当前位置: 仪器信息网 > 行业主题 > >

物理结构装置

仪器信息网物理结构装置专题为您提供2024年最新物理结构装置价格报价、厂家品牌的相关信息, 包括物理结构装置参数、型号等,不管是国产,还是进口品牌的物理结构装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合物理结构装置相关的耗材配件、试剂标物,还有物理结构装置相关的最新资讯、资料,以及物理结构装置相关的解决方案。

物理结构装置相关的资讯

  • 国家重大科技基础设施“仲华”热物理试验装置开建
    12月27日,“十四五”国家重大科技基础设施“仲华”热物理试验装置在青岛西海岸新区举行项目建设推进会,项目正式启动建设。“仲华”热物理试验装置是全国首个获得国家批复、首个启动建设的“十四五”国家重大科技基础设施项目。据悉,“仲华”热物理试验装置主要针对吸气式发动机开展复杂多变条件下的工程热力学及循环系统、气动热力学、燃烧学、传热传质学等热物理学科及其交叉学科基础理论和试验研究。该项目位于青岛西海岸新区古镇口核心区,总投资约29.2亿元,建设单位为中科院工程热物理研究所。“仲华”热物理试验装置的建设与运行,将有效支撑现有吸气式发动机设计体系的完善和未来新原理吸气式发动机设计体系的建立,为我国先进吸气式发动机自主创新发展提供坚实的条件支撑。2021年,经山东省、青岛市积极争取,“仲华”热物理试验装置成功纳入“十四五”国家重大科技基础设施,落地青岛西海岸新区。2022年以来,“仲华”热物理试验装置前期手续加快办理,可行性研究报告、初步设计及概算相继获得国家发改委批复。下一步,青岛市及西海岸新区将不断提升服务效能,推动“仲华”热物理试验装置早建成、早运营、早见效。
  • 蛋白质结构研究大装置安家上海
    园区微晶体结构研究站 园区荧光激发细胞分选仪 海科路园区设施 科研人员研究大分子复合体  7月28日上午,全球生命科学领域首个综合性大科学装置——蛋白质科学研究(上海)设施(以下简称“上海设施”)在上海通过国家验收。中国科学院院长白春礼、上海市市长杨雄、国家发改委副主任林念修等出席验收会。  据介绍,作为国家重大科技基础设施项目之一的上海设施,主要围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业的发展需求,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化。目前已建成用于蛋白质结构研究的9大技术系统。  验收委员会认为,上海设施建成了国际一流的蛋白质科学研究支撑体系,是全球生命科学领域以各种大型科学仪器和先进技术集成为核心的首个综合性大科学装置,其总体指标达到国际先进水平,部分指标达到国际领先水平。  白春礼表示,建设设施不是最终的目的,吸引全国和全世界的优秀科学家来从事高水平科研工作、产出重大科技成果才是应该致力追求的目标。上海设施要成立设施科技委员会和用户委员会,建立科学民主开放的课题遴选制度,不断扩大设施开放共享。  据统计,上海设施2014年5月开放试运行,截至2015年7月,各系统累计运行5万多小时,共执行用户课题500多个 服务60多家单位,以中科院和高校科研机构为主,覆盖北京、上海、香港等地 同时吸引了一批国际药企和国内外优秀科学家开展前沿课题研究。用户使用上海设施的设备和服务做出了一系列重要成果,有多项研究成果发表在Nature、PNAS等高水平国际学术刊物上。
  • 国际病毒结构生物学研讨会在生物物理所召开
    2015年4月9日,国际病毒结构生物学研讨会(International Mini-Symposium of Structural Virology)在所9501会议室顺利召开。会议由生物物理所主办,来自清华大学、中山大学、湖南师范大学以及美国Sripps研究所等专家学者和研究生们参加了此次会议。  首先,Sripps研究所的Jack Jonson教授和生物物理所的饶子和院士做了两个关于病毒研究领域的主题报告。Jack Jonson教授向大家介绍了其实验室以 Nudaureliacapensis omega virus、Sulfolobus turreted icosahedral virus 等病毒为基础,利用晶体学、电子显微学等技术手段系统地研究了病毒成熟的过程。饶子和院士作为中国病毒结构生物学的领军人物,他们的工作重点是与人体重大疾病密切相关的病毒的研究。饶院士向大家展示了过去几年在手足口病源病毒EV71以及CA16的系列研究工作,并且向大家阐述了基于结构的抗病毒药物研究动态。此外,饶院士还进一步展示了他们近期关于甲型肝炎病毒的重大研究进展。  冷冻电镜这一强大的技术手段在研究生物大分子结构特别是柔性结构研究方面具有特别的优势。生物物理所朱平研究员介绍了他们以冷冻电镜为主要技术手段对染色体30nm丝,染色体重塑复合物Tip49a/Tip49b以及病毒类似颗粒等结构研究 中山大学张勤奋教授则利用这一技术手段对青蟹呼肠孤正二十面体病毒柔性突出进行了结构研究。  相对于冷冻电镜,晶体学对于小分子量的生物分子结构研究具有独到的优势。生物物理所孙飞研究员作为生物物理所生物成像中心主任,近年来在发展冷冻电镜成像及图像重构算法方面有着显著的成绩。他向与会人员展示了以兔出血病毒RHDV为研究对象将不同尺度的数据进行整合,利用电镜低分辨数据获得晶体学相位的方法 清华大学的向烨教授以及生物物理所的章新政研究员则展示了利用晶体与电镜等联合手段来研究细菌的病毒&mdash &mdash 噬菌体浸染宿主的过程,这其中包括噬菌体T4噬菌体入口装置的近原子分辨率结构以及&phi 29浸染宿主过程研究。  冷冻电镜图像算法上的进步会极大地增加我们对于图像信息的提取。湖南师范大学的刘红荣教授和清华大学的程凌鹏副研究员通过合作系统地研究了非正二十面体对称质型多角体病毒结构并在重构算法上进行改进,使原本缺失的核酸结构得以显示。此外,作为本次会议的主要赞助商无锡App Tec公司的Henry Lu向与会人员展示了他们在利用小鼠与人的Chimera Liver 的Ex Vivo实验所取得的关于抗甲型肝炎病毒药物的研究进展。  研讨会报告深入浅出,与会者对冷冻电镜技术成像及算法的发展对于解析生物大分子特别是病毒结构的优势以及基于结构抗病毒药物的研发都表现出极大的热情,与会师生热烈讨论,受益匪浅。
  • 生物物理所开发冷冻结构光照明与电镜关联成像新技术
    面向原位结构解析的冷冻电子断层成像(cryo-ET)是研究生物大分子复合物的原位高分辨率结构及其相互作用关系的关键技术。但受限于电子束穿透能力,需要先利用聚焦离子束(cryo-FIB)将细胞和组织样品减薄成200纳米左右的薄片后才能进行cryo-ET数据采集。冷冻光电关联成像技术可以为cryo-FIB精准制备包含特定目标结构的冷冻含水切片提供荧光定位指导,但是冷冻荧光显微镜的光学分辨能力以及光镜、电镜图像的对齐精度是制约冷冻光电关联实验成功率的关键因素。  为了解决上述技术瓶颈,中国科学院生物物理研究所蛋白质科学研究平台生物成像中心一直致力于开发新型冷冻光电关联成像技术,在前期自主研发的冷冻光电关联成像高真空光学冷台HOPE(Journal of Structural Biology,2017)基础上,通过引入结构光照明成像技术,成功研制了冷冻结构光照明成像系统HOPE-SIM,实现了横向优于200纳米的光学分辨率,以及优于150纳米的光镜-聚焦离子束三维关联对齐精度,相关研究成果于4月29日在线发表在《通讯-生物》(Communications Biology)上。   光镜-电镜关联成像技术(Correlative Light and Electron Microscopy,CLEM),是利用荧光特异标记对特定生物大分子或亚细胞结构进行荧光示踪,实现对整个细胞的三维荧光定位成像,之后通过荧光图像和电镜图像的配准,获得荧光标记信号和电镜超微结构的关联信息。冷冻光电关联成像技术的应用方向之一,是通过关联图像,指示出荧光标记的结构在电镜图像中的具体位置,实现对荧光示踪目标物的电镜高分辨率结构解析。而得益于光镜成像对生物样品的无损特性,可以在不损伤样品的前提下获得样品内部的三维荧光定位信息,再通过光电关联成像流程和关联对齐软件,将三维荧光图像与扫描电镜图像关联匹配,实现在荧光信号的指导下进行cryo-FIB对目标区域的减薄加工。如此,便可以避免“盲切”,实现对荧光指示目标物的指导切割,以期提高冷冻聚焦离子束技术用于电子断层成像切片样品制备的效率。   目前,光电关联成像指导cryo-FIB减薄技术流程的实现方式有多种类型,根据系统构成可以分为光镜电镜分体式光电关联成像系统和集成型光电关联成像系统。生物成像中心技术团队自2013年开始专注于冷冻光电关联成像技术方法学研究,在光镜电镜分体式光电关联成像系统研制方面, 于2017年自主研制了一款可搭载在倒置荧光显微镜上的高真空光学冷台HOPE(High-vacuum Optical Platform for cryo-CLEM),HOPE可与透射电镜冷冻样品杆适配连接,完成荧光定位后样品将随冷冻样品杆被转移进电镜当中进行高分辨率数据采集,同时结合光电关联定位软件,可以实现大视野光学定位成像与电镜成像的匹配。HOPE采用冷冻样品杆来实现冷冻光镜成像、冷冻传输以及冷冻透射电镜成像,有效避免了光电关联成像过程中对冷冻载网的反复夹取,保证了冷冻样品的完整性和同一性,有效提高了关联成功率和实验效率。  然而,基于宽场成像技术的HOPE系统受限于光学衍射极限和冷冻光学成像装置的空间限制等,仅能使用长工作距离、低数值孔径的冷冻荧光成像系统,所能达到的横向分辨率约为400-500纳米,纵向分辨率则达微米级,这对于精准捕获数微米厚度细胞内百纳米尺度的目标结构而言,是非常不利的。  结构光照明超分辨荧光成像技术在能提高宽场荧光显微镜一倍分辨率的前提下,还具备不需要特殊的荧光探针、成像速度快、辐照密度低等技术优势,是所有超分辨成像技术中最适合应用到冷冻环境中对冷冻样品进行高分辨率成像的技术。因此,研究团队选择了结构光照明成像技术作为提高冷冻荧光成像分辨率的手段,基于倒置荧光显微镜自主研制了大腔室高真空冷台,腔室内置0.9NA长工作距离光学物镜和防污染器系统(ACS和cryo-box)、外接真空传输系统(TPS)以及冷冻电镜样品杆(cryo-holder)适配器。同时,借助三维结构光照明(SIM)光路,实现了真空环境下对冷冻样品的三维结构光照明成像,在提高冷冻光镜分辨率的同时,有效增强了光电关联成像样品传输过程中对冷冻样品的保护。图1 冷冻结构光照明成像系统HOPE-SIM。a.HOPE-SIM硬件组成,b. HOPE-SIM设计原理图,c. HOPE-SIM光路原理图   借助HOPE-SIM高分辨率冷冻光电关联成像系统以及自主编写的三维关联对齐软件3D-View,团队成功制备了包含宿主细胞内鼠疱疹病毒(图2)和海拉细胞内荧光标记的中心体(图3)的细胞切片样品,通过冷冻电子断层原位结构分析图像处理流程和软件分析其在原位结构。实验结果表明,基于HOPE-SIM技术的高精度冷冻光电方法可以实现优于150nm的三维对齐精度,为尺寸较大、胞内丰度高的目标物的原位捕获提供了一种高效、精确的靶向冷冻聚焦离子束减薄技术方案。图2 基于 HOPE-SIM冷冻光电联技术捕获宿主细胞中的MHV-68病毒颗粒。a.冷冻明场透射光图像;b.HOPE-SIM荧光图像的z投影。绿色,荧光微球。红色,MHV-68病毒;c将b中的荧光图像与a中的明场图像合并,以显示目标信号的位置;d.冷冻SIM和冷冻FIB图像之间的三维关联匹配;e.对目标区域减薄后的冷冻FIB图像;f.减薄后冷冻扫描电镜图像,与b中冷冻SIM图像的融合;g.制备的冷冻含水切片的冷冻透射电镜显微照片(3600倍);h.冷冻断层扫描成像,放大倍率为64000倍,显示了被捕获的病毒颗粒。 图3 基于HOPE-SIM技术流程精准捕获海拉细胞内红色荧光标记的中心体。a.3D-View光-电关联软件获得的冷冻结构光-cryo-FIB关联配准图;b.cryo-FIB对红色荧光标记所在区域进行减薄;c.cryo-FIB减薄获得的200nm冷冻含水切片;d.冷冻含水切片在透射电镜下8700倍成像,黄色框线内为目标中心体;e.目标中心体的cryo-ET数据采集(53000倍)激光指向位置主动稳定系统示意图。   相关研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(B类)等项目的资助。  值得一提的是,在集成型光电关联成像系统研制方面, 2023年1月,《自然-方法》(Nature Methods)报道了中科院院士、生物物理所研究员徐涛和研究员纪伟团队研发的cryo-CLIEM系统和生物成像中心技术团队自主研发的三束共焦成像系统ELI-TriScope系统,在双束扫描电镜真空腔室内集成了光学成像系统,避免了样品传输过程,有效提高了冷冻光电关联成像的精度和成功率。其中生物成像中心技术团队自主研发ELI-TriScope系统集成了一个基于冷冻样品杆的传输系统(cryo-transfer system),并在冷冻样品下方嵌入了一个倒置荧光成像系统(cryo-STAR system),从而实现电子束(E)、光束(L)和离子束(I)被精确地聚焦到同一点上,可以在cryo-FIB减薄的同时实时监控目标分子的荧光信号,显著提高了cryo-FIB减薄技术对特定目标物的捕获精度,将制备冷冻含水切片的时间成本从每片2-2.5小时降低到约0.8小时。   生物成像中心技术团队研发的基于结构光照明技术的HOPE-SIM系统可以实现三维高分辨率冷冻荧光成像,同时还可以通过冷冻样品杆直接衔接三束共焦光电关联成像系统ELI-TriScope,实现高分辨三维冷冻荧光成像的同时,完成后续原位荧光实时监控聚焦离子束减薄全技术流程,有效提高了冷冻聚焦离子束减薄的效率、准确性、成功率和样品制备通量,为原位结构解析研究提供了成功的解决方案,在未来的原位结构生物学中有巨大应用潜力。
  • 新品 | 为NEXTA DSC系列推出Real View®偏光显微样品观察装置,可进行高精度结构分析
    2024年3月6日,日立高新技术集团旗下的日立分析仪器有限公司(以下简称为“日立分析仪器”)推出了可在NEXTA DSC系列热分析仪上使用的偏光显微镜配件。NEXTA DSC被用于不同的热分析领域,包括聚合物、制药、电子、化学、学术研究、石油和天然气、食品和金属等,以对热流进行测量从而获得材料特性。其可测量熔点、玻璃化转变和结晶等热性能。在开发高性能材料的行业和研究设施中,作为日立NEXTA DSC可选配件的Real View®偏光显微样品观察装置用途广泛,可扩展应用到样品晶体取向、多层薄膜质量控制和故障分析等。高级显微分析NEXTA DSC的Real View®偏光显微样品观察装置配备一个2,000万像素的高分辨率摄像头,与标准Real View®摄像系统相比,分辨率提高了10倍,数码变焦倍率提高了50倍。此外,可控偏光技术增强了图像的对比度,使操作人员能够探索样品的方向性,即各向异性。摄像头装置具有专门为偏光观测设计的专用图像处理功能。该系统采用与NEXTA DSC系列类似的简单操作,可对多层薄膜进行逐层熔点分析。这些功能有助于对各种材料进行高精度结构分析,能够清晰地观测微小区域,包括多层薄膜质量的异常。日立分析仪器热分析仪产品经理Olivier Savard表示:“NEXTA DSC系列的Real View®偏光显微样品观察装置引入了高精度结构分析的创新方法,为需要增强材料特征的公司和研究实验室扩展了差示扫描量热仪的功能。”日立高新科学热分析仪产品经理西村晋哉表示:“偏光显微样品观察装置采用由日立创新开发的图像处理功能对微区域进行热分析。该产品为研发和质量保证/质量控制市场提供了创新应用和解决方案。"*“NEXTA”和“Real View”是日立分析仪器在日本、美国、欧盟及其他国家/地区的注册商标。
  • 北京怀柔科学城首个大装置开工 综合极端条件实验装置启动建设
    p  由中国科学院物理研究所等建设的国家重大科技基础设施项目——综合极端条件实验装置9月28日在北京怀柔正式启动建设,这也是怀柔科学城第一个开工的国家重大科技基础设施。该工程拟通过5年左右时间,建成国际上首个集极低温、超高压、强磁场和超快光场等极端条件为一体的用户装置,极大提升我国在物质科学及相关领域的基础研究与应用基础研究综合实力。/pp  综合极端条件实验装置工程由国家发改委审批,中科院、教育部共同申请,得到了北京市和怀柔区的鼎力支持。装置由极端实验条件产生系统、极端条件下的样品表征和测量系统,以及能满足上述各系统研制、升级、维护与运行的支撑系统等部分组成。建成后,该装置将成为开展物质科学及相关领域研究的重要实验基地,成为具有国际领先水平和重要国际影响力的科学与技术研究中心。/pp  在项目启动会上,中科院副院长王恩哥表示,综合极端条件实验装置是中科院站在国家科技创新总体布局的高度,面向全球科技创新发展态势作出的一项重大部署,是落实习近平总书记关于在北京“建设具有全球影响力的科技创新中心”要求的具体举措之一。/pp  王恩哥对项目建设法人单位中科院物理所提出了几点要求。他说,物理所要以对人民负责、对历史负责、对党和国家负责的态度,强化建设标准和要求,按照既定建设周期,保质保量完成建设任务 抢抓机遇,认真做好前沿科学领域布局规划 大胆探索大科学装置管理体制机制改革,运行好综合实验设备,多出成果,早出成果,出大成果,勇攀科学高峰 发现、吸引、凝聚顶尖科学家,形成国际科技创新人才高地。/pp  王恩哥强调,综合极端条件实验装置在国际上是首创,是一项“功在当代,利在千秋”的国家科技基础设施建设工程。他希望该装置能够建设成为世界领先的用户装置,与相关交叉平台一起构成具有全球影响力的凝聚态物质科学研究中心。努力探索世界科学前沿,实现技术引领性突破,在怀柔科学城建设中作出重要贡献。/pp  “极端条件实验手段的整体水平直接影响着我国在若干核心领域的竞争力。”中科院物理所所长方忠认为,项目建设将大幅提升我国综合极端条件科学与技术研究及尖端实验设备的研制、运行能力,提升我国在相关基础研究、高技术研究领域的综合水平,使我国在该领域的综合实力步入世界一流水平,促进我国从科技大国走向科技强国。/pp  利用装置,科研人员可以开展非常规超导、拓扑物态、新型量子材料与器件等研究工作,并可在物理、材料、化学和生物医学等领域开展超快科学研究,探索极端时空尺度上的物质结构信息和动力学信息。项目首席科学家、国家“千人计划”入选者、中科院物理所研究员丁洪举例说,倘若科学家能利用装置做出室温超导体,电影《阿凡达》中壮观的“哈利路亚悬浮山”就有望成为现实。/pp  此外,装置还具有广泛的实际应用价值。依靠该装置,人们可以开展各种特殊功能材料和技术的研发,还能够促进凝聚态物理、材料科学、化学、地质、能源科学及信息科学等不同学科之间的相互渗透、交叉融合。/pp  项目首席科学家、中科院物理所研究员吕力透露,装置建成后将向国内外用户全面开放,遵循“开放、共享、流动、合作”的运行管理机制,严格保证全面对外开放机时。/pp  据了解,综合极端条件实验装置是指综合集成低温、高压、强磁场、超快光场等一系列配套的集群设备所构成的大型科学实验设施。近年来,利用极端实验条件取得创新突破已成为科学研究发展的一种重要范式,不少工作获得了诺贝尔奖,大量成果得到了重要应用。世界上许多发达国家或地区,如美国、欧洲、日本等都在该领域展开了激烈竞争,许多著名研究机构都拥有先进的极端条件实验设施。/pp/p
  • 红外物理国家重点实验室在纳米结构中电子非平衡特性检测方面取得突破
    p  电子被发现一个多世纪以来,人类社会对它的依赖程度越来越大,如今,它已成为微电子和光电子技术的物理基石。随着微电子器件尺度按摩尔定律不断向纳米尺度减小,对于电子运动规律的认识将面临着从平衡态理论向非平衡态理论的发展。正如美国基础能源科学顾问委员会报告中指出,当前科学上面临的5大挑战之一就是对非平衡态尤其是远离平衡态的表征和操控。/pp  按平衡态理论,人们预测在微电子器件中电流最大的位置往往会是电子温度最高的地方。中国科学院上海技术物理研究所红外物理国家重点实验室陆卫研究员和复旦大学安正华研究员的科研团队共同合作,利用非平衡输运热电子的实验检测在技术,通过散粒噪声对非局域热电子能量耗散进行空间成像研究,发现在纳米尺度结构中,电子温度最高之处并非局域在电流最大位置,而是明显地向电流的流动方向偏离了,而且电子的温度高于晶格温度很多倍。从理论和实验两方面证实了这种奇异特性就来自热电子的非平衡态特征。/pp  该研究工作的最大挑战来自于非平衡输运热电子的实验检测技术上。实验室采用了自主研发的超高灵敏甚长波量子阱红外探测器的扫描噪声显微镜(SNoiM)技术,称为扫描噪声显微镜技术。其基本机理是非平衡态电子的电流强烈涨落形成的散粒噪声会直接导致近场甚长波红外辐射,通过高灵敏的红外近场检测可实现仅测量到非平衡态电子特性,从而为直接观察在纳米结构中电子的非平衡态乃至远离平衡态的特性提供了独特的方法。/pp  相关研究成果“Imaging of nonlocal hot-electron energy dissipation via shot noise”(DOI: 10.1126/science.aam9991)已于2018年3月29日获得《Science》杂志在线发表,将对认识和操控非平衡热电子进而增强器件功能发挥重要作用。/pp  这项研究工作得到了科技部国家重点研发计划、国家自然科学基金委、上海市科委重大项目、中国科学院海外科学家计划等资助。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/a4df0693-4a72-453f-81b5-9f6fe7165ff9.jpg" title="1.jpg"//ppbr//pp  应用扫描噪声显微镜(SNoiM)进行的超高频率(~21.3THz)噪声的纳尺度成像,(A)扫描噪声显微镜的实验装置示意图。(B) GaAs/AlGaAs量子阱纳米器件的电子受限区域的SEM图。(C和D)相反偏置电压(6V)下二维实空间的近场噪声强度信号成像,近场信号由针尖高度调制模式获得,其中彩色表达了电子的等效温度。(E) 近场信号与针尖高度关系,近场信号是由电压调制模式获得。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/8edf4c2f-af08-4a76-9da3-10ee26f8f1fb.jpg" title="W020180506601359218862.jpg"//ppbr//pp  噪声强度随偏置电压增大的演变。(A-F)由针尖高度调制模式获得的二维成像图。(G)y方向(平行于[100])一维近场信号随位置变化图。(H)近场(圆和三角形点表达)和远场(方形点表达)探测到的噪声强度随着偏置电压的变化规律。/ppbr//p
  • 上海崛起世界最密大科学装置群
    p  浦东张江的“超级光源”将闪出更耀眼的光芒:今年夏天,能拍摄“分子电影”的软X射线自由电子激光装置,将有望得到第一束自由电子激光 超强超短激光装置,将于年内完成挑战瞬时输出功率10拍瓦的“世界纪录” 上海光源二期线站也在紧锣密鼓地建设中……br//pp  算上已经建成的国家蛋白质科学中心、已经开工的活细胞结构和功能成像平台等,上海张江已成为世界上大科学装置密度最高的地区。依托先进的大科学基础设施群,这里已集聚起全球高端创新资源,向着跻身世界一流实验室行列的目标不断接近。/pp  strong大科学装置群营造大科学生态/strong/pp  去年2月,上海张江综合性国家科学中心获批建设。一年来,超强超短激光实验装置、软X射线自由电子激光用户装置、活细胞结构与功能成像平台等顶级大科学装置,实现了当年立项、当年开工的目标,展现出令人赞叹的“上海速度”。/pp  “这些项目建成后,张江地区将成为全球规模最大、种类最全、综合能力最强的光子大科学设施集聚地之一。”上海市科委主任寿子琪说,目前张江还在积极争取硬X射线自由电子激光装置、高效低碳气轮机实验装置、国家生物医药大数据等项目落地。/pp  前沿探索的科研利器汇聚,一个世界级基础研究平台呼之欲出。眼下,超强超短激光装置正在冲击10拍瓦的“世界纪录”,它的未来目标是100拍瓦。/pp  它的“前身”———中科院上海光学精密机械研究所的嘉定园区内,1拍瓦的超强超短激光装置已开始科学实验探索。去年,我国科学家已利用该装置产生了反物质,成果列入2016年中国十大科技进展新闻。/pp  超强超短激光装置项目负责人、上海光机所研究员冷雨欣说,比建造一个“世界第一”的装置更重要的,是让更多优秀科学家利用装置,做最前沿的基础原创性研究。/pp  已建成运行8年的上海光源,截至去年底,共接待用户3.2万多人次,发表论文3200多篇。比这更重要的是,它更加强烈地激发出了中国科学家探索前沿的热情和勇气。曾参与光源建设,目前正负责二期线站工程的中科院上海应用物理研究所研究员邰仁忠说,8年来,光源机时一直供不应求,中国科学家已从被动使用光源,到根据自己学科的发展需求,对光源线站建设提出明确需求。围绕上海光源,一个冲击前沿的创新生态氛围正在形成。/pp  strong大科学装置群呼唤大科学计划/strong/pp  事实上,张江综合性国家科学中心的建设,已经引起国际科技界的广泛关注。中科院上海应用物理研究所党委书记赵明华告诉记者,已进入可行性研究阶段的硬X射线自由电子激光,建成后将成为世界上最先进的同类装置。闻讯后,“一些身在海外的华人科学家主动联系我们,表示想到张江工作,他们有的已在美国工作20多年,这个装置很可能把他们吸引回国”。/pp  作为当今全球生命科学领域首家综合性大科学装置,上海蛋白质设施已经吸引了国内外近200家单位、1.3万多人次科学家,开展2000多项重大前沿创新课题研究。中心主任雷鸣认为,评判一个大科学装置的功用,应该看它关注了多少根本而重大的科学问题,“张江大科学装置群的崛起,正呼唤与之相匹配的大科学计划。”/pp  放眼全球,大科学装置的崛起无不推动和孕育着超越前人的创新。例如美国布鲁克海文国家实验室聚集了同步辐射光源、成像设施、相对论重离子对撞机、自由电子激光等一大批重要的科研装置,1947年至今,该实验室催生了至少7个诺贝尔科学奖。而作为世界高能物理研究的高地,欧洲核子中心也成就了多个国际大科学计划,比如大型强子对撞机,以及由华裔物理学家丁肇中领导的阿尔法磁谱仪项目等。/pp  在建设具有全球影响力的科技创新中心的历史机遇下,作为赶超者的张江大科学装置群,正等待着创新灵魂的注入。据市科委总工程师傅国庆介绍,正在谋划的张江综合性实验室的主要构架是“1+N”。“1”指一个大科学设施群,“N”指若干研究方向,包括光子科学与技术、生命科学、能源科技、类脑智能、纳米科技等。这意味着,张江国家科学中心已在各学科领域前沿筑好“巢穴”,引“凤”前来。/ppbr//p
  • 《焦点访谈》:国家重大科技基础设施稳态强磁场实验装置顺利验收,综合极端条件实验装置启动建设
    近期,重大科技基础设施“稳态强磁场实验装置”在合肥通过验收,使我国成为继美国、法国、荷兰、日本之后五个拥有稳态强磁场的。而在北京怀柔,另一个大科学装置——“综合端条件实验装置”也启动建设。听起来,“稳态强磁场”“综合端条件”都很陌生,它们都属于重大科技基础设施。为什么要建这样的设施,对于科学研究来说,这两个大装置有着什么样的重要意义呢? 稳态强磁场实验装置 磁现象是物质的基本现象之一。科学研究早已证实,当物质处在磁场中,其内部结构可能发生改变,磁场因而一直是研究物理等诸多学科的一种非常有用的工具。物质结构和状态在强磁场环境下都可能发生变化,呈现出多样的物理、化学现象和效应。磁场强度越高,物质的变化就越为明显,也就越有利于新的科学发现,就像显微镜放大10000倍比放大10倍能告诉研究人员更多一样。但是,磁场强度的提高,每一步都走得很艰难。强磁场中心的“稳态强磁场实验装置”达到了40万高斯的磁场强度,这是二十几年来,上几个有实力的都在尝试的目标。中国科学院强磁场科学中心(图中设备为磁性测量设备mpms,图片来源于网络)混合磁体装置(已产生稳态磁场强度达40t、二高场强,图片来源于网络) 强磁场是现代科学实验重要的端条件之一。在强磁场这种端条件下,物质的特性可以被调控,这就给科学家提供了研究新现象、发现新技术的机遇。因此场也被称为诺贝尔奖的摇篮,包括1985年和1998年诺贝尔物理奖的整数和分数量子霍尔效应、2003年获得诺贝尔奖的核磁共振成像技术。从生命科学到医疗技术,从化学合成到功能材料̷̷在各个科学领域,强磁场都是科学家们渴求的研究环境。 ”稳态强磁场实验装置”运行期间,为清华、北大、复旦、中科大等106家用户单位的1500余项课题提供了实验条件,产出了一大批具有国际影响力的科研成果。综合端条件实验装置 任何物质都是在一定的物理条件下形成的,通过使物理实验条件达到端状态,可以形成许多在常规物理条件下不能得到的新物质和新物态。综合端条件实验装置是指综合集低温、超高压、强磁场和超快光场等端条件为一体的用户装置。就在“稳态强磁场实验装置”通过验收的二天,我国在北京市怀柔科学城启动建设“综合端条件实验装置”,比“稳态强磁场实验装置”更进一步。 综合端条件实验装置启动(图片来源于网络) 项目席科学家、中科院物理研究所研究员吕力(quantum design 公司产品用户)说:“比如低温可以抑制物质中电子、原子的无规运动;强磁场作为可以调控的热力学参量,能够改变物质的内部能量;超高压可以有效缩短物质的原子间距,增加相邻电子轨道的重叠,从而改变物质的晶体结构,以及原子间的相互作用,形成全新的物质状态;超快激光则具有无与伦比的超快时间特性,快速变化的光场是人们能够操作并且控制的快物理量。” 综合端条件实验装置建成之后,将是国际上集低温、超高压、强磁场和超快光场等端条件为一体的用户装置,在非常规超导、拓扑物态、量子材料与器件等领域,提供实验手段的支撑,进而为相关材料的人工设计与制备,以及诸多科学难题的破解提供前所未有的机遇。 稳态强磁场实验装置、综合端条件实验装置等的重大科技基础设施,是科学家们进行科学研究的重要平台,也是提升科研水平的利器。它们的建成,既是我国科研人员创新进取的成果,也将以巨大的磁力,吸引更多人才从事相关领域的研究,推动我国基础领域的科学研究进一步走向前沿。文章原文部分摘自:cctv焦点访谈、人民网 相关产品链接: mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 大科学装置陆续投用 “国之重器”高速前行
    p  散裂中子源、强磁场装置、同步辐射光源、大型天文望远镜……近年来,一项项神秘的大科学装置陆续建成并投入使用,它们或隐世于高山峡谷,或藏身在喧嚣城市的地下,虽然不被世人所熟悉,却自带耀眼的光环。它们作为重大科技基础设施,伴随着一项项大科学计划,缔造着中国乃至世界科学的未来。/pp  这些大科学装置何以成为“国之重器”?它们究竟发挥着怎样的作用?又将承载什么样的使命?/pp  strong大科学装置发展进入快车道/strong/pp  在国家蛋白质科学研究(上海)设施运行之前,中国科学家想要完成蛋白质结构的解析,只能去日本、美国。而现在,一批又一批跨国企业和国外优秀科学家纷纷来到中国,使用国家蛋白质科学研究(上海)设施的设备和服务开展前沿课题研究,一系列诞生于此的重要成果发表在Nature、PNAS等高水平国际学术刊物上。/pp  国家蛋白质科学研究(上海)设施何以有如此吸引力?这项大科学装置集中了我国自主研发的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,而且在样品处理通量上超过半自动化系统10倍、超过传统的人工系统100倍,居于国际领先水平。因此,它很快就成为国际上有重要影响的大型综合研究创新基地,也是我国科学家探索生命奥秘的利器。/pp  作为当今全球生命科学领域首个综合性的大科学装置,国家蛋白质科学研究(上海)设施能够满足80%以上研究用户的需要。在开放试运行的第二年底,就已经执行用户课题800多个,服务150多家单位,各系统累计运行95000多小时。/pp  从无到有、从小到大、从学习跟踪到自主创新,这些年,我国一大批大科学装置横空出世,惊艳世界。中国“天眼”FAST,500米口径球面射电望远镜,将覆盖30个足球场大小的信号,聚集在药片大小的空间里,实现了新的突破 中国西南野生生物种质资源库,主要收集和保存云南及周边地区和青藏高原的种质资源,与世界其他著名的种子库相比,是唯一建立在“生物多样性热点地区”的种质资源库 上海同步辐射光源,是世界上性能最好的第三代中能同步辐射光源之一……/pp  这些各领风骚的大科学装置不但覆盖面越来越广,包括时间标准发布、遥感、粒子物理与核物理、天文、同步辐射、地质、海洋、能源和国家安全等众多领域,而且近年来装置设施的数量、建造规模也逐步扩大。中科院高能物理研究所北京正负电子对撞机国家实验室主任陈和生表示,我国的大科学装置发展已经进入快车道,取得了很多重大科学成果,有些已经处于国际领先地位。/pp  这批“国之重器”为研究物质结构提供了最先进的技术手段,支撑着国内外科学家开展物质基本结构、宇宙起源与演化、生命起源等重大科学问题的探索,在世界科学研究的舞台上熠熠生辉。/pp  strong“神兵利器”带来累累硕果/strong/pp  对于大科学装置,建好仅仅是开始,用好才是关键。大科学装置陆续投入使用,满足了国内日益增长的科研需求。/pp  自上世纪90年代以来,中科院高能物理研究所借助北京正负电子对撞机,获得了多项重大成果,居于国际领先水平,成为世界领先的高能物理研究中心之一。同时还“一机两用”,成为我国众多学科的同步辐射大型公共实验平台。/pp  上海光源一期虽然只有7条光束线站,但是自2009年建成后需求极大,去年已有近400家单位、1万多人成为用户,线站供不应求,取得了众多有价值、有影响力的科研成果。从地域分布上看,上海光源的用户几乎覆盖我国所有省区市,还有10多个国家和地区的科研人员以合作形式来到这里,开展研究工作。/pp  有这些“神兵利器”加持,我国的科研水平迅速提升,取得的成果日益丰富。/pp  世界最大单口径、最灵敏的500米口径球面射电望远镜(FAST)落成启用,大幅提升我国深空测控能力。上海超强超短激光实验装置达到国际最高激光脉冲峰值功率,合肥稳态强磁场装置实现了40万高斯稳态强磁场,全超导托卡马克装置(EAST)创造聚变等离子体稳态高约束模大于60秒的世界纪录,大亚湾中微子实验发现了新的中微子振荡并精确测量其振荡几率。/pp  除了大科学装置结出的累累硕果外,反观大科学装置的存在本身,已经远远超出一件新“神器”的意义。因为它们本身就集成了许多科学前沿领域的重大原创突破,凝聚了各个方面的创新驱动力,培育了一批科研后备力量。它们更多在发挥着“科技航母”的关键作用,直接促进了大批原始创新成果、核心关键技术的产生。/pp  当承建单位研发出符合FAST要求的新钢索时,申请了12项专利 上海光源不仅推动生命科学、材料科学、环境科学等多学科领域科技创新,还对现代高性能加速器、高精密机械加工、X射线光学等先进技术和相关产业升级起到了重要作用 不少过去参与北京正负电子对撞机建造的厂家现在已经成长为领军企业,他们都谈到,当年对撞机的建造对于企业自身生产工艺带来很大提升。/pp  每建设一项大科学装置,对我国工业基础就是一次严峻的考验。在高标准的技术要求筛选下,大科学工程建设培养和汇聚了一批国内最牛的施工单位和高技术企业,它们边“追赶”边“补课”,创造了一个又一个“中国制造”的奇迹。/pp  strong面向未来抢占科技制高点/strong/pp  从2011年9月到2015年6月,经过3年多巡天,LAMOST共观测了2669个天区,对外释放了约570万条光谱数据,成功获取高质量恒星光谱462万个,比世界上所有已知光谱巡天项目获取的数据总数还要多,让我国占据了学术的高地。/pp  当LAMOST在探望苍穹之时,一艘名叫“科学”号的海洋科学综合考察船桅杆高立,威武浩荡地驶向大海。目前,借助“科学”号,科学家已经成功开展了西太平洋冲绳海槽热液、南海冷泉、主流系、马努斯海盆和雅浦海山等航次综合调查,获得了大量珍贵的海洋资料。/pp  不同领域的先进科技装备使我国走向自主创新高地,抢占科学前沿阵地。这些集“颜值”与“实力”于一体的大科学装置,代表着各种大型复杂科学的研究系统,为科学家探索未知世界、发现自然规律及实现技术变革提供极限研究手段,也是经济社会发展不可或缺的技术基础设施。它们推动了我国粒子物理、核物理、生命科学等领域的科研水平进入国际先进行列。通过发挥大科学装置的最大能量,让我国在国际合作与竞争中更具话语权,更好地参与国际前沿科技的竞争。/pp  如何帮助人们远离越来越频繁发生的灾难?在煤炭、石油等资源枯竭后,人类将依靠什么能源继续生存下去?怎样保持这颗美丽星球的生物多样性?这一系列未知的难题,大科学装置正在一一破解。/pp  EAST,是我国自行设计建设的世界首个“全超导托卡马克”核聚变实验装置,被誉为“人造太阳”。据中科院合肥分院等离子物理研究所助理研究员鄢容介绍,依靠环形磁场作为“容器”,聚变原料实现可控的核聚变反应,获得大量能量,进而得到清洁能源。“核聚变的原料从海水中提取,非常安全,一升海水可以提取33克原料,相当于300升石油释放的能量。海水里的核聚变原料非常丰富,可以供人类使用上亿年。”鄢容说。/pp  不仅未来可期,当前人类已经在大科学装置的建设中受益。如今,一种新的治疗癌症的方法诞生,它利用高速的重离子束对病变组织进行治疗。重离子治疗癌症是当代世界上公认的先进有效的放疗方法,与传统的放射治疗相比,重离子束对健康组织辐射损伤轻、疗程短、治愈率高。而重离子治疗技术的开展,正是依托于一个属于“大科学装置”的机器——重离子加速器。/pp  这批重大科技基础设施,不光是高高在上的科研利器,它还解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾等方面也发挥着不可替代的作用。可以说,大科学装置正在加速改变我们的现在和未来。/ppbr//p
  • 我国大科学装置渐入佳境 有望资源共享
    《瞭望》文章:大科学装置渐入佳境  随着国家投入的增长、条块分割的打破,大科学装置对中国原创科技能力的提升,更加令人期待  文/《瞭望》新闻周刊记者孙英兰  年初,从兰州传来喜讯:中国科学院近代物理所与兰州军区总医院和甘肃省肿瘤医院合作,利用国家大科学装置——兰州重离子加速器提供的100MeV/u的碳离子束,对浅层肿瘤病人进行了临床治疗试验。  目前患者的肿瘤已完全消失或明显缩小,而且均无明显局部及全身不良反应,也未发现复发和转移病灶。截至目前,治疗病人总数已达82例。  同时,近代物理所辐射生物效应研究组还对肿瘤发生的机理进行了动物实验研究,首次从多个生物学通路证实了杂合基因在肿瘤发生过程中的关键性作用,丰富了对肿瘤发生机理的认识。  业界专家表示,癌症已成为威胁人类生命的头号杀手,但治愈率极低。近代物理所的临床试验,无疑为肿瘤的诊治提供了新的方法和路径,为肿瘤病人带来生的希望。  近代物理所“重离子治癌临床试验”因此入选“影响兰州十大事件”。“兰州重离子加速器冷却储存环建成投入运行”和“大天区面积多目标光纤光谱天文望远镜(LAMOST)落成”——两个事关中科院的大科学装置项目的消息还同时入选“2008年度中国基础研究十大新闻”。  中国科学院院士、中国科学院常务副院长白春礼告诉《瞭望》新闻周刊,很多重大的科学发现、技术发明,包括技术的带动,都有赖于一些大的科学装置提供的基础,大科学装置的建设,无疑会极大地促进我国原始创新能力的提升。  成为国家基础设施的重要部分  “大科学装置是国家为解决重大科技前沿、国家战略需求中的战略性、基础性和前瞻性科技问题、谋求重大突破而投资建设的大型研究设施,是国家基础设施的重要组成部分。大科学装置的建设和运行本身也体现了科学进步和技术创新。”在2月17日举行的“大科学装置联合基金签约仪式”结束后,白春礼向本刊记者强调。  据了解,大科学装置通过较大规模投入和工程建设来完成,建成后通过长期的稳定运行和持续的科学技术活动,来实现重要科学技术目标。大型设施是为满足现代科学研究所需的能量极高、密度极大、时间极短、强度极高等极限研究条件而产生的,它为人类提供了探索自然奥秘极限的能力,使科学研究有可能在微观化、宏观化、复杂化等方面不断深入,从而取得重要发现。  白春礼告诉本刊记者,20世纪科学发展的一个重要特征是重大科技基础设施的出现。重大科技基础设施是科技发展的重要基础条件,是国家科技水平和综合实力的重要体现。发达国家高度重视重大科技基础设施和依托于它的科学研究,并给予大力支持,一些发展中国家也根据各自的国情提出自己的发展计划,积极建设重大科技基础设施。  “随着全球竞争的日趋激烈,加强创新能力建设成为世界各国提高国际竞争力的重要国策。我国确立了建设创新型国家的发展战略,而大科学装置在创新能力的提升中占据重要地位。”白春礼认为,人类探索自然世界必须借助科学仪器,大科学装置已成为现代科学研究诸多领域取得突破的必要条件,“随着科学技术的发展,人类对物质结构的认识是从一开始看到身边的各种物质逐步深入到细胞、分子、原子和原子核深层次,这些原子内部结构与运动的信息只有借助大科学装置才能获得,而这些信息是众多学科前沿研究的基础。”  我国最早开始重大科技基础设施建设是在新中国成立初期,在“两弹一星”计划带动下进行的。“文革”时期,虽然国内科学研究受到极大损害,但重大科技基础设施建设在中央的直接关怀下仍然在孕育着新的发展。改革开放以来,我国对重大科技基础设施的投入有了较大幅度增长,“七五”期间列入国家重点建设的科学项目仅5项,其中大科学工程2项,投资为3.4亿元 而“九五”、“十五”期间的投资则增加到近40亿元。  “十一五”期间,国家相继启动散裂中子源、强磁场装置、大型天文望远镜、海洋科学综合考察船、航空遥感系统、结冰风洞、蛋白质科学研究设施、子午工程、地下资源与地震预测极低频电磁探测网、农业生物安全研究设施等12项重大科技基础设施,投资将达到70亿元。  规模最大的科学装置即将建成  据《瞭望》新闻周刊了解,迄今我国已建成运行和正在建设的重大科技基础设施共46项,投入资金达120多亿元,覆盖了时间标准、导航、遥感、粒子物理与核物理、天文、地质、海洋、生态、生物资源、能源、国家安全等多个领域。  中国科学院是承担我国大科学装置建设和运行的主要力量,目前该院已有8个重大科学装置在运行之中。  始建于1984年的北京正负电子对撞机(BEPC)大科学装置,在高能物理研究领域为中国物理学家的研究探索立下了“汗马功劳”,使我国跻身于世界八大高能物理研究中心之一,奠定了中国在国际高能物理界的地位。  同步辐射光在2003年SARS疫情出现时大显身手,成功测定了SARS病毒主蛋白酶的结构,为研制抵御SARS病毒的药物提供了重要参考。在肿瘤诊断方面,利用同步辐射光的高分辨特点,可以发现很小的肿瘤,实现肿瘤的早期诊断以提高肿瘤的治愈率。同步辐射X射线衍射方法已成为当前测定生物大分子结构的最有力手段,是研究生命现象与生物过程的利器。  2004年底,我国开工建设了迄今为止投资规模最大的大科学装置——上海光源,这也是目前我国最大的科学装置,将在2009年上半年建成运行。  这个大科学平台可以容纳60多条光束线,相当于建了60多个不同学科的重点实验室,可以同时向上百个实验站提供从红外光到硬X射线的各种同步辐射光 每天能容纳数百名来自世界各地、不同学科领域的科学家和工程师进行科学研究和技术开发 可用于从事生命科学、材料、环境、信息科学、凝聚态物理、原子分子物理、团簇物理、化学、医学、药学、地质学等多学科的前沿基础研究,以及微电子、医药、石油化工、生物工程、医疗诊断和微加工等高技术的开发应用的实验研究。  据中科院上海应用物理研究所所长徐洪杰介绍,上海光源发出的同步辐射光波长相当于人头发丝直径的万分之一。如果用于癌症观测,可以大大提高它的诊断水平。比如说乳腺癌,人类目前的观测能力最小大概能观测到5个毫米,而上海光源将有可能观测到1~2个毫米的早期癌症细胞。  在超大规模集成电路中硅晶片中的痕量杂质探测分析、飞机发动机和航天器的疲劳测试、纸浆无氯漂白工艺改进、化妆品效果分析、新口味凝胶食品的开发等产业研发与检测方面,上海光源也将大显身手。  近年来,我国在卫星发射、载人航天领域捷报频传,为这些重大任务提供授时保证的是另一项国家重大科学工程——国家授时中心装置。  2007年3月通过国家验收的全超导非圆截面托卡马克核聚变实验装置(EAST),是我国自主设计、建造的国际上第一个全超导装置。它的成功运行,使我国在核聚变能研究中处于国际前沿,为我国参与国际热核聚变试验堆计划打下了坚实基础。  兰州重离子加速器建成于1988年,取得了以合成超重新核素为代表的重大成果,使我国跻身于国际重离子物理研究先进行列。2008年7月通过国家验收的冷却储存环(CSR)是我国自行设计建造的第一个规模最大、能量最高、可实现全离子加速的重离子同步加速器冷却储存环系统。利用兰州重离子加速器提供的离子,可以开展航天元器件和线路的空间辐射效应及选用风险评估测试实验,获得的数据对指导航天电子元器件和系统抗辐射加固具有重要意义。  经过10多年的重离子治癌前期研究,依托重离子加速器建成的浅层(深度小于2.5厘米)治癌装置,利用中能碳离子束试验治疗了7批82例浅层肿瘤患者(从2006年11月底到2008年9月),疗效非常显著。目前,利用HIRFL-CSR提供的高能重离子束进行深部治癌的装置即将建成投入使用。  此外,遥感飞机已安全运行20年,累计飞行近6000小时,获得的大量数据成为南水北调、西气东输等重大工程建设、土地利用动态监测、森林资源调查等有关工作的重要依据……  白春礼说,我国已建成的大科学装置运行情况总体良好,中科院也为国家培养和造就了一支颇具实力的工程技术、科研和管理队伍,“他们是我国大科学装置进一步发展的宝贵资源”。  打破条块分割有望资源共享  “开放共享是大科学装置的一个显著特点。但一直以来,由于缺少专项支持经费,大科学装置很难实现开放共享。”白春礼告诉本刊记者,大科学装置建设和运行经费已经落实,但依托大科学装置的科研经费没有明确的渠道,没有专项资金,以前总是由科研人员自行申请,不仅手续繁杂且需要很长时间。另外缺乏用户的参与机制、开放共享服务设施不足、开放共享的评价、监督和反馈机制不完善等也影响了开放共享的程度。  他透露道,由国家自然科学基金委与中科院共同设立的“大科学装置科学研究联合基金”,将打破条块分割,避免资源分散和重复建设,提高大科学装置的利用效率。  国家自然科学基金委主任、中科院院士陈宜瑜告诉本刊记者,设立联合基金的目的是通过国家自然科学基金评审、资助和管理系统,发挥国家自然科学基金的导向和协调作用,吸引和调动全国高等院校、科研机构的力量,充分利用科学院承建的国家大科学装置的功能和作用,开展多学科前沿领域、综合交叉领域研究,开拓新的研究方向 发挥这些大科学装置的综合平台效能,提升我国基础科学自主创新能力和我国在前沿科学领域、多学科交叉研究领域的源头创新能力,培养大科学装置科学研究人才。  迄今为止,国家自然科学基金委员会共设立了13项联合基金(含2项涉外联合基金)和若干项联合资助项目,其中部分联合基金和联合资助项目已经连续签署了2~3期合作协议。1999~2008年,共资助这类项目1265项,总经费达6.8亿元。  陈宜瑜透露,大科学装置科学研究联合基金首批投入经费4000万元,由国家自然科学基金委员会与中国科学院各出资1/2,执行期为2009~2011年。按照突出大科学装置共用性、弱化专用性、促进开放性、提升创新性的思路,联合基金将主要依托北京正负电子对撞机(北京谱仪和北京同步辐射装置)、兰州重离子加速器与冷却储存环装置、上海光源装置、合肥同步辐射装置实施。基金委将在今年3月初单独发布指南,受理全国高校和科研院所的申请。
  • 法国聚变研究实验装置关键部件“中国制造”
    25日,法国聚变实验装置WEST首套离子回旋天线竣工典礼在中科院合肥研究院等离子体物理研究所举行,该套天线的成功研制是我国首次向法国出口聚变工程技术,为法国聚变研究实验装置提供关键部件。  离子回旋加热天线是等离子体辅助加热的主要设备之一,整个天线结构复杂,冷却管路复杂繁多,工艺技术要求高。等离子体所承担的法国高功率、长脉冲、主动冷却的离子回旋加热天线研制是中法联合实验室主要合作项目,共计三套,将为WEST装置提供9兆瓦的加热功率,加热持续时间最长为1000秒,是WEST装置重要的辅助加热方式。  该装置自2014年7月开始研制,2016年4月10日首套离子回旋天线2084个零部件全部完成,法国专家检测表明天线各个关键部件满足先进技术指标和总体性能要求。在研制过程中科研人员通过不断试验,创新使用实时温度监控和激光动态检测相结合方法攻克了天线小变形、低磁导率关键焊接工艺、异形曲面成型等关键技术问题,通过应用无损检测技术和高温高压多循环真空漏率检测技术,确保了天线部件所有密封焊缝质量均满足超高真空漏率要求。  法方专家高度评价等离子体所完成首套离子回旋天线的研制达到国际先进水平,并认为该天线的高质量顺利完成是整个WEST装置升级过程中的重要进展,是WEST装置未来开展高参数物理实验重要保障。  同天启幕了中法聚变合作周,其间法国CEA领导和专家还将参与EAST物理实验、开展稳态等离子体运行研究、调研我国聚变工程技术能力、展望中法未来聚变研究合作及支持建设中国聚变工程实验堆并作系列特邀报告等多项活动。据悉,中法双方在面向世界科技前沿开展聚变研究,参与并推动国际热核聚变实验堆ITER计划等大科学多边合作取得了积极成果。
  • 为自由电子激光装置“减负”
    记者从中国科学院上海光学精密机械研究所获悉:强场激光物理国家重点实验室利用自行研制的超强超短激光装置,在国际上率先完成台式化自由电子激光原理的实验验证,对于发展小型化、低成本的自由电子激光器具有里程碑意义,相关研究成果于7月22日作为封面文章发表于国际学术期刊《自然》杂志。  X射线自由电子激光被广泛用于探测物质内部动态结构,研究光与原子、分子和凝聚态物质的相互作用过程,在物理、化学、结构生物学、医学、材料、能源、环境等多学科领域广泛运用。然而,传统的X射线自由电子激光装置动辄几百米、甚至是几公里长的“庞大”规模,造价昂贵、难以普及。研制小型化、低成本的X射线自由电子激光成为该领域重要的发展方向。  该成果的主要完成人、中科院上海光机所研究员王文涛表示,我们的工作是利用新技术把电子加速器的长度缩短,并且把电子束做到稳定、可用,来研制体积小、成本低的自由电子激光器,整个装置长度仅为12米。“打比方说,电子束加速需要‘跑道’,传统方式相当于客机起飞,需要长跑道;我们采取激光加速这一全新方式,可以短距离内把电子束加速至高速度,大大缩短所需距离。”王文涛说。  “该项研究不仅证明了激光可以加速产生可控的、可用的电子束,而且电子束可以进一步用于产生自由电子激光。”中科院上海光机所副所长、强场激光物理国家重点实验室主任冷雨欣说。  用这种加速方式获得的电子束,在品质和稳定性方面尚未达到实际应用的要求,相关研究处于起步阶段,到真正应用还有一段距离。下一步,研究团队将继续提升自由电子激光的输出功率和光子能量,并作为上海超强超短激光实验装置中超快化学与大分子动力学研究平台的重要组成部分,提供开放共享。
  • 大科学装置助力材料高通量表征
    仪器信息网讯 2014年10月20日,材料基因组计划&mdash 高通量表征报告会在北京国际会议中心举行。与会的数位科学家介绍了材料基因组计划,以及散裂中子源和同步辐射光源等大科学装置在材料高通量表征中的应用及其在我国的建设情况。会议现场北京科技大学刘国权教授  材料基因组计划(又名Materials Genome Initiative),简称MGI,最早在2011年由美国政府提出。北京科技大学刘国权教授介绍说:&ldquo 今年5月,王崇愚院士、南策文院士等数十名专家组成的咨询专家组撰写了《材料基因组计划与高端制造业先进材料咨询建议报告》。另外,中国工程院撰写了《材料科学系统工程发展战略研究》,堪称中国版的材料基因组计划咨询报告。&rdquo 中国科学院高能物理研究所董宇辉研究员  中国科学院高能物理研究所董宇辉研究员介绍说:&ldquo 以往材料的研发,由于缺乏足够的参考数据,更多的是采用&ldquo 试错法&rdquo 。不断的试验各种化学配比、各种制备条件,检验制备的材料性能如何,然后考察这些材料在服役过程中的性能。之所以采取这种方式来探索新型材料,主要是因为我们对上述决定材料性能的环节了解的太少,而且没有系统的认识,只好根据经验来摸索,凭借努力和运气来发现合适的新材料,这无疑得花费很高的时间和成本。&rdquo   材料基因组的核心目标是将新材料的研发周期缩短,降低成本,因此需要高通量计算、高通量合成与快速表征以及数据信息库三部分之间的有效结合,其中高通量表征在材料基因组计划的重要部分。同步辐射光源和中子源由于其自身的特点和优势,无疑在材料的高通量表征中发挥举足轻重的作用。中国科学技术大学国家同步辐射实验室副主任高琛教授  中国科学技术大学国家同步辐射实验室副主任高琛教授介绍说:&ldquo 同步辐射光源具有高亮度,特别是高亮度的X射线能够给出精确的原子结构信息 同步辐射具有从红外到硬X射线的宽能谱,使得探测原子、电子、声子多种结构都有可能 同步辐射具有很好的准直性,可以获得纳米、微米、毫米各种尺寸的光斑,因而使得探测埃-纳米-微米,直到毫米级的多尺度成为可能。同步辐射光源的这些特点能为实现材料样品的高通量快速检测提供了条件。&rdquo   据介绍,目前,我国在北京、上海和合肥等地建有同步辐射光源装置。其中上海同步辐射光源装置首批7条光束线站已经对用户开放,其中6条线站可用于材料研究和表征。在未来线站工程规划中,微束白光劳厄衍射等光束线将能够进一步提升高通量材料芯片的表征能力。中科院能量转换材料重点实验室主任陆亚林教授  中科院能量转换材料重点实验室主任陆亚林教授介绍了合肥同步辐射光源装置的建设情况。他说:&ldquo 合肥的同步辐射光源装置始建于1984年,总投资6400万,建有5条光束线和实验站 1998-2004年,投资11800万,用于提高光源亮度和运行可靠性,并增建8条光束线和8个实验站 2012-2014年,再次投资18900万,增加安装波荡器的直线节,降低束流发射度,大幅度提高亮度,新建3台波荡器和10个光束线前端。&rdquo   此外,董宇辉介绍说,中科院还将计划在北京周边建设高能同步辐射光源,材料科学研究是该光源的首要目标之一,特别是高通量、原位实时的实验技术,将为材料基因组的高通量、多尺度分析提供重要技术支撑。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员  中子不带电,穿透性强,有磁矩。因此,中子散射具有许多独一无二的特点,成为探测研究材料的微观结构与动力学的强有力工具之一,与同步辐射互为补充。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员介绍说:&ldquo 散裂中子源是中子散射研究和应用的主要平台,具有脉冲中子通量高,中子波段宽,及脉冲时间结构。这些特点为高通量、高分辨率、复合体系的微观结构和动态测量(特别是在固态量子材料、生物软物质材料和工程结构材料等领域)带来新的契机。&rdquo   王芳卫介绍说,我国于2011年10月在广东省东莞市开始建设散裂中子源。中国散裂中子源(CSNS,China Spallation Neutron Source)是发展中国家拥有的第一台散裂中子源,目前关键设备设计均已完成,预计2018年3月完成实验验收并对用户开放。  CSNS一期设计的束流功率为100kW,脉冲中子通量将大于2*105/(cm2/s),进入世界四大散裂中子源行列,将来升级到500kW后中子通量将提高到~1016/(cm2/s)。  CSNS设计拥有3个中子慢化器,能产生4种不同脉冲特性的中子束流,提供20条束道用于中子散射研究。不过由于项目建设经费的限制,一期工程仅建有3台谱仪,严重制约CSNS的应用范围。CSNS科技委员会和461次香山会议的专家都呼吁加紧规划和申请剩余束道的谱仪建设。因此特申请在国家&ldquo 十三五&rdquo 计划期间,增资建设其余17台特色中子散射谱仪,使CSNS高效、全面地服务于我国科学技术前沿研究。
  • 硬X射线自由电子激光装置启动建设
    p  上海张江综合性国家科学中心又一重大装置项目——“硬X射线自由电子激光装置”日前获批启动。据悉,该项目作为《国家重大科技基础设施建设“十三五”规划》优先布局的、国内迄今为止投资最大的重大科技基础设施项目,在国家发展改革委、上海市和中科院的共同关心与支持下,在项目各参建单位的共同努力下,取得了阶段性成果。/pp  该装置选址在上海张江综合性国家科学中心核心区域,总长约3.1公里,将建设埋深29米的地下隧道,包含超导直线加速器隧道、波荡器隧道、光束线隧道等10条隧道及5个工作井。装置主要由四部分组成:超导加速器、光束线、实验站和配套的公用设施。加速器装置包括一台能量达到100兆电子伏特的电子注入器、一台能量8为兆电子伏特的连续波超导直线加速器,以及3条产生的X射线光子能量范围为0.4~25千电子伏特的高重复频率自由电子激光放大器。/pp  据了解,硬X射线自由电子激光具有更高的亮度、更短的脉冲结构和更好的相干性,提供的X射线峰值亮度比第三代同步辐射光源高109倍。同时,其具备纳米级的超高空间分辨能力和飞秒级的超快时间分辨能力,可将对微观世界的研究从拍“分子照片”提升到拍“分子电影”的水平,同时满足面向物质、单分子、超强超短单颗粒成像以及极端光物理等多个实验站的需求。/pp  专家表示,该装置建成后,将成为世界上最高效和最先进的自由电子激光用户装置之一,为物理、化学、生命科学、材料科学、能源科学等多学科提供高分辨成像、超快过程探索、先进结构解析等尖端研究手段。张江地区也将成为集聚同步辐射光源、软X射线自由电子激光、硬X射线自由电子激光和超强超短激光于同一区域的国际光子科学研究高地。/pp/p
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • 赵继民研究员团队成功研制在线原位高压超快泵浦-探测光谱装置
    时间分辨泵浦-探测超快光谱由于其独特的优势(如超高的时间分辨率、费米面以上激发态的观测、相干玻色子激发等),被广泛应用于研究各种凝聚态物理(和其它科学),包括高温超导、复杂相变、多自由度耦合、相干调控、激光诱导新量子态和隐态等。高压技术通过直接改变晶格常数来调节电子能带结构和自旋特性等,提供了一种独特、干净的调控手段,也成为凝聚态物理(和其它科学领域)研究的重要手段。近年来,在上述丰富而深刻的基础科学需求的推动下,人们致力于将超快光谱和高压物理这两个领域结合起来,以研究高压条件下的超快动力学[Chin. Phys. Lett. (Express Letter) 37, 047801 (2020)]。研究挑战主要来自于实验仪器产生数据的可靠性。由于研究超快动力学的实验非常精细,压力变化也容易引起复杂的物理效应,保证仪器装置获取可靠精准的、有可比性的实验数据对于高压超快动力学这个交叉方向的开启和发展至关重要。例如,如果实验过程中将高压装置拿出光路进行加压、调压、校压之后再放回光路,可能会导致位置偏移和样品转动,将会引入人为实验误差,对于泵浦-探测这样的双光束实验的干扰尤为明显(把双光路光谱实验与高压技术相结合面临更多挑战)。从实践看,国内外目前已有的初步尝试,大多获得的是准粒子寿命信息,缺乏可靠的幅值信息,这为研究超快动力学带来了困难,例如量子材料的超导相变、CDW竞争序、拓扑相变等量子物性的标志特征之一是能隙的打开或闭合,能隙的变化直接对应于激发态超快光谱实验中的声子瓶颈效应(phonon-bottleneck effect),确认声子瓶颈效应需要幅值和寿命双方面的信息,仅有寿命信息不足以确认,于是同时获得可靠的幅值和寿命信息对于高压超快动力学这个交叉领域的开启、成型和顺利发展至关重要。这对仪器装置提出两个关键要求:(1)技术层面--研制可靠精准的在线原位(on-site in situ)高压超快泵浦-探测光谱实验装置,(2)标准层面--提出相应的标准描述,同行们在报道实验结果时最好明确是否为在线原位获得的实验数据,以保证学术交流中实验数据有可比性,从而从整体上提高数据的可靠性,减少不必要的人为误差甚至误导。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF05组赵继民研究员及博士后吴艳玲、博士生加孜拉哈赛恩和田珍耘与北京高压科学研究中心丁阳研究员及博士生尹霞合作,成功搭建了一套室温条件下工作的“在线原位(on-site in situ)”的高压超快泵浦-探测光谱装置(图1)。该仪器装置的搭建取得了重要突破:(1)技术方面,实现了on-site in situ 技术,在整个实验过程中高压DAC不拿出光路,在光路中即可加压、调压、校压,完全避免了复位误差(repositioning fluctuation)(图2),最大程度保证了实验过程中样品不发生(控制在CCD监控微调误差范围以内的)移动或转动,避免了实验过程中不必要的人为误差,在实验数据的精准可靠性方面实现了最大化;(2)标准方面,提出了on-site in situ标准描述,如果在文章中明确DAC是否移出及放回了光路,则可在学术交流中提高实验数据的可比性(图3),避免了不必要的对比误差和解读偏差(使用机械臂将DAC移出光路并复位的装置,在最好的情况下等同于在线原位的精度,一般也有可比性)。总之,基于上述两方面仪器研发的突破,研究团队获得了室温下的可靠的幅值和寿命双方面的超快动力学信息,提供了足够丰富和全面的物性信息,为获得量子材料的高压超快动力学、进一步理解复杂相变和高压引起的激发态超快动力学特性提供了可靠的保障。图1. “在线原位(on-site in situ)”高压超快泵浦-探测光谱实验装置原理图。图2. 复位误差(re-positioning fluctuation)若干情形举例:(a)样品有台阶、位错或晶畴边界引起的晶格变化;(b)样品表面有台阶引起的高度差;(c)样品中存在不均匀的掺杂或缺陷分布;(d)样品具有平面内的超结构或复杂晶格结构;(e)样品有转动,且动力学对晶格方向很敏感。图3. 采用“在线原位(on-site in situ)”超快实验装置和“非在线原位(off-site in situ)”超快实验装置对相同实验观测到的不同超快光谱实验数据之间的对比。其中(b)图与(c)图:在off-site实验中只看到一个变化特征,经过on-site条件的实验能够观测到两个变化特征,分别对应两个不同的物理特性(包括声子瓶颈效应及相变等)。相关工作近期发表在Review of Scientific Instruments上,获得了科技部国家重点研发计划、国家自然科学基金委、中国科学院创新交叉团队、中国科学院对外合作重点项目、中国科学院先导专项、北京市自然科学基金重点项目的支持。相关工作链接:[1] Y. L. Wu, X. Yin, J. Z. L. Hasaien, Z. Y. Tian, Y. Ding, and Jimin Zhao, On-site in situ high-pressure ultrafast pump–probe spectroscopy instrument, Review of Scientific Instruments 92, 113002 (2021).https://doi.org/10.1063/5.0064071
  • 中科院生物物理所利用冷冻电镜技术解析30nm染色质高级结构取得重要突破
    4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。  61年前的同一天(1953年4月25日),沃森和克里克发表的DNA双螺旋结构模型使生命科学研究深入到分子层次,开启了分子生物学时代。但任何有关DNA的生命活动都是在DNA及其所缠绕的组蛋白组装形成的染色质这个结构平台上进行的。由于缺乏一个系统性的、合适的研究手段和体系,目前对于30nm染色质纤维这一超大分子复合体的精细结构组成还具有很大争议,染色质的高级结构研究一直是现代分子生物学领域面临的最大挑战之一。  近年来,冷冻电镜(cryo-EM)技术在结构生物学领域发展迅速,为研究30nm染色质的高级结构及其调控机制提供了一个最为合适的研究工具。依靠多年来在冷冻电镜高分辨率三维重构、30nm染色质及表观遗传调控等领域的长期工作积累,朱平研究组和李国红研究组成功建立了一套30nm染色质体外重建和结构分析平台,利用冷冻电镜单颗粒三维重构方法率先解析了30nm染色质纤维的高分辨率三维结构,这是目前为止最为清晰的染色质高级结构图。该结构揭示了30nm染色质纤维以4个核小体为结构单元 各单元之间通过相互扭曲折叠形成一个和DNA右手双螺旋类似的左手双螺旋高级结构(图1) 结构单元之间的空隙可能是组蛋白修饰、染色质重塑等表观遗传现象发生的重要调控区域。同时,该研究首次明确了连接组蛋白H1在30nm染色质纤维形成过程中的重要作用。这些研究结果为预测染色质结构建立的分子基础以及各种表观遗传因素包括组蛋白变体、组蛋白化学修饰等对染色质结构调控的可能机理提供了可靠的结构基础。本论文评审人评论说&ldquo 30nm染色质结构是最基本的分子生物学问题之一,困扰了研究人员30余年&rdquo ,该结果是&ldquo 目前为止解析的最有挑战性的结构之一&rdquo ,&ldquo 在理解染色质如何装配这个问题上迈出了重要的一步&rdquo 。  图1. 30nm染色质左手双螺旋结构模型 ((Song et al, Science,25 April 2014: Vol. 344 no. 6182 pp. 376-380,research article)  本研究工作是中科院生物物理所朱平研究组、李国红研究组、许瑞明研究组长期合作获得的重要成果,得到了基金委重点项目(31230018)、基金委细胞编程与重编程重大研究计划项目(91219202,91019007),中丹国际合作项目(21261130090)以及青年基金项目(31000566)等的资助。  科技创新需要合作,30nm染色质纤维的高分辨率三维结构的解析正是我国科研人员在合作创新方面的成功范例。在这项研究当中,朱平研究员长期从事冷冻电镜三维结构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。  另外,再先进的仪器,只有会用、用好了才能真正发挥出它的作用。在这项研究中采用了世界先进的300千伏Titan Krios冷冻低温透射电镜,但如果没有科研人员对于冷冻电镜的深入理解,若对仪器的理解停留在按说明书来操作,恐怕永远也不会有新的发现。  李国红研究员(左)和朱平研究员(右)
  • 深紫外自由电子激光装置实验获重大进展
    记者从中国科学院上海应用物理研究所获悉,经过多年技术积累和艰苦努力,上海深紫外自由电子激光装置(SDUV-FEL)实验取得重大进展,我国自由电子激光实验研究步入世界先进行列。  自由电子激光是激光家族的一个新成员,被国际上公认为新一代光源,有着重要的应用前景。高增益自由电子激光在亮度、相干性和时间结构上,都大大优于第三代同步辐射光源,是国际上竞相发展的新一代大科学装置。  自由电子激光的工作模式主要有“自放大自发辐射(SASE)”和“高增益谐波产生(HGHG)”两种。其中,“高增益谐波产生(HGHG)”工作模式需要短脉冲激光和高品质电子束流的精确相互作用,技术比较复杂,但是性能较“自放大自发辐射(SASE)”工作模式更好。  经过多年的技术积累和艰苦努力,上海深紫外自由电子激光装置于2010年12月中旬成功进行了高增益谐波产生自由电子激光放大与饱和的实验,这是上海深紫外自由电子激光装置成功进行了自放大自发辐射实验和外种子自由电子激光调制实验之后,所取得的又一重大进展。  目前,我国已成为继美国之后世界上第二个实现高增益谐波产生自由电子激光放大与饱和的国家,这表明我国已经基本掌握了相关主要关键技术,为我国未来的X射线自由电子激光大科学装置的发展奠定了坚实基础。  中国科学院上海应用物理研究所是我国大科学装置“上海光源”的建设和运行单位。“上海光源”是目前世界上性能最好的第三代中能同步辐射光源之一。目前,中科院上海应用物理研究所正积极开展自由电子激光新一代大科学装置的预研。
  • 大科学装置前沿研究重点专项2022项目申报指南征求意见
    近日,科技部发布“十四五”国家重点研发计划“大科学装置前沿研究”重点专项2022年度项目申报指南(征求意见稿),向社会征求意见和建议。征求意见稿中指出,2022年度指南围绕粒子物理、核物理、强磁场与综合极端条件、天文学、先进光源与中子源及前沿探索、交叉科学与应用等6个方向进行部署,拟支持31个项目和不超过10个青年科学家项目。本专项2022年度拟支持项目如下:1. 粒子物理1.1 无中微子双贝塔衰变和太阳中微子1.2 阿尔法磁谱仪探测器升级和物理1.3 CKM矩阵参数与底强子非粲衰变CP破坏的精确测量1.4 反应堆监测新技术及相关物理1.5 大型强子对撞机上CMS和ALICE探测器升级1.6 超高亮度正负电子加速器和相关实验关键技术研2. 核物理2.1 STAR束流能量扫描实验中QCD相结构和临界点的实验研究2.2 低能区原子核结构与反应及关键天体核过程研究2.3 准单能伽马源的光核反应与关键技术研究2.4 极端电磁场环境下高电荷态离子结构和动力3. 强磁场与综合极端条件3.1 新型拓扑和超导材料在强磁场下的量子调控3.2 强磁场驱动下微磁畴/微结构的能态及动力学响应表征技术3.3 基于全超导磁体的综合极端条件先进实验技术和方法研究4. 天文学4.1 FAST深度中性氢巡天以及相控阵接收机关键技术研究4.2 大型天文光学红外望远镜前沿技术研4.3 依托天马等望远镜的恒星形成与致密天体前沿观测研5. 先进光源、中子源及前沿探索5.1 基于大型激光装置的天体现象实验室模拟研究5.2 激光驱动的核物理前沿问题研5.3 超高功率软X射线光源新原理及关键技术研究5.4 先进光源和中子源的核心关键技术研6. 交叉科学与应6.1 同步辐射光源新实验技术及交叉科学研究(拟支持4项)6.2 中子源新实验技术及交叉科学研究(拟支持2项)6.3 超快强激光新实验技术及交叉科学研究(拟支持3项)6.4 空间环境地面模拟等大装置实验技术及交叉科学研究 (拟支持2项)附件:“大科学装置前沿研究”重点专项2022年度项目申报指南(征求意见稿).pdf
  • 高温高压装置国产化之路,自主品牌创新助力材料合成与物性研究
    压力(强)是独立于温度和组分之外的另一个重要物理学参量,是决定物质存在状态与导致结构物性改变的基本热力学要素之一。高压的环境为人类探索新物质提供了一个新的维度和空间,其广泛应用与物理学、材料学、化学、地学与行星科学等领域,而高压实验技术是进行高压下材料合成与物性研究的基础。 静高压技术主要分为两种:金刚石对顶砧技术和大腔体压机技术。金刚石对顶砧装置可以产生数百GPa的压力,可与同步辐射光源等实验手段相结合,对物质在极高压力条件下进行原味测试,但其所能够制备的样品尺寸仅在微米级别,限制了其进一步发展。 大腔体静高压装置分为一级压腔装置和多级压腔装置,一级压腔装置所能够产生的最高压力一般不超过12GPa,多级压腔是在一级压腔装置的基础上,通过内置多级增压单元的方法来提高腔体压力,可获得的最高压力一般不超过25GPa,与金刚石对顶砧装置相比,具有静水压性好,样品尺寸大、压力和温度分布均匀等特点,但难以获得与之相比的压力极限。 我国在大腔体静高压领域的研究起步较晚,在上世纪我国大腔体静高压技术并没有显著进步,与国外差距较大,但我们借鉴引进技术,积累改造经验,并进一步解决控制技术国产化的问题。 RTK的相关设备具有以下优势:(1)自主研发的自动加压恒压装置,可以提供多次加压。通过PLC自动控制压力,并能连续保压,提供稳定的压力实验环境;(2)我们采用多层结构在保证安全的工作环境下同时保证压力稳定性。同时我们用伺服电机进行调节,可以产生非常陡、或非常平的压力曲线,不产生振动,避免液压系统的压力波动多段分别对压力、时间进行设定,产生用户需要的压力曲线,同时将实际压力和设备状态信息传输到PLC控制系统调节伺服电机,调节实际压力,使其趋近设定压力,在自动控制下,只有伺服电机对压力进行调节,设备噪声极小,非常适合实验室使用。 (3)采用进口Eurotherm温控模块组,实现温度多段程序控制,保证温度精度与稳定。(4)核心部件采用进口材料精密制造,性能与进口产品相媲美,确保产品优质性,适用于需要高温高压环境并精确控制高温高压条件的各项科学研究。 关于RTK洛克泰克公司成立于2013年,洛克泰克公司是国家高新技术企业,以质量领先和技术创新著称,是高温高压(等静压)全方案提供商,产品设备广泛应用于北京高压科学研究中心、中国科学院大学、中国科学院深海科学与工程研究所、中国科学院上海硅酸盐研究所、吉林大学、武汉理工大学等科研机构。
  • “大科学装置前沿研究”重点专项2021申报指南:拟支持电子自旋共振谱仪等21个项目
    5月10日,科学技术部发布国家重点研发计划“大科学装置前沿研究”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。有关事项通知详情点击此处链接。“大科学装置前沿研究”重点专项2021 年度项目申报指南本重点专项总体目标是:开展专用大科学装置的科学前沿研究,推动我国粒子物理、核物理、天文学等重要学科的部分研究方向进入世界先进行列;开展平台型大科学装置的先进实验技术和实验方法研究,提升大科学装置支撑科技创新、经济社会发展和国家安全的能力。继续支持我国具有特色和优势的大科学装置开展前沿探索研究,力争在世界上率先实现若干重大前沿突破。2021年度指南围绕粒子物理、核物理、强磁场、天文学、先进光源、交叉应用等6个方向进行部署,拟支持21个项目,拟安排国拨经费概算5.15亿元。同时拟支持8个青年科学家项目,拟安排国拨经费概算4000万元,每个项目500万元。本专项 2021 年度项目申报指南如下。1. 粒子物理1.1 CKM 矩阵参数与底强子非粲衰变CP破坏的精确测量研究内容:利用海量的底夸克实验数据开展CP破坏等重味 物理前沿课题研究,主要包括:精确测量CKM夸克混合矩阵参数,例如β和γ相角等;精确测量B介子非粲衰变的CP破坏,包括理解三体衰变复杂的CP破坏结构等;在底重子衰变中寻找CP破坏,包括衰变到三体或四体末态,并理解其中多体末态的CP破坏结构。考核指标:对γ相角相关的重要衰变道进行测量,并结合其他测量结果,将γ相角的测量精度提高到4度以内;在无圈图污染过程中完成sin2β测量,精度达到10%以内。若干B介子非粲衰变和底重子衰变的CP破坏的测量结果达到世界最好水平或为世界首次测量。1.2 基于中微子的反应堆监测新技术及相关物理研究研究内容:发展新型中微子探测技术,开展反应堆监测技术和物理研究,主要包括:发展极低阈值、极低本底双相氩时间投影室探测技术,寻找反应截面最大但尚未被探测到的反应堆中微子—原子核相干散射过程,以实现中微子探测器的小型化,用于反应堆监测,同时研究其相关物理;发展基于新型低温液体闪烁体的高能量分辨探测器技术,用于精确测量反应堆中微子能谱及核素谱。考核指标:发展小型化反应堆中微子探测技术,研制并运行一个极低阈值、极低本底的双相氩时间投影室探测器,采用低本底氩,有效质量不低于150kg,探测阈值达到1keV核反冲能;利用台山反应堆,成功探测到反应堆中微子—原子核相干散射信号;测量低能标下的弱混合角。研制并运行一个采用高量子效率硅光电倍增管的新型低温液体闪烁体探测器,有效质量不低于1吨, 能量分辨在3MeV时优于1%,比现有大型液闪探测器的最好水平(Borexino,~2.8%)提高2.5倍以上;利用台山反应堆,测量高精度反应堆中微子能谱和核素谱,为江门中微子实验提供有效谱形误差1%以内的数据依据,对U235和Pu239测量的有效谱形误差达到4%和8%。1.3 无中微子双贝塔衰变和太阳中微子实验关键技术研究研究内容:依托中国锦屏地下实验室,开展寻找无中微子双贝塔衰变、太阳中微子探测实验的关键技术和方法研究,并初步建立相关实验装置开展实验探测。考核指标:在无中微子双贝塔衰变实验领域开展先进高纯锗半导体探测器、极低温晶体量能器、基于Topmetal技术的高气压时间投影室等实验技术研究,确定具有中微子双贝塔衰变有效质量小于10meV灵敏度的探测器技术方案;建设百吨级太阳中微子探测平台,实现太阳B8中微子的探测,重建出太阳中微子方向,5MeV 能量区间,太阳角重建的角度分辨为35度(68%的置信区间)。1.4 依托大型国际合作装置阿尔法磁谱仪(AMS)的物理研究研究内容:依托大型国际合作装置AMS实验,开展暗物质和反物质寻找,宇宙线的起源加速和传播规律机制的物理研究工作。通过宇宙线正电子、反质子和反氘核的精确测量,进行暗物质寻找;通过宇宙线反氦核、反碳核和反氧核的测量寻找原初反物质;精确测量宇宙线各原子核的能谱以研究宇宙线的起源加速和传播规律。参与国际合作,研制满足空间环境要求的新型大面积硅探测器,应用于AMS02的探测器升级。考核指标:暗物质寻找的研究,分析AMS实验数据得到1GeV~1.4TeV的宇宙线正电子能谱测量结果700~1000GeV精度达到35%;得到1GV~500GV的宇宙线反质子能谱结果,反质子能谱500GV精度好于20%;得到宇宙线反氘研究结果。反物质寻找的研究,得到宇宙线反氦研究结果。宇宙线起源加速传播机制的研究,得到2GV~3TV的宇宙线Na、Al、S、亚铁(Z=21~25)等分析结果,100GV精度4%~5%,3TV精度20%~40%;研制成 满足空间条件的10cm×100cm硅探测器,位置分辨率好于5微米,优良通道占比超过 95%。2. 核物理2.1 STAR束流能量扫描实验中QCD相结构和临界点的实验研究研究内容:针对量子色动力学(QCD)的核物质相结构和QCD临界点的重大科学问题,依托相对论重离子对撞机(RHIC)的螺旋管径迹探测器(STAR)的第二期束流能量扫描实验,主要开展质心能量20GeV以下的重离子碰撞实验的物理分析。通过测量守恒荷的高阶矩、超子整体极化和矢量介子的自旋排列、多奇异强子的产生、同质异位核素的可能的手征磁效应分析等,建立系统的QCD相结构和临界点的实验探针与方法,研究QCD物质相结构和QCD临界点。考核指标:基于STAR实验第二期能量扫描实验数据,获得质心系7~20GeV不同能量点下的守恒荷的高阶矩的高精度实验数据,系统测量Λ、反Λ超子及矢量介子的整体极化及自旋排列的快 度依赖与能量依赖并揭示其物理起源,精确测量Ω粒子、φ粒子等 多奇异强子的产额分布并揭示其产生机制;通过测量分析同质异 位素碰撞中相关物理量给出QCD手征磁效应、手征磁波效应是否在夸克胶子等离子环境中被观测到的结论;利用以上分析得到的系统实验结果给出QCD相结构及QCD临界点的信息。2.2 低能区原子核结构与反应及关键天体核过程研究研究内容:针对 X 射线暴和超新星等爆发性天体环境中的关键核反应过程,依托北京放射性核束装置BRIF和相关核天体物 理研究装置等,在低能区开展高精度的原子核的基本性质、结构特性与反应机制及关键天体核过程研究,积极发展相关微观模型,在更广泛的同位旋和角动量维度上探索原子核有效相互作用新规律,探索宇宙元素起源和星体能量产生机制。考核指标:完善BRIF高精度核物理实验平台(带电粒子探测器阵列立体角覆盖达4Pi的40%以上,能量分辨好于50keV),测量3~5项奇特原子核的基本性质、反应截面和衰变过程,统计精度好于10%;发展结合人工智能的核理论分析方法,探索原子核有效相 互作用及其演化规律;完善BRIF和相关核天体物理实验平台(伽马探测器阵列立体角覆盖达4Pi的60%以上),发展天体核反应的 高精度实验方法,测量天体演化相关的3~5项核反应截面和放射性原子核半衰期,统计精度好于10%;结合天文观测,验证天体演化模型,理解宇宙元素起源和星体能量产生机制;建立相关微观模型,研究α团簇和核物质状态方程等在天体核过程中的关键作用。3. 强磁场及综合极端条件3.1 强磁场下的代谢性疾病发病机制及防控新方法研究研究内容:瞄准糖尿病和脂肪肝两种代谢性疾病,依托稳态强磁场大科学装置,发展高场生物磁共振波谱与成像新技术,深入研究糖尿病和脂肪肝发生发展和调控机理;探索不同参数稳态磁场对糖脂代谢、铁代谢和氧化还原等代谢性疾病关键过程的调控及机制,研究稳态磁场对肠道微生物代谢的影响,探索稳态磁场在糖尿病和脂肪肝诊疗中的新策略。考核指标:发展针对糖尿病和脂肪肝等代谢性疾病的新型核磁共振波谱与成像检测方法,开发1~2种治疗糖尿病和/或脂肪肝的候选药物;阐明稳态磁场对糖脂代谢、铁代谢和氧化还原的调控机制,明确稳态强磁场生物安全界限,开发磁场在糖尿病和脂肪肝的潜在应用,研发1~2种基于磁场防控糖尿病和脂肪肝的演示样机,血糖和脂肪肝改善达到20%。3.2 强磁场下零/窄带隙新型电子材料制备及其应用研究研究内容:依托稳态强磁场装置,针对下一代电子器件对零带隙/窄带隙新型电子材料的需求,围绕极端条件强磁场下电子材料制备的关键技术与关键科学问题,聚焦磁场对材料生长调控规律的获取,系统开展强磁场下窄带隙化合物半导体、零带隙低维碳基材料、高频碳/磁薄层材料、新型热电材料等新型电子材料制备与应用研究,开拓其量产应用。考核指标:开发出强磁场(≥18T)辅助布里奇曼单晶炉样机1台;在强磁场下研发出几种具有实用化前景的零带隙/窄带隙电子材料,包括大尺寸窄带隙化合物半导体(~1 英寸,带隙~0.62eV,霍尔电阻率2000cm2/Vs,位错密度2)、高性能碳基光热催化量子点与光电材料(吸收/发射波长1200nm,光热转换效率≥40%,纳米酶催化效率≥0.1μM/s,载流子迁移率~10cm2/Vs,光响应性~106A/W)、适应于GHz/THz 波段的轻质宽带高频吸收材料 (GHz波段:吸收20dB、带宽5GHz;THz波段:吸收20dB、 带宽1THz)、低成本高性能多元纳米复合热电薄膜(ZT 值≥2.0, 温差≥10K,成本降低 50%);探索研发材料在器件中的量产应用。3.3 强磁场回旋管高功率太赫兹波源及电子自旋共振谱仪研究内容:依托脉冲强磁场装置,针对材料电子自旋与核自旋的关联、激发和弛豫过程等研究需求,开展THz回旋管理论与技术、高精度磁场位形和波形调控方法、THz高品质波束形成与瞬态测量技术、高功率THz波激励下的电子自旋共振谱仪研究,为探索关键材料结构、性能以及动力学变化提供先进测试平台。考核指标:建立基于强磁场的高功率回旋管太赫兹波源设计理论体系,解决磁场时空分布精确调控等关键技术问题,实现高功率太赫兹脉冲波和连续波输出。(1)脉冲波辐射源:磁场强度40T,频率1THz,功率300W;(2)连续波辐射源:磁场强度15T,频率800GHz,功率30W;(3)电子自旋共振谱仪:时间分辨≤10ns,带宽1GHz,DEER空间分辨2~50nm。4. 天文学4.1 依托LAMOST、FAST的恒星稀有天体和关键物理过程研究研究内容:瞄准恒星内部结构和关键物理过程,依托LAMOST、FAST大科学装置,搜寻和发现恒星关键/稀有天体, 探测恒星内部结构,识别Ia型超新星前身星;发展恒星对流模型,研究特殊元素的形成和输运、角动量转移过程;深入探讨双星演化的走向和结局,以及超新星等重要双星相关天体的形成和演化,结合黑洞观测,多方面提高宇宙测距精度。考核指标:发现几颗双星公共包层演化阶段天体;构建贫金属星和氦星的快速物质损失模型,系统建立双星演化的关键性判据;确定对流超射和星风在物质与角动量转移中的作用; 获得下主序恒星和红巨星表面存在磁场的星震学证据;通过FAST确定几颗超新星前身星;提高超新星等宇宙标尺的测距精度。4.2 第25太阳周重大爆发活动与空间天气研究研究内容:针对太阳爆发活动及空间天气形成的重大科学问题,充分利用我国自主观测设备,探索重大爆发活动中磁场时空演化、爆发机理、能量释放机制、空间天气形成机理及影响的全链路过程。诊断太阳活动中等离子体加热、粒子加速、激波形成与演化,获得对重大太阳活动产生机理及其空间天气效应新的可靠物理理解,并建立高精度的物理和数值预报模型。考核指标:确保我国自主观测新设备,如MUSER、NVST、AIMS、WeHot、FASOT等发挥科学效益;取得第25太阳活动周重大活动事件完整观测,建立数据库,涵盖国内外磁场、光学、 射电等多波段成像及光谱/频谱数据,开发新型大数据分析方法;发展三维(辐射)磁流体力学数值模拟,建立针对重大太阳爆发事件的理论和数值模拟模型;建立灾害性空间天气的高精确度预报模式和方法。5. 先进光源、中子源及前沿探索5.1 超高功率软 X 射线光源新原理及关键技术研究研究内容:针对能源科学、超导材料科学、超快物理化学和光刻等科学和应用领域对高功率EUV/软X射线光源的具体需求,依托软X射线自由电子激光大科学装置,开展超高平均功率和超 高峰值功率EUV/软X射线光源的新原理及核心关键技术研究,包括探索基于同步辐射和自由电子激光等产生高功率软X射线脉冲的新机制,发展高功率X射线光源所需种子激光、光学传输和诊断等关键技术。考核指标:完成基于角色散机制的高平均功率EUV/软X射 线光源(平均功率100W)和基于啁啾激光增强型自放大自发辐射的高峰值功率软X射线光源(峰值功率100GW)的物理机制研究;基于软X射线自由电子激光装置实验验证高功率X射线产 生的新机制,掌握其关键技术和实验方法,为用户提供峰值功率大于1GW、光子能量大于200eV的软X射线激光;掌握超高重复频率(1MHz)紫外波段种子激光和超大带宽红外波段种子激光等关键技术;掌握超高功率软X射线的光学传输、光学元件冷却(平均热负载100W,峰值功率100GW)和光学诊断(时间测量精度好于1fs)等技术。6. 交叉科学与应用6.1 超高真空平面微纳量子器件的分子束外延直接生长和原位表征技术研究研究内容:发展选区外延生长和片上掩模外延生长等技术,实现量子材料微纳结构和平面异质器件的超高真空分子束外延直接生长;开发极低温、强磁场原子力显微镜,实现绝缘基底上的微纳结构和器件的扫描隧道谱电子态表征;改进平台扫描微波显微镜、氧化物分子束外延生长等技术设备;基于这些新发展的技术研究拓扑-超导异质结构中的马约拉纳模相关物理机理等关键科学问题。考核指标:利用分子束外延在超高真空环境直接生长出超导电极间距6.2 粒子流、先进光源新实验技术研究研究内容:依托同步辐射光源、超快强激光、先进中子源、加速器等束流装置平台,针对材料科学技术、信息科学技术、生命健康和环境保护等领域的关键科学技术问题,发展急需的先进实验技术和方法。考核指标:在选定的研究领域和研究目标,通过研究平台与相关领域研究部门的密切合作,研发在同步辐射光源、超快强激光、中子源和加速器上为解决上述瓶颈问题急需的先进实验技术和实验方法,促进大设施在材料科学技术,信息科学技术、生命健康和环境保护等领域的交叉实验研究。有关说明:本方向拟支持不超过8个项目。附件:“大科学装置前沿研究”重点专项2021年度项目申报指南.pdf形式审查条件要求.pdf指南编制专家名单.pdf
  • 走进中国散裂中子源:这个装置挺“卷”
    作者:倪思洁 来源:中国科学报8月中旬,广东东莞。天气时晴时雨,空气潮湿闷热,郁郁葱葱的荔枝林里,我国迄今为止已建成的、单项投资规模最大的大科学工程——中国散裂中子源正在进行暑期停机检修。2018年8月23日,中国散裂中子源项目通过国家验收,正式投入运行。从那时起,这片昔日的荔枝林里,人气就起来了。这里的年均公众参观访问量超1万人次,最火爆的一次线下科普活动中,科研人员半天里就接待了6000人次,前来参观的小汽车一直从中国散裂中子源的大门口排到高速路口。不仅如此,科学界和产业界对中国散裂中子源机时的竞争也很激烈,项目申请书逐年成倍增加,以至于每100份申请书中,只有29份能成功。这台已运行4年的大装置为何如此“火爆”?趁着停机检修,《中国科学报》记者深入实地一探究竟。红的、绿的、蓝的、黄的… … 好看:五彩斑斓的“黑科技”每年,中国散裂中子源都会放“暑假”,停机时间长达一个半月到两个月,这段时间,科研人员要给装置做“保养”。中国散裂中子源是由国家发改委立项支持建设的国家重大科技基础设施,法人单位是中国科学院高能物理研究所。这个装置让中国成为继英国、美国、日本后世界第四个拥有脉冲散裂中子源的国家。散裂中子源常被比作“超级显微镜”,因为它能够用加速器加速质子打到靶上产生的中子,来探索物质微观结构。它的源头——加速器系统,像卧龙一般,藏在地下。地下17米,空调和新风系统让原本湿热的空气变得干爽。沿着亮绿色走道向前,人们能看见一个五彩斑斓的“黑科技”世界。黄色的是可以让粒子“飞奔”起来的漂移管直线加速器系统,蓝色的是可以把粒子聚成一束的四极磁铁,红色的是可以让粒子以15度角“拐弯”的二极磁铁… … 它们先是串成一条长串,之后又围出一个大环。长串部位是直线加速器,环形部位是快循环同步加速器。看似庞大笨重的装备,安装精度要达到10微米到百微米级别,使得自然界微小的物质-质子,能够按要求得到控制并加速。一旦运行起来,每1秒钟,快循环加速器会像旅游大巴一样“接待”25波等待加速的负氢离子。每波负氢离子“上车”后,会转换为质子,并在0.02秒里沿着快循环同步加速器跑约20000圈,直到速度达到0.92倍光速。接着,接近光速的质子束像“微型子弹”一样,冲向重金属靶,金属靶的原子核被撞“碎”,科学家又用特殊装置把“碎片”里不带电的中子降速后,引入一台台谱仪中。谱仪位于离加速器隧道不远的地方,同样五彩斑斓。中国散裂中子源一期共建了3台谱仪,分别是有着绿色外壳的通用粉末衍射仪、小角中子散射仪,以及有着蓝色外壳的多功能反射仪。4年来,中国散裂中子源还与粤港澳大湾区高校、研究机构等合作建设了若干条谱仪,以满足全国及地方研究机构和企业的需求。红的、绿的、蓝的、黄的… … 以靶站为中心,已经建成和正在建设的谱仪向四面伸展,让中国散裂中子源看起来像一朵绽放的七色花。“我们的设备国产化率达到90%以上。”散裂中子源科学中心主任、中国科学院高能物理研究所副所长陈延伟告诉《中国科学报》,全国近百家合作单位完成了装置各项设备的研制与批量生产,许多设备达到国际领先或先进水平。5000、97%、800、122%… … 好用:超级显微镜的“超能力”在中国散裂中子源,科研人员喜欢用数字说话。最让他们自豪的一个数字是“5000”。在这里,时间不按年、月、日算,而是按小时算。“我们每年打靶提供中子束流的时间在5000个小时。”陈延伟说。5000小时,意味着一年8700多小时里,中国散裂中子源大部分时间都在产生中子,开展实验。“国际上的其他三台散裂中子源,英国、日本每年的中子束流时间一般都在4000小时左右。”陈延伟说。另一个让他们自豪的数字是“97%”。“2020年到2021年,我们的实际运行效率超过了97%,这是全球其他散裂中子源都无法达到的效率。”散裂中子源科学中心副主任、中国科学院高能物理研究所研究员王生说,实际运行效率是散裂中子源实际运行时间与计划运行时间的比值。数字越高,说明散裂中子源故障率越低,按计划运行的稳定性更好。在描述中国散裂中子源的运行成效时,他们则喜欢用课题的数量来说明。“4年,中国散裂中子源开放运行8轮,共完成800余项课题,重点支持国家重大需求项目的机时。”陈延伟说。面向国家重大需求,他们完成了航空航天发动机叶片应力测试,对“奋斗者”号焊接工艺进行验证… … 面向世界科技前沿,他们开展了超级钢、分子筛吸附剂、量子材料等研究。面向经济主战场,他们在高性能芯片、电池、材料、应力检测等领域,为钢铁研究总院、国电电力发展股份有限公司、中国石油天然气集团有限公司等高技术企业和研究机构提供了重要支撑。面向人民生命健康,他们在2020年8月成功研制出我国首台具有完全知识产权的硼中子俘获治疗实验装置,并于今年7月底在东莞市人民医院开始安装。好的数据和成果,使用户像滚雪球一般激增。陈延伟介绍,目前,注册用户已超过3800人,2021至2022年度申请课题数同比增长了122%,课题申请的通过率为29%。提功率、优性能、加终端、做交叉… … 好谋:未来的“小目标”日渐激增的机时申请和正在加剧的科技战,让中国散裂中子源的“升级”成为现实需求。早在工程设计之初,科研人员就为装置升级预留了空间。正因如此,未来可以直接在一期工程的基础上升级改造。陈延伟介绍,目前,中国散裂中子源已经完成一期的全部设计指标。2020年2月,打靶束流功率达到100千瓦的设计指标,比原计划提前一年半;2022年2月,打靶束流功率达到125千瓦,超过设计指标25%,并且实现了稳定高效运行,大幅度地提高了装置性能。提升打靶束流功率,会使装置在同等时间里生产出更多中子,进而使实验时间缩短,样品分辨率提高。“就好比白天光线强时拍照,曝光时间会比晚上拍照时短,而且拍出来的照片也会更清晰。”陈延伟解释。科研人员对未来的“小目标”之一,就是将打靶束流功率提升到500千瓦,让中子源变得更“亮”。此外,散裂中子源科学中心副主任梁天骄介绍,中国散裂中子源升级改造后,有望覆盖用户需求的绝大部分领域,满足更多尺度结构和动力学表征,为多学科交叉研究提供更有力的支撑。如今,趁着暑期停机检修,这里的科研人员正在为即将安装的新谱仪和实验终端做前期准备。对于该装置未来的进展,《中国科学报》还将持续关注。中国散裂中子源加速器局部 李子锋摄王生向记者介绍直线加速器工作原理 倪思洁摄蓝色的四级磁铁 倪思洁摄红色的二级磁铁 倪思洁摄中国散裂中子源部分线站与实验终端 李子锋摄
  • 同步辐射X射线装置实现小型化
    据物理学家组织网11月25日(北京时间)报道,通过使用一个小巧但功能强大的激光器,美国内布拉斯加大学林肯分校的科学家开发出了一种能够放在普通房间或卡车上的小型同步辐射X射线装置,有望改变人们对这类装置的印象,拓展同步辐射X射线的应用范围。相关论文发表在最近出版的《自然· 光子学》杂志上。  同步辐射光源是多学科前沿研究和高技术开发应用的&ldquo 超级显微镜&rdquo ,能够帮助科学家看到人类无法想象的物质细微结构。同步辐射X射线是其中的一种,与普通X射线相比,其成像质量更高、细节更为丰富,在探索物质内部结构和医学成像等领域均有着重要的应用价值。但因其规模大、造价高、运行维护费用昂贵,目前只有为数不多的几个国家建有这样的设备,极大地限制了该技术的应用和普及。  在传统的同步辐射设备中,要产生这样的射线需要将电子加速到非常高的能量,而后周期性地改变方向,引导其在X射线的波长范围内释放能量,产生同步辐射X射线,因此必须用到巨大的加速器。而新研究中,科学家们用激光取代了电子加速器和其中的磁铁,实现了同样的目的。他们首先将激光束集中汇聚到一个气体射流上,形成强流相对论性电子束。而后再让另外一束激光与其汇聚,由此产生电子高速振动,生成高质量的同步辐射X射线,这一过程也被称为康普顿散射。值得注意的是,在此过程中光子的能量被增加了上百万倍,而产生这些高能射线的核心装备还没有一个硬币大。  该技术的核心是找到让散射激光束和激光加速的电子束这两条细微光束发生碰撞的方法。这就如同让两颗子弹在空中相撞一样。而要让这种&ldquo 光子子弹&rdquo 相撞更为困难,因为它们速度都接近光速。  领导这项研究的内布拉斯加大学林肯分校强光实验室主任唐纳德· 乌姆斯塔特教授认为,小型化同步辐射X射线设备让更多的科研人员和医生获得了更强大的研究和诊断工具。
  • 我国大科学装置发展的现状、问题及建议
    大科学装置(large scale scientific facility)是人类发现自然规律、探索未知世界、实现技术变革的大型设施,是取得重大科学突破的保障之一。在中国,大科学装置也常被称为“国家重大科技基础设施”。大科学装置具有推进多学科综合交叉发展、突破高新技术瓶颈的强大支撑能力,是国之重器、科技利器。大科学装置具有明确的科学目标,建设时间长、体量大、投资大,产出是科学知识和技术成果,而不是直接的经济效益。按照不同的应用目的,大科学装置可以被分为专用研究装置、公共实验平台和公益基础设施3种类型。大科学装置已经成为衡量一个国家科技实力和综合国力的重要标志,是维护国家安全、促进经济社会可持续发展必不可少的重要基础设施。中国大科学装置发展基本情况中国大科学装置经历了从无到有、从小到大、从学习模仿到自主创新的过程(图1),在提高国家自主创新能力方面占据重要地位。20世纪80年代,中国以北京正负电子对撞机(BEPC)为标志开始了大科学装置建设的新阶段。之后以中国科学院为主导,陆续建设了一批大科学装置,对促进科技事业和其他各项事业发展起到了积极作用。目前,中国在建和运行的重大科技基础设施项目总量已达57个,数量位居全球前列。中国大科学装置在不同时期呈现出了不同的发展特点。图1 中国大科学装置发展历程1)萌芽期(1949年至改革开放前)。1949年之后,国家主要围绕“两弹一星”的研制工作,布局建设了一些如材料试验堆、点火中子源等研究设施。这些设施虽然不能完全称之为大科学装置,却是大科学装置的萌芽。2)起步期(20世纪80年代初至2000年)。这一阶段布局了10余个大科学装置,主要集中在高能物理学、光学、遥感科学等领域,且主要用于公益科技和专用研究。区域分布上主要以北京地区为主,依托单位基本为中国科学院各个院所。总体来说,此时期大科学装置布局不均衡,发展内容不够全面。3)发展期(2001—2010年)。这一阶段大科学装置呈现出均衡发展趋势,区域分布由北京为主扩展到了中国东部。其中“十一五”期间设施数量呈跨越式增长,共部署了散裂中子源、强磁场等12项大科学装置,覆盖了环境科学、地球科学、粒子物理与核物理、天文学、生命科学等领域,总投资超过60亿元。4)追赶期(2011至现在)。这一阶段中国对大科学装置进行了前瞻部署和系统布局,投入力度持续加大。中国的大科学装置建设无论从数量,还是从投入金额来看,都呈现逐年增加的趋势。在国家发展和改革委员会的规划组织和投资支持下,“十二五”期间,中国启动建设了地球系统数值模拟装置(Earth System Numerical Simulation Facility)、高海拔宇宙线观测站(LHAASO)、高效低碳燃气轮机试验装置等16项重大科技基础设施,总投资超过了100亿元“。十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,按照“成熟一项、启动一项”的原则,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。“十四五”期间,中国拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。党的十八大以来中国大科学装置建设发展特点党的十八大以来,中国大力实施创新驱动发展战略,在大科学装置建设上多点发力。围绕战略导向、前瞻引领、应用支撑、民生改善等方面建设一批大科学装置。北京怀柔高能同步辐射光源(High Energy Photon Source,HEPS)已完成全部土建结构施工;合肥聚变堆主机关键系统综合研究设施(CRAFT)园区已经启用;稳态强磁场、500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)、散裂中子源等一批“国之重器”陆续建成使用;“慧眼”“悟空”“墨子”等科学实验卫星成功发射,“奋斗者”号全海深载人潜水器成功挑战马里亚纳海沟等。总之,近10年来,中国大科学装置建设持续推进,正在加速实现从跟跑、并跑向领跑的转变,为原始创新和关键技术攻关提供更强力的支撑。01 统筹规划、政策支持力度不断加大党的十八大以来,为促进大科学装置健康发展,党中央、国务院及省市等机构不断出台相关政策,从国家层面、省市层面进行战略部署。《国家创新驱动发展战略纲要》《国家重大科技基础设施建设中长期规划(2012—2030年)》《国家重大科技基础设施“十三五”规划》《国家重大科技基础设施管理办法》等政策文件均强调要以大科学装置为核心,打造高端引领的创新增长极,并对中国大科学装置的布局、投资、建设和管理进行了阐述,有效地推动了大科学装置建设与发展。“十四五”时期,《“十四五”国家科技创新规划》明确了“十四五”大科学装置建设重点。北京、上海、安徽作为综合性国家科学中心所在地,围绕科技前沿和国家重大战略需求,在各自的“十四五”规划中明确提出要加强大科学设施布局,跨区域整合创新资源,形成大科学装置集群。《粤港澳大湾区发展规划纲要》提出,大湾区深入实施创新驱动发展战略,深化粤港澳创新合作,加快推进大湾区重大科技基础设施建设。在这些规划、政策的推动下,中国大科学装置规模不断增长,综合效应日益显现。02 世界级大科学装置集群初步成型大科学装置集群在技术突破、科学研究和支撑经济社会发展等方面具有一定优势。北京、上海、合肥、粤港澳等地依托建设综合性国家科学中心,初步形成集群化态势、具有一定国际影响力的大科学装置集群。北京怀柔综合性国家科学中心距核心城区相对较远,重点聚焦基础研究;上海张江综合性国家科学中心紧邻上海市中心,重点推动小而精的应用转化;合肥综合性国家科学中心集中布局一批大科学装置集群和交叉前沿研究平台,侧重于科学发现;粤港澳大湾区综合科学中心依靠深圳、广州、东莞、香港等多点城市构建大科学装置集群。1)怀柔是北京地区大科学装置最为密集的区域。北京怀柔综合性国家科学中心自获批建设以来,在空间科学、物质科学、能源科学等领域布局建设了5个大科学装置(表1),同时集聚了一批前沿交叉研究平台、科教基础设施、重大产业技术开发平台,初步形成了促进重大原始创新成果产出的战略高地。落户于这里的5个大科学装置中,有的抢先“开跑”,也有的正在加速建设。地球系统数值模拟装置、综合极端条件实验装置已投入运行;多模态跨尺度生物医学成像设施工程已于2022年11月竣工;子午工程二期在2023年建设“收官”;高能同步辐射光源预计2025年完成装置建设。这些大科学装置将为北京国际科技创新中心建设提供重要支撑。表1 北京怀柔综合性国家科学中心大装置基本情况2)上海张江基本建成光子大科学装置集群。上海以张江实验室为依托,以重大任务实施、重大平台建设为牵引,先后建设了上海光源一期、国家蛋白质科学研究(上海)设施、硬X射线自由电子激光装置、软X射线自由电子激光装置等一批大科学设施,覆盖了生命科学、光子科学、能源科学、海洋科学等领域。据《2021上海科技进步报告》显示,截至2021年底,上海在建、在用的大科学设施已达到14个,其中已运行的有8个、在建的有6个(表2)。经过多年建设发展,上海张江初步形成了全球光科技领域规模大、种类全、功能强的光子大科学装置集群,为建设张江综合性国家科学中心,实现上海建设具有全球影响力的科技创新中心目标奠定了坚实基础。表2 上海运行、在建设施基本情况3)安徽合肥着力打造世界一流的大科学装置集中区。为更好推进合肥综合性国家科学中心建设,合肥在滨湖科学城布局建设了大科学装置集中区,布局建设8个大科学装置。截至2022年,安徽合肥已建成同步辐射装置、全超导托卡马克、稳态强磁场装置3个大科学装置。2017年9月,稳态强磁场实验装置通过国家验收,标志着中国成为继美国、法国、荷兰、日本之后第5个拥有稳态强磁场的国家。2022年3月,合肥第4个大科学装置——聚变堆主机关键系统综合研究设施(CRAFT)园区正式交付启用(表3)。大科学装置是合肥综合性国家科学中心的重要基石,以大科学装置为基础,提高原始创新能力,支撑综合性国家科学中心高质量发展,打造有国际影响力的创新之都指日可待。表3 合肥运行、在建设施基本情况4)粤港澳大湾区依靠产业发展构建大科学装置集群。加快布局建设大科学装置,是建设粤港澳大湾区综合性国家科学中心科技和产业创新高地的必然选择。粤港澳大湾区综合性国家科学中心的核心大科学装置——中国散裂中子源于2018年8月通过验收工作。作为继英国、美国、日本散裂中子源之后的世界第4台脉冲式散裂中子源,它的建成改变了以往中国科学家只能到国外散裂中子源上申请实验机时的历史。目前,深圳正在规划建设大科学装置集群,加快布局“高精尖”实验室。光明科学城规划建设提速,材料基因组、合成生物研究、脑解析与脑模拟等方面的大科学装置加快建设(表4)。这些重要的大科学装置,未来将为粤港澳大湾区产业升级提供重要保障。表4 大湾区部分设施基本情况03 自主创新设计能力不断增强“十二五”以来,中国大科学装置设计建造由以前的跟跑为主,逐步转到跟跑、并跑的局面,许多装置自主创新设计能力不断增强。从20世纪80年代末,依托于北京正负电子对撞机的第一代同步辐射光源,到安徽合肥光源(第二代)、上海同步辐射光源(第三代),再到北京怀柔高能同步辐射光源(第四代),大装置分辨率、亮度等性能不断提高。同时,怀柔同步辐射光源采用了研究团队自主研制的新型X射线像素阵列探测器样机,实现了加速器、光束线等多个关键技术的创新。北京怀柔的地球系统数值模拟装置是中国研制成功的首个具有自主知识产权的地球系统模拟大科学装置。被誉为“中国天眼”的FAST是世界上最大和最灵敏的单口径射电望远镜,且具有中国自主知识产权。被誉为“人造太阳”的合肥全超导托卡马克核聚变实验装置是中国自行设计研制的世界上第一个全超导非圆截面托卡马克核聚变实验装置。04 集聚人才的“磁石效应”日益凸显人是科技创新中最关键的因素。大科学装置在培养和凝聚人才、促进国际科技合作方面能够发挥独特作用。例如,中国科学院合肥物质科学研究院强磁场中心为王俊峰、张欣、王文超等“哈佛八剑客”提供了施展才华的舞台;上海光源不仅吸引集聚了世界顶尖科学家,也培育了大量经验丰富的大科学装置建设和运营工作人员,支撑着中国光子科学的创新发展。大科学装置在建设和运行过程中,集聚和培养了一大批懂科学、懂工程、懂技术、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以中国散裂中子源为例,中国科学院高能物理研究所在东莞集聚和培养了一支有400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。05 开放共享程度有所增加大科学装置作为推动科技创新的重要平台,具有开放性、国际化特点,其不仅能够向世界展示中国科技水平与经济实力,同时也能够促进全球科学家与中国的合作交流。中国大科学装置正向世界敞开怀抱。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。北京怀柔综合性国家科学中心的综合极端条件实验装置首批5个实验站进入开放运行阶段,2022年1月起正式面向中外用户开放预约使用,截至2022年2月已收到来自国内外团队的50余份申请。江门中微子实验获得国际实物贡献约3000万欧元,共有境外16个国家和地区约300多位科学家参加。自2007年超导托卡马克核聚变实验装置正式投入运行以来,中国科学院等离子体物理研究所已与30多个国家的近100多个研究机构建立了广泛而深入的合作伙伴关系,近年来多次帮助国际合作伙伴建造聚变研究部件。这些都充分表达了中国国际科技合作开放包容的积极态度。高水平的科研成果不断涌现01 突破一批关键核心技术党的十八大以来,中国在大科学装置建设上持续发力,也催生出一批世界级成果,覆盖能源、物理、材料、生命科学等多个前沿交叉和高科技研发领域,提升了基础前沿研究水平和自主创新能力。“中国天眼”实现了跟踪、漂移扫描、运动中扫描等多种观测模式,于2018年4月首次发现距地球约4000光年的毫秒脉冲星。2017年,全超导托卡马克核聚变实验装置首次实现了稳定的101.2s稳态长脉冲高约束等离子体运行,创造了新的世界纪录。2022年5月,中国“墨子号”实现1200km地表量子态传输新纪录,抢占了量子科技创新的制高点。大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率,该结果对中微子物理的未来发展方向起着决定性作用。02 产生一批高水平项目和研究成果截至2021年底,上海光源一期累计提供实验机时388649h,用户累计发表SCI论文近8000篇。国家蛋白质科学研究(上海)设施全年为用户提供科研机时8.27万h,用户发表SCI论文445篇。截至2021年9月,合肥稳态强磁场实验装置共运行了45万多h,依托装置开展了近2700项课题研究、发表学术论文1700余篇,其中一区期刊论文404篇、Nature Index期刊文章接近400篇,推动了中国稳态强磁场下前沿科学研究。散裂中子源的高度开放共享也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关,用户单位及完成课题数逐年增加,自建成投入使用以来,全球注册用户超过3400人,完成课题600多项,有力推动了中国中子散射应用和关键技术的重大发展。03 催生一批新成果和新应用大科学装置产生了一大批重大原创成果,催生了一批战略性产业技术。通过建设若干重大科技成果概念验证中心和中试平台,推动大科学装置衍生技术就地交易、就地转化、就地应用,促进“国之重器”走进日常生活。“中国天眼”在建造过程中突破了很多技术瓶颈,如抗疲劳索网技术在港珠澳大桥工程建设中得到了应用。依托合肥稳态强磁场装置取得了超预期的转化成果,包括催生出多个国家I类创新靶向药物,授权发明专利30余项,孵化出高科技企业4家。国家蛋白质科学研究(上海)设施解析了新冠肺炎病毒结构,有效助力疫情防控和疫苗研发。上海光源助力破解新冠肺炎病毒关键蛋白结构,为抗病毒药物研制提供了必要的基础数据。总之,中国大科学装置正以越来越多世界级创新成果,显示着“国之重器”的巨大能量。中国大科学装置建设发展过程中存在的问题及建议01 现存问题近年来,中国大科学装置在推进科技强国建设、打造战略科技力量中发挥了重要作用,取得了一系列原始创新成果,但因中国大科学装置建设起步较晚,与美国、德国等世界先进国家相比,在建设、管理等方面仍有一定差距,主要存在以下问题。1)后续经费投入仍需充分考虑。大科学装置建成后,还有后续巨大的运营成本,在运行过程中每年仍需要大量的投入,如运行费用、科研费用和改进发展费用等。例如,兰州重离子加速器国家累计投资逾10亿元,每年还需1.1亿元用于运行和维护更新。散裂中子源每年投入进行设备维护,保障运行和开放的经费达到设备建设经费的10%~20%。发达国家经验显示,对于大科学装置后续的科研投入尤其是人员经费,大多要占建设经费的10%~50%。总体来看,中国基础研究投入只占研发经费的5%,而大科学装置建设经费仅占基础研究经费投入的约5%,对比美国这2个数据分别是15%和10%。可见中国大科学装置建设经费投入与发达国家还有一定差距。2)关键部件的自主创新需进一步加强。中国目前在役大科学装置技术水平总体上以跟踪为主,支撑大科学装置建设的很多相关设备从国外采购,关键设备与工艺技术对国外产品依赖严重,存在卡脖子风险。以北京怀柔综合性国家科学中心多模态跨尺度生物医学成像设施为例,设施有价值12亿的仪器装备,其中30%由改造升级而来,30%由中国自主研发制造,其余40%来自国外购买。3)开放合作共享还不足。中国大科学装置建设主要是采取自行建设,建成后依托设施参与国际合作的模式。从国际合作来看,中国在运行的大科学装置中,由国内外共同参与重大科技项目建设的大科学装置占比不足10%,以自身大科学装置为基础参与国际科技项目合作的大科学装置占比约30%。而且在国际形势较为复杂的背景下,大科学装置国际合作和人才引进存在一定困难。02 建议统筹推进大科学装置布局建设,充分发挥大科学装置促进科技创新的重要作用是建设科技强国的必然要求。利用大装置解决国家战略需求中的前瞻性、基础性和战略性问题,突破“卡脖子”技术,是实现高水平科技自立自强,把创新发展主动权牢牢掌握在自己手中的重要举措。面对以上问题,结合中国大科学装置建设、发展的实际情况,提出以下几方面建议。1)拓展大科学装置经费投入来源。据统计,过去10年,大科学装置投资建设基本稳定在每5年160亿元左右,平均每年约32亿元,而且这些费用往往不包括研究经费、人员费、配套经费等。应遵循全生命周期管理理念,在大科学装置申报论证阶段就充分考虑到大科学装置维护、更新和提升所需的资金。明晰国家和地方权责,协调地方政府和社会力量共同参与大科学装置的建设。在中国科学院与国家自然科学基金委员会联合设立“大科学装置科学研究联合基金”支持基础研究的基础上,由企业和政府共同出资设立设施后期保障基金,参与企业在使用设备时可优先考虑或降低收费标准等。2)建立技术联盟,解决大科学装置关键技术卡脖子风险。以大装置常用的仪器仪表为例,目前中国高端仪器仪表产品等的关键核心零部件基本依赖进口,仪器仪表整机厂家存在着核心技术“空心化”问题。高端科研仪器设备市场基本由美国、欧洲、日本的企业控制。美国《化学与工程新闻》杂志公布的2018年度全球仪器公司TOP20排位榜中,有8家是美国公司,7家来自欧洲,5家为日本公司。为降低大科学装置核心零部件对国外产品的依赖度,鼓励具有专项技术的高科技企业、科研院所与高校形成大科学装置技术研发联盟,对相关技术联合攻关,突破大科学装置相关工艺与装备技术难点,实现器件自主研发和国产化。3)利用大科学装置开展更多国际合作。在大科学装置建设运行中,面向国外开放,引入国际合作者,依托这些设施开展联合研究、人员交流、人才培养等,提升中国国际科技合作水平。充分考虑国际科技安全,加强以中国为主的大科学装置的国际合作。同时积极参与国际大科学装置项目,积累建设管理、运行和维护经验等。结论大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技自立自强必备的科技基础设施。面向未来,需前瞻性谋划和系统性布局一些重大的大科学装置,不断夯实国家科技创新的平台基础。依托大科学装置,推动中国在基础研究和原创性、引领性科技攻关方面取得更多、更大的突破,助力实现科技强国的伟大梦想。
  • 中国拟15亿建设世界最大纳米真空科研装置
    世界首个集材料生长、器件制备、测试分析为一体的纳米领域大科学装置——纳米真空互联综合实验站正在我国江苏苏州工业园区建设。这个实验站相当于在太空建设了一个全真空的纳米器件研发平台。  正在建设中的这个纳米实验站是目前世界上最大的真空互联科研装置。其总体方案是:用总长近500米的超高真空管道,将上百台用于材料生长、器件制备、测试分析的大型仪器设备互联,实现样品在不同设备之间传送时其表面不被氧化、沾污,不被外界大气环境所破坏。中科院苏州纳米技术与纳米仿生研究所研究员、纳米真空互联实验站常务副总指挥丁孙安说,实验站通过超高空间分辨、时间分辨、能量分辨、质量分辨等的高端能力仪器设备,对物质的“本征性质”进行研究,从而实现量子材料的设计、制备和表征,后摩尔时代器件加工和测试分析,同时开展新材料、新工艺、新结构和新功能的开发和研究,以及形成第三代半导体工艺包。  “这个实验装置是在类似太空的全真空环境下的纳米器件研发平台,相当于把现有的加工设备统一搬到太空。”丁孙安说。  纳米真空互联实验站是依托中科院苏州纳米所,联合清华大学薛其坤院士团队、中科院大连化学物理研究所包信和院士团队建设的。一期建设由中科院、江苏省、苏州市和苏州工业园区共建,预计2018年建成,建设经费3.2亿元。一期建成后将连接30多台设备,形成100米的真空管道。整个实验站的总预算是15亿元。  苏州工业园区是全球纳米领域具有代表性的八大产业区域之一。中科院纳米所所长杨辉说,在此建设纳米真空互联实验站,是力图通过真空条件下的互联集成和若干重大项目验证,突破现有仪器设备的功能限制,实现材料制备、测试分析与微纳加工工艺等方面协同效应,为科研和战略性新兴产业发展提供先进的、开放性的平台。
  • 大科学装置“上海光源”建成并试开放
    新华社上海4月29日电(记者 杨金志、张建松)我国迄今为止最大的大科学装置和大科学平台——上海同步辐射光源29日建成竣工,并对用户试开放。“上海光源”的建成使用,其意义绝不仅仅在于为我国的科研史增添几项“最大”“最先进”,更在于它可以打破科学界长期存在的条块分割、零敲碎打的现象,成为理顺我国科研体制的重大契机。  “上海光源”可同时容纳几百名不同学科领域、不同公司企业的科学家和工程师开展实验工作。诚如老一辈科学家所言,如此多的研究人员同时使用“上海光源”,自然就能创造特有的科研氛围,为不同学科间的学术交流提供天然环境 也能为萌发新思想、创造新方法和开辟新学科创造有利条件。  至今,我国仍有一些投入数千万元乃至上亿元的科研设备因为“单位所有”限制,只能自家设备自家用,基本处于“半沉睡”状态,维护成本高昂。许多大型科研设备重复建设、重复引进,浪费惊人。譬如我国海洋科研至今未建成一只可以共享的科考船队,不同系统的科研单位都热衷造船购船,出海的耗费巨大。  在国有大型研究单位科研设备利用率低下的同时,还有不少中小企业、科研院所却由于资金所限,无力购买和使用大型科学装置,导致研发受阻,创新不足,最终影响产业结构的升级换代和国家的整体竞争水平。  近年来,上海及其他长三角地区建立大型科学仪器服务平台,力推科学仪器共享。这种通过政府引导和一定的财政补贴,在使用者和所有者之间建立合理租用关系的模式,已经取得显著效果。  国家中长期科学和技术发展规划纲要确立了我国到2020年进入创新型国家行列的远大目标。要实现这一点,就要深化科研领域的体制改革。“上海光源”也好,其它科学装置也好,只有打破“各自为政”的制度壁垒,才能最大限度地发挥作用,成为建设创新型国家的“国之利器”。
  • 物理所利用冷冻电镜解锁石墨嵌锂阶结构微观本质与演变
    石墨是商用锂离子电池的关键负极材料,也是最常见的二维材料。锂离子嵌入石墨会形成一系列阶结构,阶的微观结构决定着石墨嵌入化合物的物理化学性质。然而它的微观图像及其形成和转变动力学并不清晰,这限制了准确预测石墨嵌入化合物相关性质与性能,也阻碍了石墨在不同工况下的实际应用,比如快速充电。目前,研究人员主要提出了两种模型(Rüdorff-Hofmann和Daumas-Hérold模型)来描述石墨嵌锂形成的阶结构及其演变(图1a-b)。这两种模型显示出相同的长程有序结构,而具有不同的短程结构。揭示阶结构的微观真实面纱需要借助对纳米或者原子结构敏感的表征技术,如透射电子显微镜(TEM)。由于石墨材料对辐照敏感,常规TEM难以得到石墨及其嵌入化合物的真实纳米或者原子结构。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心特聘研究员王雪锋、研究员王兆翔和副研究员肖睿娟等利用冷冻透射电子显微镜(cryo-TEM)和其他表征技术以及理论计算与模拟在纳米尺度上揭示了锂离子嵌入石墨后形成阶结构的特征及其演变机制。  结果发现,锂离子不均匀地嵌入石墨层间,产生局域应力,导致石墨结构发生扭曲变形,形成位错。不同阶结构之间的转变是通过锂离子扩散以及位错的移动、相互作用和转换实现的。每种阶结构锂化石墨在宏观上是均匀的(具有特征的平均晶面间距和衍射花样的长程有序排列),但在微观上是不均匀的(由不同的阶结构和位错组成)。基于此,该团队提出局域畴结构模型(Localized-domains model,图1c)来描述石墨嵌锂过程中的结构演变。该研究结果联结了锂化石墨中的长程有序结构和局域结构,更新了人们对阶结构及其演变的认识,提出通过缺陷工程改善石墨嵌锂动力学并有望应用于快充电池。 图1 不同石墨嵌锂结构模型示意图 图2 电化学锂化过程中石墨长程结构的演变。(a)原位XRD;(b)锂化过程中石墨的电压曲线(电流密度为20 mA g-1)。 图3 锂化石墨局域结构的演变。不同阶石墨嵌锂化合物的iFFT图像(a-h)及缺陷分数统计(i)。   图4 锂化石墨中缺陷的类型及其演变。(a)缺陷示意图及其对应的iFFT图像和应力分布;不同阶石墨嵌锂化合物中的缺陷类型演变(b)及应力分布(c-g)。 图5 锂化石墨中的长程结构和短程结构。不同阶石墨嵌锂化合物的iFFT图像(a-d)及其中的短程结构(e-h)和平均晶面间距(i-l)。   图6 Ⅲ阶石墨(LiC18)中三种不同缺陷的结构演变。三种初始(a-c)及弛豫后(d-f)的具有不同缺陷的LiC18结构;(g-i)三种结构中锂离子的扩散路径;(j-l)(e)中结构随着时间的演变。
  • 物理所利用冷冻电镜解锁石墨嵌锂阶结构微观本质与演变
    石墨是商用锂离子电池的关键负极材料,也是最常见的二维材料。锂离子嵌入石墨会形成一系列阶结构,阶的微观结构决定着石墨嵌入化合物的物理化学性质。然而它的微观图像及其形成和转变动力学并不清晰,这限制了准确预测石墨嵌入化合物相关性质与性能,也阻碍了石墨在不同工况下的实际应用,比如快速充电。目前,研究人员主要提出了两种模型(Rüdorff-Hofmann和Daumas-Hérold模型)来描述石墨嵌锂形成的阶结构及其演变(图1a-b)。这两种模型显示出相同的长程有序结构,而具有不同的短程结构。揭示阶结构的微观真实面纱需要借助对纳米或者原子结构敏感的表征技术,如透射电子显微镜(TEM)。由于石墨材料对辐照敏感,常规TEM难以得到石墨及其嵌入化合物的真实纳米或者原子结构。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心特聘研究员王雪锋、研究员王兆翔和副研究员肖睿娟等利用冷冻透射电子显微镜(cryo-TEM)和其他表征技术以及理论计算与模拟在纳米尺度上揭示了锂离子嵌入石墨后形成阶结构的特征及其演变机制。结果发现,锂离子不均匀地嵌入石墨层间,产生局域应力,导致石墨结构发生扭曲变形,形成位错。不同阶结构之间的转变是通过锂离子扩散以及位错的移动、相互作用和转换实现的。每种阶结构锂化石墨在宏观上是均匀的(具有特征的平均晶面间距和衍射花样的长程有序排列),但在微观上是不均匀的(由不同的阶结构和位错组成)。基于此,该团队提出局域畴结构模型(Localized-domains model,图1c)来描述石墨嵌锂过程中的结构演变。该研究结果联结了锂化石墨中的长程有序结构和局域结构,更新了人们对阶结构及其演变的认识,提出通过缺陷工程改善石墨嵌锂动力学并有望应用于快充电池。相关成果以Localized-Domains Staging Structure and Evolution in Lithiated Graphite为题发表在Carbon Energy上。上述研究工作得到国家自然科学基金委和北京市自然科学基金的资助。论文链接 图1 不同石墨嵌锂结构模型示意图 图2 电化学锂化过程中石墨长程结构的演变。(a)原位XRD;(b)锂化过程中石墨的电压曲线(电流密度为20 mA g-1)。 图3 锂化石墨局域结构的演变。不同阶石墨嵌锂化合物的iFFT图像(a-h)及缺陷分数统计(i)。   图4 锂化石墨中缺陷的类型及其演变。(a)缺陷示意图及其对应的iFFT图像和应力分布;不同阶石墨嵌锂化合物中的缺陷类型演变(b)及应力分布(c-g)。 图5 锂化石墨中的长程结构和短程结构。不同阶石墨嵌锂化合物的iFFT图像(a-d)及其中的短程结构(e-h)和平均晶面间距(i-l)。   图6 Ⅲ阶石墨(LiC18)中三种不同缺陷的结构演变。三种初始(a-c)及弛豫后(d-f)的具有不同缺陷的LiC18结构;(g-i)三种结构中锂离子的扩散路径;(j-l)(e)中结构随着时间的演变。
  • 物理所在光激发VO2超快电子相变和结构相变的动力学解耦研究中取
    二氧化钒(VO2)是一种典型的强关联材料。在温度约为340K时,VO2会经历从绝缘性单斜相(M1-VO2)到金属性金红石相(R-VO2)的一级相变过程。强关联材料中电荷、晶格、轨道和自旋等自由度强烈地耦合在一起,这使得VO2绝缘体-金属相变存在多种相变机制。超快激光脉冲通过激发固体材料的价电子可以快速改变原子的势能面,因此激光辐射已经成为一种诱导强关联材料相变的有效途径,比如激光辐射可以使M1-VO2在500fs内发生非热的结构相变。但是实验上通常很难直接同时观测结构相变和绝缘体-金属相变中的超快原子和电子动力学,因此对于VO2的超快结构相变和绝缘体-金属相变的相变机制,以及两种相变能否脱耦仍然存在巨大争议。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员利用自主开发的激发态动力学模拟软件TDAP,研究了激光诱导M1-VO2到R-VO2的超快结构相变和绝缘体-金属相变,揭示了超快尺度上的非平衡相变机制。激发态动力学模拟可以追踪光诱导VO2结构相变和绝缘体-金属相变的超快过程,直接证明飞秒尺度上两种相变的解耦合行为。在这种动力学过程中,激光将M1-VO2 d||带上的价电子激发到导带上,d||带上产生的空穴可以引起V-V对的扩张和V-V-V扭转角的增加,从而驱动M1-VO2到R-VO2的结构相变(图1、图2)。计算模拟得到的结构相变速率与激发强度的依赖关系,与超快实验数据符合得很好。基于杂化密度泛函的激发态动力学模拟证明了在M1-VO2构型下可以出现等同结构的绝缘体-金属相变(图3)。M1-VO2中的空穴会引起间隙能级在带隙中的填充,从而引起带隙的消失。更高强度的光激发可以引起d||带的明显上移。模拟得到的结构相变和绝缘体-金属相变的激发阈值基本上是相同的,而结构相变和电子相变存在着数百飞秒的时间延迟,这导致了金属型M1-VO2瞬态和等同结构电子相变的出现(图4)。该工作揭示了VO2超快结构相变和绝缘体-金属相变过程中不同的超快机制,澄清了以往对于VO2是否存在等同原子结构的电子相变的争议,并提供了研究强关联材料非平衡动力学的新方法。相关成果近期发表在Science Advances上。研究工作受到国家重点研发计划、国家自然科学基金委和中科院的资助。图1 VO2原子结构图和光激发电子跃迁过程。(A)低温绝缘型M1-VO2和(B)高温金属型R-VO2的原子结构图。钒原子和氧原子分别以绿色和橙色显示。(C)脉冲电场强度E0为0.20 V/的800nm激光脉冲,以及其激发M1-VO2中的光生空穴密度随时间的演变。(D)光激发有效空穴密度与激光脉冲电场强度E0的关系。图2 光激发M1-VO2到R-VO2相变原子动力学。(A)不同激发强度下V-V长键和V-V短键平均长度的时间演变。(B)不同激发强度下平均V-V-V扭曲角的时间演化。(C)0.64 e/f.u激发强度下的差分电荷密度图。黄色区域对应于电子增加,青色区域对应于电子减少。(D)光激发结构相变时间常数与实验数据的比较。图3 光激发M1-VO2的电子动力学。(A)不同激发强度下M1-VO2的电子态密度。(B)杂化泛函非绝热模拟中电子激发量的演化。在E0=0.14 V/ 下t= 20 fs(C)和t = 40 fs(D)时的电子占据和态密度。图4 光诱导M1-VO2超快相变示意图。初始的绝缘相M1-VO2(t = -100 fs)在t = 0 fs时被激光脉冲激发。光激发诱导M1-VO2发生等同原子结构的绝缘体-金属相变(10 fs内),而结构相变在100至300 fs的时间尺度内发生。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制