当前位置: 仪器信息网 > 行业主题 > >

细胞分离系统

仪器信息网细胞分离系统专题为您提供2024年最新细胞分离系统价格报价、厂家品牌的相关信息, 包括细胞分离系统参数、型号等,不管是国产,还是进口品牌的细胞分离系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞分离系统相关的耗材配件、试剂标物,还有细胞分离系统相关的最新资讯、资料,以及细胞分离系统相关的解决方案。

细胞分离系统相关的资讯

  • 美谷分子发布DispenCell 单细胞分离系统新品
    DispenCell专为快速、简单、温和地分离单细胞而开发,可应用于细胞株开发、CRISPR编辑的细胞筛选、稀有细胞分离、单克隆抗体筛选和单细胞基因组学等多种单细胞分离场景。基于阻抗技术的分离方式可以更加温和的处理细胞样品,小于0.1psi的分离压力让自动分离也能拥有高细胞活率。DispenSoft软件可提供即时可追溯的克隆性证明图谱,搭配CloneSelect Imager FL高通量单克隆验证系统,在第0天即可准确检测到单细胞并验证单克隆性。DispenCell主机紧凑小巧,可放置在生物安全柜等无菌环境中,软件操作界面简单直观,易于学习和使用。1. 温和高效DispenCell可实现对细胞样品更加轻柔的处理,小于0.1psi的分离压力与手动移液相当,但效率更高(~5min/96孔板)。分离过程无激光照射,保证细胞的完整性,因此,细胞活性和生长得以保持。2. 克隆性证明DispenSoft单细胞分析软件可提供即时和可追溯的克隆性证明图谱,允许用户在细胞分配后立即检查克隆性。3. 基于阻抗的分离吸头DispenCell 配有一个检测细胞通过的感应吸头,随着每个细胞的通过将触发一个独特的信号并被软件记录。无菌一次性分离吸头可确保清洁的单细胞分离,且无交叉污染,经认证不含动物源产品和细胞毒性材料。4. 小巧、简单、易用DispenCell体积小巧,可放置在生物安全柜等无菌环境中工作。仪器和软件操作简单,易于设置,无需清洁和校准,样品制备简单,易于学习和快速上手使用。简化工作流程的组合解决方案单细胞分离和单克隆验证在很多应用中都至关重要!例如细胞株开发过程,不仅需要分离和处理大量的单细胞,还需要验证单克隆性并形成证据来用于最终申报。CloneSelect Imager FL 和 DispenCell 的组合,能够提供高效的过程以及可信的证据,在第 0 天即可自信地验证单克隆性。CloneSelect Imager FL 单克隆验证系统全新的 CloneSelect Imager FL,在标准白光成像基础上,增加了高对比度多通道荧光技术,可在第 0 天准确的检测到单细胞并验证单克隆性。通过比较汇合度分析来识别和验证基因编辑。• 数字化记录单细胞证据,以便提交给监管机构• 在多个时间点对细胞进行非侵入式成像,以监测克隆形成• 使用高分辨率白光成像进行筛选• 通过动态分析提供实时结果• 可进行自动化整合
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 新品发布!亲眼见证单克隆性——CloneSelect高通量单细胞分离系统
    众所周知,细胞株开发在单抗领域是一个至关重要的环节。现有的细胞株开发流程存在很多弊端,如单细胞分离效率低下、单细胞存活率低以及缺乏单克隆性证据等。近日,Molecular Devices推出了新品CloneSelect高通量单细胞分离系统c.sight及f.sight两款仪器,它们能提高单细胞分离的效率及活率,且增加单克隆性的可信度。系统采用一次性分离槽设计,省却清洗验证程序,降低交叉污染的风险。此外,系统具备除静电装置,保证高精度的接种,尤其是针对PCR孔板。CloneSelect高通量单细胞分离系统高效接种单个活细胞至微孔板后,用CloneSelect Imager细胞生长分析系统对孔板进行成像记录单个细胞及后续的细胞分离过程。结合单细胞接种前后的图像,以及单细胞在微孔内增殖最终形成细胞团的序列图像,可以为细胞株的单克隆性提供更高的可信度保证。CloneSelect高通量单细胞分离系统的高效率和高活率,可以在不增加工作量的前提下提升细胞筛选的通量,从而有助于发现更多更优质的细胞株或者稀有细胞。主要特点: • 单细胞分离、成像并接种至96或384孔板 • 克隆成活率提高至最多8倍 • 一次性无菌微流控分离槽确保细胞健康无污染 • 明场或荧光分离细胞 工作原理: 使用专有的喷墨式单向分离槽及微流控技术和智能图像分析技术将单个活细胞高效地接种至微孔板或PCR板,轻柔而高效地分离单个细胞。使用高分辨率的明场或荧光成像对细胞进行成像和分析,记录细胞分离过程的连续5张图像,用于增加单克隆性的可信度。应用领域:单细胞分离/分选,用于细胞株开发 单个B细胞技术,用于抗体发现 筛选稀有活细胞,如干细胞、基因编辑的细胞等 单细胞测序,尤其是转录组测序。 下载产品资料请联系美谷分子仪器
  • 诱导多能干细胞克隆效率低?这台温和、自动化的单细胞分选系统帮您搞定,分离效率高达100%!
    人类诱导多能干细胞(hiPSCs)是一类可用于疾病建模、药物开发和组织工程领域的多能诱导干细胞。与CRISPR-Cas9等功能强大的基因编辑技术结合后,可根据不同患者的特性进行疾病相关遗传变异的研究和识别。 然而,培养hiPSCs的步骤较为繁琐,细胞对异常的处理和操作非常敏感,任何操作的问题都有可能导致细胞和遗传毒性应激的积累,进而导致不良分化和多能性丧失。基因编辑建立单细胞衍生的hiPSC克隆过程中常用的技术往往过于复杂或粗暴,导致单细胞克隆效率低下。此外,它们在确保衍生培养物单克隆性方面存在局限性。为此,英国iotaSciences公司推出了可实现100%单细胞分离的isoPick单细胞可视化分选系统,有效解决了培养hiPSCs单克隆过程中的困难。 如右上图所示,单细胞可视化分选系统isoPick采用纳升级的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选;确保分选所得的单细胞样品中只有一个单细胞,结果可验证、可追踪;分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。单细胞可视化分选系统isoPick可全自动进行单细胞的分选、拾取并转移1.5 µ l至200 µ l的液体至PCR管或96孔板中。 使用isoPick从GRIDs内分选hiPSC单细胞置于Laminin-521,Vitronectin-N, Synthemax和iMatrix (Laminin-511)4种不同基质且含有培养基的96孔板中。以第7-10天内的时间计算得出的单细胞克隆效率可以发现,无论使用的包被基质或hiPSC细胞系,平均克隆效率均70%(上图),明显高于其他通常使用的方法(包括FACS),表明isoPick对敏感单细胞的温和处理,能够确保细胞的高存活率和更好的克隆生长效果。 isoPick使用户能够以快速、高效、自动化的方式从多样、异质的细胞群体中分离单个细胞。GRID腔室非常适合用于观察和记录单个细胞的分离过程。 用户可将单个细胞分离并直接置入96孔板用于细胞克隆。相比传统方法,这种方法用简单的线性工作流程,显著提高了细胞分离与克隆效率,操作流程高度自动化,可以将样品无缝衔接单细胞组学的后续操作。单细胞可视化分选系统的优势:全自动化流程操作非常简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧文献举例: 单细胞可视化分选系统相关文献发表于Cell、Advanced Science、Small Methods、Nature Communications 等期刊,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师参观试用!
  • 连发3篇hiPSC文章,单细胞可视化培养系统颠覆传统,分离效率高达100%!
    人类诱导多能干细胞 (hiPSC) 是通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞进行重新逆分化得到的多能干细胞。传统的hiPSC细胞系构建与培养过程操作复杂、耗材昂贵且费时费力。特别是对于异质编辑细胞池中构建的克隆hiPSC系的培养,受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件要求苛刻,操作步骤繁琐,无法充分保证单克隆性。为应对hiPSC细胞系构建与培养过程中的诸多挑战,iotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化培养系统isoCell,构建了用于 hiPSC细胞系培养的平台。该平台采用全自动化流程,操作条件温和,对单细胞无损伤,具有高通量、自动化、高成活率等优势,可确保分选出的细胞100%为单细胞。柏林医学大学多能干细胞和类器官研究中心的Harald Stachelscheid团队使用isoCell在Stem Cell Research期刊上发表了三篇构建不同功能的hiPSC细胞系的科研应用文章,展示了isoCell在hiPSC细胞系构建和培养方面的优势。图1 单细胞可视化培养系统isoCell实物图 1. 以isoCell为核心的hiPSC细胞培养平台isoCell系统组成的细胞培养平台是基于GRID技术的高度自动化的实验平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小(耗材少),光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。图2 GRID实物图 isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落,在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。图3 isoCell操作流程图 2. 生成具有 SLC16A2:G401R 或 SLC16A2 敲除的 iPSC系X染色体相关的AHDS综合征的发病特点是由编码甲状腺激素转运蛋白MCT8(单羧酸转运蛋白8)的SLC16A2基因突变引起精神运动发育严重受损。该团队使用CRISPR/Cas9技术(靶向 SLC16A2 的外显子3)将AHDS患者错义变体G401R和新型敲除缺失变体 (F400Sfs*17) 引入男性健康供体的hiPSC系(BIHi001-B)。通过isoCell培育成功地获得了SLC16A2基因敲除的hiPSC单克隆细胞系(BIHi001-B-7)和(BIHi001-B-8),并证明了这些新细胞系在模拟 MCT8 缺陷对人类神经发育的影响方面的实用性。文章以Generation of iPSC lines with SLC16A2:G401R or SLC16A2 knock out为题发表于Stem Cell Research期刊上。图4 WB验证SLC16A2 敲除的hiPSC系无法表达SLC16A2蛋白 3. 生成 THRB-GS(E125G_G126S) 和 THRB-KO 人类 iPSC 系以研究非典型甲状腺激素信号传导THRB是一种依赖甲状腺激素 (TH) 结合来调节基因表达的核受体。相同的受体也可以介导细胞质中信号通路的激活。目前尚无法区分这两种机制中的哪一种是造成 TH 生理效应的原因。该团队结合基因编辑与isoCell的单细胞培养基技术,成功建立了一种在 THRB DNA 结合域中具有两个突变 (E125G_G126S) 的hiPSC 细胞系(BIHi001-B-2/3),该突变消除了THRB的核受体作用,因此可以用该细胞系专门研究THRB的信号通路激活作用。该团队还生成了 THRB 敲除细胞系(BIHi001-B-6)以消除所有 THRB 效应。通过比较WT结果和这两种细胞系,将甲状腺激素的影响归因于潜在的机制。文章以Generation of THRB-GS(E125G_G126S) and THRB-KO human iPSC lines to study noncanonical thyroid hormone signalling为题发表于2024年2月的Stem Cell Research期刊上。图5 基因测序验证BIHi001-B-2/3和BIHi001-B-6细胞系敲除或突变了对应基因 4. 使用 CRISPR-Cas9 生成了两个 BAX/BAK 双敲除人类诱导多能干细胞系 (iPSC)脑缺血损伤很多是由于脑缺血状态下细胞凋亡导致的。Bcl-2基因相关的X 蛋白 (BAX) 和BCL2 拮抗因子(BAK)是 BCL2 家族的两个促凋亡因子,BAX 和BAK是线粒体凋亡的执行基因,与细胞凋亡密切相关。该团队使用 CRISPR-Cas9技术构建了两个 BAX/BAK 双敲除人类诱导多能干细胞BIHi005-A-17和BIHi250-A-1,并通过isoCell培养获得了对应的hiPSC单克隆细胞系。所得细胞系核型正常,具有典型的形态并表达未分化状态的典型标记,并通过基因技术验证了细胞系已敲除BAK基因。在后续的研究中,研究人员就可以将该BAX/BAK 双敲除的hiPSC细胞系广泛应用于脑缺血等细胞凋亡相关领域的发病机制与治疗干预机制研究中。文章以Generation of two human induced pluripotent stem cell lines with BAX and BAK1 double knock-out using CRISPR/Cas9为题发表于2024年4月的Stem Cell Research期刊上。图6 通过基因测序及WB验证BIHi005-A-17和BIHi250-A-1以敲除BAK与BAX基因 5. 结论以isoCell构建的hiPSC细胞培养平台可以对hiPSC细胞进行全自动化且温和地单细胞培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且节省培养耗材。isoCell的培养条件温和,在以上案例中协助科研人员构建了多个基因改造hiPSC单克隆细胞系,成活率高。 单细胞可视化培养系统isoCell的优势:✔ 全自动化流程✔ 操作条件温和,对单细胞无损伤✔ 全培养、分析流程可追踪✔ 单细胞率高达100%✔ 单克隆细胞系构建成活率高✔ 结构紧凑,体积小,节省耗材单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigeneticimmunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验:为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师通过拨打电话010-85120280、发送邮件info@qd-china.com、点击此处或扫描下方二维码参观试用!扫描上方二维码/点击此处,即刻咨询/体验! 用户名单用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)“使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”相关产品1、单细胞可视化分选培养系统—isoCellhttps://www.instrument.com.cn/netshow/SH100980/C551413.htm
  • 单细胞分离的特点应用以及小技巧
    单细胞分离采用类似喷墨打印机以及一次性分配分离槽,温和高效地接种单细胞,使用明场高分辨率成像或可选荧光分选细胞,每个单细胞分离捕获 5张图像,单克隆性,提高工作效率,保持并增强细胞活率,且防止交叉污染。  采集单细胞分离的证据,在接种细胞时记录5张连续图像,以96或384孔板的形式提供直接的单克隆性图像证据,提高克隆形成率,与传统方法相比,在克隆形成率上可实现高达8倍的提升。  保持细胞健康和无菌,正如克隆生长实验所见,通过温和的分离维持细胞活性,并使用无菌的一次性单向分离槽防止交叉污染,简便、快速、可选择以及无损分离单细胞,简化遗传和克隆培养、分析中分离过程。快速高效接种单个活细胞至微孔板分离系统的主要功能为高效柔和地分离或分选活的单细胞。该系统通过微流控技术柔和地形成细胞液滴,同时利用白光和荧光成像实时分析细胞数量和荧光强度,将符合要求的单细胞液滴准确接种至96孔板。  主要特点  1.分离效率85%,单细胞活率75%;  2.记录分离前后的连续5张图像,用于支持细胞株的单克隆性;  3.采用一次性分离槽,省却系统的清洗验证,减小交叉污染的风险;  4.采用白光成像和荧光成像,可根据细胞直径、圆度以及荧光强度筛选出感兴趣的细胞;  5.内置除静电装置,消除微孔板静电,确保细胞液滴接种至微孔正中间,尤其是PCR板。  单细胞分离系统可代替传统的有限稀释法,高效地将单个活细胞接种至微孔板中。得益于分离系统的高效率和高活率,可以将每块微孔板中可获得的单克隆细胞团提高至多8块,从而在相同的工作量下可筛选更多的细胞克隆,从中发现更多更优质的细胞株。分离过程中记录的连续5张图像,可以与后续的孔板成像的图像证据互相补充,从而提高单克隆性的可信度。  应用范围:连接不同管径大小的毛细玻璃针,可分离捕获各种非贴壁状态的单细胞和微粒等,如细菌、酵母、藻类细胞、植物花粉、原生动物单细胞、悬浮细胞、血液细胞、免疫细胞、卵细胞、各种悬液中单细胞及特殊标记的单细胞等。  单细胞分离的小技巧  1. 缩短制备单细胞悬液的时间,以保留细胞活力  2. 考虑使用细胞筛来过滤出细胞团块或双细胞  3. 注意缓冲液的选择,包括分选和收集溶液  4. 如果您打算在分选后培养细胞,请使用对数生长期的细胞,并确定最佳培养条件  5. 在分选转染后的细胞时,通常在转染后72小时进行,以提高细胞群的生存能力  6. 如果采用荧光抗体来分离稀有细胞,请在染色前离心抗体,以便去除任何可能被误认为是靶细胞的荧光颗粒  7. 对于单细胞基因组学应用,在分选后别忘了离心平板,以确保细胞在孔的底部  8. 选择一种可靠的分析技术来评估分选细胞的数量和质量
  • 深度了解Namocell单细胞分离仪
    公司简介:Namocell是一家总部位于美国硅谷的专注于世界先进的单细胞分选技术的生物仪器公司。该公司自主研发的微流体单细胞分选平台,使复杂的单细胞分选变得极其简单快速,极大地推动了单细胞分析在基础研究和临床的上应用。我们的产品已在细胞株的构建,单克隆抗体的筛选,细胞基因编辑,癌症液体活检,癌症免疫治疗,产前基因筛查,噬菌体展示,单细胞基因组等多方面得到广泛的应用。目前Namocell单细胞分离仪已经被世界各大知名研究机构及生物制药公司广泛应用于生命科学研究的各个领域,例如美国国家卫生研究院(NIH),斯坦福大学,麻省理工大学,Genentech,Merck,Biogen等。在国内,目前也已经有多家高校、科研院所和生物公司采用Namocell的产品进行单细胞方面的工作。一、技术原理:美国Namocell公司的单细胞分离仪(NamocellSingleCellDispensers)采用先进的微流体技术以及灵敏的光学检测系统,在精确地鉴别细胞的同时又能对目的细胞进行单细胞的分离分选,最终在96孔板或者384孔板中得到结果。Namocell单细胞分离仪完美结合了三种重要技术,实现快速、高效、准确地分离并获取单细胞:1.流式细胞术:细胞检测方式采用流式细胞术,利用激光激发,荧光和散射光的接收来判断细胞特性,检测精度高;2.微流控技术:采用微流控芯片检测分离细胞,在极低的鞘液压力下()进行分选,如手工般轻柔,保持细胞活性,零损伤;3.液滴分配技术:可以让筛选得到的所需细胞,从微流控芯片中将含有单个细胞的液滴直接滴至96孔板或384孔板。二、产品特性特性1.轻柔---保护细胞活性Namocell单细胞分离仪发挥微流体技术的低鞘液压力优势,在整个分离过程中系统给流体的加压小于2psi,对细胞极其轻柔,保护细胞活性,促进细胞后续生长。以下是Namocell与两款传统的FACS流式细胞仪进行细胞铺板生长情况对比,结果显示,用Namocell单细胞分离仪进行单细胞铺板的结果普遍优于用FACS铺板的结果。特性2.灵活---适用各种样本浓度Namocell采用微流控芯片进行细胞分选,系统死体积小,样本浪费少。因此对于少量珍贵细胞样本,比如细胞数量少于一百个,也可轻松完成单细胞分离。Namocell独创的富集分选模式,可以在细胞密度很高的状态下进行(2x108cells/mL)挑选含量极低的()目标细胞。特性3.快速---96孔板只需1分钟Namocell单细胞分离仪是目前市场上最快速的单细胞分离系统:1.分选速度快:可在1分钟内完成96孔板分选,6分钟内完成384孔板分选。2.整体流程速度快:开机无需任何调试,无需微球进行复杂的dropdelay校准,一键即可在2分钟内自动完成初始化,开始进行细胞分选,更换样本只需1分钟,分选结束后关机只需2分钟。特性4.轻巧---整机小巧,方便移动整机体积小巧,轻便。尺寸是50×36×20cm,重量9kg,相当于小型家用微波炉的体积与重量,不占实验室空间,方便移动。尤其对于无菌要求高的实验,可以将Namocell单细胞分离仪放进超净台中使用。特性5:无菌---一次性芯片,杜绝交叉污染细胞分选的实验绝大多数需要无菌环境,Namocell单细胞分离仪在设计上为无菌要求做到了三重保护:1.体积小巧:方便整机置于超净台中进行细胞分选操作;2.一次性芯片,零污染:从根本上杜绝了样本之间相互污染的可能性,用户可在同一台仪器上分离细胞、细菌、酵母等生物样本,而无需为样本交叉污染而担忧;3.专属管路,无残留,无堵塞:Namocell采用的专属管路设计,确保样本在检测前不会流经共用通道。完全杜绝了FACS常见的系统堵塞以及样本残留在管路中的现象。特性6:轻松---使用简单,无需专人维护Namocell单细胞分离仪只有一个硬件开关,是真正的“一键启动”,并且启动后无需预热,无需调校,开机后可立即使用。使用极其简便,每一步都有软件自动提示,无需特殊培训,也无需流式经验,能够让每个人都成为细胞分选高手。三、应用领域Namocell单细胞分离仪已经广泛应用于生命科学的各个领域。在生物制药领域,用于细胞株构建、抗体药物开发;在肿瘤医学方面,用于稀有循环肿瘤细胞的分离;在植物学领域,用于原生质体的分离;在CRISPR基因编辑领域,用于工程细胞株的开发以及iPSCs的单克隆细胞培养;在单细胞分析方面,用于单细胞测序和单细胞质谱的前处理过程等等。了解更多内容,请关注Namocell官网。
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 1396万!中国医科大学科学实验中心圆二色光谱仪、全自动无损细胞分离系统等采购项目
    一、项目基本情况1.项目编号:JH24-210000-05856项目名称:中国医科大学科学实验中心实时图像交互细胞分选仪采购项目包组编号:001预算金额(元):8,100,000.00最高限价(元):8,100,000采购需求:查看合同履行期限:签订合同后60个工作日内交付(包含免税办理时间),并于交货后7个工作日内安装、调试完毕。需落实的政府采购政策内容:小微企业/监狱企业/残疾人福利性单位/节能产品、环境标志产品/列入《创新产品和服务目录》内的产品、服务政府采购政策相关规定等。本项目(是/否)接受联合体投标:否2.项目编号:JH24-210000-05858项目名称:中国医科大学科学实验中心全自动无损细胞分离系统采购项目包组编号:001预算金额(元):4,300,000.00最高限价(元):4,300,000采购需求:查看合同履行期限:签订合同后60个工作日内交付(包含免税办理时间),并于交货后7个工作日内安装、调试完毕。需落实的政府采购政策内容:小微企业/监狱企业/残疾人福利性单位/节能产品、环境标志产品/列入《创新产品和服务目录》内的产品、服务政府采购政策相关规定等。本项目(是/否)接受联合体投标:否3.项目编号:JH24-210000-05854项目名称:中国医科大学科学实验中心圆二色光谱仪采购项目包组编号:001预算金额(元):1,560,000.00最高限价(元):1,560,000采购需求:查看合同履行期限:签订合同后60个工作日内交付(包含免税办理时间),并于交货后7个工作日内安装、调试完毕需落实的政府采购政策内容:中小微企业(含监狱企业)相关规定、促进残疾人就业政府采购政策相关规定、对于节能产品、环境标志产品相关规定等本项目(是/否)接受联合体投标:否二、获取招标文件时间:2024年06月06日 17时00分至2024年06月15日 00时00分(北京时间,法定节假日除外)地点:线上获取方式:线上售价:免费三、对本次招标提出询问,请按以下方式联系1.采购人信息名 称: 中国医科大学地 址: 沈阳市沈北新区蒲河路77号联系方式: 024-319391552.采购代理机构信息:名 称: 辽宁承明招投标有限公司地 址: 沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室联系方式: 024-86136767邮箱地址: liaoningshangyu@126.com开户行: 光大银行沈阳皇姑支行账户名称: 辽宁承明招投标有限公司账号: 75810188000242513000013.项目联系方式项目联系人: 郭晓川、刘娟娟、刘金霞、孙少伟电 话: 024-86136767
  • 单细胞可视化分选技术全新来袭,分离效率高达100%!
    近年来,随着单细胞组学、单细胞克隆研究的持续走热以及循环肿瘤细胞研究的不断深入,如何高效、准确地进行单细胞分选成为研究工作中的桎梏。传统单细胞分离手段无法保证所得的样品内只有一个单细胞,导致下游的实验出现误差。英国iotaSciences公司经长期的技术积累研发推出的新型单细胞可视化分选系统-isoPick,可确保分选所得的样品中只有一个单细胞,分离效率高达100%,且结果可验证、可追踪,有效化解了单细胞分选的难题。 近日,Quantum Design中国与IotaSciences公司正式成为战略合作伙伴,将单细胞可视化分选系统-isoPick引进中国,旨在为中国研究人员提供一个可靠且功能强大的单细胞分选平台和全新的解决方案!单细胞可视化分选系统-isoPick 单细胞可视化分选系统-isoPick基于创新的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选。分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。isoPick也可将单细胞样品按照特定的体积直接转移到96孔板或PCR管中,无缝衔接到单细胞下游应用,确保后续单细胞组学信息完整性。单细胞可视化分选系统的优势:全自动化流程操作简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧部分发表文献:单细胞可视化分选系统已发表于Cell、Advanced Science、Small Methods、Nature Communications等期刊,如下为具有代表性的文献:Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.用户名单:样机试用:为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师预约参观试用!
  • 可分离血液中癌细胞的生物芯片问世
    据澳大利亚广播公司日前报道,澳大利亚科研团队发明了一种可分离血液中癌细胞的生物芯片,能甄别出血液中的癌细胞并将其移除。该技术可大幅降低癌症治疗费用,有望延长患者生命。 澳大利亚新南威尔士大学的一个科研团队研发的这种生物芯片,在一个名为“癌症透析”的设备中过滤血液,甄别并移除癌细胞。该团队研发这种芯片的初衷,是想寻找一种较便宜且痛苦较少的癌症诊断方法。 团队负责人马吉德瓦尔基阿尼博士称,人类癌症中99%的癌症是实体瘤,而进入人体外周血(除骨髓之外的血液)循环的癌细胞会随着血液转移,扩散到身体其他部位。根据癌细胞比健康细胞大,代谢较旺盛的特点,医生将混有健康细胞和癌细胞的血液放入生物芯片中,在液体压力的影响下,较大的癌细胞和较小的健康细胞分别进入不同的出口,成功分离。 该芯片还能大幅降低与癌症相关的治疗成本。据了解,澳大利亚进行肿瘤检测的扫描费约700澳元(约合3229元人民币),而用这种芯片检测血液中癌细胞的成本仅为50到100澳元(约合230元至460元人民币)。 此外,该技术或能延长癌症患者的生命。有医生建议,如果能制作大型芯片,癌症患者的血液就如同接受肾透析一样得到“清洗”。将分离了癌细胞的血液重新输回患者体内,也避免了因输入他人血液造成的免疫反应。对于癌症早期患者,可通过这种技术降低癌症转移扩散的几率。
  • 妙顺生物完成超亿元A轮融资,泰坦科技跟投|专注原代细胞研发与分离
    【招商赞助中】iCCA2023 第六届细胞分析网络会议 全日程公布!(点击查看)妙顺生物宣布完成超亿元A轮融资,本轮融资由中科海创领投,毅达资本、高瓴创投(GL Ventures)、泰坦科技(688133.SH)(点击进入在线展位)、同毓资本跟投,凯乘资本担任独家财务顾问。本轮融资获得了国家队基金、著名投资机构以及上市公司的认可和支持,募集资金将主要用于加速一系列原代细胞及配套试剂耗材产品的开发,以及进一步加强企业海内外商业化拓展能力。专注国产化细胞研发与分离服务妙顺生物主要服务与产品妙顺生物是一家专注于国产化细胞研发与分离服务的公司,致力于成为细胞与基因治疗领域上游细胞、配套试剂及服务一站式提供商。公司通过多年的研发与经营,已成为原代细胞行业领军者,并建立了覆盖全国的生产销售网络,可提供业内领先的服务与响应速度,实现过亿元级别收入,并维持高速增长。而多年的技术积累,将在未来助力妙顺布局更广泛的细胞类型,并围绕原代细胞产品,将自身打造成为覆盖各类细胞上游耗材及CRO服务在内的一站式生物医药/CGT上游供应商。妙顺生物创始人、CEO张金保表示:非常感谢各机构对于妙顺生物的关注与支持,我们自成立以来,始终致力于将妙顺打造成为服务中国生物医药企业的头部企业。在本轮融资完成后,我们将在巩固现有核心业务的同时,加速配套试剂耗材的海内外商业化推进,以及CRO业务等新业态的落地。同时,凯乘资本团队在融资过程中表现出了极高的专业度与执行力,在材料准备、机构对接以及方案设计等环节中,起到了不可或缺的指导与沟通作用。我们也将继续与凯乘保持良好的合作关系。毅达资本表示:妙顺生物是国内原代细胞服务领域的先行者和领先者,公司的细胞分离服务广受国内客户信赖。公司团队锐意进取,不断优化完善服务体系,同时持续开发细胞分离、培养等相关试剂,打造细胞领域的一站式服务平台。我们很高兴能参与妙顺生物本轮融资,期待公司取得更大突破,助力国内生物医药及细胞治疗等行业发展。泰坦科技相关负责人表示:妙顺生物是国内免疫细胞服务行业的细分龙头,公司掌握细胞模型核心技术,推出多款国内领先的细胞模型产品,性能比肩国际品牌。公司正在围绕细胞赛道实现多种试剂、耗材及服务业务的布局,具备成为细分赛道头部企业的巨大潜力。泰坦科技目前的下游客户主要聚焦于生物医药产业端,将妙顺生物的核心产品技术向科研市场拓展,不断覆盖高校院所实验室及企业研发中心,符合泰坦未来培育新市场和品牌建设的战略规划。此次泰坦科技入股妙顺生物将有机会使双方通过资本纽带进一步形成产业协同的契合。同毓基金表示:在国内生命科学上游赛道国产化程度逐渐提升的行业大趋势下,涌现出了众多原料、耗材或仪器类企业,而像妙顺生物这样,同时具备产品稀缺性,完善的商业化网络以及广阔想象空间,且已经成为行业龙头的标的是十分具备吸引力的。我们也十分期待妙顺在未来成长为多方向全面发展的综合性生物医药服务平台。凯乘资本表示:非常感谢妙顺生物团队对凯乘资本的信任及各投资机构的大力支持,很荣幸能够助力公司完成本轮融资。公司创始人张金保拥有丰富的创业经验,带领公司成为了国内原代细胞领域的头部企业。我们相信在张总的带领下,妙顺生物将成长为国内领先的生物医药上游平台型企业。关于中科海创潍坊中科海创股权投资合伙企业(有限合伙)系国家科技成果转化引导基金设立的创业投资子基金之一。国家科技成果转化引导基金由科技部、财政部设立,旨在通过设立创业投资子基金的方式支持科技成果转化,支持转化利用财政资金形成的科技成果。潍坊中科海创股权投资合伙企业(有限合伙)在科技部直属国家科技风险开发事业中心的指导和管理下,致力于为转化科技成果的非上市高科技企业提供股权投资,目前已投资多家国内行业领先的高科技成果转化企业。关于毅达资本毅达资本由老牌知名创投机构——江苏高科技投资集团内部混合所有制改革组建,在行业研究能力、资产管理规模、投资专业化程度等方面稳居行业前列,是国内最具影响力的创业投资机构之一。近三年,毅达资本在清科集团、投中信息、证券时报、中国创投委、福布斯等重量级榜单中蝉联“年度中国创业投资机构”“最佳中国创业投资机构”“最具竞争力创业投资机构”“优秀创业投资机构卓越成就奖”“最佳创投机构前10强”等奖项,并稳居国内创投机构第一阵营。关于高瓴创投高瓴创投 (GL Ventures) 是中国最活跃的创业投资平台之一,专注于创新型公司的价值发掘与价值创造,尤其关注新技术、新能源、新材料、新消费等重点领域。自2020年独立推出以来,我们致力于以系统化的DVC(Deep Value Creation,深度价值创造)服务,助力早期创新企业的长期发展。关于泰坦科技上海泰坦科技股份有限公司(股票代码:688133)成立于2007年10月,专注于为科研工作者和质量控制人员提供一站式实验室产品与配套服务,致力于成为科学服务领域的变革者,更好服务国家战略,保障国家科研物资安全,助力企业创新升级。公司通过自主研发、品牌运营、品牌代理、集成打包服务等方式为生物医药、新材料、新能源、化工化学、精细化工、食品日化、分析检测等领域的实验室提供全方位的综合服务,覆盖客户的研发准备、研发过程、研发后期、生产质控等各个阶段,提供“一站式”有竞争力的产品和服务。公司围绕客户需求,形成高端试剂、通用试剂、分析试剂、特种化学品、安防耗材、仪器仪表、实验室建设、科研软件等八大产品线。自创立以来,公司已累计服务机构客户超过5万家,服务科研人员超过100万名。关于同毓基金同毓基金是一家聚焦于医疗、医药及其上下游产业链相关领域的新兴投资机构。同毓基金以临床需求为导向,以探索医疗健康科技创新为驱动,汇聚了全球顶尖科学家、资深风险投资及丰富企业运营经验的专业团队,布局医疗健康全生态系统,拥有深度的行业渗透和广泛的市场覆盖,致力于成为中国医疗健康领域领先的专业投资机构。关于凯乘资本凯乘资本(WinX Capital)是中国领先的大健康领域投资银行。总部位于北京及上海,覆盖3000余家活跃投资机构及产业集团。2020-2022年连续获评企名片&新声创服“2021-2022年度医疗健康领域最佳财务顾问 TOP 2”,“2020年度医疗健康领域最佳财务顾问机构 TOP 4”,“2021年度最佳财务顾问-活跃榜 TOP 10”,“2022年中最佳财务顾问-综合榜TOP 6”、“2022年中最佳财务顾问-活跃榜 TOP 7”、36氪“WISE2020/2021中国最具成长力新型投行 TOP 5”、动脉网2022“澎橙奖年度医疗健康财务顾问 TOP 5”【招商赞助中】iCCA2023 第六届细胞分析网络会议 全日程公布!(点击查看)
  • 320万!复旦大学高端超速单细胞流式分离仪采购项目
    项目编号:0705-224002028066项目名称:复旦大学高端超速单细胞流式分离仪采购国际招标预算金额:320.0000000 万元(人民币)最高限价(如有):313.6000000 万元(人民币)采购需求:1、招标条件项目概况:高端超速单细胞流式分离仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028066招标项目名称:高端超速单细胞流式分离仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1高端超速单细胞流式分离仪1套激光器配置:配置至少四个独立激光器,至少包括:488nm、633nm、405nm、561nm激光器预算金额:人民币320万元 最高限价:人民币313.6万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 320万!复旦大学高端超速单细胞流式分离仪采购项目
    项目编号:0705-224002028066项目名称:复旦大学高端超速单细胞流式分离仪采购国际招标预算金额:320.0000000 万元(人民币)最高限价(如有):313.6000000 万元(人民币)采购需求:1、招标条件项目概况:高端超速单细胞流式分离仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028066招标项目名称:高端超速单细胞流式分离仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1高端超速单细胞流式分离仪1套激光器配置:配置至少四个独立激光器,至少包括:488nm、633nm、405nm、561nm激光器预算金额:人民币320万元 最高限价:人民币313.6万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 共探单细胞技术在微生物领域发展,长光辰英第二届微生物功能单细胞分离研讨会在杭州顺利召开
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/ec296395-275f-46fc-bea1-5b15c8fc0771.jpg" title=" image001.jpg" alt=" image001.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2020年12月22日,由长春长光辰英生物科学仪器有限公司分公司长光辰英(杭州)科学仪器有限公司主办的“2020年第二届微生物功能单细胞分离研讨会”在杭州顺利召开。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1ea571b9-7b49-4024-8683-59d48132155a.jpg" title=" 合影 单细胞02.jpg" alt=" 合影 单细胞02.jpg" / /p p style=" text-align: justify text-indent: 2em " 本次会议以“微生物拉曼分选技术与应用”为主题,以科学性、专业性、前瞻性为特色,汇聚了来自北京、广州、上海、江苏、南京等地的微生物领域知名专家学者与青年学生六十余人。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3eca1e8a-a8f1-4b15-96ff-058dcecea113.jpg" title=" image003.jpg" alt=" image003.jpg" / /p p style=" text-align: justify text-indent: 2em " 会议深入探讨了单细胞技术在微生物领域的最新研究成果及应用需求与前景,旨在进一步推动单细胞技术及国产高端光学装备在微生物研究领域的创新应用,促进科研成果转化。 /p p style=" text-align: justify text-indent: 2em " 会议开始,上海交通大学特聘教授、中国微生物学会环境微生物学专业委员会主任周宁一教授进行了精彩的开幕致辞,并围绕“环境微生物学研究进展与存在的问题”做了大会主旨报告。在环境微生物研究中,传统方法(如培养法、宏基因测序等)存在一定的局限性,单细胞技术可逐一表征微生物细胞在其原生微生物群落中的特性,为研究未/难培养微生物提供了一种新方法。周宁一教授回顾了自首届微生物功能单细胞分离研讨会(2019年6月)以来,多个研究团队应用单细胞拉曼光谱技术与可视化分选技术的最新研究成果,认为在单细胞层面对微生物群落进行研究将是未来的重要科研方向。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/6be1efe8-3d26-4a8b-8260-1277e4bb7713.jpg" title=" image004.jpg" alt=" image004.jpg" / /p p style=" text-align: center text-indent: 0em " 周宁一教授开幕致辞 /p p style=" text-align: justify text-indent: 2em " 会议学术报告环节分别由南京农业大学生命科学学院院长蒋建东教授及上海交通大学唐鸿志教授主持。广东省微生物研究所杨永刚研究员、浙江大学沈超峰副教授、复旦大学全哲学教授、中科院长春光机所李备研究员、浙江大学吕镇梅教授、中科院苏州生物医学工程技术研究所宋一之研究员、中国水产科学研究院东海水产研究所迟海副研究员分别作了精彩的学术报告,分享了各自的研究进展及所在领域对单细胞技术的应用需求,引起了与会者的热烈交流与讨论。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/ec0449eb-f231-4a9c-91b6-f6803362d802.jpg" title=" image005.jpg" alt=" image005.jpg" / /p p style=" text-align: center " span style=" text-indent: 0em " 蒋建东教授主持学 /span span style=" text-indent: 0em " 术报告 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/efe09b16-1349-4cd5-bb5a-930852eba356.jpg" title=" image006.jpg" alt=" image006.jpg" / /p p style=" text-align: center text-indent: 0em " 唐鸿志教授主持学术报告 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/0f1204c5-3c23-4261-af9f-15720b2bd03c.jpg" title=" image007.jpg" alt=" image007.jpg" / /p p style=" text-align: center text-indent: 0em " 杨永刚研究员做题为《胞外电子传递功能菌的单细胞示踪和挑选》的学术报告 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/c9ef28d0-5a24-4c1d-9408-bbf232fc1e39.jpg" title=" image008.jpg" alt=" image008.jpg" / /p p style=" text-align: center text-indent: 0em " 沈超峰副教授做题为《基于拉曼光谱分析休眠状态下的多氯联苯降解菌》的学术报告 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/95470f83-d423-43ef-9743-dea80b5e6750.jpg" title=" image009.jpg" alt=" image009.jpg" / /p p style=" text-align: center text-indent: 0em " 全哲学教授做题为《基于拉曼光谱技术在微生物学研究中的应用》的学术报告 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/8a8c8e62-113f-4159-9608-b3212913967e.jpg" title=" image010.jpg" alt=" image010.jpg" / /p p style=" text-align: center text-indent: 0em " 吕镇梅教授做题为《污染物降解混合菌群中功能菌的发现与分选》的学术报告 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/a1b431f9-30ca-4e26-b38a-34ec9feca4bc.jpg" title=" image011.jpg" alt=" image011.jpg" / /p p style=" text-align: center text-indent: 0em " 宋一之研究员做题为《单细胞表型分析与分选在微生物研究中的应用》的学术报告 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/dd8c68a8-45f6-4540-b3d3-fc6957bf749b.jpg" title=" image012.jpg" alt=" image012.jpg" / /p p style=" text-align: center " span style=" text-indent: 0em " 迟海副研究员做题为《水产品中副溶血性弧菌快速检测技术研究》的学术报告 /span /p p style=" text-align: center" br/ /p p style=" text-align: justify text-indent: 2em " 会上,李备研究员介绍了单细胞拉曼分选技术在微生物领域中的作用与意义,重点介绍了自主研制的拉曼分选系统在病原菌鉴定、微生物代谢监测、肠道菌群分析、深海微生物的原位观测等方向的应用进展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/429e94b6-e9a4-4158-9974-9f9a2a9eded0.jpg" title=" image013.jpg" alt=" image013.jpg" / /p p style=" text-align: center text-indent: 0em " 李备研究员做题为《拉曼光谱技术在微生物学研究中的应用》的学术报告 /p p style=" text-align: justify text-indent: 2em " 在随后开展的圆桌讨论环节中,各位专家学者围绕对单细胞拉曼分选的个性化需求、单细胞分选在环境微生物领域的实际应用价值、微生物拉曼数据库构建的方式及意义、共聚焦三维成像在微生物研究中的应用需求等具体问题进行了深入探讨,指出了微生物领域对单细胞研究技术的共性需求,认为免标记单细胞原位识别技术与适应微生物单细胞形态特征(尺寸小、形态各异等)的分离技术的缺乏,是目前微生物单细胞研究领域的限制因素。将共聚焦拉曼光谱系统与可视化单细胞精准分选系统相结合,对接后续微生物单细胞培养组、基因组、代谢组等研究,将为复杂环境下微生物生态、菌群互作、代谢机制及功能研究提供有力工具。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/fe99a60c-569a-4937-850f-c610e746958b.jpg" title=" image014.jpg" alt=" image014.jpg" / /p p style=" text-align: center text-indent: 0em " 圆桌会议讨论 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/9b851baa-b912-47a1-9783-006a06725222.jpg" title=" image015.jpg" alt=" image015.jpg" / /p p style=" text-align: justify text-indent: 2em " 会议茶歇环节,与会者参观并试用了辰英科仪的单细胞领域系列产品,包括可视化单细胞分选仪、拉曼单细胞分选仪、超快共聚焦三维成像系统等。工作人员重点讲解了仪器性能、优势以及应用方案,并针对来宾关注的问题进行了现场解答,得到了到场专家及同学们的一致好评。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/341de611-dbe6-411b-abff-3003eea43ae7.jpg" title=" image016.jpg" alt=" image016.jpg" / /p p style=" text-align: center text-indent: 0em " 辰英科仪副总李文杰向专家介绍仪器 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/3a57c3a7-fedc-4ef9-88f3-2be0cb7e5778.jpg" title=" image017.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/6b4139da-8dc5-4be2-b30d-efe413118d6a.jpg" title=" image018.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/bb45fa5b-c11a-4b7a-ab63-763dbb9db6ef.jpg" title=" image019.jpg" / /p p style=" text-align: justify text-indent: 2em " 未来,单细胞拉曼分选技术与应用研讨会将陆续在其他省份举办,届时欢迎更多各领域的专家学者参与到大会研讨中来,共同推进前沿光学技术与生物应用的创新融合。希望各位专家老师给予我们更多的意见与支持,辰英科仪将始终致力于国产原创性生物医学高端仪器的研发与制造,为探索生命科学提供有力工具,为共同推动人类健康事业发展贡献力量。 /p p style=" text-align: justify text-indent: 2em " strong 关于长光辰英(杭州)科学仪器有限公司 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/309fe1e5-616e-4e1f-b087-0f8c3baba387.jpg" title=" image020.jpg" alt=" image020.jpg" / /p p style=" text-align: justify text-indent: 2em " 长光辰英(杭州)科学仪器有限公司成立于2020年11月18日,是由辰英科仪与杭州长光产业技术研究院联合创办的企业,注册资金3000万。 /p p style=" text-align: justify text-indent: 2em " 辰英(杭州)将建设单细胞创新技术平台,为长三角及全国的科研工作者提供前沿单细胞系列装备及技术服务。 /p
  • 让单克隆细胞成活率更高!单细胞可视化分选培养系统-isoCell重磅来袭
    近年来,随着单细胞组学、单细胞克隆研究的持续走热、循环肿瘤细胞研究的不断深入,如何高效、准确地分选单细胞成为研究工作中的桎梏。作为单细胞分选与培养领域领先者,英国iotaSciences公司推出了单细胞可视化分选培养系统-isoCell,不仅确保分选所得的样品中只有单个单细胞,分离效率高达100%,更进一步实现了将挑选出的单个细胞自动化地、直接地培养成单克隆细胞系,且分选与培养过程全程可验证、可追踪,保证每一个单克隆细胞系均来自单细胞。Quantum Design中国作为iotaSciences公司的战略合作伙伴进一步将单细胞可视化分选培养系统引进中国,为中国研究人员提供可靠且功能强大的单细胞分选与培养技术和解决方案。 单细胞可视化分选培养系统-isoCell iotaSciences公司特有的网格式单细胞腔室技术(GRID技术)是单细胞可视化分选培养系统-isoCell自动化分离和培养单细胞解决方案的核心。该技术每个腔室尺寸微小、光学清晰度卓越且无边缘效应(如下图所示),可以清晰地查看腔室内的细胞数量与形态。设备创新性的将GRID技术与可视化分选相结合,确定腔室内只有单个细胞,通过自动化地微流控技术从GRID腔室挑选出单个细胞用于下游应用,也可以在GRID腔室内将单个细胞直接培养成单细胞系,单克隆细胞系成活率高。 单细胞的分选与培养操作流程高度自动化保证了单细胞的高活性与单克隆细胞系的高成活率,且全流程可视化监控确保了每一个单克隆细胞系均来自单个细胞。单细胞可视化分选培养系统-isoCell的优势:☛ 全自动化流程☛ 操作条件温和,对单细胞无损伤☛ 全培养、分析流程可追踪☛ 单细胞分离效率高达100%☛ 单克隆细胞系构建成活率高☛ 直接转移到PCR管或96孔板☛ 结构紧凑,体积小 文献举例: 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications 等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询!用户名单 用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)”使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。“
  • 赛默飞推出用于细胞疗法生产的模块化封闭细胞处理系统
    p style=" text-indent: 2em " 近日,赛默飞宣布推出其Gibco CTS Rotea逆流离心系统,这是一种模块化、封闭式细胞治疗处理系统,可实现可扩展、经济高效的细胞治疗开发和制造。CTS Rotea系统是第一个用于细胞治疗处理应用的Gibco仪器,它促进了从研究到GMP临床开发和商业制造的工作流程。 /p p style=" text-indent: 2em " 据悉,截至2020年年中,全球共有675项针对细胞治疗和细胞免疫肿瘤学的临床试验正在进行中。然而,由于安全性和有效性要求较高,将研究方案向生产转化存在诸多困难,例如研发疗法缺乏可扩展性、设施、劳动力和设备高成本以及所涉及的过程的复杂性等等,因此,很少有正在开发中的细胞疗法商业化。 /p p style=" text-indent: 2em " 使用模块化、封闭的单元处理系统,可以使耗时的过程与快速过程分离,提高设施和设备的利用率,并减少所需的资本投资。从研究到工艺开发和商业生产,使用相同的系统可以降低与改变系统相关的过程延迟风险。无菌、封闭、一次性使用的试剂盒能够在C级洁净室中进行细胞处理,从而实现成本效益高的转移和过程扩展。 /p p style=" text-indent: 2em " “众所周知,细胞疗法要从研究阶段进入商业生产是出了名的困难,”赛默飞世尔科学公司生物科学业务总裁艾米· 巴特勒说。“我们的目标是帮助推进细胞疗法的发展,包括激动人心的新型Car-T细胞疗法,甚至是修复由COVID-19引起的肺损伤的潜在细胞疗法。CTS Rotea系统将帮助研究人员克服制造障碍,为更多患者带来细胞治疗的巨大潜力。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 338px height: 180px " src=" https://img1.17img.cn/17img/images/202010/uepic/e93d919f-f845-4436-a1b5-266f3ed30fe3.jpg" title=" 摄图网_400096057_医疗细胞分子(企业商用).jpg" alt=" 摄图网_400096057_医疗细胞分子(企业商用).jpg" width=" 338" height=" 180" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 多功能和高度灵活的CTS Rotea系统可以很容易地集成到现有的工作流程中,处理中低端输入量,并提供低输出量。CTS Rotea系统由仪器、封闭式无菌一次性使用套件和用户可编程软件组成,提供了处理灵活性,支持多种细胞分离、洗涤和浓缩协议,细胞回收率大于95%,同时保持细胞活力。 /p
  • 【聚焦外泌体】之从细胞培养上清液中分离外泌体的准备
    对于外泌体研究的新手来说,细胞培养上清液是非常好的实验材料,外泌体相对容易收集。我们可以首先从细胞上清开始来熟悉整个外泌体的研究流程,充分了解整个流程需要使用的仪器、试剂以及准备时间,对我们后续的实验安排有很大帮助。其中比较重要的一点是要确定有足够的初始细胞上清液来收集外泌体,以保证我们能够拿到足够多的蛋白、核酸来进行后续分析。我们可以逆向思维,通过后续检测所需蛋白/核酸量——外泌体量——细胞上清量,来确定初始细胞上清体积。先从细胞上清开始,熟悉了整个过程后,我们再进行其他相对较难的实验材料进行研究。01细胞系选择无论贴壁细胞或是悬浮细胞,能分泌更多外泌体的细胞系肯定是优先选择的。一般说来,肿瘤细胞的外泌体分泌水平要高一些,但并不是所有肿瘤细胞系都能分泌足够多的外泌体,我们可以借鉴文献中的细胞系推荐1。以常用基因转染的HEK293为例,是比较公认的分泌外泌体水平较高的细胞系。或者,以每100ml的细胞上清收集到的外泌体蛋白可达到5~20μg范围作为标准2,例如我们可以从100ml的细胞上清中获得10μg的外泌体蛋白,如果后续要做蛋白质组学分析(需50μg蛋白),那么初始细胞上清就需要扩大到之前的5倍,500ml,500ml上清差不多是通过离心方法可处理的大样品量了。如果后面收集到的外泌体蛋白都不够进行一次WB,那就要考虑一下是不是要换个细胞系了。如果外泌体蛋白小于3μg,那么考虑到扩大体系的实验难度和后续实验的顺利进行,那证明我们用的细胞系不太合适做外泌体研究。*虽然很多生物样品或是细胞系在文献中没有出现过,许多外泌体相关的数据库(ExoCarta, Vesiclepedia, Evpedia等)可以提供帮助,在上面我们可以查到有哪些细胞系已经有人成功进行外泌体提取了。或者也可以咨询一些做外泌体的生物公司,看看他们是用哪些细胞系来制备商业化的标准外泌体样品的。02优化细胞培养条件及细胞系选择影响外泌体质量和回收率的另外一个重要因素是在收集之前细胞的培养状态。好的收集时间段是细胞状态好、生长旺盛,即处于对数期的细胞3,并且在细胞传代之前收集细胞上清,这个时候细胞所分泌的外泌体量达到高4。准备好的细胞上清液,细胞密度也要适合,贴壁细胞如果细胞密度过高会出现接触抑制,对所分泌的外泌体也会有影响。所以,理想的条件是在细胞融合达到70%~80%后的40~48h后收集外泌体(此时约融合至90%)。要注意,为了避免FBS外泌体的污染5,收集外泌体的40~48h之前需换成无血清培养基,注意此时40~48h仅作为推荐参考。像有些细胞在无血清培养基培养24h后没有发生存活率和细胞形态改变,那么可以进行上清收集。如果出现死细胞增加、细胞形状改变、状态变差等情况时,使用EV-delepted FBS培养基来代替无血清培养基,EV-delepted FBS可以直接购买也可以自己制备(使用SW 41Ti转头在4℃,35,000rpm(Rmax 210,000 ×g)离心16h后小心收集上清)。但是这样仍无法完全避免血清外泌体的污染,需要清楚样品中血清外泌体的含量,增加一组没有培养细胞的培养基的平行样品作为阴性对照是必要的。03外泌体的提取方法目前被大家认可的方法就是超速离心,因为超离的方法可以收集到完整的细胞外囊泡群,并且几乎所有的实验材料(细胞上清、血液、体液等)都可以通过超离的方法来进行外泌体提取。当然超离的方法也有需要改善的地方,比如样品量很小的情况下,超离对外泌体的回收率不高,但是超离作为一种物理分离的方法,可以在不破坏外泌体群体特性的情况下进行分离的。当前,除了超离外还有许多外泌体分离方法,每种方法都有它的优势和劣势,首先我们需要理解各种分离方法的原理和特点,再根据我们的实验需求才能找到合适的外泌体提取方法。超离方法是可以获得整个外泌体群体,适合于研究整个外泌体群体特性。Yoshioka博士:众多外泌体分离方法中,我们使用超离沉降的方法作为实验室提取外泌体的标准方法5(见下图)。这个Protocol主要包括三个步骤:1.小心收集细胞上清并低速(4℃,2,000xg,10分钟)去除悬浮细胞(死细胞)。2.用0.22μm孔径过滤器过滤上步中收集到的包含外泌体的上清液,去除大颗粒和细胞碎片。3.将上步中的滤液进行超离处理,使用贝克曼库尔特SW 41Ti水平转头、13.2ml超净离心管(Product Number:344059,Beckman Coulter),4℃下35,000rpm(Rmax 210,000xg)离心70分钟。离心过后外泌体在离心管底聚集成沉淀,通常是肉眼不可见的。然后用预先过了0.22μm孔径过滤器的PBS进行清洗,洗掉与外泌体一起沉降的成分,例如微颗粒和蛋白。小心倾倒掉第3步超离后的上清,残留少量液体进行2~3s的涡旋振荡重悬沉淀,然后加入PBS,重悬后的样品同样的条件再进行一次超离。再次超离过后的外泌体仍然需要重悬,倾倒掉上清后,再进行2~3s的涡旋振荡重悬,这时的外泌体样品就可以进行下步分析了。从离心管中转移外泌体样品到储存管(比如1.5ml微量离心管)时,在吸取时我们可以用移液枪先大概测量一下样品体积,后面在储存管中补充PBS到我们之前预估的样品体积,比如,我们想收集到100μl的外泌体样品,但是从离心管中转移到微量管中只有80μl(注意:使用13.2ml超净离心管,平均下来每次收集到的外泌体样品大概80μl),我们加20μl PBS到微量管中再混匀一下就可以保存了。外泌体样品可以在4℃保存,并且要尽量早的用于分析。另外,外泌体样品是不能反复冻融的,与细胞类似,反复冻融过程会破坏外泌体。现在大家普遍认为外泌体是具有异质性的,整个外泌体群还可以细分为亚群(例如尺寸、蛋白表达等),不同的亚群也具备不同的特性,正如前文所说,通过超离的方法可以收集完整的外泌体群体。也有些文献也报道过使用不同的离心条件,可以将尺寸大小不同的外泌体亚群分开。目前,还没有特别统一的外泌体超离提取步骤,像转头类型、离心管类型、离心力以及离心时间等离心条件在不同的文献上都会有些许的差异。04参考文献1. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]2. Valadi H et al. Nat Cell Biol. 2007 9(6): 654–6593. Beckman Coulter. Interview article: Basics and Vision of Exosome Research. 20154. Urabe F et al. Clin Transl Med. 2017 6(1): 455. Yokoi A. In Takahiro Ochiya, Yusuke Yoshioka. Exosomes encourage the medical innovation. Kagaku-Dojin Publishing Co., 2018 p.122-134 [Article in Japanese]
  • “力”所能及——多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的创新应用
    瑞士Cytosurge公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、纳米位移台系统合为一体的单细胞操作系统,能够在单细胞水平上为研究者提供很大的便利,可应用于单细胞力谱、单细胞质谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。本文将从单细胞实验方法和多功能单细胞显微操作系统FluidFM BOT结构出发,详细介绍多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的应用。 一. 单细胞实验方法简介 在细胞生物学实验中,由于细胞的异质性,每个细胞互相之间都存在一定差异,因此在单细胞层面研究细胞性质可以获得更加准确的结果。近年来,多种单细胞研究技术不断涌现,应用于医学诊断、组织工程和药物筛选等领域。 对于细胞力学测定,原子力显微镜(AFM)能够对单个细胞或生物分子进行高分辨成像和力谱测定,但是细胞与探针的结合过程不可逆,无法实现连续、快速的检测。 对于细胞分离/分选技术,可选的有玻璃细管、光镊、流式细胞分选和磁珠分选等方法,然而有的从表面分离细胞时容易损伤细胞,有的无法从同类细胞群中分离出单个细胞。 对于细胞注射与提取,可选用纳米喷泉探针、纳米针和碳纳米管等,然而这些方法无法实现飞升以下量的含量注射,且注射时间较长。 多功能单细胞显微操作系统FluidFM BOT,针对细胞力学测量、分离/分选、注射与提取等应用,在结合以上技术的优势的同时克服了这些技术固有的问题,是一套多功能的单细胞研究系统,在单细胞研究领域发挥着巨大作用。 二. 多功能单细胞显微操作系统FluidFM BOT结构 简单来说,多功能单细胞显微操作系统FluidFM BOT是AFM与微流控的结合,主要由AFM扫描头、压力控制器与微流控探针组成(图1)。AFM扫描头装载于倒置显微镜上,整体结构大致与普通AFM相同,主要区别是探针中间有微流通道,后端连接液体池,前端探针有一小孔,用于液体的流入流出。微流通道内径小于细胞,防止细胞进入堵塞;探针则有多种不同孔径和不同的弹性,可根据不同应用以及不同样本更换所需探针。图1 FluidFM BOT系统图示。(a)微流控系统与AFM的结合应用;(b)(c)(d)探针的特殊设计。 三. 单细胞力学应用 传统AFM用于单细胞力学测量时,需要对探针进行一定处理以粘附细胞,后再与需要和细胞相互作用的表面、分子或其他细胞相结合,有时会产生多个细胞粘附,且反复测力会导致细胞被破坏,使得每次测量都必须准备新的探针,实验效率较低。 多功能单细胞显微操作系统FluidFM BOT通过将AFM与微流控相结合,使单细胞力学实验更高效,更简洁。对于已经结合在表面的固定细胞,可根据细胞尺寸安装适用的探针,从上方接触需要测量的细胞,通过微流控系统施加负压吸起细胞,获得力-距离曲线;也可以吸取悬浮细胞,与表面或其他固定细胞接触后,测量力-距离关系。这种方法能够提供远比蛋白结合牢固的多的吸附力,能够将细胞牢固的固定在探针上面,因此能够用于直接从基质上分离;另一方面,由于没有生物处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。 单个细胞测量完成后可移动探针至细胞板其他孔内,施加正压将其释放,再回到实验孔吸取下一个细胞,意味着单个探针可以进行多次测量。 细胞粘附是许多生理过程的重要步骤,细胞粘附力的测定可以为组织形态发生、胚胎发育、肿瘤、免疫反应和微生物膜等研究提供重要信息。多功能单细胞显微操作系统FluidFM BOT支持真核和原核细胞与细胞板/培养皿表面、抗菌/粘性/抗体包被的表面或其他细胞的粘附力测量(图2)。图2 不同细胞在不同环境下的粘附力-距离曲线。(a)探针接近、暂停、吸取并拉伸细胞的过程中探针偏转随时间的变化;(b)Hela细胞与纤连蛋白包被的表面的粘附力-距离曲线;(c)不同接触时间下大肠杆菌与PLL表面的粘附力-距离曲线;(d)大肠杆菌与PLL表面的分离距离与接触时间的关系;(e)酿脓链球菌与玻璃表面的粘附力-距离曲线,表示多个球菌的连续分离;(f)单个细胞与单细胞层的粘附力-距离曲线。 Sankaran等人[1]使用多功能单细胞显微操作系统FluidFM BOT来研究在共价和非共价的表面整合素受体对细胞粘附力的影响。通过测定发现两者均可有效增加细胞的粘附能力,并且效果近似(图3)。图3使用FluidFM BOT测定共价键与非共价键的整合素受体之间RGD的区别。(a)实验示意图;(b)粘附力测定前后示意图;(c)粘附力-距离曲线;(d)大粘附力。 多功能单细胞显微操作系统FluidFM BOT还可用于测量细胞的应力以研究细胞骨架的性质。Sancho等人[2]将10μm的小胶球吸附于探针上,之后使用探针去压细胞直到探针压力达到2 nN,通过压痕曲线来分析细胞骨架变化。通过对比发现过量表达MSX1的细胞硬度显著高于普通细胞(图4)。图4 使用FluidFM BOT测定HUAEC中MSX1过表达对细胞骨架的影响。(d)实验示意图;(e)吸附10μm珠子;(f)下压时空白细胞的力学谱线;(g)下压时MSX1过表达细胞的力学谱线,凹陷更深、斜率更高,表示其刚度相对更高;(h)胶体压痕法的测量结果。 四. 其他应用 多功能单细胞显微操作系统FluidFM BOT可用于细胞内注射与提取(图3),通过力学测量,可以控制探针刺入细胞质或细胞核内进行飞升别含量的液体注射或提取。此外,FluidFM BOT系统还可用于细胞分离以及细胞延展性研究。图5 FluidFM BOT系统的细胞内注射过程。(a)探针对准细胞;(b)探针刺破细胞膜,注入含荧光染料的目标液体;(c)探针与细胞分离,注射完成。 多功能单细胞显微操作系统FluidFM BOT克服了现有单细胞技术的短板,将多种单细胞应用相结合,高通量、高效率地获取单细胞层面的详细数据,研究多种细胞性质,尤其适合应用于医疗、单细胞生物学、单细胞质谱、单细胞基因编辑、药物研发等领域。 多功能单细胞显微操作系统FluidFM BOT在Quantum Design中国子公司与北大生科院共建实验室成功安装,为了更好的服务客户,Quantum Design中国子公司提供样品测试、样机体验机会,还等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作! 参考文献:[1]. Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy, ACS Nano 2017, 11, 4, 3867–3874.[2]. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 7, 46152 (2017).
  • 流式进展|清华大学王文会团队: 基于阻抗流式细胞术的单细胞样本“一步式”分选除盐质谱预处理系统
    原标题:清华大学王文会团队: 基于阻抗流式细胞术的单细胞样本“一步式”分选除盐质谱预处理系统——01——研究背景单细胞质谱检测技术为单细胞化学特性分析提供了一种强有力的免标记分析手段,并在癌症分析、药物刺激、免疫分析等临床应用中展现出潜在价值。然而单细胞质谱往往需要进行必要的预处理操作,如将目标细胞从混合细胞群体样本中分离出来以提高质谱检测的准确性;除盐操作去除细胞常见缓冲液中的非挥发性盐,降低基质效应提高质谱检测灵敏度。目前这些预处理往往是通过多种设备或手动操作完成,效率较低;开发有效的一步式预处理方法对于单细胞质谱分析意义重大,但目前这方面的研究较为缺乏。为此,清华大学的王文会教授团队提出一种基于阻抗流式细胞术IFC的“一步式”分选除盐质谱预处理系统,经过处理的细胞样本可直接兼容现有的免标记质谱流式、液滴微萃取等单细胞质谱分析手段。研究工作以“Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single Cell Mass Spectrometry”为题发表在期刊Small上,并被选为Frontispiece。本工作基于IFC原理设计微流控芯片结构,结合压电驱动实现一步式单细胞分选除盐操作,将目标细胞从细胞群中分离出来的同时实现其外基质的置换。经实验验证,系统的分选效率99%、除盐效率99%,并被证实了在癌细胞和血细胞的分离、癌变细胞与正常细胞的分离与质谱检测方面的功能。图1. 基于阻抗流式细胞术的“一步式”分选除盐质谱预处理系统示意图——02——研究内容本工作中搭建了具有四层结构的微流控芯片,如图1所示。利用IFC进行细胞的电学及尺寸特性表征实现不同细胞的识别,待其流经分选区域时由压电执行单元对目标细胞进行分选,通过合适的流速配比,执行单元将目标细胞推至作为下鞘液的质谱兼容的挥发性盐溶液中,同时实现样本的分选与除盐。芯片采用两套电极,其中第1套用于单细胞电学表征,第2套用于表征确认除盐效率。图2. 微流控芯片结构及其工作流程示意图以商用均一性较好的6 μm和10 μm直径的PS微球对系统的分选效率进行了表征。在约9000个样本的实验中,系统展现出了99.53%的分选成功率,同时样本中的10 μm微球纯度由2.48%提升至92.23%,实现了约37倍的富集效率,如图3所示。此外在模拟血液中CTCs分离的实验中,在HeLa癌细胞与人体外周血单核细胞PBMC的混合样本中分选出HeLa细胞,其纯度由15.78% 提升至87.34%,展示出巨大的临床应用潜能。图3. 微流控系统的分选性能评估从定量的角度,以270 mM NaCl溶液作为样本液、去离子水作为下鞘液为例验证了系统的除盐效率,单次分选操作引入的NaCl物质的量仅为0.77±0.16 pMol,即使在300 cells/s的分选通量下除盐效率也能够达到99.62%;同时在实际的细胞样本测试中可以看出,未经除盐的样本信号被完全淹没,而经过该系统除盐后的能够清晰分辨单细胞的典型代谢与脂质峰,证实了系统优秀的除盐性能。图4. 微流控系统的除盐性能评估该系统进一步用于正常乳腺上皮细胞MCF-10A和癌变的乳腺癌细胞MDA-MB-468的分选与检测。通过双频点的锁相检测,分别表征了两类细胞的电学特性,并据此进行了分选操作,结果表明MCF-10A细胞的纯度由 10.64% 提升至77.78%,展现出了约7.31 倍的富集效率。此外将收集到的细胞样本直接与免标记质谱流式装置级联实验,同时表征了两类细胞的代谢特征,结果表明,部分显著差异表达的代谢和脂质可能是致使细胞电学特性差异的原因,充分验证了系统在多模表征与临床分析中的应用价值。图5. 正常细胞与癌变细胞的电学与代谢特性表征分析——03——总结展望本工作提出的基于IFC的一步法单细胞样品质谱预处理方法极大地方便单细胞质谱分析,突破了复杂操作和不必要的损耗。作为一个独立的样品制备模块,本微流控系统能够兼容多种质谱分析方法,为高效的质谱样品制备提供新的范式,进而为单细胞的多模态(如电学特性、代谢特征)表征提供新的思路。论文信息Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry ;Junwen Zhu, Siyuan Pan, Huichao Chai, Peng Zhao, Yongxiang Feng, Zhen Cheng, Sichun Zhang, Wenhui Wang* (王文会,清华大学);Small, 2024, https://doi.org/10.1002/smll.202310700作者简介本工作的完成单位为清华大学精密仪器系、精密测试技术与仪器全国重点实验室。精仪系王文会教授为通讯作者,精仪系博士研究生朱焌文为第一作者。清华大学张四纯教授、程振助理研究员、清华大学博士生潘思远、柴惠超、赵鹏、丰泳翔为论文工作做出了重要贡献。本研究得到了国家自然科学基金的资助。【相关阅读】有望提高2个数量级微流控介电泳分离通量!清华大学王文会Advanced Materials封面成果速递https://www.instrument.com.cn/news/20240604/722338.shtml 3i流式KOL|清华大学王文会教授团队在阻抗流式细胞术上取得系列进展https://www.instrument.com.cn/news/20231030/689623.shtml
  • 高效构建hiPSC系的全自动化神器,单细胞可视化分选培养系统,让单细胞培养不再复杂!
    人类诱导多能干细胞 (hiPSC) 是一类通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞重新逆分化得到的多能性干细胞。hiPSC的出现为科学家构建复杂的疾病模型和推进药物发现提供了有利的工具。 然而,传统的hiPSC细胞系的构建与培养过程往往操作复杂且耗时耗力。特别是从异质编辑细胞池中构建的克隆hiPSC系的培养受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件苛刻,操作步骤繁琐,不能充分保证单克隆性。 为应对hiPSC细胞系构建与培养过程中的诸多挑战,IotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化分选培养系统isoCell来构建 hiPSC系的分选与培养平台,并在不同培养基条件下对hiPSC进行了单细胞分选与培养研究。图1 单细胞可视化分选培养系统isoCell实物图 以isoCell为核心的hiPSC细胞分选与培养平台 isoCell是一款基于GRID技术的高度自动化细胞分选与培养平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小,光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落。并且,isoCell可在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。 图2 GRID实物图 材料与方法 在分别铺了Laminin-521、Vitronectin-N和iMatrix 细胞培养基质的60毫米培养皿上制备的GRID网格以待使用。制备hiPSC的单细胞悬浮液,并使用 isoCell全自动地将细胞铺在GRID上(种植)。 使用isoCell自带的显微镜鉴定每个GRID室并标记每个包含单个细胞(第 0 天)的室,将该培养皿放入培养箱培养。在第3天,将标记的含有单个细胞的GRID小室加满600 nl培养基。从第5天开始,每天观察标记单细胞的GRID小室,并对选中的GRID小室补充培养基。最后,使用isoCell观察并标记构成了hiPSC单细胞群落的GRID小室,使用isoCell全自动收获标记的GRID小室中的hiPSC细胞(通常在 6-8 天之间)。 图3 以isoCell为核心的hiPSC细胞分选与培养平台工作流程图 高效的hiPSCS细胞分选与培养平台 按照上述的工作流程,利用三种不同的培养基质(包括 VTN-N、LMN-521 和 iMatrix)构建并培养了两个独立的hiPSC细胞系,并评估所得细胞的克隆效率。如图4所示,两个不同的hiPSC测试系在不同培养基质条件下,均在GRID室中显示出非常高的克隆效率,这表明采用GRID小室低容量培养方法和细胞的自动化温和处理可产生非常适合单细胞高效生长的培养环境。 图4 GRID中的单细胞 hiPSC 克隆效率(克隆效率表示培养第5天时单细胞长成细胞群落数占第0天单细胞数的百分比) 结论 以isoCell构建的hiPSC细胞分选与培养平台可以对hiPSC细胞进行全自动化且温和地单细胞分选与培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且isoCell的分选与培养条件温和,hiPSC单克隆细胞系成活率高。 单细胞可视化分选系统isoCell的优势:- 全自动化流程- 操作条件温和,对单细胞无损伤- 全培养、分析流程可追踪- 单细胞分离效率高达100%- 单克隆细胞系构建成活率高- 直接转移到PCR管或96孔板- 结构紧凑,体积小 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年五篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608. 样机体验 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询! 用户名单 用户评价 路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司) “使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”
  • 多功能单细胞显微操作系统FluidFM BOT的原理与应用介绍
    瑞士Cytosurge AG公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、细胞培养系统合为一体的单细胞操作系统,采用不同孔径的微型纳米注射器,可实现单细胞注射(Injection)、活细胞内物质提取(Extraction)、单细胞分离(Isolation)、粘附力测定(Adhesion)、纳米打印(Nano-printing)等多种功能,全程机械臂操纵,将污染风险和人为误差降到低,提高工作效率与实验可重复性,具有高度自动化、操作速度快与操作度高等特点,能够在单细胞水平上为研究者提供大的便利,可应用于单细胞质谱、单细胞力谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。北京大学生命科学学院公共仪器中心的多功能单细胞显微操作系统FluidFM BOT,是国内套多功能单细胞显微操作系统,于2020年9月顺利安装于金光楼126室并开始试运行,由公共仪器中心覃思颖老师负责接样测试与维护管理。目前本中心的FluidFM BOT系统已成功应用于单细胞注射与物质提取(小鼠体外培养原代海马神经元、昆虫叶蝉细胞、MDA-MB-231细胞等)、单细胞分离(植物细胞原生质体、U2OS细胞等)与粘附力测定(细菌侵染细胞时细菌的粘附力、血管内皮细胞对不同基底的粘附力等)等多方面科研需求。以下是多功能单细胞显微操作系统FluidFM BOT的多个功能应用与实例介绍。FluidFM BOT结合原子力系统、微流控系统于一体(https://doi.org/10.1021/nl901384x)FluidFM BOT功能应用单细胞注射实例FluidFM BOT可以将多种不同类型的可溶性物质注入细胞核或细胞质中,可量化注射体积(fL别),可实现批量注射(每小时注射超过100个细胞),尤其适用于使用传统方法难转染的细胞,且对细胞几乎没有损伤。CHO细胞的Lucifier Yellow染料注射C57小鼠体外培养原代海马神经元DIV7的Dextran染料注射(北大生科院数据)活细胞内物质提取实例FluidFM BOT系统的活细胞内物质提取功能十分温和,可直接用微型纳米注射器吸取活细胞的细胞质或细胞核中的物质,无需经过化学或生物学手段进行破膜处理,不会产生裂解的细胞碎片,不会对内部细胞器造成任何破坏,可用于电镜成像、酶活检测、核酸表达检测、代谢组学、基因测序等多方面研究。活细胞提取物可结合电镜观察、酶活测定、转录检测等分析手段(http://dx.doi.org/10.1016/j.cell.2016.06.025)HeLa细胞的细胞质物质提取单细胞分离实例FluidFM BOT可进行无损细胞分离,对于悬浮细胞,可将细胞吸取并转移释放即可。对于贴壁细胞,可在探针的样品池中加入消化液如胰酶,对指定位置的细胞进行消化,然后再进行吸取与转移释放。FluidFM BOT实现的单细胞分离存活率很高,结合单细胞注射可实现快速转染细胞并建立单克隆细胞群,对于工程细胞株的建立十分有效。植物原生质体的单细胞分离(北大生科院数据)贴壁细胞CHO的单细胞分离粘附力测定实例FluidFM BOT系统通过负压将细胞吸附在探针针孔处,对细胞的吸附力比蛋白结合更加牢固,能够直接将细胞从基底上分离。这种方法不需要激活细胞的任何信号通路,可以得到接近细胞原生的数据。不同的探针针孔直径(2、4、8um)可适用于不同大小的细胞粘附力测定,我们甚至可使用孔径为300nm的探针进行更小个体的吸附与粘附力测定,目前在本中心的FluidFM BOT系统已成功应用于金黄色葡萄球菌侵染大鼠肠上皮细胞时的细菌粘附力测定(nN别)。不同大小的单细胞粘附力测定(https://doi.org/10.1038/s41598-019-56898-7)纳米打印实例FluidFM BOT系统还是一台纳米打印设备,可以在实验器材上铺设特定的基底膜,如打印亲水或亲脂性物质,从而实现对细胞贴壁的操纵,构建不同的细胞模式,实现对细胞信号转导机制、肿瘤细胞群落迁徙、神经细胞树突或轴突形成的研究。CMD基底打印cRGDfK的细胞贴壁生长Pattern研究(DOI: 10.1021/acs.langmuir.8b03249)多功能单细胞显微操作系统在高性能单元的监控下,通过全自动的工作站实施操作,可确保实验的平稳、顺利的进行。探针有多种孔径规格可选,也可结合FIB技术进行探针定制,结合不同的探针可实现各式各样的应用,以上仅展现部分应用,更多的新功能有待各位老师与同学结合自己的课题需求进行探索与发掘,欢迎大家联系前来测试样品!
  • “让细胞分析成为一个系统的理论”——访清华大学教授林金明
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   岛津中国合作实验室的数量很多,与中国科研人员展开合作的案例也同样非常多。清华大学教授林金明就是其一,而且,林金明不但与岛津中国建立了合作实验室,还与日本岛津合作、共同研发了细胞微流控芯片-质谱联用系统(CM-MS)。 /span /p p   985工程二期的时候,国家支持建设科研平台,清华大学分析中心作为该校重要的科研平台,也获得了985工程二期经费的支持,其中一部分被用来购买质谱仪器,其中就包括了岛津的IT-TOF-MS、MALDI-TOF、LC-MS/MS 8050、GCMS-QP2020等5台质谱;随即清华大学分析中心与岛津公司建立合作实验室,至今已有5年多的时间,合作实验室里岛津的色谱、质谱仪器也已经有10多套了。“岛津公司的工程师定期来实验室检查仪器设备的运行情况。仪器出现故障时,工程师反应速度也很快。”林金明介绍到,“合作实验室挂牌在分析中心,仪器主要用于测试服务以及支持教授们负责的国家、国际合作、企业等多项课题,对于人才培养和完成各项研究课题起到重要作用。” /p p style=" text-align: center " img title=" IMG_6203-1.jpg" src=" http://img1.17img.cn/17img/images/201807/insimg/05c8f4af-c823-4a3d-9100-a4c71b8a1b50.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 清华大学林金明教授与岛津公司市场部经理杨桂香 /strong /span /p p   “而说到与岛津公司合作,从我回国开始一直到现在,历史渊源非常长久。”2004年林金明即与岛津公司开始合作、共同举办“中日韩分析化学研讨会”,至今已经合作了15届。“长期的合作关系,而且合作得越来越好,岛津这种持之以恒的态度与精神令我非常欣赏。”林金明说到,“除此之外,我们合作的内容主要包括从开始的用岛津的仪器,到后来的琢磨岛津的仪器,再到现在开发新技术、并与岛津质谱仪器结合形成了新一代细胞微流控芯片-质谱联用系统(Cell Microfluidics-Mass Spectrometry, CM-MS)。” /p p   上世纪60年代出现了针对小分子分析的GC-MS、70年代出现了针对中等分子分析的LC-MS、90年代出现了针对大分子以及超大分子分析的CE-MS。而在2016年,微流控芯片-质谱联用细胞分析系统研制成功,这是一个全新类型的仪器。这个世界上第一台、用于细胞及其代谢物分析的Chip-MS就是林金明教授课题组与日本岛津合作成功研制的成果,可广泛应用于疾病诊断、药物筛选、细胞识别、细胞定量、细胞代谢、细胞生理过程和细胞相互作用等研究。 /p p   林金明2012年接受仪器信息网采访时说过,他的一辈子科研聚焦两件事。“前十年,我主要做化学发光免疫分析方面的研究工作,并且和企业合作实现了产业化 后十年,工作重点转向细胞分析技术及方法的研究,并且将致力于这项工作直到退休为止。”此次采访,林金明补充到,细胞研究不能纸上谈兵,既要在理论有新的突破,还要“造”出能用得上的、新的研究工具。而自2010年起,林金明团队一直从事微流控芯片与质谱联用的细胞分析方法技术与装置开发。经过几年的努力,团队解决了质谱接口、非接触检测离子源、在线富集等关键问题,获得多项中国发明专利。并于2016年将这项成果与日本岛津合作,结合岛津现有的高性能质谱,正式推出了商品化的细胞微流控芯片-质谱联用系统(CM-MS)。 /p p   CM-MS由细胞培养基注入系统、细胞培养芯片系统、代谢物富集分离系统和质谱检测系统四部分组成,具有多通道芯片细胞培养、显微观察、细胞代谢富集与分离、高灵敏质谱检测等多种功能。林金明介绍到,“该系统有三大特点:多通道芯片与质谱联用 细胞共培养 细胞形态观察。我认为,CM-MS是目前是最有效的细胞研究手段之一。” /p p   谈到CM-MS的应用前景,林金明谈到,GC-MS、LC-MS等面世至今已有100多年的历史了,如今仍然是“红红火火”。而细胞是生命体最基本的结构和功能单元,作为目前最有效研究手段之一的CM-MS,其应用前景非常广泛。“就像一根毛细管色谱柱、一根固相填充柱,如今已经做出了无数学问,那么,一个芯片可做的学问必然也是数不胜数的。” /p p   “目前上市的第一代CM-MS主要用于药物筛选等科研工作,未来会不断推出不同用途的CM-MS,如环境污染物毒性研究、食品营养品研究、毒物毒性研究等专用仪器,以及可用于临床细胞分选、芯片上细胞功能培养等的设备。而且,除了细胞分析,CM-MS还可以用于细菌等的研究。”谈到下一步计划时,林金明介绍到。 /p p style=" text-align: center " img title=" 书.jpg" src=" http://img1.17img.cn/17img/images/201807/insimg/42966d6d-7a34-40e7-a4e0-343caa57c3ed.jpg" / /p p   而且,为了普及推广、更好地在全球范围内传播“微流控芯片与质谱联用的细胞分析技术”,林金明专门撰写了英文版《Cell Analysis on Microfluidics》专著,并由国际著名出版商Springer于2017年底正式全球出版,该书中文版《微流控芯片细胞分析》由科学出版社于2018年2月正式出版,目前该书已经成为清华大学本科生参考教材。并且,林金明与岛津中国定期联合举办微流控芯片质谱联用细胞分析讲习会,至今已在不同城市成功举办了四期。“等到从事相关研究工作的人员达到了一定数量、研究工作不断深入,新的研究领域、新的应用方法不断涌现出来,我们就可以考虑组织召开技术研讨会。”林金明说,“这一系列的举措下来,相信该技术的推广会更快。”而且,林金明一再强调,传播知识是他作为一名大学教授最愿意做的事情,不但给自己大学里的学生传授了最新的科研成果,还可以在社会上实现研究内容和仪器技术的“科普”。 /p p   虽然,这款国际首台的新仪器是最直观的成绩,但是林金明却认为“人才培养”才是他与岛津合作最有意义的事情。在研发这个新原理仪器的过程中,前后共有10多名博士生参与其中,发表了100多篇高水平、有创新思想的论文,起到了人才培养的作用。“日本岛津的科研人员到中国来与我们课题组进行交流和探讨,拓展了学生们的国际化视野。另外,像岛津这样的大型国际化仪器公司开发新技术的思路肯定有其独特的地方,所以,交流过程中,学生们的仪器设计、产学研成果转化等能力有了进一步的提升,这对学生的成长和未来的发展都是很有帮助的。” /p p br/ /p
  • 循环肿瘤细胞(CTC)蛋白质表达分析系统
    p   早前,美国ProteinSimple公司推出全球第一款可以对循环肿瘤细胞、外泌体等微量样本进行蛋白质表达水平定量检测的Milo系统。一经推出,此产品立即获得《The Scientist》杂志年度创新产品第一名、生物通2016年度生命科学十大创新产品奖、中国仪器协会年度创新新产品奖等。它的发明人之一Kelly Gardner博士也获得MIT Technology Review 35岁以下创新人才奖。 /p p style=" text-align: center " img width=" 400" height=" 284" title=" 1.jpg" style=" width: 400px height: 284px " src=" http://img1.17img.cn/17img/images/201709/insimg/b89d84ca-1b3f-49c0-b5b1-82a689442e01.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   通过检测血液中的循环肿瘤细胞(CTC)及循环肿瘤DNA发展起来的液体活检,对于肿瘤病人无痛诊断及靶向治疗有非常重要的意义。各国科学家在CTC富集、DNA测序和DNA分析方面做了很多的工作,但是CTC蛋白质研究一直因为检测灵敏度问题停滞不前,影响CTC在肿瘤诊断及治疗中发挥更重要的作用。 /p p   美国ProteinSimple Milo系统的推出解决了这一问题。最近,加州大学伯克利分校和斯坦福大学医学院的研究人员利用Milo系统在《Nature Communications》上发表文章,证实在一次普通的抽血后(2-4 ml血液),可对血样中罕见的CTC进行蛋白质表达水平分析,以检测其中一组与癌症相关的蛋白质。 /p p   实验方案如下:科学家们从乳腺癌患者的血液中分离出循环肿瘤细胞,然后将循环肿瘤细胞接种到Milo芯片western blot细胞捕获孔中。微流体设备裂解细胞,让其内容物流出,之后进行电泳将蛋白质根据分子量大小进行分离。然后在凝胶中原位捕获蛋白,再进行抗体孵育杂交,最后通过荧光信号值进行定量,检测了癌症蛋白标志物的含量。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/1045381e-1f3a-40c1-a07f-82df916660d6.jpg" / /p p style=" text-align: center " (图片来自Nature Communications) /p p   这项研究检测的蛋白靶标有12个,包括已被用于癌症分型(如ER、HER2、EGFR)、循环肿瘤细胞鉴定(如EpCAM、panCK、CK8)、白细胞标记(如CD45)的蛋白和普遍表达于哺乳动物细胞的蛋白(GAPDH、β-tubulin、mTOR、ERK-1/2、eIF4E)。研究者计划将这一名单继续扩大,以便最终能够更精确地对癌细胞进行分类,选择针对的靶向治疗药物。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/60121d8a-3a5f-4b8b-9f0f-453af71e6bed.jpg" / /p p style=" text-align: center " (图片来自Nature Communications) /p p   这篇文章的通讯作者、加州大学伯克利分校的Amy Herr表示:“微流体设计是本研究的关键。我们能够将每个阶段所需的功能整合在一起。这样,我们才能很快、很快地开展每一步。如果慢一点,细胞中的蛋白质将弥散,变得无法检测。” /p
  • 一种先进的用于高细胞浓度灌流培养的声学截留系统-BioSep
    概述哺乳动物细胞培养对于生物技术行业的蛋白质生产具有重要意义[1]。制药行业中约70%的重组蛋白是使用中国仓鼠卵巢细胞(CHO)生产的。在灌流培养中,营养物质持续供应并去除副产物[2]。与批培养和流加补料技术相比,灌流为细胞提供了有利的环境和较短的产品停留时间。这对于不稳定产品的质量尤为重要。灌流模式的另一个优点是它允许使用较小的生物反应器并减少在位清洗操作[3]。灌流需要一种装置将细胞保留在培养基中。灌流中使用的大多数哺乳动物细胞保留系统都基于细胞尺寸差异,例如使用滤器。然而,由于滤器不可避免的污染,传统的过滤膜无法实现真正的稳态灌流培养。此外,频繁更换过滤器会增加成本和污染风险[4]。声学分离器是一种替代的细胞截留系统,利用超声波驻波场中产生的力将细胞与清液分离。细胞被困在驻波的压力平面中,并收集为松散的聚集体。这些细胞聚集体通过重力沉降返回生物反应器[4]。 在本研究中,使用了一种针对高密度细胞培养物灌流的Applikon Biosep 10 L声学细胞分离器的高级版本。生物反应器中,细胞密度在11~144*106 cells/mL之间的CHO细胞评估其性能。材料和方法01细胞声学截留装置 – BioSep BioSep 系统由声学腔室和控制器组成。 控制器功能是自动产生声学腔室内的声场。 来自生物反应器的细胞悬液被泵输入到安装在生物反应器头板上的声学腔室中。 驻波迫使悬浮细胞进入平面,在那里它们形成松散的聚集体(图 1)。 清液向上通过声场而收获,而浓缩的细胞则返回到生物反应器。 随着细胞浓度和灌流速率的增加,声学腔室的功率输入被调整到更高水平,以保持高分离效率[5]。 运行时间对应于细胞与清液分离的时间段。在运行时间结束时,声场暂时关闭,收获暂停,同时腔室中的细胞返回生物反应器。 在这项研究中,功率水平和运行时间发生了变化,以获得最佳设置,使高密度CHO 细胞培养超过 125* 106 cells/mL。02实验装置 为了评估在一系列高细胞浓度下的分离性能,将CHO 细胞在摇瓶中培养,浓缩、然后悬浮在使用my-Control 操作系统的Applikon 250 mL MiniBio 生物反应器中。 BioSep 10 L的功率水平为2~7W。 实验设置如图2所示。2丨A) 实验装置包括:进料罐、废液罐、收获泵、进料泵、声学室、MiniBio 250 mL、my-ControlB)典型的实验装置[5]3 | 分析方法&bull BioSep 的分离效率根据公式 1 计算:SE (%) = 1 - HX / BX *100 [1] 其中HX对应于收获管路的活细胞浓度,BX对应于生物反应器中的活细胞浓度[4]。为确保稳定和可重复的声学条件,在从收获管路和生物反应器取样之前,超声波功率输入、收获速率和运行/反冲洗定时器设置至少恒定 30 分钟。根据所选运行周期的持续时间,在时间点采集收获样本,以获得一致且可比较的数据(表1)。结果和讨论1| 循环流速 在高细胞密度的灌流培养过程中,需要高循环速率,这会导致声学室内的湍流增加。 这种湍流诱导会影响声学诱导的细胞聚集[6]。 在目前的研究中观察到新的BioSep版本允许声学诱导的细胞聚集体不受干扰地沉降,最大流入速率高达7 mL/min(~10 L/天),允许保留超过100*106cells/mL的生物反应器浓度。2| 分离性能 从收获管路和生物反应器中采集的70对样品中测定分离效率。 CHO细胞总浓度范围为11~144*106 cells/mL。 研究了1~15L/天的不同净收获率、2~7 W的功率水平和2至10分钟的运行时间(未显示值),结果总结在图3中。 从图3中可以看出,当CHO细胞总浓度为100*106cells/mL时,可以实现高达3L/天的净收获率,同时保持98%的典型活细胞分离效率。超过4L/天的净收获率会影响最高密度下的效率,但分离仍保留了90%以上的细胞。 在总浓度为125*106 cells/mL时,以2L/天的净收获率运行,细胞分离效率达到98%。 在细胞浓度增加或收获率高的情况下,使用高功率水平和更短的运行周期是必要的[5]。 优化功率(w)和运行时间(min)的配对,以实现高密度细胞。这些值的组合使得最高的分离效率是:2 w - 10 min 3 W - 5 min 5 W - 3 min 7 W - 2 min。这些结果是意料之中的,因为更高的功率水平允许在高浓度或高流量条件下增加细胞的保留,而更短的运行时间避免了细胞聚集体在声室中过度积聚,然后才有机会沉降回到生物反应器。Figure 3 分离效率以黑色方块表示,作为记录的流入管线的净收获率和CHO细胞总浓度的函数。功率水平矩阵表示在该特定净收获率下应用的最大HF功率。黄色虚线表示循环速率20L/天和10L/天之间的边界。实验结论目前的研究证明了Biosep作为CHO细胞浓度高达125*106cells/mL的细胞保留系统,增强了细胞的沉降效率。在该细胞浓度下,以2 L/天的净收获率下运行,分离效率高达98%。参考文献[1]S. M. Woodside, B. D. Bowen, and J. M. Piret, “Mammalian cell retention devices for stirred perfusion bioreactors,” Cytotechnology, vol. 28, pp. 163–175, 1998.[2]T. Kwon, N. Madziva, J. D. Oliveira, S. K. Chandramohan, L. Yin, H. Prentice, J. Han, ‘Long-term steady state perfusion culture of mammalian cells using a robust microfluidic cell retention device”. 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2015.[3]M. F. Clincke, C. lleryd, Y. Zhang, E. Lindskog, K. Walsh, and V. Chotteau, “Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I: Effect of the cell density on the process,” Biotechnol. Prog., 2013.[4]V. M. Gorenflo, J. B. Ritter, D. S. Aeschliman, H. Drouin, B. D. Bowen, and J. M. Piret, “Characterization and optimization of acoustic filter performance by experimental design methodology,” Biotechnol. Bioeng., 2005.[5]Biosep manual 10 and 50 L per day, Applikon Biotechnology.[6]I. Z. Shirgaonkar, S. Lanthier & A. Kamen, Acoustic cell filter: A proven cell retention technology for perfusion of animal cell cultures. Biotechnology Advances, 22(6), 433–444, 2004.
  • 2023第一站:单细胞显微操作系统落户西湖大学!助力单细胞测序等研究高效发展
    多功能单细胞显微操作系统——FluidFM OMNIUM,是瑞士Cytosurge公司研发推出的一款将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级中空探针,轻松实现单个细胞水平、fL级别超高精度、自动化的细胞操作。近日,Quantum Design中国公司在西湖大学完成了单细胞显微操作系统FluidFM的安装工作,并对用户进行了相关知识和设备操作的全面培训。该设备的顺利验收,将助力西湖大学在基因编辑、细胞系构建、活细胞单细胞测序等研究方向取得更进一步的发展。西湖大学单细胞显微操作系统FluidFM理论培训现场西湖大学单细胞显微操作系统FluidFM上机操作培训现场西湖大学单细胞显微操作系统FluidFM培训现场:实验细节的热烈讨论 西湖大学单细胞显微操作系统FluidFM培训现场:西湖大学于珍珍老师独立上机操作演示 FluidFM OMNIUM单细胞显微操作系统由瑞士cytosurge公司自主研发推出的,该技术打开了传统细胞实验手段无法触及领域的大门,突破了单细胞研究、药物开发、细胞系开发中的障碍,主要功能包括单细胞提取、单细胞分离、单细胞注射、单细胞力谱等。深度应用于CRISPR基因组编辑、单克隆细胞系开发、病毒学、神经科学和生物力学等领域。FluidFM OMNIUM单细胞显微操作系统落户中国后,已经助力中国的科研工作者发表了多篇优异的文章:&bull W. Chen, O. Guillaume-Gentil, P. Y. Rainer, C. G. Gä belein, W. Saelens, V. Gardeaux, A. Klaeger, R. Dainese, M. Zachara, T. Zambelli, J. A. Vorholt & B. Deplancke. Live-seq enables temporal transcriptomic recording of single cells. (2022) Nature. &bull Y. Cui, X. Lyu, L. Ding, L. Ke, D. Yang, M. Pirouz, Y. Qi, J. Ong, G. Gao, P. Du & R.I. Gregory. Global miRNA dosage control of embryonic germ layer specification. (2021) Nature.&bull Y. Guo, F. Mei, Y. Huang, S. Ma, Y. Wei, X. Zhang, M. Xu, Y. He, B.C. Heng, L. Chen & X. Deng. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. (2021) Bioactive Materials. 瑞士Cytosurge单细胞显微操作系统FluidFM OMNIUM外观图 Quantum Design中国与瑞士Cytosurge公司已达成大中华区的合作协议。Quantum Design中国专业、成熟的售后团队,具备超卓的Cytosurge系列FluidFM OMNIUM产品售后服务能力。“不仅提供先进的产品,还提供先进的售后服务”这将是Quantum Design中国区别于其他科研仪器供应商的重要特征,也正成为越来越多科学工作者选择Quantum Design中国的重要原因。 FluidFM OMNIUM产品已在国内各大高校和科研单位落户,在相关生命科学领域尤其是单细胞水平研究方面发挥着极其重要的作用。国内FluidFM用户已遍布北京大学、西湖大学、上海交通大学医学院附属儿童医院、中国海洋大学、山东中医药大学、五邑大学(粤港澳大湾区实验室)等。
  • 【应用文章】NanoCoulter评测五种细胞外囊泡分离方法:效率与纯度大比拼
    近年来,细胞外囊泡(EVs)因其在生物医学研究中的重要作用而备受关注,他们不仅在细胞间通讯中发挥关键作用,还在疾病的早期诊断和治疗中展现了巨大潜力。然而,如何有效且高质量地分离这些囊泡仍是一个挑战。最近的一项研究中,研究人员通过基于电阻脉冲传感(RPS)技术的NanoCoulter颗粒分析仪,对五种常用的细胞外囊泡分离方法进行质量和效率的综合评估,为研究人员提供了宝贵的参考。相关报道已有公众号进行了详细解读,可参阅《文献速递|使用电阻脉冲感应方法评估五种细胞外囊泡分离方法的质量和效率》。什么是细胞外囊泡EVs是指从细胞中释放的纳米级囊泡,广泛存在于血液、尿液、唾液等体液中。这些囊泡富含包含功能蛋白、小分子、核酸和其他代谢物。EVs几乎存在于所有类型的细胞和体液中,包括血浆、尿液、唾液和母乳。EVs所携带的蛋白质、脂质和miRNA的种类和含量可以直接反映其来源的类型。EVs的研究有助于更好地理解细胞生理学和病理学,在临床上EV不仅在疾病诊断方面展示出巨大的潜力,还可能成为药物递送的新工具。因此,满足特定实验需求的高纯度EV的分离和表征方法,变得尤为重要。五种分离方法全方位对比在这项研究中,研究者们对五种常见的EV分离技术进行了详细的评估,包括:1.传统差速超速离心法(UC):转速在30000 r/min以上的称为超速离心。在超速离心基础上采用逐渐提高离心速度的方法分离不同大小的样本,可以有效分离出高纯度的EV,常被认为是纳米颗粒提取“金标准”。2.超滤法(UF):通过半透膜的微孔结构的过滤实现样本的快速选择性分离,适用于大规模生产。3.exoEasy膜亲和法:使用亲和配基修饰的膜(亲和膜)为介质进行分离,操作简便。4.qEV柱层析法:基于尺寸排阻色谱法,根据待测组分的分子大小进行分离,适合分离大小均匀的EVs。5.ExoQuick聚合物沉淀法:利用高分子聚合物(如&zwnj PEG)改变EVs的溶解性和分散性,使其在溶液中团聚析出,再通过离心的方式使其沉淀的方法。该方法分离时间短,操作简单,对EV相对温和。五种分离方法的TEM结果RPS技术电阻脉冲感应(RPS)技术是一种新兴的纳米单颗粒表征技术,也是当前唯一基于电学的颗粒表征方法。通过测量通过微小纳米孔的电流变化来评估细胞外囊泡的大小和浓度及zeta电位。这种方法具有准确、快速、简便和高灵敏度的优势,使其成为评估囊泡分离方法质量的理想工具。五种分离方法的粒径数据对比五种分离方法的浓度数据对比五种分离方法的zeta电位数据对比分离背后的秘密:效率与纯度之争通过RPS技术,研究人员详细分析了各分离方法的粒径分布、颗粒浓度及纯度。结果表明,虽然使用超滤法、qEV柱层析法和ExoQuick方法可以获得较高的颗粒浓度,但传统差速超速离心法在纯度上表现最佳。粒径分布:UC、UF、exoEasy、qEV分离出的EV粒径较为一致,约为71 nm左右,而ExoQuick分离的EV粒径稍大,平均为77 nm。颗粒浓度:超滤法(UC)展示了最高的颗粒浓度,达到了2.10×1012/mL,而UC法的颗粒浓度相对较低,为7.33×1010/mL。纯度:UC法的EV纯度最高,每毫克蛋白中包含的颗粒数达到了7.88×1011。 五种分离方法的EV纯度数据对比如何选择合适的分离方法?每种分离方法都有其独特的优势。据研究结果显示,超速离心法虽然操作复杂且时间较长,但当实验需求更高纯度的EVs时,超离法依旧是首选;然而,对于追求高效率和大规模生产的应用场景,超滤法和qEV柱层析法则提供了更快的分离速度和更高的颗粒浓度。NanoCoulter颗粒分析平台工作原理示意图了解不同分离方法的优缺点,将帮助研究人员更好地进行细胞外囊泡相关的实验研究和应用开发。本篇文章通过RPS技术,凭借NanoCoulter的精准性能对五种细胞外囊泡分离方法进行了全面评估,为研究人员选择最适合的分离技术提供了科学依据。选择合适的分离方法应考虑实验需求的具体要求,包括分离的效率、纯度以及操作的便利性。选择合适的颗粒表征方法亦然,在上述研究中NanoCoulter对于EV的表征体现出以下几点优势:优势1:单颗粒检测,精准无干扰NanoCoulter凭借其先进的纳米级RPS技术,实现了对每一个纳米颗粒的精准捕捉与分析。想象一下,在复杂的生物流体中,每一个通过纳米孔的微小EVs都逃不过它的“全面体检”。打破了传统光学方法中大颗粒信号屏蔽小颗粒从而结果失真的现象。尤其对于EVs这类多分散生物流体样本,无论是尺寸、浓度还是zeta电位,每一个数据都源自对单个颗粒的直接测量,确保结果的真实可靠。这种前所未有的精准度,可以让细胞囊泡的研究迈上一级新的台阶!优势2:高精度,多参数分析01NanoCoulter能够对EVs进行粒径、粒径分布、颗粒浓度和zeta电位的全面分析。准确的粒径分布分析帮助我们了解EVs样本真实的大小分布情况,颗粒浓度则反映了EVs的丰度和分离质量,而zeta电位则与EVs的稳定性及工程化EV的递药靶向性密切相关。这些数据为我们提供了EVs的全方位信息,为纳米药物科学研究和临床应用提供了坚实的数据支持。优势3:适应复杂样本01不同于传统的光学方法是对样本中颗粒进行整体分析,NanoCoulter在复杂多分散样品中表现出色。它能够准确表征低折射率、高离子浓度或低流动性液体中的纳米颗粒,确保即使在复杂生物体液中也能获得可靠的结果,专业适合生物医药领域的研究。优势4:快速便捷的操作流程01NanoCoulter的操作流程简单快捷,无需复杂的样品前处理,以及设备的热机及校准步骤。每一张纳米孔芯片在生产时即经过了严格的定标与验证,在用户端无需消耗标准品。这使得研究人员能够更快地获得结果,加速科学发现的步伐。优势5:应用广泛01NanoCoulter的应用领域远不止于EVs研究。在生物医药、材料科学、环境监测等多个领域,它都展现出了巨大的潜力和价值。凭借其高精度、高稳定性和广泛的应用性,NanoCoulter正逐步成为科研人员手中不可或缺的得力助手。参考文献: Yang M, Guo J, Fang L, et al. Quality and efficiency assessment of five extracellular vesicle isolation methods using the resistive pulse sensing strategy. Anal Methods. 2024 16(32):5536-5544. Published 2024 Aug 15. doi:10.1039/d4ay01158a
  • 文献速递|动物活体成像系统在细胞外囊泡与神经退行性疾病关系研究中的应用
    ● 快讯近日,同济大学医学院附属上海市第十人民医院神经内科赵延欣教授及刘学源教授课题组在细胞外囊泡与神经退行性疾病关系研究领域取得了新的进展。该项研究从小细胞外囊泡的角度为阿尔兹海默症中发生的兴奋抑制失衡提供了新见解。相关研究成果已发表在国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR 2区)。图1|国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR2区)细胞外囊泡 (EV) 是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质。根据它们的大小,通常分为三种类型,小EVs (sEVs) (50-150 nm)、大EVs (100-1000 nm) 和凋亡小体 ( 5 μm)。其中,sEVs 通常可通过血脑屏障 (BBB),成为中枢神经系统 (CNS) 细胞之间通讯的关键介质,有证据表明,sEV 中的微小RNA (miRNA)参与到众多细胞和生物过程,例如神经元细胞的生长和凋亡。目前,E/I(兴奋/抑制)失衡假设被概念化为谷氨酸能和氨基丁酸(GABA)能突触输入之间的不平衡。E/I 失衡被认为是神经退行性疾病脑功能障碍的基础,包括阿尔茨海默病 (AD)、帕金森病 (PD)、精神分裂症和其他神经疾病。谷氨酸兴奋性毒性和 GABA 能神经元功能障碍似乎是 AD 中发生的神经元细胞死亡的关键原因。但是关于 E/I 失衡对AD的影响,其中的机制仍不明确。为了对该机制进行进一步阐释,赵延欣教授及刘学源教授团队在本研究中用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。然后,将不同来源的 sEV 添加到用 Aβ(β淀粉样蛋白)处理的神经元或注射到 AD 模型小鼠中。此后对经 Aβ 治疗的小鼠和神经元进行了评估。经GABA 处理的神经元释放的 sEVs 减轻了 Aβ 诱导的损伤,而谷氨酸处理的神经元释放的 sEVs 加重了 Aβ 的毒性。此外,本研究通过 miRNA 测序比较了从谷氨酸/GABA/PBS 处理的神经元中分离的 sEV 的 miRNA 组成。该研究进一步表明,sEV 中 miR-132 的变化加速了表征病理的生化改变。图2|实验方案示意图分离原代神经元后,用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。将不同来源的 sEV 添加到用 Aβ 处理的神经元或注射到 AD 模型小鼠中,并对小鼠进行MWM测试。文章中,在评估在小鼠体内系统传递的 sEVs 的分布的实验中,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。该实验中使用近红外染料DiR进行标记,同时进行了阴性对照实验(仅注射 DiR,不注射 sEV)。通过 APP/PS1 小鼠的尾静脉注射 DiR 标记的 sEV,使用Aniview100活体成像系统在注射后 24 小时拍摄小鼠的图像并评估分布情况。在带有 DiR 标记的 sEV 的小鼠的大脑和重要器官中均检测到荧光。随后,处死小鼠,取出器官并成像,目的为识别荧光信号来源的器官并使信号干扰最小化。此外,为了排除游离染料干扰实验结果的可能,在收集器官前用不含 sEV 的游离 DiR处理小鼠。实验结果显示,脑、心、肝、肺、脾、肠、肾均呈不同程度荧光。图3|sEV的体内外分布情况在注射 DiR 标记的 sEV 后 24 小时,使用活体成像系统对A - C活小鼠进行成像。a)、小鼠背面成像b)、小鼠腹侧成像c)、收集指定器官后使用活体成像系统成像本研究中证明了 sEV 的功能可以受神经递质平衡状态的调节,并对神经元中的 Aβ 毒性有不同的影响。并且该研究从 sEV 的角度为 AD 中发生的 E/I 失衡提供了新见解,并表明通过GABA 能系统对 sEV 进行生物学改造可能是预防或减轻 AD 发病机制的治疗途径。论文链接:https://doi.org/10.1186/s12951-021-01070-5
  • 单细胞测序系统一站式解决方案——走访新格元生物
    细胞是生命活动的基本单位,随着精准医疗的发展和测序水平的提高,人们越来越深刻地认识到组织水平反应的信息有限。单细胞测序技术在单细胞水平上对基因组、转录组、表观组等进行高通量测序分析,可以更精细地揭示细胞间的异质性。新格元(南京)生物科技有限公司(以下简称:新格元)作为国内首家、全球第三家拥有成熟商业化高通量单细胞测序平台的公司,2023年推出全球首款自动化从细胞装载到单细胞cDNA合成平台Singleron JavaTM,提高了实验室单细胞数据生产效率。近日,仪器信息网一行走进新格元苏州设备开发制造基地,与公司高级副总裁张龙对话,深入了解这家高新技术企业的技术、产品创新和未来发展。新格元高级副总裁张龙单细胞测序技术的演进历程2009年,北京大学汤富酬教授在《Nature Methods》杂志上发表了第一篇单细胞转录组测序文章,自此开启了单细胞技术的新时代。随后的十几年,单细胞技术以更高分辨率、更高通量,深入揭示了个体的发育过程、功能机制,并且在疾病的检测与监控研究方面发挥了重要作用,被《Nature Methods》评为2013年最受关注的技术成果,与之对应的,全球单细胞测序潜在科研市场体量预计至2031年达到136.2亿美元。早期单细胞测序的主要策略为:通过流式细胞术或者激光捕获显微切割技术将单细胞逐个分离出来再分别建库测序,该策略不仅通量非常低,而且随着待测单细胞的个数的增长,测序的成本几乎呈线性提升。随后,基于标签(barcode)的单细胞识别技术解决了通量和成本难题,其技术原理为通过微流控芯片技术获得单细胞反应体系,并在传统文库构建的基础上引入barcode,通过追溯barcode序列将众多mRNA、表面蛋白等定位回原来的单个细胞。然而,该技术前处理方法流程复杂,“油包水”的方式不利于捕获脆弱及损伤的细胞,局限了其应用。“油包水”式单细胞测序原理示意图从微流控芯片到单细胞技术平台2018年,方南博士、樊荣教授和周璟研究员(加州大学伯克利分校机械工程博士,耶鲁大学研究员)携手创立了新格元,新格元的名字取“格物致知,识微通元”之意,自成立以来,迅速在全球范围内建立了多个研发和生产基地,遍及南京(总部)、苏州、德国、美国和新加坡,产品与服务覆盖20多个国家和地区,3000多家实验室。此前,方南博士在凯杰负责二代测序及单细胞产品研发,樊荣教授是耶鲁大学微流控单细胞多组学技术的专家,为新格元GEXSCOPE® 单细胞技术平台的建立奠定了坚实的技术基础。之后,新格元与耶鲁大学签署了微流控单细胞处理专利的使用协议,并利用该专利联合自主知识产权的单细胞扩增技术开发出基于微流控芯片的创新性GEXSCOPE® 单细胞技术平台。GEXSCOPE® 单细胞技术平台基于“泊松分布”原理,通过微流控芯片实现精准的单细胞分离。其分子标签磁珠可在完成RNA捕获的同时完成标记,并且避免了“油包水”液滴形成过程中,压力对脆弱细胞的损伤,为单细胞分析技术在临床检测上的应用扫除障碍。GEXSCOPE® 单细胞分离原理从科研定制化到精准医疗突破单细胞技术通量、成本和周期上的瓶颈后,新格元致力于提供定制化服务,通过改变芯片孔径大小、设计特异标签,满足客户更大细胞、更多样的实验需求,其FocuSCOPE® 靶向高通量单细胞测序可在获得单细胞转录信息的同时获得靶基因突变信息。“科研的需求是多样的,我们会根据不同研究者的需求,提供一些定制化服务。”张龙称,“这也是我们区别于其他竞争对手的地方。”FocuSCOPE® 靶向高通量单细胞测序原理谈及单细胞技术在临床应用上的困难,张龙介绍称样本的保存和解离很关键:“实际上临床的流程是从手术或者活检开始,取样之后如果不能去马上做实验怎么办?样本的保存和解离,都不是我们主要竞争对手的关注点,而我们在公司成立之初就认识到样本处理的重要性,经过我们的研发及验证,我们开发的保存液可以维持细胞状态长达三天。” 组织解离更是重中之重,“组织解离做不好,后面做得再好也没用”,张龙解释道:“组织解离依赖机械剪切和酶解,为后续的单细胞分析提供最基本的保障。我们在组织解离领域有多年实战的经验,不仅在单细胞测序领域做了多种不同的物种、组织,并且在流式平台上有很多研发投入及实际验证数据。更是在原代细胞培养、类器官培养等领域积累了大量的经验。”当前,组织解离仪比较重要的应用场景是临床领域,“解离样本最低限度是10mg,满足临床组织穿刺的需求,是行业内做得最低的!”张龙自信地介绍道。Singleron PythoN Junior® 自动化组织解离系统从自动化系统到一站式解决方案2023年,Singleron Matrix NEO® 自动化单细胞测序文库构建系统、Singleron JavaTM自动化单细胞测序文库构建平台陆续上市。Singleron JavaTM是全球首款自动化完成从细胞装载到单细胞cDNA合成的平台。细胞分离、裂解、核酸捕获、反转录合成cDNA等操作全部自动化,轻松完成百万级单细胞实验。“其实mRNA是不稳定的,有了Singleron JavaTM,实验人员晚点再过来处理都没问题,还能同时做8个样品。”张龙说。Singleron JavaTM自动化单细胞测序文库构建系统 除了单细胞建库仪器、单细胞建库多组学试剂盒外,新格元还提供包括CeleScope® 可视化分析软件、SynEcoSys® 单细胞数据库在内的单细胞数据科学工具箱,“除了提供产品和服务之外,我们还会提供培训,不仅仅是实验的培训,还有生信的培训,这样才能让老师能真正用起来复杂的单细胞平台”,至此,新格元真正成为全球首家一站式、多组学单细胞测序产品提供商。新格元单细胞测序系统化一站式方案路线图在过去的10多年间,国内外单细胞测序平台的踊跃发展,助推了单细胞测序技术在肿瘤、胚胎发育、免疫治疗、感染、药物研发、干细胞治疗等的应用,验证了单细胞技术在精准医疗时代的价值。目前,新格元已服务1000余家知名医院、药企及科研院所,此外,新格元实验室于2024年通过美国病理学家协会CAP认证,同年6月参与人类细胞图谱(HCA)计划,为这项旨在绘制人体中所有细胞的图谱,以便于更好地了解人类健康以及进行疾病的诊断、监测和治疗研究的大型国际合作项目提供助力。纵观未来,张龙表示随着单细胞技术在肿瘤学、免疫学、感染、神经领域和其他医学研究领域应用的深入,行业市场将更加广阔,“早期只做科研的话应用市场就这么小,期待将来能够应用到临床,解决更多的精准医疗相关的难题,扩展单细胞测序的临床应用。”而这恰好符合新格元的初衷:“将创新的单细胞分析技术应用于临床检测、健康管理和药物开发等关键领域。”走访合影(从左至右:新格元生物工程师俞苏敏、仪器信息网客户成功经理康龙、新格元工程研发总监储冬东、新格元高级副总裁张龙、仪器信息网生命科学编辑李兆坤、仪器信息网生命科学编辑樊雪竹)
  • 评新而论Vol.01 达普Cytospark CSP高通量细胞筛选系统
    听用户真实评价,晓新品技术进展!【评新而论】第1期,本期主角是达普Cytospark CSP高通量功能性细胞筛选系统,分享3位来自高校及生物企业用户的真实评价。 仪器新品区 产品名称:Cytospark CSP 高通量功能性细胞筛选系统点击查看展位详情仪器特点:独特性:基于细胞表型的筛选,整合流式分选与ELISPOT 检测为一体,可依据细胞分泌产物(蛋白),并兼顾细胞表面及胞内标志物的单参数或多参数分选;高通量:单次实现106 B细胞的功能筛选;高效率:筛选速度相对传统 96 孔板法,提高 3-4 个数量级;低成本:减少试剂用量,试剂消耗降至传统方法的百万分之一;产品介绍:CSP高通量筛选系统改变了常规以微孔板为筛选体系的思路,利用液滴微流控技术,可实现单次百万级细胞包裹检测和分离。突破了常规高通量筛选的通量上限,为功能性细胞或困难靶点提供更多可能。在抗体发现工作流程中,使用 CSP 高通量筛选系统可将之前数周的筛选工作压缩到 1~ 2 天内完成, 精准且高效地完成对百万级单 B 细胞的筛选。为抗体药物的发现提供了更高效的解决方案。单 B 细胞抗体制备技术是最近十几年发展起来的一种可直接用原代 B 细胞制备全天然性抗体的技术,其原理是从免疫动物或患者的组织或外周血中分离抗原特异性 B 细胞,并筛选出分泌目标抗体分子的 B 细胞,结合单细胞 PCR 技术,扩增出 IgG 重链和轻链可变区基因,构建表达载体,之后进行表达、纯化、筛选和鉴定,以获取有效功能性抗体。该技术具有开发周期短,抗体保持重轻链天然配对,多样性丰富且亲和力高等优势。 用户评论区 用户1:“PL级反应体系,甚至可以实现基于稀少的原代细胞药物筛选”单位:上海某高校药学院评论:我们采购的达普基于微液滴高通量筛选系统,系统操作简单,且仪器免维护,系统使用PL级反应体系的功能性细胞筛选方式,不但节省了试剂用量,还可用稀少的原代细胞进行药物的筛选,以能更接近体内环境的方式筛选出有效的药物,系统不但能研究药物作用机制,在前期药物开发的过程中,还可用进行高通量化合物DEL库的筛选,是药物开发过程一个非常有用的先进工具!用户2:“一机多用!为我们节省大量试剂和时间,单B抗体筛选利器” 单位:上海抗体开发公司评论:我们因为抗体开发过程中高通量筛选的需求,采购了达普生物基于液滴微流控技术开发的CSP高通量功能性细胞筛选系统,该系统操作比较简单,并且通量很高,单次可以实现106B细胞的筛选,以帮助从大量的原代B细胞中筛出分泌高性能抗体的细胞,相比基于流式分选,培养,ELISA检测的方式,PL级的微液滴体系和1-2h的孵育时间,基于细胞外分泌抗体直接筛选高性能浆细胞,节省了大量的试剂和时间消耗。另外该系统可以根据不同的需求,基于磁珠法,报告细胞法等分别对可溶性抗原抗体或跨膜蛋白抗原抗体进行筛选, 一机多用,是单B抗体筛选不可缺少的先进工具。用户3:“解决了我们之前膜蛋白抗原获得难,跨膜蛋白抗体筛选难或无法进行的问题”单位:广州抗体开发公司评论:我们因为膜蛋白抗体筛选的需求购买了达普生物CSP高通量功能性细胞筛选系统;该系统基于微液滴技术,可将报告细胞与抗体表达细胞共包裹,基于报告细胞将阳性B细胞进行分选富集打印到96孔板,直接基于天然抗原筛选高性能抗体,解决了我们之前获得膜蛋白抗原难,跨膜蛋白抗体筛选难或无法进行的问题,目前我们已经基于该系统在跨膜蛋白抗体筛选上取得一些不错的进展,期待改系统未来在更多膜蛋白抗体筛选项目及我们真在规划的双特异性抗体筛选项目给我们带来更多惊喜!你还想看到哪款仪器新品的真实用户评价,请留言给我们。新品首发,尽在仪器信息网!相关服务欢迎垂询010-51654077-8215
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制