当前位置: 仪器信息网 > 行业主题 > >

显微测量系统

仪器信息网显微测量系统专题为您提供2024年最新显微测量系统价格报价、厂家品牌的相关信息, 包括显微测量系统参数、型号等,不管是国产,还是进口品牌的显微测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微测量系统相关的耗材配件、试剂标物,还有显微测量系统相关的最新资讯、资料,以及显微测量系统相关的解决方案。

显微测量系统相关的论坛

  • 超微力测量系统的特点、规格以及应用

    这款[url=http://www.f-lab.cn/micromanipulators/fms-ls.html][b]超微力测量系统[/b][/url]是高精度[b]微力测量测试系统[/b]FMS-LS,它[b]与[/b]显微操作器联合使用,用于[b]测量纳米压痕[/b]和[b]超微力测量,还可用于[/b]测量细胞力学,杨氏模量,微机电系统MEMS的弹簧常数和共振频率的弹性参数。[b]超微力测量系统FMS-LS特点[/b][url=http://www.f-lab.cn/micromanipulators/fms-ls.html][b]超微力测量系统[/b][/url]调节器连接附件,调节器显示力反馈,并且在扬声器上播放材料的谐振频率。由具有集成吸管夹持器的力传感器,具有前置放大器和扬声器的控制模块,PC软件,电源,和操作者的手册组成。[img=超微力测量系统]http://www.f-lab.cn/Upload/FMS-LS-L_.jpg[/img][b]超微力测量系统FMS-LS应用[/b]测量细胞,杨氏模量,微机电系统(MEMS)的弹簧常数和共振频率的弹性参数纳米压痕[b]超微力测量系统[b]FMS-LS[/b]规格[/b]分辨率:亚μN测力范围:最高可达10毫米输出:+/-10 V

  • 测量显微镜的应用

    测量显微镜工作原理是使用透、反射的方式对工件长度和角度作精密测量。测量显微镜大多用于工业中,因此测量显微镜又称为[url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%89%E5%AD%A6%E6%98%BE%E5%BE%AE%E9%95%9C/%E5%B7%A5%E4%B8%9A%E5%8F%8A%E6%9D%90%E6%96%99/%E6%AD%A3%E7%BD%AE%E6%98%BE%E5%BE%AE%E9%95%9C/%E8%AF%A6%E7%BB%86%E4%BB%8B%E7%BB%8D/product/leica-dm6-m]工业测量显微镜[/url]。测量显微镜的工作台除可以作平面移动外,还可以作360度的旋转,可从全方位观察器件。它的主要用途有:1、广泛应用于电子工业,比如观察电路板的构造,观察零件直接的精确距离;2、适用于制造业、精密零件以及不方便移动的物件的观察测量;3、用于生产作业线。

  • 【资料】显微镜分析系统在炭黑检测中的应用

    用显微图像分析法测定聚烯烃管材、管件和混配料中颜料或炭黑分散度(符合GB/T 18251-2000国家标准)·········l 显微分析系统及试验方法介绍:一.实验方法1.从管材、管件或粒料上取少量样品压在载玻片之间并加热制备试样,也可以使用切片机切片制备试样。2.依次将六个试样放在显微镜下,经过摄像采集设备在计算机上显示图像,通过软件的操作计算机自动给出测定粒子和粒团的尺寸及试样等级确定表(国家标准)。注:分散的尺寸等级由六个试样等级的平均值来确定。二.配置介绍:1. 三目显微镜2. 高清晰JVC摄像头3. 高性能图像采集卡4. 显微分析软件显微分析系统BM19A-UV实物图片 实验主要仪器:a) 显微镜: 三目XSP-BM19A显微镜,带有校准的正交移动标尺,能够测量出粒子和粒团的尺寸;b) 软件系统:计算机硬件设备一套,观测粒子或粒团的尺寸分布及外观分布的显微分析软件UV一套;c) 载玻片:厚度约1mm的载玻片,小刀,弹簧夹;d) 切片机:能够切出规定厚度的薄片;e) 加热设备:烘箱、热板等,可在150℃~210℃之间的控制温度下操作;f) 图像采集设备:JVC摄像头TK-C1021EC、三目显微镜摄像接口MCL 、显微镜图像采集卡SLG-V110。试样制备:本标准规定了两种试样制备方法:压片法和切片法。制备好的试样应厚度均匀,用于测定颜料分散的试样厚度至少为60μm,用于测定炭黑分散的试样厚度为25μm±10μm。压片方法:用小刀沿产品的不同轴线在不同部位切取六个试样。测定颜料分散时,每个试样质量大于0.6mg;测定炭黑分散时,每个试样质量为0.25mg±0.05mg。把六个样品放在一个或几个干净的载玻片上,使每一试样与相邻的试样或载玻片边缘近似等距排放,用另一干净的载玻片盖住。可以使用金属材料或其他材料制成

  • 金相显微镜的测量方法

    1、接触法:接触法是利用金相显微镜的标记对和紧靠测件测量点、线、面的万工显附件-----光学测孔器的测头连在一起的双刻线进行瞄准定位的测量方法。测量时将光学测孔器的测头紧靠件(内、外)表面。当测量孔径时,首先使测头与测件内孔接触,取得最大弦长后,使米字线中间刻线被光学测孔器的双套线套在中间,并在金相显微镜读取一数;然后改变测量方向,使测头在另一侧与测件接触,同样使米字线分划板的中间刻线仍被光学测孔器的双套线套在中间,在金相显微镜上读取另一数。两次读数的差,再加上测头直径的实际值,即为测件的内尺寸,如减去测头直径的实际值,即为测件的外尺寸。2、影像法:影像法是利用金相显微镜的标记,对影像法进行瞄准定位的测量方法。测量时,通常是先用(米字线)分划板上的刻线瞄准测件影像的边缘,并在读数显微镜上读出数值,然后移动工作台以同一条刻线瞄准测件影像的另一边,再作第二次读数。两次读数的差,就是被测件的测量值。3、轴切法:轴切法是利用金相显微镜的标记对通过测件轴心线并利用测量刀上的刻线进行瞄准定位的测量方法。金相显微镜测量刀是万工显的附件。其表面有一刻线,刻线至刃口的尺寸为0.3和0.9毫米两种,测量时,把测量刀放在测量刀垫板上,刻线面通过测件的轴线,并使测刀的刃口和被测面紧紧接触,用相应的米字线去瞄准,测量两把测刀刻线间的距离,就间接测得被测件的测量值。为了避免测量中的计算,在中间垂直米字线的两侧刻有两组共四条对称分布的平行线,每组刻线对中心刻线的距离分别为0.9和2.7毫米,它正好是测刀的刃口到刻线间的距离0.3和0.9毫米的3倍。这样用3倍物镜瞄准时,分划板上的0.9和2.7毫米刻线正好压住测刀上的0.3和0.9毫米刻线,这时测刀上的刃口正好被米字线的中间刻线所瞄准。主要用于螺纹中径测量。

  • 汽车工程领域非接触三维光学测量系统技术

    汽车工程领域非接触三维光学测量系统技术

    1-1 系统介绍三维光学非接触式应变位移振动综合测量系统分为三维光学应变测量系统和三维动态变形测量系统两个部分。 http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599282_3024107_3.png http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599283_3024107_3.png 图1 三维应变测量头 图2 动态变形测量头三维光学应变测量系统主要通过数字散斑相关法和双目立体视觉技术结合,追踪物体表面散斑点,实时测量各个变形阶段的散斑图像,通过算法重建三维坐标,最终实现快速、高精度、实时、非接触的三维应变测量。(全场或局部应变)动态变形测量系统基于双目立体视觉技术,采用两个高速摄像机实时采集被测物体变形图像,利用准确识别的标志点(包括编码标志点和非编码标志点)实现立体匹配,重建出物体表面点三维空间坐标,并计算得到物体变形量、三维轨迹姿态等数据。(关键点振动位移)三维光学应变测量系统和动态变形测量系统可以根据实验情况单独使用,也可以合并成综合测量系统使用。1-2与传统方法对比 三维光学测量方法传统测量方法(如位移计、应变片、引伸计等)测量方式非接触式测量,不对被测物体造成干扰与影响。接触式测量,易打滑,不容易固定,试件断裂容易破坏引伸计。测量对象适用于任何材质的对象。测量尺寸范围广,从几毫米到几米。适用于常规尺寸对象测量,特殊材料无法测量,小试样无法测量,大试样需要多贴应变片。测量范围应变测量范围:0.01%~1000%。应变测量范围:应变片通常小于5%,引伸计小于50%。环境要求环境要求低,可在高温、高速、辐射条件下测量。一般适用常规条件测量。测量结果全场多点、多方向测量,同时获得三维坐标、三维位移及应变。单点、单方向测量。三维测量需要多个应变片,效率低。1-3 系统技术参数 指标名称技术指标1. 核心技术工业近景摄影测量、数字图像相关法2. 测量结果三维坐标、全场位移及应变3. 测量幅面支持4mm-4m范围的测量幅面,更多测量幅面可定制4. 测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口5. 相机标定支持任意数目相机的同时标定,支持外部图像标定6. 位移测量精度0.01pixel7. 应变测量范围0.01%-1000%8. 应变测量精度0.005%9. 测量模式兼容二维及三维变形测量10. 实时测量采集图像的同时,实时进行全场应变计算11. 多测头同步测量支持多相机组同步测量,相机数目任意扩展,可同步测量多个区域的变形应变12. 动态变形模块具备圆形标志点动态变形测量功能13. 轨迹姿态测量模块具备刚体物体运动轨迹姿态测量功能14. 试验机接口接通后实时同步采集试验机的力、位移等信号15. FLC接口配合杯突试验机进行Nakazima试验,可以测得材料的FLC成形极限曲线16. 显微应变测量配合双目体式显微镜,可实现微小型物体的三维全场变形应变检测17. 64位软件软件采用64位计算,速度更快18. 系统兼容性支持32位和64位Windows操作系统2 系统应用于汽车振动强度实验室2-1 振动强度实验室介绍振动强度试验室,主要开展对汽车整车,总成,零部件,或者材料的强度,耐久性,疲劳特性,以及可靠性等问题的研究,试验,考核,或者评估。三维应变位移振动综合测量系统在振动强度试验室里具备以下的功能:(1)采集相关的振动、位移和变形数据;(2)作为前期信号分析的软件和硬件;(3)进行必要的试验控制和试验后期数据分析系统。2-2 汽车振动测量常规配合使用设备振动模拟实验系统:电动式振动试验台,机械式试验台,电液伺服试验机系统,道路模拟试验台,吊车(一般5~10吨、小型3吨以下、大型10吨以上)等。振动数据采集传统产品:传感器、应变片、放大器等。2-3系统在汽车振动实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:振动模拟实验系统。实现功能1—耐振性能试验。测试车辆或者零部件系统的减振,耐振性能。模拟振动环境,通过非接触的光学方法,测量振动和位移,从而对车辆的振动性能进行分析。应用包括:发动机振动模态分析,车门振动实验,座椅振动测量分析等。实现功能2—耐久可靠试验。考核车辆和零部件的强度、抗疲劳特性和可靠性指标。应用包括:车身结构强度实验(测量区域振动或者关键点变形),汽车座椅分级加载实验,汽车轮胎受力变形实验等。3 系统应用于汽车材料实验室3-1 汽车材料实验室介绍汽车材料试验室,主要开展对汽车新型材料及相关基础性工作的研究和探索。三维应变位移振动综合测量系统在材料试验室里一般有以下的基本功能:(1)汽车材料常规力学性能方面的测试,得到各种工况下的应变变形;(2)汽车材料焊接的应变变化情况测量;(3)板料成形应变及板料成形极限曲线测量。3-2 汽车材料试验常规配合使用设备力学实验系统:高温蠕变试验机、扭转试验机、疲劳试验机、杯突试验机等。焊接相关设备:焊枪、焊机等。3-3 系统在汽车材料实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:力学实验系统、焊接相关设备。实现功能1—材料应变变形测量实验。通过对材料进行常规的拉压弯等实验,进行相关材料的力学性能测定。应用包括:金属材料拉伸实验,复合材料大变形测量,碳纤维材料实验等。实现功能2—汽车焊接相关试验。考核汽车相关焊接实验的应变和变形。应用包括:焊接全场应变测量,高温焊接变形测量等。实现功能3—板料成形相关实验。板料成形过程中的全场应变变形测量和板料成形极限曲线(配合杯突试验机)。应用包括:板料成形应变实验、板料成形极限曲线测定实验。4 系统在汽车工程研究方面典型实验案例展示4-

  • 什么是系统显微镜?

    菜鸟求助,奥林巴斯BX51系统显微镜,为什么不叫生物显微镜?系统显微镜指的是什么?什么是系统显微镜?

  • 混合显微镜可从三维测量生物分子

    中国科技网讯 据每日科学近日报道,最近,美国爱荷华大学与国家能源部艾米实验室科学家合作,将光学显微与原子力显微技术结合起来,开发出一种能对单个生物分子进行三维测量的方法,准确性和精确性都达到纳米级别。最近出版的《纳米快报》上详细介绍了该技术。 现有技术只能从二维平面来测量单个分子,只有X轴和Y轴,新技术称为驻波轴向纳米仪(AWAN),让研究人员能测量Z轴,也就是高度轴,样本也不需要经过传统光学或特殊表面处理。 “这是一种全新类型的测量技术,可以确定分子Z轴方向的位置。” 论文合著者、爱荷华大学物理与天文学副教授珊吉维·西瓦珊卡说,他们承担的研究项目有两个目标:一是研究生物细胞彼此之间怎样粘合,二是开发研究这些细胞的新工具。为此他们开发了新的显微技术。 研究小组用荧光纳米球和DNA单链测试了新式混合显微镜。他们把一台商用原子力显微镜与一台单分子荧光显微镜结合。将原子力显微镜的悬臂针尖放置在一束聚焦激光束上,以产生驻波纹样。 驻波是频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波。波在介质中传播时其波形不断向前推进,称为行波;上述两列波叠加后波形并不向前推进,叫做驻波。将一个经处理发光的分子放置于驻波内,当原子力显微镜尖端上下移动时,分子表面相应于它距针尖的距离而起伏发出荧光,由此可以对这一距离进行测量。在实验中,该技术在测量分子时可以准确到1纳米内,测量可多次重复,精确度达到3.7纳米。 西瓦珊卡说,该技术可以通过显微镜来提供高分辨率数据,给医疗研究人员带来便利。还具有商业化潜力,促进单分子生物物理学的研究。(常丽君) 《科技日报》(2012-8-9 二版)

  • DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    XTDIC三维全场应变测量分析系统,结合数字图像相关技术(DIC)与双目立体视觉技术,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的测量,具有便携,速度快,精度高,易操作等特点。http://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595779_3024107_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595780_3024107_3.png图:系统测量原理及散斑图像追踪过程系统组成:统主要由测量头、控制箱、标定板、标志点、计算机及检测分析软件等组成系统应该包含系统测量头(含两台高速工业相机、进口相机镜头,带万向手柄可调节LED光源)、相机同步控制触发控制箱、系统标定板、系统可移动支撑架、动态采集分析软件、载荷加压控制通讯接口、计算机系统等组成。1.1 主要应用XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,其主要应用有:在材料力学性能测量方面:DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。在细观力学测量方面:借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。在损伤与破坏检测方面:DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。在生物力学测量方面:DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。对于大中专院校的研究教学应用,本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。亦可为学生提供可视化的教学工具,让学生的基础学习课程变得直观和可视,使复杂问题简单化、抽象问题直观化、隐蔽问题可视化。1.2 系统功能(1)基本测量功能:l ※测量幅面:支持几毫米到几米的测量幅面,可以根据需求定制测量幅面。l 测量相机:支持百万至千万像素、低速到高速、千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps。l ※相机标定:支持多个相机(可多于8个)多种测量幅面的标定,支持外部拍摄图像标定。l ※测量模式:三维变形测量,同时支持单相机二维测量。l ※实时计算:采集图像的同时,可以实时进行三维全场应变计算,具备在线和离线两种计算处理模式。l 计算模式:具备自动计算和自定义计算两种模式。l 测量结果:全场三维坐标、位移、应变数据等动态变形数据,应变模式有工程应变、格林应变、真实应变等三种。l 多个检测工程:系统软件支持多个检测工程的计算、显示及分析。l ※支持系统:支持32位、64位windows操作系统,具备64位计算和多线程加速计算功能。(2)分析报告功能l ※18种变形应变计算功能:X、Y、Z、E三维位移;Z值投影;径向距离、径向距离差;径向角、径向角差;应变X、应变Y和应变XY;最大主应变;最小主应变;厚度减薄量;Mises应变;Tresca应变;剪切角。l ※坐标转换功能:321转换、参考点拟合、全局点转换、矩阵转换等多种坐标转换功能。l ※元素创建功能:三维点、线、面、圆、槽孔、矩形孔、球、圆柱、圆锥。l ※分析创建功能:点点距离、点线距离、点面距离、线线夹角、线面夹角、面面夹角。l 数据平滑功能:均值,中值,高斯滤波等多种平滑功能。l 数据插值功能:自动和手动两种数据插值模式。l 材料性能分析:自动计算材料的弹性模量和泊松比等参数。l 三维截线功能:可对三维测量结果进行直线或圆形截线分析。l 曲线绘制功能:所有测量结果均可以绘制成曲线图。l 成形极限分析功能:可绘制和编辑FLD成形极限曲线。l 视频创建功能:可将测量过程二维图像或者三维测量结果制作成视频并输出保存。l 数据输出功能:测量结果及分析结果输出成报表,支持TXT,XLS,DOC文件的输出。(3)采集控制功能l ※采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。l 相机同步控制:多相机外同步触发信号。l ※外部采集通讯接口:支持外部载荷如微电子万能试验机等外部载荷联机采集通讯接口,通过串口通讯或者模拟量实时采集外部的加载力、位移等信号,并与三维全场应变测量数据实现同步,实现应力和应变数据的融合和统一。l 光源控制:可以实现测量过程中不同补光需要的LED光源控制。(4)预留扩展接口:l ※多测头同步检测接口:可以支持1~8个测头的多相机组同步测量,相机数目任意扩展,可以同步测量多个区域的变形应变,适用于不同实验条件需求下的变形应变测量。l ※显微应变测量:配合双目体式显微镜,系统可以实现微小视场的三维全场变形应变检测,并可支持扫描电镜、原子显微镜等显微图像的应变数据计算。l ※大尺寸全方位变形接口:支持摄影测量静态变形系统,实现全方位变形和局部全场应变检测数据的融合和统一。1.3 技术指标 指标名称技术指标1. ※核心技术多相机柔性标定、数字图像相关法2. 测量结果三维坐标、全场位移及应变,可视化显示及测量过程的视频录制输出,测量结果及数据输出成报表,支持TXT,XLS,DOC文件的输出。3. ※测量幅面支持1mm-4m范围的测量幅面,并配备相应编码型标定板标定架,可定制更多测量幅面。4. ※测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps)5. 相机标定简单快捷,需要可支持任意数目相机的同时标定,支持外部图像标定6. ※位移测量精度0.005像素7. ※应变测量范围0.01%-1000%8. ※应变测量精度0.001%9. 测量模式三维变形测量,可兼容二维测量10. ※实时测量计算采集图像的同时,实时进行全场应变计算11. ※系统控制2采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。2相机同步控制:多相机外同步触发信号。2外部采

  • 物性仪器:显微硬度计测量前需要哪些准备?

    物性仪器:显微硬度计测量前需要哪些准备?

    英徕铂显微硬度计是光机电一体化的高新技术产品,该硬度计造型新颖,具有良好的可靠性、可操作性和重复性,是测试显微硬度的理想产品。采用 C 语言编制程序,高倍率光学测量系统和光学双通道结构,光电、光偶传感等新技术。通过按键操作,在按键上能输入测量压痕的长度、在 LCD 屏幕上能显示硬度值、换算标尺、试验力、试验力保持时间和测量次数等。还可根据用户特殊需求配置,能对所测压痕和材料金相组织进行拍摄、视屏测量装置和压痕自动测量装置以及努氏硬度的测定。[align=center][img=,300,236]https://ng1.17img.cn/bbsfiles/images/2023/05/202305271523525551_7090_5568994_3.png!w690x543.jpg[/img][/align]一、试样1、表面必需清洁,如果表面沾有油脂和污物,则会影响测量准确性。在清洁试样时,可用酒精或乙醚抹擦;2、当试样为细丝、薄片或小件时,可分别用细丝夹持台、薄片夹持台及平口夹持台夹持,放在十字试台上进行测试;如果试件很小无法夹持,则将试件镶嵌抛光后再进行试验;3、要保证试验的正确性,必须要保证试样的厚度。根据国家标准的规定试件的厚度必须不小于压痕深度的 8~10 倍,以下提供几种方法以确定厚度是否满足规定。【直接观察法】将试件按照规定的要求进行试验,待试验结束观察其试件的边缘和背面(支持面)是否出现变形的痕迹。如果有痕迹出现,试验的结果无效。说明试件的厚度太薄不能满足试验的要求,这时有二种选择,一是重做试件,有些零件不能改变。二是选择较小的试验力,这也只能在规定的要求内进行。【公式计算法】维氏硬度试件厚度的计算公式:h≈d/7。【查表法】可查表:试样最小厚度和检测力选用表二、目镜1、由于各人的视差,观察测微目镜视场内的刻线可能模糊,因此观察者换人时,应先微量转动目镜上的眼罩,使观察到视场内的刻线清晰;2、测微目镜插在目镜管内,要注意应插到底,不能留有间隙,否则会影响到测量的准确度,当测量压痕对角线时,须测量其顶点,然后转 90°再测量另一对顶点;3、每次开机必须重新对零点。三、选择试验力与压痕大小在测量维氏硬度时,只要试件条件允许,尽量使用大试验力,测量相对比较准确。一般是硬材料用较大的试验力;软材料用较小的试验力。按照习惯,压痕对角线长度在 50um 左右时测量最方便,但也要考虑材料的厚度。参考:材料厚度≥1.5×压痕对角线长度。例如:材料厚度=0.1mm,则压痕对角线长度不能大于 0.066mm。这里满足:0.1≥1.5×0.066【英徕铂】英徕铂ENLAB,物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务

  • 【求购】能测量高度的显微镜

    最近我们需要测量产品的凹坑深度(很多凹坑相联,坑长宽约200~500um,深在几十到一百多微米),了解到三维体视显微镜可以测量。我也联系过keynece等厂家,感觉做是可以做,视野有点小,不能多看一些坑。估计方法倍数在20×左右就能看到很多的坑了,而且能测量坑的深度。请各位帮忙介绍下。我的联系方式dogxiong@163.com

  • 【原创】求通用显微镜测量软件

    本人有台体视显微镜。是用来做试验使用的。现在需要对试验样品进行二维的测量。哪位大侠帮忙下!谢谢。本人邮箱:[email]wpxzwj@yahoo.cn[/email]

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 显微微量注射系统优势特点

    科研级[url=http://www.f-lab.cn/microinjectors/minj-1000.html][b]显微微量注射系统[/b][/url]是全球首款使用倒置显微镜的[b]显微注射器系统[/b]和整套[b]微量注射系统[/b],广泛用于生命科学,分子生物学等领域[b]显微微量注射实验[/b]。[b]显微微量注射系统[/b]包含我公司著名的[b]显微注射器[/b],脉冲宽度控制模块(PCM),显微注射针,品牌倒置显微镜和显微操作器等。作为Narishige公司和奥林巴斯公司产品集成商,我们采用Narishige公司显微注射器和奥林巴斯显微镜或其它生产商(OEM)解决方案,以超级优惠价格为客户提供集成显微微量注射系统。[img=显微微量注射系统]http://www.f-lab.cn/Upload/MINJ-1000-L.JPG[/img][img=显微微量注射系统]http://www.f-lab.cn/App/Tpl/Home/Default/Public/images/grey.gif[/img][b]显微微量注射系统特色和优势在于我们提供定制[/b]载玻片支架,提供更好手动显微控制功能和精度,为您配备电控显微操纵杆式显微操纵器,与其他系统相比可以节省数千美元。[b][url=http://www.f-lab.cn/microinjectors/minj-1000.html]显微微量注射系统[/url]特点:[/b][list][*]较小的尺寸节省安装空间。[*]卓越的光学品质。[*]为DIC类图像定制的霍夫曼调制对比度(HMC)光学系统[*]用于照片和视频文件提供三目头。[*]备有用于检测绿色荧光蛋白,DAPI,罗丹明等的荧光系统[/list][img=显微微量注射系统]http://www.f-lab.cn/App/Tpl/Home/Default/Public/images/grey.gif[/img]

  • 西安交通大学XTDIC 三维数字散斑动态变形测量分析系统

    XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的动态测量。其主要应用有:[b]材料力学性能测量:[/b]DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。[b]细观力学测量:[/b]借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。[b]损伤与破坏检测:[/b]DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。[b]生物力学测量:[/b]DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。[b]大中专院校的研究教学:[/b]本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。

  • 非接触式形状测量显微镜

    谁知道那有非接触式表面三维形状测量显微镜?垂直Z方向要0.1微米级的,X,Y方向需要厘米级别的。我是想租用,基恩士有一款,不知道哪个实验室或者测量单位可以提供这个服务?

  • 电动显微镜载物台特点及参数

    [url=http://www.f-lab.cn/microscopestages/scanplus100.html][b]电动显微镜载物台Scanplus100[/b][/url]集成了测量系统,实现显微镜和样品的精确定位,提供75x50mm的行程范围,最小步进高达0.05微米,定位进度高达1微米,是全球领先的[b]自动显微镜载物台品牌[/b]。[b]电动显微镜载物台Scanplus100产品特点[/b]集成高精度测量系统实现全球最高定位精度和测量精度具有定位测量功能德国圆角的平面人体工程学设计显微镜载物台插入配件可更换设计,具有多种stage inserts 选配,满足显微镜应用电机/编码器电缆前右部连接,符合操作人员习惯集成电子位移台识别系统,自动识别扫描台及其控制器配备高精度特定型号控制,可享受全球5年超长质保[b]电动显微镜载物台Scanplus100参数[/b]行程范围:100x100mm行进速度:最大240mm/s重复定位精度:1um精度:+/-1um分辨率:0.05um (最小步进)正交性:10arcsec驱动电机:2两相步进电机位移台开口:160x116mm材质:高级铝表面处理:氧化涂层,黑漆自重:~2.6kg电动显微镜载物台Scanplus系列集成融入了测量系统,专业为显微镜自动样品定位和精密样品定位应用设计,专业为全球主流显微镜品牌配套,独具的测量系统功能是全球领先的超精密定位测量系统,极大提高测量精度。电动显微镜载物台Scanplus采用全球领先的德国长期润滑系统,确保长期使用而不需维护.更多载物台官网:[url]http://www.f-lab.cn/microscope-stages.html[/url]

  • 【分享】测量系统指南

    第一节 通用测量系统指南在SPC中已涉及到测量系统的一些知识,测量数据的质量是过程控制的重要基础。正确地选择与运用测量系统,能保证较低的测量成本获得高质量的测量数据。一、 几个重要概念1. 测量过程和测量值赋值给具体的事务的表示事物特性的过程叫做测量过程。测量值即测量数据,是该过程的输出。2. 量具任何用来获得测量结果的装置,经常是指在车间使用的测量装置,也包括通过不通过的测量装置。3. 测量系统用来测量的仪器、设备、软件、程序、操作以及操作人员的集合和过程。4. 测量数据的质量测量数据的质量,可以从以下几个方面来描述:① 测量数据的质量是以稳定条件下运行的测量系统的多次测量结果的统计特性来描述。② 测量数据的质量通常用偏倚和方差表示,理想的质量是零偏倚、零方差。③ 测量数据质量低的最普遍原因表现为数据的变差。变差是测量系统和环境之间交互作用的结果。绝大多数变差是不期望的,但能反映被测特性微小变化的变差是有意义的,它反映了测量系统的灵敏度。

  • 实时超分辨率显微成像系统特点介绍

    [url=http://www.f-lab.cn/microscopes-system/storm.html][b]实时超分辨率显微成像系统[/b][/url]突破了光学显微镜的半波长分辨率极限,提供了比宽视场,共聚焦显微镜更好分辨率。实时超分辨率显微成像系统采用尼康或奥林巴斯显微镜,Chroma 滤波片,Andor公司EMCCD相机以及独特的照明系统,为客户提供全球同步的超分辨率成像系统。[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-2.JPG[/img][b]实时超分辨率显微成像系统特点[/b]横向分辨率可达20nm,轴向分辨率可达40nm实时和线下图像重建GPU加速处理图像先进的自动聚焦硬件高分辨率X-Y-Z工作台灵活的配置[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-1.JPG[/img]实时超分辨率显微成像系统:[url]http://www.f-lab.cn/microscopes-system/storm.html[/url]

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 立体定位显微操作系统的特色及规格说明

    [url=http://www.f-lab.cn/stereotaxis/sr-10r.html][b]大鼠慢性实验立体定位显微操作系统[/b]SR-10R[/url]集成立体定位仪器和立体定位显微操作器于一体,专业为大鼠慢性实验而设计,精确而可重复地固定大鼠,它开创了大鼠慢性实验精确立体定向显微操作的新纪元。 大鼠慢性实验立体定位显微操作系统SR-10R-HT是专门为对大鼠慢性实验而设计的。使用室框架固定,实现了在非麻醉状态下在相同位置的重复定位。从而慢性实验以及急性实验可以在不造成动物损害下顺利完成。[img=立体定位显微操作系统]http://www.f-lab.cn/Upload/sr-10r.jpg[/img]大鼠慢性实验立体定位显微操作系统SR-10R-HT可用于视觉或听觉实验。头部固定装置可以从基板移出,因此可以放置在显微镜下。该设备提供AP格线,可以连接许多不同类型的配件,比如显微操作器SM-15 L / R。把室框架连接到老鼠头部,使在非麻醉状态下的同一位置反复定位成为了可能。一旦把室框架固定在头上,不需要麻醉,不需要口、鼻夹或耳棒就可将大鼠立体定向固定,这样SR-10R就可用于视觉或听觉实验。[b]大鼠慢性实验立体定位显微操作系统特色[/b]立体定位显微操作器 SM-15被包括在内。需要没有显微操作器的版本的,请访问SR-10R-HT。 NARISHIGE的立体定位操作器根据新标准制造,该AP框架具有18.7mm的方形台。[b]大鼠慢性实验立体定位显微操作系统规格[/b][table=514][tr][td]配件[/td][td]EB-3B 大鼠耳棒(一对)EB-5N 大鼠辅助耳棒CF-10 室框架 x 5块.[/td][/tr][tr][td]尺寸大小/重量[/td][td]W400 x D300 x H110mm, 9.2kg[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制