺度晶体生长规律提出了全新的认识,发表在2014年八月出版的Science 期刊上。strong2)原位电化学系统在电沉积及锂电池研究中的应用/strong:在发展原位液体环境TEM方法和纳米材料生长机理的研究同时,还开展了储能电池原位透射电镜研究方向,首次实现了锂枝晶生长及SEI膜形成过程的观察。到目前为止,团队实现了许多纳米材料独特的动态过程可视化的研究。此外,发展的原位液体环境TEM方法在其他领域具有重要的应用, 例如 ,蛋白质在液体水中的成像达到纳米级分辨率。原位液体透射电镜在材料科学,物理学,化学和生物学的的基础研究中有广泛的应用前景。/p
  • 2013年布鲁克原子力显微镜测量技术系列讲座之四、之五
    现代科学技术中,观察、测量、分析以及操纵纳米大小的物体是一个热门的研究领域。原子力显微镜的诞生为研究者们提供了分析和操作纳米世界的&ldquo 眼&rdquo 和&ldquo 手&rdquo 。因此,自诞生以来AFM已经被广泛用于科研和工业界各领域,涵盖了聚合物材料表征,集成光路测量,材料力学性能表征,细胞表面形态观察,生物大分子的结构及性质,生物传感器,分子自组装结构等领域的监测等各类科研和生产工作。 【讲座安排】 1、第四讲-利用AFM-Raman集成成像系统进行材料性能表征| 时间:2013年6月25日 10:00 我要报名》》》》 2、第五讲-SPM在材料电学性能表征方面的应用进展| 时间:2013年7月9日 10:00 我要报名》》》》 【注意事项】 1、报名条件:只要您是仪器网注册用户均可报名参加。 2、参加及审核人数限制:限制报名人数为120人,审核人数100人。 3、参与互动:每次会议从提问的用户中随机抽取出一名幸运之星,奖励一个价值150元的耳机。 4、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。 5、提问时间:现在就可以在此帖提问啦 6、会议进入:会议室将在会议正式开始前30分钟打开,审核通过的用户可以进入会议室 7、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~ 【往期回顾】 1、原子力显微镜简介及成像技巧&mdash &mdash 2013年布鲁克原子力显微镜测量技术系列讲座第一讲 精彩回放 2、原子力显微镜在生物学研究中的应用&mdash &mdash 2013年布鲁克原子力显微镜测量技术系列讲座第二讲 精彩回放 3、原子力显微镜在高分辨定量测量材料特性方面的应用进展&mdash &mdash 2013年布鲁克原子力显微镜测量技术系列讲座第三讲 精彩回放
  • 丹迪发布显微数字图像相关系统 新品
    仪器简介:DIC(Digital Image Correlation)数字图像相关技术是一种非接触式测量材料全场应变、位移的光学测量技术,该技术几乎适用于任何材料且测试面积广、结果精确。Dantec Q-400μDIC丹迪公司研发生产的一款专门用于测量微电子元件、生物材料变形的显微DIC测量仪,可测量一些显微结构的翘曲实验、热膨胀系数等,具有精度高,体积小等优点。技术参数:测量维度:二维、三维测量区域:0.1mm×0.1mm至17mm×17mm测量精度:位移(1μm),应变(0.005%)主要特点:精度高、测量范围广、无接触、方便使用创新点:显微结构测量,可检测100微米至15mm范围的试件可以直接测量构件的翘曲、热膨胀系数显微数字图像相关系统
  • 2013年布鲁克原子力显微镜测量技术系列讲座精彩回放
    2013年布鲁克原子力显微镜测量技术系列讲座 现代科学技术中,观察、测量、分析以及操纵纳米大小的物体是一个热门的研究领域。原子力显微镜的诞生为研究者们提供了分析和操作纳米世界的眼和手。因此,自诞生以来AFM已经被广泛用于科研和工业界各领域,涵盖了聚合物材料表征,集成光路测量,材料力学性能表征,细胞表面形态观察,生物大分子的结构及性质,生物传感器,分子自组装结构等领域的监测等各类科研和生产工作。通过布鲁克2013年原子力显微镜测量技术一系列讲座,大家已经对AFM的基本原理及成像模式, AFM技术的发展进展,及其最新最先进的应用和功能,有了全面的了解。 在2013 年布鲁克原子力显微镜测量技术系列讲座的最后一讲,我们将重点介绍探针的基本信息以及如果合理选择AFM探针。在AFM的测量以及数据分析过程中,探针有着举足轻重的作用。合理选择探针,可以帮助操作者快速高效地获得高质量的实验数据。帮助AFM用户掌握获得高品质图像,获取实验数据的技巧;为用户更深入的研究工作打下良好的基础。 布鲁克原子力显微镜测量技术系列讲座往期精彩回放:第一讲 : 原子力显微镜简介及成像技巧 (点击观看精彩回放) 主讲人:李永君 博士 报告时间:2013年3月28日 第二讲 :原子力显微镜在生物学研究中的应用进展 (点击观看精彩回放) 主讲人:龙飞 博士 报告时间:2013年4月16日 第三讲 :原子力显微镜在高分辨定量测量材料特性方面的应用进展(点击观看精彩回放) 主讲人:仇登利 博士 报告时间:2013年5月21日第四讲:利用AFM-Raman集成成像系统进行材料性能表征的最新进展(点击观看精彩回放) 主讲人:孙万新 博士 报告时间:2013年6月25日第五讲:基于扫描探针显微镜的电学表征技术(点击观看精彩回放) 主讲人:孙昊 博士 报告时间:2013年7月9日第六讲:如何合理选择AFM探针获取高分辨图像 主讲人:陈苇纲 博士 报告时间:2013年12月17日 Bruker Nano Surfaces Division &mdash AFM Business 010-5833 3252sales.asia@bruker-nano.comwww.bruker.comAll Contents © 2013 Bruker Corporation. All Rights Reserved.
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 海洋光学推出了新的显微拉曼系统
    海洋光学新近推出的IDRaman micro是一款精巧的显微拉曼系统,尤其适用于科研、质量控制和质量保证环境中进行的拉曼测量。IDRaman micro是一种通用的高性能分析工具,对于需要精准对焦和高空间分辨率的采样应用,以获得最佳的拉曼信号。该款仪器于2013年9月29日在SciX 2013大会上首次亮相。SciX 2013关注分析化学,尤其重视新兴技术发展动态。本次SciX大会在美国威斯康星州密尔沃基市举办,吸引了来自世界各地的科研人员和工程专家。IDRaman micro采用了巧妙的聚焦技术,与传统的倒置显微镜和依赖于光纤耦合的系统相比,采样更精准、操作更容易。IDRaman micro的OneFocus技术,在同一个焦平面上收集图像和拉曼信号,从而优化了该拉曼仪器。特别是当需要对样品的某个特定的结构或部位进行测量时, 由于其能够在观察到高质量的样品图像的同时,获得最佳的拉曼信号,从而大大简化繁琐而又不准确的数据采集的过程。对于某些应用,样品的表面只有一个分子 层,如石墨烯或表面增强拉曼光谱(SERS),OneFocus技术也能够增强拉曼数据的采集。IDRaman micro可以用532纳米或785纳米波长的激光来激发,当拉曼位移的范围为200-2000cm-1 时, 具有较高的分辨率4 cm-1,或当拉曼位移的范围较宽,为200-3200 cm-1时,具有8 cm-1的分辨率。其300万像素的成像器采用反射照明模式可获得清晰的样品图像,更换物镜,操作员就可调节光斑尺寸和光学放大倍率。与 传统的显微拉曼系统相比,IDRaman micro设计紧凑,体积小巧,只有4&rdquo x 14&rdquo x 11&rdquo (36 cm x 10 cm x 28 cm)大,重12磅(5.4千克)。灵活的设计使其可以测量比色皿中样品,或者从样品瓶的底部或侧面进行测量。此外,在显微镜测量模式和体样品测量模式之 间切换也如拨动一根拉杆一样简单。如想了解更多信息,请登陆www.OceanOptics.com以及www.OceanOptics.cn网站;或拨打电话021-6295 6600、发邮件至asiasales@oceanoptics.com联系海洋光学应用工程师。
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 5 多晶硅薄膜的拉曼谱峰值频移,随着应力增大,谱峰向左漂移。图 6 多晶硅薄膜的拉曼谱峰频移和残余应力分布从图6可以明显看出,多晶硅薄膜的拉曼谱峰值频移在它的长度方向上大致呈对称分布,也就是说,多晶硅薄膜的残余应力在其长度方向上呈对称分布。通过计算可知,在多晶硅薄膜的中部存在很大的拉伸残余应力(拉曼谱峰值向低波数移动),达到0.84 GPa。4. 应力的拉曼扫描成像某半导体晶圆厂家,采用奥谱天成Optosky的ATR8800型共聚焦显微拉曼光谱扫描成像仪(www.optosky.com),测试晶圆的应力分布情况,经过数据处理后,测得了整个晶圆圆盘的应力分布。图 7 奥谱天成生产的ATR8800型共聚焦显微拉曼光谱扫描成像仪,焦距为760mm,分辨率达到0.5cm-1图 8 ATR8800共聚焦显微拉曼光谱仪的工作界面图 9 ATR8800共聚焦显微拉曼光谱仪的工作界面图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。5. 总结与讨论拉曼光谱具有无损、非接触、快速、表征能力强等特点,能够清晰地表征出晶圆的应力与应力分布,为半导体的生产、退火、封装、测试的工序,提供一种非常好的测量工具。奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 承担“海洋与渔业发展专项资金项目”(总经费4576万元);◆ 2021福建省科技小巨人科技部;◆ 刘鸿飞博士入选科技部“创新人才推进计划”;◆ 国家高新技术企业;◆ 刘鸿飞博士获评福建省高层次人才B类;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家海洋局重大产业化专项项目承担者;◆ “重大科学仪器专项计划”承担者。
  • 尼康推出新一代工业测量显微镜
    近日,尼康宣布推出全新的MM-400N和MM-800N系列工业测量显微镜。升级之后,这两个系列都具有针对透射照明装置的光圈控制装置,让用户能够调整光圈,以优化对比度和分辨率。此外,用户还可设置用于测量圆柱形产品的照明条件。新开发的透射LED照明装置同时拥有了白色和绿色光源;用户可通过按下显微镜前面的开关来切换光源颜色, 而无需插入或移除滤光片。另外,通过将透射照明装置集成至工业测量显微镜的主体中,可将仪器的深度缩短30mm,从而减小安装占用空间。MM-800N作为改造的一部分,尼康为工业测量显微镜设计了现代化的外观,展示了公司全新而简洁的黑白色涂装。此外, 电力消耗相比之前的MM-400/MM-800系列型号约降低10%。新款和以往系列型号共用很多相同的零部件,包括测量台、物镜和光学配件,用户可以继续将其用于实现简单、精确且高度可重复的测量应用。MM-800N/LMU
  • 奥林巴斯智能激光显微镜,亚微米3D测量检测新体验
    随着工业制造水平的不断提高,制造出的各类工业产品也越来越智能化,产品的升级随之而来的是产品的检测要求也越来越精细,对检测的设备也提出了更高的要求,尤其是半导体、平板显示、电子器件、高精密电路板制造以及材料等领域,所需要的显微镜检测设备越发精细化,不仅要极其精确还得智能。在众多的显微镜公司及显微镜产品中,奥林巴斯公司是世界中具有先进光学技术的代表企业,多年来一直在显微镜领域攻克难关,进行光学技术的创新,推出了与时俱进的奥林巴斯激光显微镜OLS5100,颠覆了传统激光显微镜,将大数据、科技智能等高端技术融入了新一代的3D测量激光显微镜中,助力我国工业领域的发展。奥林巴斯LEXT OLS5100是全新的一代激光显微镜,它可观察纳米范围的台阶,可测量亚微米级别的高度差,还可测量从线到面的表面粗糙度,在这些方面上的测量上,OLS5100通过它的智能物镜选择助手和智能实验管理助手,以非接触、非破坏的观察方式轻松实现3D观察和测量,容易、准确、快速!何为智能物镜选择助手?它如同机器人一样,给它下达指令,就能给你完成你想要的目的。智能物镜助手也一样,它能帮助您确定哪款物镜最适合用于样品表面的粗糙度测量。它通过三个步骤就能完成你对物镜的选择:首先,启动智能物镜选择助手功能。 第二,点击开始。第三,它就会确定并告诉你所选择的物镜是否适合当前被检测的样品。这样一来,就能顺利减少因错误选择物镜造成的实验时间浪费,同时还能让测量结果保持稳定,不受操作员技能水平的影响。智能实验管理助手,它是一个帮助用户管理实验计划、采集和分析的软件。在测量过程中可根据软件生成的定制实验计划扫描样品,所有的检测分析过程全部显示在屏幕上,这样的可视化可让用户在分析中更容易发现问题,优化检测结果,从而节省更多的时间和人力。制造业在变革,智能化转型升级是必然的结果,奥林巴斯不断开拓打造世界先进的测试和测量解决方案,为各行各业提供好用方便的检测武器。而奥林巴斯激光显微镜OLS5100顺应改革潮流,除了出色的激光共焦光学系统获得更加清晰的图像外,还配备了智能物镜选择助手和智能实验管理助手,无需制备样品、非接触面粗糙度分析和高效率的亚微米3D测量强大功能,测量精确、可靠稳定的奥林巴斯激光显微镜成为了制造研发和质量保障的重要设备。
  • 美国CRAIC QDI 302 显微光度计——煤岩分析系统
    在现有的显微镜上增加光谱仪功能 QDI 302&trade 能够与任何配有标准光学接口(C-mount)的显微镜连接,为其增加光谱仪功能。甚至可以用来升级旧型号的显微光度计。根据显微镜功能可以获得最小到微米样品的吸收或透射、反射、荧光和偏振光谱等测量分析。CRAIC还提供专为显微分光光度计特殊设计的显微镜,以确保整个系统可以采集到更大范围的光谱。 QDI 302&trade 显微镜分光光度计具有科研级高分辨探测器(CCD或PDA),可选配半导体制冷探测器,增强稳定性和保证较低的噪音水平;科研级光学接口,高分辨彩色成像系统。WIDOWS XP操作系统,应用软件使用简单,操作方便。 1. 可进行透射或吸收,反射,荧光和偏振分析; 2. 全光谱测量,200-1000nm 3. 六种采样面积 4. NIST可追溯标准品 5. 科研级制冷CCD 精度高 测定煤镜质组随机反射率,其测定结果,满足ISO 7404,ASTM D2798和国家标准GB6948-98《煤镜质组反射率测定方法》,可根据测定结果给出镜质组平均随机反射率、镜质组平均最大反射率、标准方差等煤岩参数与反射率分布图。 美国CRAIC公司是世界上研究和生产显微分光光度计的领导者。CRAIC公司的QDI系列显微分光光度分析系统采用科研级显微镜,图象采集器和科研级致冷阵列检测器光谱分析仪。可以进行紫外-可见光-红外光谱段的反射分析,透射分析,荧光分析和偏振分析。 应用领域 在煤层地质行业的应用:  测定煤的镜质组反射率,研究煤的成熟度  鉴定煤的显微组分  测定煤显微组分的百分含量 在配煤炼焦行业的应用:  鉴别单混煤  含沥青煤的特性  测定煤显微组分的百分含量 其它应用: &bull 地质学,石油、矿物分析研究 &bull 材料科学 & 物理学 &bull 生物学 & 生物技术 & 医学 &bull 平板显示设备 &bull 半导体 & 化学 北京昊诺斯科技有限公司为美国CRAIC公司系列显微分光光度计和紫外显微镜的亚太区独家代理。 王 祺 销售主管 地址:北京市朝阳区亚运村慧忠北里406号奥友会馆2012室 100012 电话:010-64842431 64842431 64861431 传真:010-64838775 E-mail:wangqi@herosbio.com 网址:www.herosbio.com
  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》
    [报告简介]单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN别,过去通常使用原子力显微镜才能够进行测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了大的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]05月25日 下午15:00-16:00 [主讲人介绍]Tamás Gerecsei 亚太区席应用科学家,高FluidFM解决方案工程师,Cytosurge AGTamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。 郭亚茹 北京大学口腔医院,口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。 2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。 [原理&应用简介]FluidFM技术如何测定细胞粘附力?众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:Force cell-cell ≌ Force Monolayer – Force Indiv.cellFluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。FluidFM技术测量单细胞力谱的基本流程。仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。FluidFM技术测量HeLa细胞核CHO细胞的粘附力。能够高通量测量单细胞粘附力谱FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,一天可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。 应用举例一:FluidFM技术测定衰老内皮细胞的力谱内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN别粘附力差异。如下图所示:FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。 应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够大地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。FluidFM技术用于酵母属间交配过程单细胞力谱测量。MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。 总结 细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的测量的特性,真正意义上做到、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
  • 原位力学测量仪与拉曼光谱、金相显微镜实现联用
    p  近日,科技部高技术研究发展中心组织专家组对吉林大学牵头承担的863计划“跨尺度原位力学测试新技术与仪器装备的开发制造”进行了技术验收。专家组认为该课题突破了微纳量级测量的多项关键技术,研发出系列测量仪器,实现了预期目标,一致同意通过验收。/pp  随着新材料、航空航天和高端制造业等产业集群的发展,对材料服役性能测试与保障能力的要求不断提高,学术界和工业界对材料微观力学性能测试技术与仪器开发的需求迅速增长。对此,在863计划支持下吉林大学等单位开展了跨尺度原位力学测试新技术与仪器装备的开发研制工作。经过3年攻关,课题组攻克了原位力学测试仪器装备的设计、制造与标定等关键技术,突破了原位测试仪器精度校准的技术瓶颈,使加载力分辨率达10mN、加载位移分辨率优于100nm,多项指标取得突破,与传统的材料力学性能测试技术相比,本课题研制的仪器能与扫描电子显微镜、Raman光谱仪和金相显微镜等多种材料性能表征技术相兼容,实现了对材料力学参数、微观力学行为、变形损伤机制与微观组织演化多参量原位精准测试。课题组已初步掌握了微测量仪器工程化产业化关键技术,并形成了专利成果转化的良性机制,所研发的压痕/刻划、拉伸/压缩、剪切、弯曲、扭转和拉伸-扭转复合等6类17种仪器及其配套分析处理软件,填补了我国相关领域仪器的空白。该课题成果已在包括北京大学、浙江大学、北京工业大学以及济南铸锻所等国内20多家大学和研究单位得到示范应用和推广。/pp  该课题的验收表明我国已经掌握了具有自主知识产权的材料微观力学性能测试仪器及其批量制造的核心关键技术,实现了我国自主知识产权原位测试仪器的突破,提升了我国自主研制仪器的技术水平,推进了传统试验机行业转型升级,丰富了现有材料力学性能测试理论、技术与标准体系,在人才培养、学科建设和产学研合作等方面发挥了重要作用,扩大了我国在力学性能测试领域的国际影响力。/p
  • 北京大学王兴军团队提出:全芯片化的微波光子频率测量系统
    移动通信、雷达、卫星遥感、电子对抗以及基础仪器科学等领域的进步,促使着微波系统向着高频、宽带、大动态范围、多功能的方向发展。面对这些新的发展需求,传统的微波技术在微波信号的产生、传输、处理、测量等各个方面均面临巨大挑战。微波光子学融合了微波技术和光电子技术,即利用光电子学的方法处理微波信号,可以突破传统射频电子器件的性能瓶颈,被认为是下一代各类微波系统应用的解决方案之一。传统微波光子系统一般使用分立的光电子器件与电学模块搭建链路,这使得微波光子系统样机或产品具有重量大、功耗高、稳定性差等不足。因此,实现微波光子系统的微型化、片上化和集成化,是推动微波光子技术真正落地与广泛应用的关键,也是近年来学术界和产业界关注的焦点。然而,目前已报道的研究工作仍未能实现微波光子系统的完全芯片化集成,需要借助分立的光电子器件(例如:激光器、调制器等)或电子器件(例如:电学放大器等)来构建完整的系统链路,这在成本、体积、能耗、噪声方面严重制约着微波光子技术的工程化与实用化。鉴于此,近日,北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室王兴军教授研究团队提出了融合硅基光电子芯片、磷化铟芯片和 CMOS 电芯片的多芯片平台混合集成方案,首次实现了微波光子系统光-电链路的完全集成化拉通。基于该技术方案,研究团队设计实现了一款全芯片化的微波光子频率测量系统,整体尺寸约为几十 mm²,功耗低至 0.88 W,可实现对 2-34 GHz 宽频段微波信号瞬时频率信息的快速、精准测量。该成果发表在 Laser & Photonics Reviews,题为“Fully on-chip microwave photonic instantaneous frequency measurement system”。北京大学博士研究生陶源盛与北京大学长三角光电科学研究院杨丰赫博士为论文的共同第一作者,王兴军教授为论文通讯作者。该团队设计的全芯片化微波光子频率测量系统原理如图1所示,他们在硅光芯片上有源集成了高速调制器(用于微波信号加载)、载波抑制微环、可调谐光学鉴频器和光电探测器等器件。基于磷化铟平台实现高性能的分布式反馈(DFB)激光器,并通过端对端对接耦合方式与硅光芯片实现互连。为在保证系统测量精度的条件下降低对后端采样与处理电路的要求,他们将硅光芯片的弱光电流输出通过金线键合的方式直接连接至 CMOS 跨阻放大芯片的输入。经跨阻放大后的电信号,仅需通过低速采样电路采集,通过离线处理即可还原出输入高频微波信号的瞬时频率信息。图1:全芯片化的微波光子频率测量系统。(a)系统三维示意图;(b)磷化铟激光器芯片与硅光芯片的光学显微图;(c)系统整体的集成封装实物图。图源:Laser Photonics Rev.2022, 2200158, Figure 1面向电子对抗、雷达预警等实际应用场景,研究人员们在实验演示了该全芯片化微波光子频率测量系统对多种不同格式、微秒级快速变化的微波信号频率的实时鉴别。如图 2 所示,依次是对 X 波段(8-12 GHz)范围内的跳频信号(Frequency hopping, FH)、线性调频(Linear frequency modulation, LFM)和二次调频(Secondary frequency modulation, SFM)三类信号的频率-时间测量结果,误差均方根仅 55-60 MHz,是迄今为止同类型集成微波光子系统所展示出的最佳性能。图2:复杂微波信号频率的动态测量结果。(a)跳频信号(Frequency hopping, FH)的频率测量;(b) 线性调频(Linear frequency modulation, LFM)的频率测量;(c)二次调频(Secondary frequency modulation, SFM)信号的频率测量图源:Laser Photonics Rev.2022, 2200158, Figure 4未来展望 本工作所提出的多平台光电混合集成工艺方案,除适用于微波测量应用,对于研究微波信号产生、信号处理、信号传输等其他各种类型微波光子系统的集成化、微型化也具有很高的参考价值,为推动微波光子技术的工程化应用提供了一种通用性的解决方案。
  • 了不起!这款显微镜在机加工件测量中表现得“恰如其分”!
    不知道大家有没有听过一个童话故事《金凤花姑娘和三只熊》?故事中,金凤花姑娘试着喝几碗粥,发现一碗太烫,一碗太凉,最后一碗刚刚好。这个故事告诉我们,适合的才是最好的。一谈到STM7测量显微镜时,让人不由得想起这则故事,因为这款显微镜在多项精密测量应用中表现得“恰如其分”。 STM7测量显微镜专为高通量、高精度3D测量而设计,非常适用于检查机加工金属部件的公差等。测量设备种类繁多,从简单的手持工具到大型的精巧装置。 那么,为何选择STM7呢? 这就是开头提及金凤花姑娘故事的原因了。对于在机加工件的生产和质量控制中的多项测量应用而言,STM7测量显微镜实现了易用性与高质量结果的正确平衡。 不妨看看其他替代品的表现。比如卡尺和千分尺等手持式工具。这些工具简单易用,无需培训,但需接触样品,而且对于复杂部件往往让人“手忙脚乱”。此外,不同操作员的测量结果也是大相径庭。 再比如坐标测量机、轮廓投影仪或光学比测器等高级测量工具。这些工具视野大,可以进行复杂的测量工作,但要么在测试实验室中太占空间,要么成本过高。有些还需要大量的培训。平衡正确的显微镜 STM7测量显微镜对各方面因素的平衡拿捏得恰到好处。其亚微米分辨率和3轴测量支持全方向操作,无需重新放置样品。性能远超仅具备同轴度、周向、角度等功能的产品系列。在STM7显微镜下放一颗螺钉螺钉的测量结果 通过将这些先进功能与快速、简单的操作相结合,STM7非常适合机加工部件的高通量测量。无需先拍照;只需定义起点并移动平台即可进行快速、准确的测量。当然,它可兼作普通的光学显微镜,较之其他测量设备,这是一大优势。 高精度测量与紧凑型设备的快速、直观操作相结合,使STM7成为部件测量的金凤花姑娘:贴合多种应用。
  • 1070万!上海交通大学李政道研究所量子材料多维度测量系统采购项目
    一、项目基本情况项目编号:STC23A118项目名称:上海交通大学李政道研究所量子材料多维度测量系统主机系统预算金额:1070.0000000 万元(人民币)最高限价(如有):1070.0000000 万元(人民币)采购需求: 序号产品名称数量主要技术参数交货时间交货地点01量子材料多维度测量系统主机系统1套量子材料多维度测量系统主机系统包括了角分辨光电子能谱仪主机、真空紫外激光、真空原位二维材料解离系统、扫描隧道显微镜系统等等多个核心功能区,各功能区之间真空互联。角分辨光电子能谱仪分辨率优于2meV,温度优于6K,紫外光光斑小于100μm。可真空原位剥离二维材料。扫描隧道显微镜温度优于5K,Z向噪声小于5pm,预留升级至1K和7T的设计。(详见招标文件第二部分“用户需求书”)合同签订后12个月内上海交通大学指定地点 合同履行期限:合同签订后12个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年05月22日 至 2023年05月29日,每天上午9:30至11:30,下午13:30至16:00。(北京时间,法定节假日除外)地点:上海市共和新路1301号D座二楼方式:详见其他补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:上海市东川路800号        联系方式:王老师 86-21-54747172 ,技术联系人:吕老师 电话:18210715590      2.采购代理机构信息名 称:上海中招招标有限公司            地 址:上海市共和新路1301号D座二楼            联系方式:林佳文、吴乾清 电话:86-21-66271932、86-21-66272327,13764352603@163.com、18930181850@163.com            3.项目联系方式项目联系人:林佳文、吴乾清电 话:  86-21-66271932、86-21-66272327
  • JASIS 2018新品发布之奥林巴斯:3D测量激光显微镜
    p  strong仪器信息网讯/strong 2018年9月5日,日本最大规模的分析仪器展JASIS 2018在东京幕张国际展览中心盛大开幕,吸引来自全球各地的万余名观众参观出席。br//pp  作为日本乃至世界精密、光学技术的代表企业之一,奥林巴斯在展会期间带来其3D测量激光显微镜新品——OLS5000。/pp style="text-align: center "img title="奥林巴斯3D测量激光显微镜OLS5000.jpg" style="width: 400px height: 265px " alt="奥林巴斯3D测量激光显微镜OLS5000.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/ea349b73-612a-466f-8f66-a9011264cedf.jpg" height="265" border="0" vspace="0" width="400"//pp style="text-align: center "strong奥林巴斯3D测量激光显微镜OLS5000/strong/pp  OLS5000于去年年底发布,3D测量显微镜有着更真实的三维形貌反映能力,具有操作更便捷、更快速的优势。OLS5000采用计算机直观控制,搭载的扫描算法,可通过计算机的处理转换,快速获得完整带有高度信息的样品表面图像,并通过对样品不同层面的扫描和计算机处理。在使用时,只要在放置样品后按动按钮,设备就会自动进行工作,无需进行复杂的设置调整,即使是不熟练的用户也可获准确的检测结果,简化工作流程。/pp /p
  • 省时省力!微塑料全自动快速分析,非接触式亚微米红外拉曼同步光谱显微系统再度升级!
    随着大量塑料的使用和随意处置,微塑料几乎污染了整个地球,科学家也愈发关注对微塑料的研究。环境中微塑料的尺寸往往小于5μm,传统红外因受限于微米级别空间分辨率,以及不同尺寸颗粒变化的实际红外吸收峰相较于理想吸收峰散射严重等问题,很难对样品进行有效的定性和定量分析。美国PSC公司推出的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,得益于其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量等优势,有效解决了绝大多数环境微塑料样品光谱显微测试的问题。其显著的技术优势为:✔ 亚微米红外空间分辨率,比传统的FTIR/QCL红外显微提高~20倍;✔ 有效排除小尺寸样品散射伪影,极大提高样品测试范围,获得高质量红外拉曼分析图谱;✔ 非接触式,反射(远场)模式测量,对样品无污染,没有任何常见光谱失真。可快速匹配光谱商用数据库,获得样品种类结果;✔ 可升级亚微米同步红外+拉曼同步联用系统,在相同时间、条件、位置下获得相同空间分辨率的红外和拉曼光谱。非接触亚微米分辨红外拉曼同步测量系统—mIRage近日,PSC公司将mIRage系统全新升级,即将发布FeaturefindIR功能。FeaturefindIR创新性的实现了微塑料和其他颗粒快速、自动化的光谱测量和化学鉴定,显著提高了实验效率,并为应用中大量样品的测量提供了基础,包括但不限于微塑料,缺陷污染和细胞分析,以及许多其他样品类型。mIRage升级系列将原有优势进一步拓宽:☛ 测试从亚微米到毫米范围内微塑料样品;☛ 红外拉曼同步,测量大量的微塑料和颗粒;☛ 测试系统自动搜索和检测粒子;☛ 自动测量和定位化学ID。升级功能新品发布会为使研究者更好的了解这一升级功能,美国PSC公司将举办升级功能新品发布会,发布会将由产品管理和营销总监Mustafa Kansiz博士主持介绍。此次发布会将主要介绍“FeaturefindIR”软件自动化工具如何在mIRage上对更具有生物学意义的微塑料颗粒(从小于500 nm到大尺寸(mm))进行自动化、快速和准确的分析,规避传统FTIR/QCL和拉曼显微系统所见的明显缺陷,从而有效完成微塑料样品测试。同时,Mustafa Kansiz博士也将实时演示亚微米mIRage的featurefindIR功能,无论颗粒形状和大小如何,都将得到一致、无伪影的图谱,并使用交叉偏振可见光增强颗粒检测。敬请期待mIRage系统featurefindIR的详情发布!FeaturefindIR优势解析:【高效粒子数据收集】微塑料、颗粒和有机污染物有时很难在大量的一般污染物中发现。为了获得最大的灵活性,featurefindIR可以使用图像输入,以实现更准确和敏感的检测和定位。【自动测量和识别】一旦确定了颗粒的位置和大小,mIRage系统就会自动移动到所需测量位置,并执行快速、自动化的红外光谱测量。测量完成后,粒子信息汇总表将列出获得关键光谱的每个粒子的位置和特定尺寸。此表可以转移到featurefindIR μChemical ID报告中,也可以导出为CSV文件。【FeaturefindIR μChemical ID报告】FeaturefindIR μChemical ID报告将自动分析PTIR Studio文件中用户选择的所有光谱,并将它们与集成数据库中的参考光谱集相关联。对每个测量的频谱报告命中质量指数(HQI),如果HQI高于用户设置的阈值,还会报告最佳匹配化学ID。在测量光谱和参考光谱之间显示覆盖层,颜色编码可用于评估光谱数量的视觉支持,特定塑料类型被分配特定颜色作为视觉辅助。此外,可以通过选择每个结果来进行定量检查,以显示与OPTIR参考匹配接近的详细光谱叠加。FeaturefindIR为研究人员提供了一种快速测量大量相关微塑料的自动化方案。不但提供了维度方面的信息,同时可以通过专用的μChemical ID数据库确定它们的化学ID。所有数据都可以通过CSV导出,以便根据需要进行进一步分析。FeaturefindIR通过提供识别微塑料类型的不同方法(如单波长成像和荧光图像)来提高测量效率,提供了从亚微米到毫米大小的微塑料研究完整解决方案。
  • 普洛帝发布不溶性微粒检测显微镜计数系统新品
    普洛帝不溶性微粒检测显微镜计数系统PLD-MPCS2.0A不溶性微粒显微镜计数系统 不溶性微粒显微镜法 显微镜计数系统 显微镜不溶性微粒计数系统不溶性微粒显微镜计数系统是普勒新世纪实验按照普洛帝分析仪器事业部的规划,于2001年推向市场的成熟系统仪器;符合中国药典规范附录0903不溶性微粒检查法第二法(显微计数法}。观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;不溶性微粒显微镜计数系统微纳米颗粒计数器为一种图像法粒度分布测试以及颗粒型貌分析等多功能颗粒分析系统,该系统包括光学显微镜、数字 CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;将传统的显微测量方法与现代的图像处理技术结合的产物;专业软件控制分析过程,手动对焦,手动光强(颗粒清洁度测试必须人为干预进行),自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接,数字化显微镜分析系统;R232接口数据传输方式将颗粒图像传输到分析系统;颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点;避免激光法的产品缺陷,扩展检测范围;现实NAS、ISO等国际标准方法的认可;提供“OIL17服务星”签约式服务;不溶性微粒显微镜计数系统产品应用:大输液、小针剂、水、水乙二醇、水溶液、溶水产品等检测!完全并高于2020版《中国药典》的要求,内置药典、麻醉器具、输液器具检测标准,可直接进行各种装量的注射液、无菌粉末,及医疗器具微粒污染滤除率检测;航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造、制冷、电子、半导体、工程机械、液压系统等领域;对各类液体如油田回注水、污水、自来水、纯净水、高纯水、电子级水、超纯水、口服液、酒、饮料、牛奶、清洗剂、润滑油等液体进行固体颗粒污染度检测及不溶性微粒的检测。不溶性微粒显微镜计数系统执行标准:GB/T 11446.9-2013 电子级水中微粒的仪器测试方法美国药典USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典EP6.0、EP7.0、EP7.8、EP8.0;英国药典BP2013、BP2012、2010、2009;日本药典JP16、JP15、JP14;印度药典IP2010版;WHO国际药典IntPh第五版;中国药典2020年、2020年;GB8368输液器具;ISO21510;ISO11171等。0.1~3000μm的超宽范围、超高分辨率满足全球510多个标准要求。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。不溶性微粒显微镜计数系统技术参数:订制要求:各类液体检测要求;测试范围: 1μm-500μm放大倍数:40X~l000X倍分辨率:0.1μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300万像素标尺刻度:0.1μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 1秒分割成功率: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232或USB方式供货期:30个工作日精 确 度:±3% 典型值;重合精度:10000粒/mL(5%重合误差);分 辨 率:95%(按中国药典2020版校准);10% (按美国药典、ISO21501校准)鉴定机构:国家西北计量测试中心(民品)售后服务:普洛帝中国服务中心/普研检测。创新点:1、我司符合药典2020版0903显微镜法的仪器2、实现上光源、下光源双向监测功能3、引入金属颗粒、非金属颗粒和纤维丝等颗粒属性检测4、微量样品0.01ml的痕量试样测试5、高分辨率可实现X100~X1000的测试不溶性微粒检测显微镜计数系统
  • “扫描探针显微镜漂移测量方法”国际标准发布
    日前,由中国科学技术大学工程科学学院黄文浩教授主持制订的国际标准“扫描探针显微镜漂移测量方法(ISO11039:2012)”已由国际标准化组织正式发布。  自20世纪80年代扫描探针显微镜(Scanning-probe microscopy,SPM)发明以来,由于其具有原子量级的分辨能力,极大地促进了纳米科学技术的发展,并已逐步形成了一种高新技术产业。SPM的工作原理是通过微小探针在样品表面进行扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像。由于扫描速率较慢,漂移现象在扫描过程中普遍存在,这制约了SPM在纳米测量和纳米加工方面的进一步应用。  黄文浩教授近二十年来一直从事纳米技术与精密仪器领域的研制工作。在2006年,他向国际标准化组织ISO/TC201(表面化学分析技术委员会)提出了“扫描探针显微镜漂移速率测量方法标准”的提案,目的是要将SPM工作时纳米/秒的漂移大小和方向测量出来,以规范这类仪器的使用方法。2007年该提案正式立项,黄文浩教授被指定为该项目工作组的召集人。经过四年多的努力,SPM漂移测量方法标准的最终草案于2011年经全体成员国投票后顺利通过,并于2012年正式发布。  该标准定义了描述SPM在X、Y和Z方向的漂移速率的专业术语,规定了SPM漂移速率的测量方法和测量程序,对仪器的功能和工作环境以及测量报告内容均作了严格要求。该标准为SPM仪器生产厂家制定了漂移速率的有效参数规格,并且能帮助用户了解仪器的稳定性,以便设计有效的实验。该标准不仅适用于基于SPM测量图像的漂移速率评价方法,对其它纳米级测量仪器稳定性的评价也有着重要参考价值。  相关研究工作受到国家自然科学基金、中科院知识创新工程重要方向性项目和科技部973项目资助。  背景资料:黄文浩教授 博士生导师  1968年毕业于清华大学精密仪器及机械制造系精密仪器专业。1978年至今在中国科技大学精密机械与精密仪器系任教,现任教授,博士生导师。其中1989-1991年,西班牙马德里自治大学, 1993-1994年日本东京大学访问学者。主要研究领域:微纳米制造和测量技术 SPM科学仪器技术 飞秒激光微纳米加工技术 纳米技术与标准化。曾承担国际科技合作项目有: 中-日大学群合作先进制造领域中方负责人(1996-2002),中国-西班牙国家级科技合作项目(2001-2004) “纳米技术与仪器”负责人。主持国家自然科学基金面上项目、重点项目、973子课题等多项。在国内外刊物发表论文200余篇。现任国家纳米技术标准化委员会委员,国际标准化组织ISO/TC201/SC9/WG2召集人。《光学 精密工程》《纳米技术与精密工程》杂志编委。2011年担任国际纳米制造趋势论坛NanoTrends2011组委会主席。2011年当选国际纳米制造学会会士(Fellow of ISNM)。
  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能 [6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 3D测量显微镜向着大视场、高精度等方向发展——访金燧奖获奖单位木木西里
    近期,由中国光学工程学会、辽宁省科学技术协会主办的全国光电测量测试技术及产业发展大会暨辽宁省第十七届学术年会在大连成功召开。会议同期举办首届“金燧奖”中国光电仪器品牌榜颁奖典礼。仪器信息网作为大会独家合作媒体参与了本次会议,并采访了金燧奖铜奖获奖单位代表南京木木西里科技有限公司(以下简称“木木西里”)CEO崔远驰。木木西里的获奖项目为“激光光谱共聚焦显微镜”,该产品是一款测量3D形貌、3D尺寸的显微设备,主导优势为大尺寸、超快速测量,在半导体、新材料、新能源等新型产业有巨大应用前景。该成果的研发背景和初衷是什么?该成果实现了怎样的创新突破,解决了什么样的关键问题,面向的主要用户有哪些?有哪些技术优势?中共中央总书记习近平在主持中共中央政治局关于加强基础研究第三次集体学习时提出“要打好科技仪器设备、操作系统和基础软件国产化攻坚战”。科研院所和仪器企业该如何打好“国产化攻坚战”?更多内容请观看视频: 首届“金燧奖”中国光电仪器品牌榜由中国光学工程学会联合多家单位于2022年发起,旨在积极面向国家重大战略需求,进一步突出企业的创新主体地位,促进关键核心技术攻关,突破卡脖子技术。本届“金燧奖”重点围绕分析仪器、计量仪器、测量仪器、物理性能测试仪器、环境测试仪器、医学诊断仪器、工业自动化仪器等7个类别进行广泛征集,得到了社会各界积极的参与和热情的响应。经过严格评审,71个优秀仪器产品脱颖而出,遴选出金奖10项、银奖16项、铜奖28项、优秀奖17项。这些产品都是我国自主研发、制造、生产的专精特新的高端光学仪器,较好地展现了我国在高端科学仪器中的自主核心竞争力,提升了民族品牌在激励市场竞争中的自信心,鼓舞了国产厂商的攻关热情。
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。非接触式亚微米分辨红外拉曼同步测量系统
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制