当前位置: 仪器信息网 > 行业主题 > >

深紫外激光仪

仪器信息网深紫外激光仪专题为您提供2024年最新深紫外激光仪价格报价、厂家品牌的相关信息, 包括深紫外激光仪参数、型号等,不管是国产,还是进口品牌的深紫外激光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合深紫外激光仪相关的耗材配件、试剂标物,还有深紫外激光仪相关的最新资讯、资料,以及深紫外激光仪相关的解决方案。

深紫外激光仪相关的论坛

  • 我国自主研制科研装备获重大突破 实用化深紫外全固态激光器唯我独有

    2013年09月07日 来源: 科技日报 作者: 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130907/011378496864671_change_hzp3951_b.jpg9月4日,中科院工作人员在检查深紫外非线性光学晶体的光透度。新华社记者 马宁摄 科技日报北京9月6日电(记者李大庆)由中国科学院承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制项目”今天在北京通过验收。这个系列科研装备的研制成功,使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家。 经过10多年的努力,中科院的科研人员在深紫外激光非线性光学晶体方面实现突破,在国际上首先生长出大尺寸氟硼铍酸钾晶体,并发现该晶体是第一种可用直接倍频法产生深紫外波段激光的非线性光学晶体。在此基础上,科研人员又发明了棱镜耦合技术(已获中、美、日三国专利),率先发展出直接倍频产生深紫外激光的先进技术,并全面开展新型深紫外激光科研装备的研制和学科应用研究。 2007年,财政部设立专项,对中科院深紫外固态激光源前沿装备研制予以支持。经过5年多的持续攻关,利用大尺寸氟硼铍酸钾晶体和棱镜耦合专利技术,中科院理化技术所、物理所、大连化物所和半导体所的科研人员在世界上首次研制成功8类8台集实用化、精密化于一体的深紫外固态激光源,实现了一系列关键指标的突破。利用这8台深紫外固态激光源,科研人员成功研制出了深紫外激光拉曼光谱仪、深紫外激光光化学反应仪、深紫外激光光发射电子显微镜、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、光子能量可调深紫外激光光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等8台科学仪器。 据了解,目前这8台仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等一系列重大研究领域中获得了重要结果:证实了Pb、O等原子可通过单层石墨烯岛的开放边界进行插层反应,实现石墨烯与衬底之间去耦合;首次发现拓扑绝缘体Bi2Se3的自旋结构和轨道结构是固定在一起;首次观测到Bi2212能量/动量谱与不同激发光子能量关系。相关研究成果已发表在国际顶级科学期刊上。 今天通过验收的包括两个平台——深紫外非线性光学晶体与器件平台和深紫外全固态激光源平台,以及深紫外激光拉曼光谱仪等8台科学仪器。验收委员会的专家认为,这些仪器设备的研制成功及在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得的重要成果,“使我国深紫外领域的科学研究水平处于国际领先地位,并在物理、化学、材料、信息等领域开创了一些新的多学科交叉前沿。”“该项目取得的研究成果属于原始创新工作,具有重要意义,并对继续开拓深紫外激光的应用具有十分重要的意义。” 据介绍,深紫外全固态激光源前沿装备研制项目的实施,初步打造了我国“晶体-光源-装备-科研-产业化”的自主创新链。在科技部的支持下,中科院新启动了深紫外仪器设备的产业化开发工作;在财政部的支持下,中科院也启动了深紫外固态激光源前沿装备的二期研制项目。 中科院院长白春礼在验收会上说,科研装备创新能力是衡量一个国家科技创新能力的重要标志。现代科技的进步越来越依靠科学仪器的创新和发展,科研仪器装备的突破,往往催生新的科研领域,产出重大创新成果。迄今为止,至少有1/3的诺贝尔物理和化学奖授予了那些在测试仪器和实验方法方面有重要创新的科学家。所以,我国要实现重大科学突破,不仅要有创新自信,要善于提出原创科学思想和方法,而且要发展出新的试验手段,研制出新的仪器装备。

  • 深紫外光源

    请教各位大侠,260纳米左右的深紫外LED,是否可以用在紫外可见分光光度计上?

  • 深紫外光源

    请问液相色谱里面使用深紫外光源吗?使用260多纳米的深紫外LED是否可以进行替代?

  • 深紫外LED光源

    深紫外LED光源

    借用本版宝地一用:)作为国内唯一的深紫外LED制造商,我们专注于UV-C和UV-B LED的研发、制造和应用,产品波长覆盖250-320nm。可为光谱仪器、生化检测、净水处理、空气净化、环境监测、卫生消毒、医疗、家电等领域提供多种封装产品,并可根据行业用户需求,提供定制化开发发、大功率模组,以及配套的驱动、散热单元。目前产品已在国内外的光谱仪器、生化检测设备、净水处理、实验室/医院卫生消毒等产品上得到应用,性价比高于国外同类产品。论坛诸友,如有行业需求或应用开发新思路,欢迎沟通交流。老狐jerryhu98@yahoo.com13801169262Skype:jerryhu98http://ng1.17img.cn/bbsfiles/images/2013/06/201306091544_443762_2552067_3.jpg

  • 紫外拉曼光谱仪研制和在催化研究中的应用

    紫外拉曼光谱仪研制和在催化研究中的应用“UV Raman Spectrograph and Its Applications in Catalysis 拉曼光谱是鉴定物质分子结构的有力工具,它已应用于化学、物理、生物和材料科学等领域。传统的拉曼光谱在可见区极易产生荧光,而荧光的强度往往是拉曼强度的几万倍乃至百万倍,因此常规拉曼光谱受到荧光的严重干扰,常常得不到拉曼光谱。这一难题成为拉曼光谱应用的主要制约因素。传统拉曼光谱的另一个弱点是其本征灵敏度很低,这也限制了它的广泛应用。 上述两个难题在催化研究中尤其突出,因为催化剂表面极易产生荧光,特别是有碳氢物种存在时,表面荧光往往非常强,而绝大部分石油化工过程的催化剂在工作状态下不可避免地生成各种表面碳氢物种。所以,消除或避开表面荧光的干扰和提高灵敏度是拉曼光谱成功应用于原位催化研究的关键所在。 针对荧光干扰和灵敏度低这两个难题,提出研制采用连续波紫外激光作为激发光源的紫外拉曼光谱仪的想法,克服一系列实验上的困难,于1997年建成我国第一台紫外拉曼光谱仪并将其应用于催化研究。 经过大量的实验和理论分析,发现催化剂表面的荧光主要出现在可见区,即300-700nm。因此将激发波长从可见区移开,则有可能避开荧光干扰。我们提出将激发波长从传统拉曼光谱的可见或近红外向紫外和深紫外波段位移以避开催化剂表面荧光干扰的想法,即研制采用紫外激光作为光源的紫外拉曼光谱仪。从理论上分析紫外拉曼光谱有以下几个优势:①由于荧光主要出现在可见区,将激发波长向紫外波段移可以有效地避开荧光;②由于光散射强度与波长的四次方成反比,将激发波长向紫外区移可以提高灵敏度;③很多化合物的电子吸收带在紫外区,因此可以进行紫外共振拉曼光谱,使仪器灵敏度提高几个数量级。 在上述想法的基础上,结合催化原位研究,采用紫外激光光源、三光栅和紫外区灵敏的CCD探测器研制了收集紫外拉曼散射光的椭圆内反射镜、外光路系统和催化研究的高温高压装置、用于催化反应研究的特殊拉曼光谱池以及适用于动态和原位紫外拉曼研究的吸附和原位反应装置。最后,研制成功用于催化原位研究的紫外拉曼光谱仪。

  • 【原创】紫外拉曼光谱仪技术 技术转让

    4月28日,中国科学院大连化学物理研究所和北京卓立汉光仪器有限公司“紫外-可见区拉曼光谱仪技术”技术转让合同正式签字在京举行。参加签字仪式的有大连化物所李灿院士、冯兆池研究员;卓立汉光公司苏大明厂长等。 这是自4月8日中国科学院大连化学物理研究所和北京卓立汉光仪器有限公司共同成立“现代仪器联合实验室”后的又一重要合作。标志着双方的合作再上台阶。 李灿院士是中国科学院大连化学物理研究所研究员、催化基础国家重点实验室主任,中法催化联合实验室中方主任,中国科学院大连化学物理研究所学位委员会主任。中国化学会催化委员会主任、中国物理学会光散射委员会主任、国际催化学会理事会副主席、英国皇家化学会Fellow。2003年当选中国科学院院士、2005年当选第三世界科学院院士。辛勤耕耘,不断进取, 李灿院士和他领导的试验室取得了多项重大科技成果。是在国际上最早利用紫外拉曼光谱应用于催化研究, 筹建了具有自主知识产权的国内第一台用于催化材料研究的紫外共振拉曼光谱仪,获得国家发明二等奖。激光拉曼光谱是一项重要的现代分子光谱技术,是研究物质分子结构的强有力工具,已应用于物理、化学、材料、生物、环境和能源等各个领域中。可见激光作为激发光源的常规拉曼光谱由于存在灵敏度低和荧光干扰的困难,使许多领域的拉曼光谱研究工作无法开展。紫外激光拉曼光谱能成功地避开了荧光干扰大幅度提高了灵敏度,是进行催化、材料和生物等领域原位光谱研究的强有力的手段。例如,在过渡金属杂原子分子筛、担载型高分散过渡金属氧化物催化剂、催化剂表面积炭失活以及固体氧化物超强酸体系等多个研究领域中,陆续取得了一系列引人注目的研究成果。通过紫外共振拉曼光谱首次获得了TS-1分子筛中有关骨架钛物种存在的直接证据。紫外拉曼光谱的另一重大应用研究领域是生物科学。利用深紫外拉曼光谱可以获得蛋白氨基酸残基之间的相互作用,辽宁信息网蛋白质的二级结构,如蛋白的折叠和解折叠,蛋白质侧链的构象变化等重要结构信息。北京卓立汉光仪器有限公司于2000年首先推出国内第一台量产型三光栅光谱仪,通过不断努力,卓立的光谱仪系列产品已经拥有了多种规格的光谱仪和配套完善的光谱仪组件。成为国内知名的仪器生产厂商,其中光谱仪有Omni-λ、PalmSpeZ、SSM 三个系列;光谱仪组件包括:多种光源和相应的电源、各种探测器、样品室、数字采集器、光子计数器及连接附件。形成了产品模组化,配套齐全,灵活性强,自动化程度高,软件实用,可组成各种光谱仪应用系统,多年来已经为多个科研院所配置开发了多套如(● 光源(灯,LED,LCD, PDP等)特性(辐射光谱、色座标、相关色温、显色指数等)光谱测试系统;● 光学/光纤元器件,材料透射率光谱、反射率光谱系统;● 光电探测器(或CCD)的光谱响应测量系统;● 发射(Emission)光谱系统;● 吸收(Absorption)光谱系统;● 荧光(Fluorescence)光谱仪系统;● 拉曼(Raman)光谱系统;● LIBS - Laser-Induced Breakdown Spectroscopy 光谱仪系统;● LIF Laser Induced Fluorescence光谱仪系统;● 环境监测光谱仪分析系统;● 镀膜监测光谱仪分析系统。)光谱系统;现在产品已经成功登陆欧美市场,并与多家国外光电公司建立了合作关系。这次技术转让使双方共同得益,大连化物所通过转让使得科研成果确实的转变成产品,实现了为提升中国科学仪器的设计生产水平并进一步研发具有国际先进水平的仪器设备,为国家科学仪器的研究与生产的现代化做出贡献宏愿的第一步。卓立汉光通过转让使得光谱产品线日趋完善,可以为客户提供更多的服务,同时也为赶超国际水平,迈出了坚实的一步;签字仪式结束后,李院士一行饶有兴趣的参观了卓立汉光的研发部、光谱试验室以及全部生产线。

  • 紫外共振拉曼具体原理是怎么一回事?

    一直没有搞清楚共振拉曼是怎么一回事,为什么激发光是紫外的就能大幅提高拉曼信号强度?很多地方都在说,都是简单带过,诸如“在深紫外波段,激光照射被测样品,在激光波长与样品吸收峰相近时,会产生共振效应,这将极大地提高散射的效率”,为什么激发光与样品吸收峰相近,就会让拉曼信号强度大幅提高。还有一个一直困扰我的问题,拉曼散射代表的是分子的振动-转动光谱,而很多地方给的解释过程,明明在说“电子一开始处于基态,受到激发后跃迁到某一虚态,然后再向下跃迁,发出某频率的光”,这个同分子的振动和转动有什么联系?

  • 美造出67阿秒迄今最短极紫外激光脉冲

    中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)

  • 【原创】深紫外led--高效物理杀菌消毒机制

    【原创】深紫外led--高效物理杀菌消毒机制

    瑞士人niels ryberg finsen(1860-1904,诺贝尔生理和医学奖获得者)发现的紫外线消毒特性是经过百年验证的严肃科学结论。额定剂量的uvc(200-280nm)深紫外线可以穿透病毒外壳、真菌、孢子和其他微生物的细胞壁,破坏DNA或RNA的碱基对,摧毁核酸复制能力或蛋白质结构,从而达到杀菌消毒的作用。不同于化学消毒和其他消毒技术之处在于:1、不受温度、浓度、活性等化学平衡条件影响,如在低温环境应用。2、无毒、无残留、无异味、无二次污染。3、细胞壁和病毒蛋白外壳无法阻挡,特定微生物,特定剂量,完全杀灭。4、避免生物抗药性,不必更换药品,不必使用组合药剂。5、特别是适合空气、水和生物表面消毒。6、作用时间短,特别适用于个人、家庭使用。产品还可以在消毒杀菌、光照医疗、光谱分析、生化、有机物固化、产品检测等应用领域http://ng1.17img.cn/bbsfiles/images/2012/03/201203300910_358166_2501257_3.jpg

  • 【第三届原创参赛】揭开深紫外的面纱---岛津SolidSpec3700和3700DUV介绍

    岛津深紫外SolidSpec 3700和3700DUV介绍 看一个网友的帖子谈到深紫外,由于我以前没接触到,所以网上找了一下,供自己“食用”,如果其他网友觉得也有帮助,那就一起“吃”吧。 其实就是翻译了一下,大家可以讨论一下这个仪器,互相学习。互相拍砖。http://ng1.17img.cn/bbsfiles/images/2010/10/201010272207_254512_1786353_3.gif图1看看图1,还是蛮大个的。SolidSpec 3700 的特点是:1.高灵敏度3700和3700DUV是UV-VIS-NIR 分光,也就是紫外—可见—近红外分光。三检测器:检测紫外和可见的PMT(光电倍增管);InGaAs和PbS检检测近红外。如下图所示:http://ng1.17img.cn/bbsfiles/images/2010/10/201010272209_254514_1786353_3.gif 图2从上图可以看到,在PMT和PbS之间有段空白区域(1000nm~1600nm),这也是采用InGaAs检测器的原因。采用InGaAs后,这个波段的噪声会明显改善。http://ng1.17img.cn/bbsfiles/images/2010/10/201010272211_254515_1786353_3.gif图4http://ng1.17img.cn/bbsfiles/images/2010/10/201010272211_254516_1786353_3.gif图5可以看到三个检测器是装在一个积分球(integrating sphere)上面。http://ng1.17img.cn/bbsfiles/images/2010/10/201010272213_254517_1786353_3.gif2.深紫外如下技术指标:http://ng1.17img.cn/bbsfiles/images/2010/10/201010272214_254518_1786353_3.gif图6可以看到3700DUV的波长下限是175nm。那么3700DUV采用了什么能测量175nm或者165nm的光谱呢?原话是“purging both the optical and the sample compartment with nitrogen gas.”就是用氮气吹扫光学系统和样品室中的空气。 主要是清除空气中的氧气。如下图说明http://ng1.17img.cn/bbsfiles/images/2010/10/201010272215_254519_1786353_3.gif大意就是空气中的氧分子会吸收190nm以下的紫外。Nitrogen gas purging就是清除氧分子。http://ng1.17img.cn/bbsfiles/images/2010/10/201010272215_254520_1786353_3.gif 图7这个其实是样品室的一部分(下图为证),但说明书中标明是Nitrogen gas purge。http://ng1.17img.cn/bbsfiles/images/2010/10/201010272217_254521_1786353_3.gif图8另外,为了测量深紫外区,检测器PMT的光窗材料使用的是fused silica,因为三个检测器装在积分球上,所以积分球的内部采用的resin材料。原话如下:http://ng1.17img.cn/bbsfiles/images/2010/10/201010272217_254522_1786353_3.gif图8中样品室中的那个跟玻璃一样的东西,是待测样品。在图8中,大家可以看到样品是水平放置的,光是垂直的,就是从上到下。SolidSpec 3700和SolidSpec3700DUV采用的三维光路,如下图:http://ng1.17img.cn/bbsfiles/images/2010/11/201011051837_257596_1786353_3.gif 图9它的光路给的不是很清晰,标注是我给的,不一定正确,从图10中可以看出是双光束,有兴趣的朋友可以看下光的路线是怎么走的。对比下图8和图9,可能会有些感觉吧。呵呵,这就是所谓的3D光路,我总算明白了。就到这里吧,有兴趣的可以参考一下他们的Spec(下载:www.ssi.shimadzu.com/products/.../Shimadzu_SolidSpec_BF.pdf)。

  • 【科技前线】激光二极管制造难题破解,能产生从近紫外到近红外更广泛波长

    [B][center]英破解塑料激光二极管制造难题新材料在提高导电性能的同时不影响发光性能[/center][/B]  英国帝国理工学院科学家在近期《自然• 材料》杂志上发表文章称,他们通过对一种被称为PFO的塑料材质的分子结构进行改进,最终解决了塑料激光二极管的制造难题。这意味着以塑料半导体作为材质的激光二极管有望很快应用于CD播放器等电子产品中。  目前在各类电子产品中被广泛应用的激光二极管都是由无机半导体材料制成的,如砷化镓、氮化镓及其相关合金等。电流的正负电荷在激光二极管的材料内部相结合产生出激光发生需要的初始光,之后,初始光被驱动多次来回穿梭于半导体材料,并且每穿过一次光强都会增加,那么一段时间以后,一束发散性小、强度高、定向性好的激光束就产生了。  在过去的20年里,尽管在有机分子半导体领域里也取得了很多的成就,例如一系列特别塑料的产生以及很多基于该类塑料的重要设备都得到了成功的应用,其中包括发光二极管、场效应晶体管以及光敏二极管等。然而,塑料激光二极管却在近十几年里没有取得任何的突破。直到现在,人们仍然普遍认为塑料半导体激光二极管几乎不可能生产出来,主要因为这一领域有一个重大阻碍:一种既可以维持足够大电流又可以提供有效初始光的塑料材质至今没有被发现或发明。  现在,帝国理工学院的科学家们找到了符合要求的材料。他们对日本住友化学公司合成的、与蓝光塑料PFO密切关联的塑料进行了研究,通过轻微改变该塑料的化学结构生产出一种新型材料,可以比原材料多传递200倍的电荷却不会损耗它的发光效能,同时也提高了激光的产生能力。  该研究小组带头人,帝国理工学院物理系多纳尔• 布拉德利教授说:“这是一次真正的突破。此前的研究大多是为电子设备和光电子设备设计聚合物,只涉及到加强材料的一种特质。然而,结果并不理想,因为当人们尝试去提高塑料半导体的发光性能时,导电性能会受到损害,而提高导电性能就会影响其发光性能。”  研究小组成员保罗• 斯塔夫里诺补充说,对PFO结构的修改则使研究人员成功地协调了这两个先前水火不容的特性,这意味着塑料发光二极管将成为现实。  塑料激光二极管的优势并不仅仅在于它的生产成本低廉以及其易整合的特性,它将比目前的激光二极管拥有更多优点。目前可用的激光二极管不能涵盖所有的可见光谱,这限制了显示器和分光镜的应用,而应用于波导和光学纤维的标准塑料则可以覆盖全部波长。这种新型塑料激光二极管也能够产生从近紫外到近红外的更广泛的波长。

  • 网络讲堂:9月25日 真空紫外光谱技术及其应用

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif真空紫外光谱技术及其应用讲座时间:2014年09月25日 10:00 主讲人:毛峥乐现任光学光谱技术主管,负责OEM、光栅、光谱系统、真空紫外技术咨询和系统应用支持。http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】真空紫外光谱技术专指为1-200nm光学光谱研究设计、开发的技术和光学系统。相对于200nm以上,真空紫外光谱系统对光学元件、光路设计,尤其是光谱仪核心元件——光栅,提出了极其苛刻的要求。真空紫外光谱技术作为一种经典技术,早已为同步辐射装置广泛使用。同时作为一种新兴技术,它也越来越多地应用于独立实验室,如1-200nm的荧光、光致发光、材料吸收谱反射谱、高次谐波、等离子体发射、极紫外激光表征、探测器表征等前沿科学应用领域之中。真空紫外光谱技术作为一种经典技术,早已为同步辐射装置广泛使用。同时作为一种新兴技术,它也越来越多地应用于独立实验室,如1-200nm的荧光、光致发光、材料吸收谱反射谱、高次谐波、等离子体发射、极紫外激光表征、探测器表征等前沿科学应用领域之中。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年09月25日 9:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 【转帖】焊接电弧紫外光谱信息的获取与分析

    分类:紫外 时间:2007-9-24 7:49:24 摘要:针对焊接电弧紫外光谱信息的研究,研制了一套焊接电弧紫外光谱计算机采集和处理系统。利用此系统对TIG焊电弧紫外光谱进行了研究,成功地获得了不同焊接规范下的电弧紫外光谱频谱分布特征,并对此进行了分析。  关键词:焊接电弧;紫外光谱;计算机;获取;分析  中图分类号:TG403   文献标识码:A文章编号:1004-132Ⅹ(2000)04-0446-04 随着焊接电弧物理的深入研究,人们认识到,焊接电弧光谱可以反映出焊接过程中电弧 的各种物理和化学的状态变化,并且,电弧光谱信息内容丰富,具有时空可分辨性,灵敏度 高,传递信息快,便于测控自动化的实施,因此,焊接电弧光谱信息是值得认真研究和开发 的信息资源[1~3]。以往的研究主要集中于焊接电弧的可见光区,把紫外区只作 为对人体有害的辐射来处理[4]。但通过对电弧光谱各个波长段的谱线数量及辐 射功率密度 的分析可知,辐射光谱在紫外波长段的谱线数量及辐射功率密度都是很大的,因而,紫外区 是很有 可能发现高品质的弧焊图像信息和其它信息的一个有待开发的区域。  为研究焊接电弧紫外光谱的特征,采用由计算机控制的焊接电弧紫外光谱信息采集 与处理系统,获得并分析了钨极氩弧焊电弧紫外光谱频谱的分布特征。1 计算机采集与处理装置  焊接电弧紫外光谱计算机采集与处理装置的构成见图1。1.电弧 2.试件 3.光电倍增管 4.步进电机1 5.紫外成像透镜 6.光阑 7.全反射转镜 8.步进电机2图1 电弧紫外光谱计算机采集与处理系统构成  该实验装置以计算机作为控制平台。将电弧光谱信息,即光电转换后的电信号、焊接电流 及电压3个模拟量,经滤波放大及A/D转换,进行计算机采集和处理。后向通道为扫描控 制部分,控制步进电机驱动波长扫描机构,来完成对电弧光谱空间上光谱波段上的扫描,以 便对焊接电弧光谱进行研究。  在光学系统中,光谱仪的波长范围为200 nm~1000 nm,光电倍增管的光谱响应区间为170 nm~350 nm的紫外区。采集时,先调整成像透镜及电 弧的位置,使电弧以1∶1的比例成像于光谱仪的入口狭缝处,然后在电弧像上选取某一单元 部 位,通过调整光谱仪入口狭缝处的切口位置,对电弧进行Z方向上的扫描,Z方向上的调 节精度为0.01 mm。当反射镜旋转时,对与所选部位同高度的电弧截面进行Y方向的扫 描,每次扫描宽度为0.186 mm。电弧辐射光通过光谱仪入口狭缝进入光谱仪,经光谱仪内 的色散棱镜分光成按波长分布的光谱,在出口狭缝处成像于像焦平面上,再由光电倍增管接 收响应进行光电转换,通过前置放大器及A/D接口,由计算机采集处理。  实验中对实验系统采用经中国计量科学院标定的标准紫外光源(氘灯)进行标定,以便 获得光谱信号的辐射强度,并对光路系统进行了激光准直,确保实验的精度及可靠性。2 焊接电弧紫外光谱的获取  利用上述实验装置进行了TIG焊电弧紫外光谱分布的研究。实验中采用直流钨极氩 弧焊,极性为正接,保护气流量为6 L/min,试件为厚度δ=6 mm的低碳钢Q235 。  为了获得TIG焊电弧紫外光谱的分布,对其光辐射的采集,进行了波长窗口扫描和定波 长空间扫描。波长窗口扫描是在光谱仪出口狭缝处对所确定的波长范围内逐点依次采集,获 得在所确定波长范围内的紫外光谱分布。定波长空间扫描采集是在所选定的波长上,对电弧 的某一横截面逐次采集,通过改变光谱仪入口狭缝处的切口位置并控制全反射转镜的偏转来 完成,从而得到电弧紫外光谱径向空间分布。  为了将采集的数据处理成电弧光谱辐射的径向分布,现将电弧视为轴对称体,每次所采 集的电弧截面见图2。每次采集是对着宽度为dy,高度为dz的面积进行的,因此 实际上采集到的Lλ是对体积为2x0dydz内的电弧光谱的平均辐射亮度。为计算某点的亮度, 必须进行Abel变换,而平均辐射亮度Lλ与谱线在电弧各点的发射系数ε有确定的关系:因电弧满足LTE条件,且又满足光 学条件[2],则     (1)式中,Lλ(y)为y方向测得的光谱平均辐射亮度的分布;ε(r)为电弧径向各点的光谱发射系数。 图2 沿Y方向扫描电弧截面的示意  如果将元体取无限小,则      (2)式中,Ie(y)表示电弧径向各点的光谱辐射强度。其解为      (3)式中,I′e(y)为Ie对y的导数。  某一点的发射系数     (4)式中,r0为弧柱半径 rj为某测量点距柱中心的距离;N为测量总数;yk=kr0/N;r j=jr0/N;k=0,1,2,…,N-1;j=0,1,2,…,N-1;βjk为Abel变换系数, 与N值有关。  从式(4)可求出电弧某截面上光谱发射系数沿径向的分布。在该处理过程中,为了满 足Abel变换的需要,先将采集到的Lλ(y)等距插值成平行等距的Lλ(y),再进 行Abel变换。Abel变换系数βjk采用误差较小的Barr变换系数。而光谱辐射 强度Ie与光谱辐射亮度Lλ之间有Ie=Lλdscosθ      (5)式中,ds为辐射源的辐射面元;θ为辐射面元的法线与辐射方向的夹角。  因为系统光路是经激光准直的,θ可视为零,即θ=0,则Ie=Lλds      (6)  根据以上转换与处理原理,为实现电弧紫外光谱的实时采集和处理,采用C语言设计了 采集和处理软件。利用建立的电弧光谱计算机采集和处理系统,成功地进行了TIG焊电弧紫 外光谱的采集和处理。

  • 自建紫外检测器无法实现光电信号转换以及信号检测

    实验室留有一个毛细管检测器模块,想利用该模块自己搭建毛细管紫外检测器,但是利用255nm和270nm的深紫外LED灯源,然后自己又购入了相应波长的光电二极管,目前遇到的最主要的问题是无法将光电二极管转化出来的电信号接入采集卡,自己尝试过购买iv转化器和稳压电源搭建,但还是无法采集到电信号。求各位老师赐教,或者有无有经验的老师分享方案,谢谢!

  • 紫外光谱求教

    用高效液相色谱-紫外检测器检测某物质。紫外光谱是因为分子电子能级发生跃迁产生的,我的理解是:电子吸收能量,从基态到激发态,吸收了光谱,但激发态不稳定,应该又回到基态,又会发射光谱,这两个过程应该都是很短的,ns至ms级的,而且应该是不断循环的过程(即只要有紫外光照射,改分子就一直处于基态到激发态,再从激发态到基态,如此循环),也就是说该物质及吸收了紫外光,又发射了紫外光,那检测器搜集到的的发射的紫外光能量基本可以认为是不变的?这种理解对吗?

  • 紫外光谱仪的紫外探测器贵很多吗

    听说杭州聚光已经批量生产紫外的荧光光谱仪了。为什么国内那么多的光谱仪厂家,都只做可见光的荧光光谱仪呢?问题是出在什么地方?一般来说,只要探测器的响应范围可以达到紫外,其他光学部件响应范围一般不是问题,所以是价格上出了问题吗?紫外探测器的价格比普通可见光探测器的价格高很多吗?

  • 紫外可见吸收光谱测试求高手相助。急!!!

    都说用积分球测的紫外可见吸收光谱实际上测试的是紫外漫反射光谱,最后再将漫反射光谱利用一个公式转变成吸收光谱。为什么我用积分球测试的固体材料吸收光谱纵坐标直接显示为Absorbance而不是R%,是仪器自动将漫反射光谱转换成吸收光谱了吗? 求高手解答!!

  • 科学仪器最新技术汇总分析及展望

    中科大单分子光电子学研究组建立和发展了高分辨扫描隧道显微技术(STM)与高灵敏光学检测技术二者优势融合在一起的先进联用系统。最近,他们通过对STM针尖与金属衬底之间形成的纳腔等离激元共振模式的频谱调控,将非线性效应和针尖增强拉曼散射融合起来,从而实现了史无前例的亚纳米分辨的单个卟啉分子的拉曼光谱成像,不仅最高分辨率达到约0.5 纳米,而且还可识别分子内部的结构和分子在表面上的吸附构型。  2013年9月6日,由中科院承担的国家重大科研装备研制项目——紫外固态激光源前沿装备通过验收,使我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。目前已研制成功深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备8种,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成。  由金钦汉教授承担重大科学仪器专项——千瓦级微波等离子体炬(Microwave Plasma Torch,MPT)原子发射光谱仪,有望在短时间内获得样品中全部组成元素及其含量的信息,可解决很多过去想办却难以办到的事情,如雾霾快速溯源、伪劣产品鉴别、产品质量监控……  除上述最新技术外,朱险峰还选择性介绍了X射线3D显微成像技术、Inno系列便携式拉曼光谱技术、3D空间自由曲面测量技术、医疗仪器—智能眼镜等技术进展及其最新应用,并表示:“科学仪器已进入4D测量时代,同时虚拟仪器将助力科学仪器技术进步,随着无线通讯模块的开发,科学仪器单机将朝着机群方向发展。”

  • 紫外光耐气候试验机的工作原理

    紫外光耐气候试验机的工作原理

    紫外光耐气候试验机是模拟自然光照环境下的紫外线照射和冷凝环境,对试验材料或物品进行加速耐气候试验,最后观察试验材料的老化情况。[url=http://www.dongguanruili.com/product/27.html][color=#333333]紫外光耐气候试验箱[/color][/url]主要可以模拟自然气候环境中的紫外光照射、雨淋、高温、潮湿、凝露、黑暗等气候环境条件,通过模拟这些环境,加速测试试验物品或材料的物理、化学稳定性。[align=center][img=紫外光耐气候试验机,545,399]http://ng1.17img.cn/bbsfiles/images/2017/06/201706191800_01_3225823_3.jpg[/img][/align][align=center]紫外光耐气候试验机[/align]  紫外光耐气候试验机的主要工作原理是模拟了日光中UV段光谱的荧光紫外光,并结合温度、湿度等调节装置,对材料造成变色、亮度、强度下降、开裂、剥落、粉化、氧化等损害试验,通过紫外光与湿气之间的协同作用,使得实验材料的单一耐光能力或耐湿能力减弱和失效,从而能够以最快速的情况测试材料的耐气候性能。  紫外光耐气候试验机主要分为四个功能系统,分别是光照系统、喷淋系统、凝露系统、加热系统。  光照系统采用了8只40W的紫外线荧光灯管作为发光源,平均分布在箱体两侧。由于荧光灯的光能量输出会随着时间的增长而逐渐衰减,会影响的试验的效果,所以在本紫外光耐气候试验机内部采用了灯管轮替的方式来将旧灯替换成新灯。所有的8只灯管中每隔四分之一的荧光灯寿命衰减时就由新灯来替换旧灯,这样以达到稳定的光能量输出。单支荧光灯的有效使用寿命可达1600~1800小时。  喷淋系统采用了人工控制功能,可自由调节喷淋强度及大小,也可以更换不同的喷头。此喷淋装置主要用于模拟下雨时雨水侵蚀的情况。  凝露系统采用了饱和水蒸气加湿冷凝的方法,在试验箱体中装有盛水盘,加热盛水盘以后使水受热蒸发成水蒸气。  加热系统采用了钛合金的加温电热管,可以快速升温加热。温度控制由微电脑自动控制,与光照系统独立,并结合使用。加热系统具备预防超温的功能。  紫外光耐气候试验机设备具有提供的阳光UV模拟,使用维护成本低廉,易于使用,设备采用控制自动运行,试验周期自动化程度高,灯光稳定性好,试验结果重现率高等特点。原文来自于瑞力检测http://www.dongguanruili.com/news/224.html

  • 【分享】安徽光机所研发出用于皮肤治疗的新型准分子激光设备

    造福银屑病(俗称牛皮癣)、白癜风、异位性皮炎等皮肤病患者的用于皮肤治疗的新型准分子激光设备日前在安徽光机所通过投资方验收。   传统的针对皮肤疾病的光学治疗手段主要有紫外长波PUVA法,紫外中波UVB法,大多采用形式多样的宽频紫外UV灯管,其发射的紫外在很大的波谱范围,基本涵盖了280-400nm的宽阔区域。在治疗照射过程中方向不易控制,发散角度大,正常皮肤处于曝光中,有可能引起皮肤发红、灼伤等不良影响,并且效果不是很显著。  安徽光机所激光中心陈永荣课题组,通过半年多不懈努力的自主研发工作,研制出国内首台用于皮肤治疗的XeCl准分子激光设备,该设备能输出308nm(处于银屑病、白癜风等疾病治疗的活跃频谱295-320nm内)的单频紫外脉冲激光,强度高、方向性好,由光纤导引至病灶,能迅速释放能量,只针对病变局部,不累及周围正常皮肤。与传统方法比较,具有见效快、疗程短、费用低、抗复发、特便捷、更安全等优点。是当今医疗领域极力推行的最新疗法,病患者无需治疗前做太多的准备,真正能达到无创伤绿色治疗。同时,该疗法还避免了传统的普通紫外光大面积治疗导致皮肤老化甚至癌变的风险。  根据国内外相关临床研究资料,308nm紫外激光可使银屑病患者皮损处活化的T淋巴细胞迅速调亡;对白癜风病人,对由免疫性引致的黑色素细胞破坏造成的黑色素生成能力减损或丧失有明显的疗效;对各种异位性皮炎有非常好的效果,特别对消除搔痒等刺激症状疗效尤为显著,能促进正常细胞的迅速生长。  用于皮肤治疗的XeCl准分子激光设备结构紧凑、外观大方、操作灵活、移动方便、输出能量和功率稳定、工作寿命长、性能可靠。激光由光导纤维传输,单脉冲能量150mJ,能量不稳定性±3%,重复频率≤50Hz,光纤输出6-16mJ,光斑强度均匀。  研发人员相信在可预见的未来,308nm准分子激光在医疗领域将会有广泛的应用前景。(韩奇阳、陈永荣供稿)http://www.aiofm.ac.cn/news/2006/12/22.htm

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制