当前位置: 仪器信息网 > 行业主题 > >

砼电动钻孔取芯机

仪器信息网砼电动钻孔取芯机专题为您提供2024年最新砼电动钻孔取芯机价格报价、厂家品牌的相关信息, 包括砼电动钻孔取芯机参数、型号等,不管是国产,还是进口品牌的砼电动钻孔取芯机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合砼电动钻孔取芯机相关的耗材配件、试剂标物,还有砼电动钻孔取芯机相关的最新资讯、资料,以及砼电动钻孔取芯机相关的解决方案。

砼电动钻孔取芯机相关的论坛

  • 细胞钻孔针介绍

    [url=http://www.f-lab.cn/cell-analyzers/punch-needle.html]细胞钻孔针[/url],punch needle是为细胞转移和细胞分离应用而设计的细胞打孔针,用于细胞打孔和细胞钻孔应用。细胞钻孔针作为细胞转移分离系统的重要配件,方便用户把细胞从微孔芯片转移到各种微管中。细胞钻孔针经过精密设计,它可以精密在微孔板上钻孔而不接触到细胞,经过酒精消毒后可重复使用。[img=细胞钻孔针]http://www.f-lab.cn/Upload/punch-needle.JPG[/img]细胞钻孔针:[url]http://www.f-lab.cn/cell-analyzers/punch-needle.html[/url]

  • 电动二通O型球阀的适应范围

    电动二通O型球阀采用一体化结构,与R等角行程电动履行机构相配,有输入节制灯号记号(4~20mADC或1-5VDC)及单相电源便可节制运转,存在功效强、体积小、精练宜人、性能靠得住、配套简略、通顺能力大、出格合适于介质是黏稠,含颗粒,纤维性质的场合 电动二通O型球阀采用一体化结构,与R等角行程电动执行机构相配,有输入控制信号(4~20mADC或1-5VDC)及单相电源即可控制运转, 气动球阀具有功能强、体积小、轻便宜人、性能可靠、配套简单、流通能力大、特别适合于介质是粘稠,含颗粒,纤维性质的场合。目前该阀广泛应用于食品、环保、轻工、石油、造纸、化工、教学和科研设备、电力等行业的工业自动控制系统中。

  • 【资料】电动机额定电流速算及保护装置选用

    电动机额定电流的速算口诀及经验公式  (1) 速算口诀:  电动机额定电流(A):“电动机功率加倍”,即“一个千瓦两安培”。通常指常用的380V、功率因数在0.8左右的三相异步电动机,“将千瓦数加一倍”即电动机的额定电流。  (2) 经验公式:  电动机额定电流(A)=电动机容量(kW)数×2  上述的速算口诀和经验公式的使用结果都是一致的,所算出的额定电流与电动机铭牌上的实际电流数值非常接近,符合实用要求,例如一台Y132S1-2,10kW电动机,用速算口诀或经验公式算得其额定电流:10×2=20A。  二 电动机配用断路器的选择  低压断路器一般分为塑料外壳式(又称装置式)和框架式(又称万能式)两大类。380V245kW及以下的电动机多选用塑壳断路器。断路器按用途可分为保护配电线路用、保护电动机用、保护照明线路用和漏电保护用等。  2.1 电动机保护用断路器选用原则  (1) 长延时电流整定值等于电动机额定电流。  (2) 瞬时整定电流:对于保护笼型电动机的断路器,瞬时整定电流等于(8~15)倍电动机额定电流,取决于被保护笼型电动机的型号、容量和起动条件。对于保护绕线转子电动机的断路器,瞬时整定电流等于(3~6)倍电动机额定电流,取决于被保护绕线转子电动机的型号、容量及起动条件。  (3) 6倍长延时电流整定值的可返回时间大于或等于电动机的起动时间。按起动负载的轻重,可选用返回时间1s、3s、5s、8s、15s中的某一档。  2.2 断路器脱扣器整定电流的速算口诀  “电动机瞬动,千瓦20倍”  “热脱扣器,按额定值”  上述口诀是指控制保护一台380V三相笼型电动机的断路器,其电磁脱扣瞬时动作整定电流,可按“千瓦”数的20倍”选用。对于热脱扣器,则按电动机的额定电流选择。  三 电动机配用熔断器的选择  选择熔断器类别及容量时,要根据负载的保护特性、短路电流的大小和使用场合的工作条件。  大多数中小型电动机采用轻载全压或减压起动,起动电流一般为额定电流的5~7倍;电源容量较大,低压配电主变压器1000~400kVA(包括并列运行容量),系统阻抗小,当发生短路故障时,短路电流较大;工作场合如窑、粉磨场合,通风条件差,致使工作环境温度较高。因此,选用熔断器的分断能力和熔体的额定电流,较之一般工业使用要适当加大一点。  3.1 熔体额定电流的经验公式  熔体额定电流(A)=电动机额定电流(A)×3  3.2 熔体额定电流的速算口诀  “熔体保护,千瓦乘6”  该速算口诀,指的是一台380V笼型电动机,轻载全压起动或减压起动,操作频率较低,适合于90kW及以下的笼型电动机。  若实际使用的电动机起动频繁,或者起动时间长,则上述的经验公式或速算口诀所算的果可适当加大一点,但又不宜过大。总之要达到在电动机起动时,熔体不被熔断;在发生短路故障时,熔体必须可靠熔断,切断电源,达到短路保护之目的。  四 电动机配用接触器的选择  4.1 接触器的选用原则  (1) 按使用类别选用:  生产实际中,极大多数笼型电动机使用上,基本属于按AC-3使用类别选用。  (2) 确定容量等级:  接触器的容量即主触头在额定电压等技术条件下,其额定电流的确定,应注意如下几点:  1)工作制及工作频率的影响:  选用接触器时,应注意其控制对象是长期工作制,还是重复短时工作制。在操作频率高时,还必须考虑增加接触器额定电流的容量。应尽可能选用银、银合金或镶银触头的接触器,如采用KSDZ-U系列产品。  2)环境条件的影响  生产流程的环境比较恶劣的,粉尘污染严重,通风条件差,工作场所温度较高。要对接触仪器的选择宜采取降容使用的技术措施。   4.2 接触器额定电流的对表速查   例如一台Y180L-4,22kW电动机,从速查表查得应配用U60型接触器。该电机额定电流60A,接触器额定电流60A,按一般AC-3工作类别,该接触器可控制380V电动机功率为30kW,现在控制380V 22kW电动机,属于降容使用。  五 电动机配线  电动机配线口诀  “1.5加二,2.5加三”  “4加四,6后加六”  “25后加五,50后递增减五  “百二导线,配百数”  该口诀是按三相380V交流电动机容量直接选配导线的。  “1.5加二”表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。由于4kW电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。“2.5加三”、“4后加四”,表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。  “6后加六”,是说从6mm2的开始,能配“加大六”kW的电动机。即6mm2的可配12kW,选相近规格即配11kW电动机。10mm2可配16kW,选相近规格即配15kW电动机。16mm2可配22kW电动机。这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。  “25后加五”,是说从25mm2开始,加数由六改为五了。即25mm2可配30kW的电动机。35mm2可配40kW,选相近规格即配37kW电动机。  “50后递增减五”,是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。即50mm2可配制45kW电动机(50-5)。70mm2可配60kW(70-10),选相近规格即配备55kW电动机。95mm2可配80kW(95-15),选相近规格即配75kW电动机。  “百二导线,配百数”,是说120mm2的铜芯塑料线可配100kW电动机,选相规格即90kW电动机。

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 浅谈ARD3电动机保护器设计原理

    浅谈ARD3电动机保护器设计原理 安科瑞 蔡昀羲摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。   信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。Fig.2 Switching input circuit  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。Fig.3 Relay control circuit  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。Fig.4 Communications circuit1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电动机实施可靠有效的保护。ARD3电动机保护器在实际使用中完全可以替热继电器、温度继电器等传统的电动机保护产品,替代各种指针式电量表、信号灯、电量变送器等常规元件,简化电动机控制电路,减少柜内电缆连接及现场施工量。

  • 梅雨季节:电动车仪表盘、控制器等的灾难日

    汽车是娇贵的,在保养中要面对诸多问题,不仅要应对车祸这类人祸,还要抵抗地段气候的侵袭。比如说最近的梅雨。梅雨季节来了,雨中出行的确有很多不便,尤其对行驶车辆的车主来说。下雨路上总是会有积水,而这也经常会导致很多车辆熄火。电动车能够在积水中行驶么?暴雨对电动车有什么影响? 很多人印象里都会有电动车在积水中穿行的画面,电动车为何能够在积水中行驶而不会像汽车那样容易熄火呢?其实电动车生产厂家会根据行业标准,会对电动车进行防水、防潮、绝缘处理,这就是为什么我们看到很多电动车能够在水中短时间潜行。 一般来说,电动车仪表盘、控制器、蓄电池、电动机最怕水。仪器仪表供应商也会告知这类情况。当电动车后轮的电动机完全没入水中后,短时间内不会造成故障。而当仪表盘如果没入水中后,电动车就很难行驶了。因为电动车的转把是通过仪表系统中的一些线路和控制器建立连接的,因此仪表盘受潮会导致电动车自动断电保护控制器。 尽管电动车在积水中短时间行驶不会趴窝,但是这并不代表对电动车没有影响。电动车上时间泡在水中,会使电动机受到腐蚀,传感器损坏、蓄电池电容量严重下降等。同时电动车内部电子器件也很容易因受潮而损坏。因此,还是爱护你的电动车吧。

  • 汽车电动尾门常见问题及解决方法

    电动尾门工作出现问题,大多数是由于安装操作不当而引起的,这里品信检测罗列出电动尾门一些常见的问题及解决方法,希望能够帮助到大家。 一、电动尾门:控制盒不工作 1、取电器取电位置不对或没插好 2、保险丝烧坏(取电器上的保险丝和控制盒上的保险丝) 3、地线位置没接好造成回路不良 4、门锁检测线(白色)没接好或没接对 5、汽车电瓶电量不足 6、控制盒损坏 二、电动尾门:尾门关不到位和尾门关不平 1、支架左右装反或支架固定螺丝没换成平KM(PM)头螺丝 2、尾箱的防水胶条、内饰板没装好、撑杆连接线没装好 3、拉锁部件没装好(有些车的原车底座螺母是可以活动的,要把我司的拉锁底座向车前推到底固定) 4、没降低尾门上的到位胶块(如翼虎) 5、每一辆车的原车尾门缝隙和高低平整底都不一样,要看清楚了再安装,否则安装电动尾门后也可能是不平的 6、锁不上二级锁,先把原车锁锁上,再把锁钩上的缓冲胶块割平(让锁钩上的半圆位置变成圆即可) 三、电动尾门:电吸不工作1、我司的“门锁检测线”(白色)没接好(具体参考安装说明)2、电吸盒连接线没连接好3、原车保险丝坏(原车门锁检测线没提供状态给我司控制盒,导致电吸盒不工作)4、拉线被卡死或折弯角度太小(拆弯角度不能小于60度)导致拉线不能运动5、拉线断、电吸盒坏、控制盒坏6、尾门开关检测线没接好(接地了)7、前按键或后按键被卡死四、电动尾门:撑杆不工作或走走停停1、撑杆连接线没插好,霍尔线接触不良2、我司的“门锁检测线”(白色)没接好(具体参考安装说明)3、控制盒地线没接好或电源线没接好4、撑杆坏或控制盒坏五、电动尾门:尾门打不开1、车子没解锁(大部分车子要先用遥控器解锁后尾门方能打开,原车也是如此)2、我司的“锁头检测线”(灰色)或“锁头驱动线”(黄色)没接好(具体参考安装说明)3、原车保险丝坏(原车锁头检测线没提供状态给我司控制盒,导致尾门打不开)4、控制盒坏六、电动尾门:遥控器不能开关尾门1、CAN线、门锁检测线没接好(具体参考安装说明)2、我司的“尾门开关检测线”(紫色)没接好(具体参考安装说明)3、控制盒坏、遥控器坏或遥控器电量不足4、加装了一键升窗或一键启动,遥控器芯片有改动5、CAN信息有改动七、电动尾门:前按键不能开关尾门1、我司的“尾门开关检测线”(紫色)没接好(具体参考安装说明)2、前按键连接线没接好3、前按键坏八、电动尾门:后按键不工作1、后按键连接线没接好2、我司的“尾门开关检测线”(紫色)没接好(具体参考安装说明)3、后按键坏九、电动尾门:高度记忆功能无作用1、尾门的高度记忆位置不在我司控制盒的记忆范围,尾门最高位的二份之以下一位置无记忆功能2、高度记忆后需关门一次初始化十、电动尾门:安装电动尾门后车会漏电1、验证尾门是否扣第二道锁,只扣上第一道锁时控制盒还在工作,控制盒耗电较大2、检查车内其它设备是否存在漏电现象3、检查原车电瓶的储电量4、控制盒坏十一、电动尾门:掉杆子1、卡簧没卡到位2、卡簧变形本文由品信仪器检测(http://www.szpxjc.com/)整理,转载请标明出处。品信检测中心是一家专业、权威、公正的第三方计量检测机构,专业提供的计量检测校准、环境试验、机床检测、三坐标检测、元器件检测筛选等,报价公正,出具国家认可的检测证书和校准报告,一直以来广受客户的认可。

  • 电钻的正确使用方法及维护检查

    电钻的正确操作方法   1、在金属材料上钻孔应首先用在被钻位置处冲打上洋冲眼。   2、在钻较大孔眼时,预先用小钻头钻穿,然后再使用大钻头钻孔。   3、如需长时间在金属上进行钻孔时可采取一定的冷却措施,以保持钻头的锋利。 4、钻孔时产生的钻屑严禁用手直接清理,应用专用工具清屑。   电钻维护和检查   1、检查钻头 使用迟钝或弯曲的钻头,将使电动机过负荷面工况失常,并降低作业效率,因此,若发现这类情况,应立刻处理更换。   2、电钻器身紧固螺钉检查  使用前检查电钻机身安装螺钉紧固情况,若发现螺钉松了,应立即重新扭紧,否则会导致电钻故障。   3、检查碳刷   电动机上的碳刷是一种消耗品,其磨耗度一旦超出极限,电动机将发生故障,因此,磨耗了的碳刷应立即更换,此外碳刷必须常保持干净状态。   4、 保护接地线检查   保护接地线是保护人身安全的重要措施,因此Ⅰ类器具(金属外壳)应经常检查其外壳应有良好的接地。

  • 电动汽车冷却水循环机膨胀阀说明

    电动汽车冷却水循环机在测试新能源汽车电池行业中的需求在不断上升,所以在电动汽车冷却水循环机选择方面是很重要的,其中,膨胀阀作为比较重要的配件,其性能我们也是需要了解清楚的。  电动汽车冷却水循环机电子膨胀阀主要有四部分组成,转子相当于同步电机的转子,其连接阀杆控制阀孔开度大小,定子相当于同步电子的定子;其将电能转为磁场驱动转子转动,阀针其受转子驱动,端部呈锥形,上下移动进行流量调节,阀体一般采用黄铜制造。  电动汽车冷却水循环机电子膨胀阀吸气过热度控制,吸气过热度控制系统由电子膨胀阀、压力传感器、温度传感器、控制器组成,工作时,压力传感器将蒸发器出口压力P1、温度传感器将压缩机吸气过热度传给控制器,控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,将阀开到需要的位置。  电动汽车冷却水循环机电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,开闭特性和速度均可人为设定;电子膨胀阀可在特定的范围内进行精确调节,且调节范围可根据不同产品的特性进行设定。  电动汽车冷却水循环机安装电子膨胀阀时,应以阀体及线圈的断面中心线为轴,且将线圈朝上。在对电子膨胀阀与过滤网焊接时,需对阀体进行冷却保护,使阀主体温度不超过120℃,并目防止杂质进入阀体内。另外,火焰不要直对阀体,同时需向阀体内部充入氮气,以防止产生氧化物。控制器的输出电压必须与线圈的指定电压一致。如果所加电压与指定电压不符,会出现线圈烧毁,或阀针动作异常等故障。  电动汽车冷却水循环机的膨胀阀在安装之前,需要参考厂家提供的安装指南进行安装,避免一些不必要的故障。

  • 【转帖】多层板孔金属化工艺探讨

    一、前言  众所周知,孔金属化是多层板生产过程中最关键的环节,她关系到多层板内在质量的好坏。孔金属化过程又分为去钻污和化学沉铜两个过程。化学沉铜是对内外层电路互连的过程;去钻污的作用是去除高速钻孔过程中因高温而产生的环氧树脂钻污(特别在铜环上的钻污),保证化学沉铜后电路连接的高度可靠性。  二、孔金属化  多层板工艺分凹蚀工艺和非凹蚀工艺。凹蚀工艺同时要去除环氧树脂和玻璃纤维,形成可靠的三维结合;非凹蚀工艺仅仅去除钻孔过程中脱落和汽化的环氧钻污,得到干净的孔壁,形成二维结合,单从理论上讲,三维结合要比二维结合可靠性高,但通过提高化学沉铜层的致密性和延展性,完全可以达到相应的技术要求。非凹蚀工艺简单、可靠,并已十分成熟,因此在大多数厂家得到广泛应用。高锰酸钾去钻污是典型的非凹蚀工艺。   2.1工艺流程  环氧溶胀→二级逆流漂洗→高锰酸钾去钻污→二级逆流漂洗→中和还原→二级逆流漂洗→调整→二级逆流漂洗→粗化→二级逆流漂洗→预浸→离子钯活化→二级逆流漂洗→还原→水洗→化学沉铜→二级逆流漂洗→预浸酸→预镀铜  2.2工艺原理及控制  2.2.1溶胀  目的:溶胀环氧树脂,使其软化,为高锰酸钾去钻污作准备。  配方:NaOH      20g/l     已二醇乙醚   30/l     已二醇     2g/l     水       其余     温度      60-80℃     时间      5min  环氧树脂是高聚形化合物,具有优良的耐蚀性。其腐蚀形式主要有溶解、溶胀和化学裂解(如:浓硫酸对环氧树脂主要是溶解作用,其凹蚀作用是十分明显的)。根据“相似相溶”的经验规律,醚类有机物一般极性较弱,且有与环氧树脂有相似的分子结构(R-O-R'),所以对环氧树脂有一定的溶解性。因为醚能与水发生氢键缔合,所以在水中有一定的溶解性。因此,常用水溶性的醚类有机物作为去钻污的溶胀剂。溶胀液中的氢氧化钠含量不能太高,否则,会破坏氢键缔合,使有机链相分离。在生产中,常用此中方法来分析溶胀剂的含量。

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • 泰安迎金电动伸缩门的电流参数

    一般泰安迎金电动伸缩门的参数如下,泰安迎金电动伸缩门产品参数:电源电压:220V;空制电压:12V;电.流:2.5;功率:300W;频率50H;环境温度:-40-80℃;空气相对湿度:93;移动速度:15M/分;牵引:15M;涡轮电机;磁敏开关;无触点系统;热敏装置;无档级离合装置;防碰装置;缓冲装置;一个台式遥控+2个手柄遥控泰安迎金电动伸缩门有那些特点及优势:1、无挡极离合装置,当停电或其它故障使门体不能正常运行时,只须用离合钥匙将离合开关旋转到分离状态即可转为手动。LED显示的字幕广告,客户可自行更改广告内容。采用计算机系统,在无任何轨道的情况下均能按预定路线行驶。2、在行驶过程中如受外力影响而使机头偏离预定路线时,它会自动检索预定路线、自动纠错,门体按预定路线行驶。3、取消磨擦噪音。4、能抵御强风。5、自锁装置,伸缩门关闭时,被牢牢锁住。6、使用之前,只需用简单的方法,在路面上为其设行驶路线即可;安装简单、快捷、方便。7、安装好之后,保持原有路面平整,不存在积水现象,方便清除杂物,车辆进出畅通。8、取消传统伸缩门八心电缆及地下电缆,只需用二芯电缆。9、在门体关闭状态下能感知爬门物体,并发出信号,提醒用户.10、在关闭过程中能探测到约40厘米范围内物体,而自动退。(另外加配件费用)11、交叉连接结构,运行平滑、结构牢。12、选用型材组装门体框架。13、驱动电机采用门控电机,使用时间长。14、设有微电脑起步装置,消除了电机启动时的瞬间冲击力,使机头起步稳、不摇晃。泰安市迎金门业有限公司是一家生产、销售的企业。拥有电动门、电动伸缩门、悬浮门、自动旋转门、岗亭 、旗杆、智能停车场管理、电子感应门、无框玻璃门、遥控车库门、不锈钢等系列产品,是国内同行业中品种较全,功能较完善的生产厂家之—。订购为您提供测量、报价、安装等服务。 免责声明:文章来源为网络,版权归原作者。如涉及作品版权问题,我们将删除内容或协商版权问题。

  • 对高、低压电动机过热保护

    1.高压电动机过热保护 JW1型双金属温度继电器由测温元件(温控管)及执行元件(出口继电器)两部分组成。温控管用双金属片作为感温元件,用三只温控管串联对称埋人电动机定子绕组端部,并用环氧树脂胶粘牢。将连接导线(用屏蔽导线,屏蔽层与电动机外壳相接)引至电动机高压控制柜。由于JW1型专用继电器容量较亦选用Jwl型双金属温度表继电器。其组成结构及工作原理与高压电动机过热保护装置基本相同。不同之处为选择执行继电器时应选用交流操作的中间继电器。其电压线圈额定值与电动机控制回路电压相一致。可选用DZJ-204X(线圈电压-220V,线圈流0. 5A)间继电器。其二利用执行继电器常闭触点与电动机运行接触器线圈相串联。电动机正常运行时温控管触点开启,中间继电器不动作,而当电动机温度达到温控管动作整定值(该电动机为F级绝缘,为安全起见,实际选用动作值为105度的温控元件)时,温控管触点闭合。此时,执行继电器线圈得电吸合,常闭触点打开,切断电动机主回路接触器电源,使电动机退出运行,达到保护电动机的目的。2.温控管动作整定参考值及执行继电器选择原则 (1)温控管动作整定参考值温控管动作值应与电动机绝缘等级所能承受的最高温度相适应。对于电动机各种不同绝缘等级,在选用温控管时建议采用以下范围内的元件,即A级选用85-95~C,E级选用95100℃,B级选用100-105℃,F级选用120-125℃(2的温控元件。但为安全可靠起见,对温控管动作值选择时最好降低一级使用,以确保电动机安全。同时;也应考虑电动机正常工作温度,因此选择温控管动作值应与所配电动机的绝缘等级及使用环境等因素综合全面考虑,选择最佳动作值来决定温控管的动作整定范围。 (2)执行继电器选择原则 ①由于温控管双金属片触点容量很小,其额定电流在60mA以下,所以执行继电器动作额定电流应选择≤60mA。当控制回路电流很小,满足原配JW1型执行继电器的要求时,也可用原配继电器。因此,选择执行继电器应视实际情况来决定。 ②继电器额定电压应与电动机控制回路电压等级相一致,在交、直流操作情况下其额定电压一般应选择220V似下的电压等级。 ③继电器常开、常闭触点容量应满足控制回路电流的要求。3.温控管安装注意事项 (1)温控管一般采用埋人式安装,安装前应对温控管进行模拟试验,以确定其动作的可靠性。 (2)温控管一般选用3只串联对称埋人电动机定子绕组端部,并固定牢固。 (3)连接导线应选择铜一占线。高压电动机内导线用屏蔽线,屏蔽层与电动机外壳可靠连接,以防感应电压。为了加强导线与高压电动机端部绕组间的绝缘强度,在屏蔽线外部紧密缠绕三层薄云母带,云母带外缠绕一层白纱带,外刷环氧树脂漆一道,烘干即可。低压电动机用BV-105℃耐温线。导线应与温控管管脚紧密连接。电动机内部的连接导线应套上耐温的黄蜡软管,导线绝缘合格,固定平整可靠.

  • 用于小流量和真空压力精密调节的灵巧型数控电动针阀

    用于小流量和真空压力精密调节的灵巧型数控电动针阀

    [size=14px][color=#cc0000]摘要:相对于手动针阀和比例阀,数控电动针阀具有数字控制、高灵敏度、快速响应和磁滞小等特点。本文介绍了对标国外产品开发的灵巧型数控电动针阀国产化替代产品,产品具有相同的技术指标性能,但性价比更高。与国内类似数控电动针阀相比,具有体积小巧的特点,更具有二次开发应用的灵活性。同时结合24位高精度控制器,可以充分发挥数控电动针阀的精细调节能力。[/color][/size][size=14px][color=#cc0000][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000]1. 概述[/color][/size][size=14px]  针阀是一种微调阀,其阀塞为针形,主要用作调节气流量。针阀中的针型阀塞能使得阀口开启逐渐变大,从关闭到最大开启能连续细微地调节。针阀做为一种可以精确调节的阀门,用途较广,主要用于气体流量、真空度和压力的精细调节和控制。[/size][size=14px]  常用针阀的调节形式一般是手轮、手柄,但在实验室和工业自动化生产过程中往往需要可连接计算机和其他控制仪器的数字控制式针阀,针阀的开度可进行数字编程控制,如各种高精度分析仪器、半导体工艺设备、真空工艺设备和高精度流量控制等众多领域都会使用到数控电动针阀。[/size][size=14px]  另外,相对于比例阀,数控电动针阀具有灵敏度高和磁滞小的特点。因此针对数控电动针阀的市场需求,上海依阳实业有限公司开发了步进电机驱动的数控电动针阀系列产品,对标国外相应的数控电动针阀产品,具有相同的技术指标性能,但具有更高的性价比。与国内类似数控电动针阀相比,具有体积小巧的特点,更具有二次开发应用的灵活性。同时结合24位高精度控制器,可以充分发挥数控电动针阀的精细调节能力。[/size][color=#cc0000][size=18px]2. 国内外现有数控电动针阀[/size][size=16px]2.1. 国内产品[/size][/color][size=14px]  目前国产数控电动针阀普遍采用在标准针阀上增加常规电动执行器的结构形式,这种结构的典型产品如图2-1所示。采用电动执行器结构的数控电动针阀具有以下特点:[/size][size=14px](1) 电源电压普遍为交流220V(或直流24V),控制信号为直流0~10V(或4~20mA).[/size][size=14px](2) 普遍借鉴了用于球阀和蝶阀的电动执行器,造成体积庞大。[/size][size=14px](3) 固有可调比一般为50:1,调节和控制精度较差。[/size][size=14px](4) 调节响应时间较慢,存在严重的滞后现象,开关时间至少5秒以上。[/size][size=14px](5) 阀门口径普遍较大,最小也只能达到1/4”,比较适合较大流量的调节和控制。[/size][size=14px](6) 整体耐压较高,比较适合高压大流量的调节和控制。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115042592_8525_3384_3.png!w690x416.jpg[/img][/size][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 典型国产电动执行器结构数控电动针阀[/color][/align][size=16px][color=#cc0000]2.2. 国外产品[/color][/size][size=14px]  国外典型的数控电动针阀是英福康公司和MKS公司产品,如图2-2所示,其中英福康公司产品的型号为VDE016,MKS公司产品是“上游流量控制阀”系列(包括148J、154B和248D)。[/size][align=center][color=#cc0000][size=14px][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115181789_3450_3384_3.png!w690x223.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-2 典型国外电动针阀[/color][/align][size=14px]  国外电动针阀的显著特点是体积小,驱动控制采用独立的模块,这非常便于二次开发使用,图2-3是国外电动针阀的主要技术指标。[/size][align=center][size=14px][color=#cc0000][img=,690,390]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115283911_9315_3384_3.png!w690x390.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2-3 国外典型电动针阀技术指标[/color][/align][size=14px]  从上述技术指标可以看出,仅英福康电动针阀采用了步进电机控制方式,而MKS公司的产品基本都是典型的针型电磁阀,而电磁阀一般都具有较大的磁滞现象。[/size][size=14px]  以目前价格进行比较,英福康电动针阀自身已配备驱动电路模块,整体价格在2万人民币左右,而MKS公司目前主推的产品是248D,价格在8千人民币左右,还需配备驱动电路模块(约5千人民币左右),合计价格在1.3万人民币左右。[/size][size=18px][color=#cc0000]3. 上海依阳数控电动针阀[/color][/size][size=14px]  上海依阳实业有限公司开发的数控电动针阀是一种灵巧型的电子式双向计量针阀,更改了传统手动针阀的直通式结构,并采用了高精度直线步进电机驱动阀轴。数控电动针阀及其内部结构如图3-1所示。[/size][size=14px]  步进电机驱动针的分辨率为0.0127mm/步进和0.0254/步进两种标准。低压差阀门可以连续运行(100%占空比)。断电是针阀处于常闭位置。[/size][size=14px]  与电磁阀相比,步进电机驱动模式的最大优势是冷却操作,即没有因线圈加热而导致的控制操作问题、极高的分辨率、极低的压差和高操作压力。阀门可由直流12 VDC兼容逻辑电平和模拟0至2.5 VDC信号控制,也可采用RS485接口直接进行通讯控制。由此带来的好处是磁滞滞后小于2%,小于满量程的2.5%的出色线性度、2毫秒反应时间和数百万次的使用寿命。[/size][align=center][img=,690,409]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115396538_3429_3384_3.png!w690x409.jpg[/img][/align][size=14px][/size][align=center][color=#cc0000]图3-1 数控电动针阀内部结构示意图[/color][/align][size=14px]  上海依阳实业有限公司的NCNV系列数控电动针阀的技术指标如图3-2所示。[/size][align=center][color=#cc0000][size=14px][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101115509360_6271_3384_3.png!w690x411.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 数控电动针阀技术指标[/color][/align][size=14px]  NCNV系列数控电动针阀配备了一个步进电机驱动电路模块,以提供了所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供RS485串口通讯的直接控制。驱动电路模块、接线方式及其尺寸如图3-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,219]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101116026977_6875_3384_3.png!w690x219.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图3-3 数控电动针阀驱动电路模块[/color][/align][size=14px]  NCNV系列中各个型号的尺寸如图3-4所示。[/size][align=center][size=14px][img=,690,422]https://ng1.17img.cn/bbsfiles/images/2021/06/202106101116117396_5838_3384_3.png!w690x422.jpg[/img][/size][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-4 数控电动针阀系列尺寸图[/color][/align][size=18px][color=#cc0000]4. 总结[/color][/size][size=14px]  综上所述,上海依阳实业有限公司开发的数控电动针阀,采用了最先进的步进电机驱动技术,技术指标达到和超过国外产品,并具有较高的性价比。[/size][size=14px][/size][hr/][size=14px][/size]

  • 电动针阀在上游模式以及电动球阀在下游模式真空度(压强)控制中的考核试验

    电动针阀在上游模式以及电动球阀在下游模式真空度(压强)控制中的考核试验

    [align=center][img=,690,371]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311949282951_4033_3384_3.png!w690x371.jpg[/img][/align][color=#ff0000]摘要:针对密封腔体内真空度(压强)的准确控制,本文基于薄膜电容真空计、电动针阀、电动球阀、真空泵和高精度PID控制器组成的真空控制系统,设计了上下游两种模式的控制试验方案。依据对两种试验方案分别进行了试验,考核了10Pa~600Torr真空度范围内十几个设定点的恒定控制精度,并用波动率描述了考核试验结果。试验结果显示在整个真空度量程范围内,恒定控制的波动率小于±1%。[/color][color=#ff0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]1. 考核试验方案[/color][/size]  在真空腔体的真空度(压强)控制过程中,会针对具体要求对真空度进行准确的定点控制或程序曲线控制,并配套使用真空计、电动针阀、电动球阀(电动蝶阀)、真空泵和高精度PID控制器。  在真空度具体控制过程中,一般会根据具体工艺要求在上游控制和下游控制这两种模式中选择一种。一般而言,在低真空(高压)下会选择下游控制模式,在高真空(低压)下会选择上游控制模式。  为了考察真空度(压强)控制模式和控制系统的控制精度,分别设计了两个考核试验方案。[color=#ff0000]1.1. 配备电动针阀的上游控制模式[/color]  上游控制模式考核试验方案如图1-1所示。  在上游模式中主要考核1Torr以下的高真空度恒定控制,所以采用了1Torr量程的薄膜电容真空计。真空腔体的进气由24位高精度的PID控制器控制电动针阀来进行调节,真空腔体的出气则由真空泵进行抽取。在真空泵抽气速率恒定的情况下,通过自动调节电动针阀的开度来实现腔体内真空度的控制。[align=center][img=1-01.上游控制模式试验方案示意图,400,411]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311953076843_6825_3384_3.png!w690x710.jpg[/img][/align][align=center][color=#ff0000]图1-1 上游控制模式试验方案示意图[/color][/align]  实施上述设计方案的考核试验装置如图1-2所示。[align=center][color=#ff0000][img=1-02.上游控制模式考核试验装置,690,466]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311953439851_1379_3384_3.png!w690x466.jpg[/img][/color][/align][align=center][color=#ff0000]图1-2 上游控制模式考核试验装置[/color][/align][color=#ff0000]1.2. 配备电动球阀的下游控制模式[/color]  下游控制模式考核试验方案如图1-3所示。  在下游模式中主要考核小于一个大气压(760Torr以下)的低真空度恒定控制,所以采用了1000Torr量程的薄膜电容真空计。真空腔体的进气由手动阀门保持一恒定开度,真空腔体的出气则由真空泵进行抽取,但通过24位高精度的PID控制器控制电动球阀来调节出气速度。在进气和真空泵抽气速率都恒定的情况下,通过自动调节电动球阀的开度来实现腔体内真空度的控制。[align=center][color=#ff0000][img=1-03.下游控制模式试验方案示意图,400,428]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311954050798_6215_3384_3.png!w666x713.jpg[/img][/color][/align][align=center][color=#ff0000]图1-3 下游控制模式试验方案示意图[/color][/align]  实施上述设计方案的考核试验装置如图1-4所示。[align=center][color=#ff0000][img=1-04.下游控制模式考核试验装置,690,425]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311954267687_6095_3384_3.png!w690x425.jpg[/img][/color][/align][align=center][color=#ff0000]图1-4 下游控制模式考核试验装置[/color][/align][size=18px][color=#ff0000]2. 试验和结果[/color][/size][color=#ff0000]2.1. 上游控制模式试验和结果[/color]  在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和107Pa共8个设定点进行了控制,整个控制过程中真空度的变化如图2-1所示。[align=center][color=#ff0000][img=2-1. 上游考核试验曲线,690,418]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311955268759_6495_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#ff0000]图2-1 上游控制模式真空度定点控制考核试验曲线[/color][/align]  将上述不同真空度恒定控制点处的控制效果以波动率来表达,则得到如图2-2所示的不同真空度下的控制波动率。从波动率图可以看出,采用1Torr真空计控制1Torr以下真空度时,波动率会随着真空度的升高(压强降低)而增大,主要因为以下几方面的原因:[align=center][color=#ff0000][img=2-2. 上游模式真空度恒定控制波动度,690,388]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311955531485_5277_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#ff0000]图2-2 上游模式真空度恒定控制波动率[/color][/align]  (1)在整个控制过程中,始终采 用的是在68Pa真空度恒定点处自整定后的PID参数,显然将此PID参数应用于12Pa恒定点控制并不太合适,还需进行单独的PID参数。  (2)在PID参数自整定后,并未对PID进行更进一步的精细调节,直接采用了自整定获得的PID参数,这也是影响波动率的一个原因。  (3)1Torr真空计的量程为0.0001~1Torr,即0.013~133.32Pa,对应的模拟信号输出为0~10V。在上述实际测量中,最低真空度恒定点107Pa时的模拟信号为8.026V,最高真空度恒定点12Pa时的模拟信号为0.900V,那么对于一定采集精度的控制器而言,测量和控制0.900V时的测控误差显然会较大。[color=#ff0000]2.2. 下游控制模式试验和结果[/color]  在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300Torr左右对PID控制器进行PID参数自整定。自整定完成后,分别对70、200、300、450和600Torr共5个设定点进行了控制,整个控制过程中真空度的变化如图2-3所示。[align=center][color=#ff0000][img=2-3. 下游考核试验曲线,690,411]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311956082491_876_3384_3.png!w690x411.jpg[/img][/color][/align][align=center][color=#ff0000]图2-3 下游控制模式真空度定点控制考核试验曲线[/color][/align]  将上述不同真空度恒定控制点处的控制效果以波动率来表达,则得到如图2-4所示的不同真空度下的控制波动率。从波动率图可以看出,采用1000Torr真空计控制1000Torr以下真空度时,波动率会随着真空度的升高(压强降低)而略有增大,与上游控制模式中的现象一致。[align=center][color=#ff0000][img=2-4. 下游模式真空度恒定控制波动度,690,427]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311956206407_9051_3384_3.png!w690x427.jpg[/img][/color][/align][align=center][color=#ff0000]图2-4 下游模式真空度恒定控制波动率[/color][/align][size=18px][color=#ff0000]3. 结论[/color][/size]  通过上下游两种控制模式的考核试验,可得出以下结论:  (1) 配备有目前型号电动针阀、电动球阀和PID控制器的真空度(压强)控制系统,在采用了薄膜电容真空计条件下,恒定真空度(压强)控制的波动率可轻松的保持在±1%以内;  (2) 由于真空控制系统中进气或出气流量与真空度并不是一个线性关系,因此在整个测控范围内采用一组PID参数并不一定合适,为了使整个测控范围内的波动率稳定,还需采用2组以上PID参数。  (3) 今后还需开展进一步的研究和试验工作,希望控制波动度能降低到±0.5%以下,而且提高控制响应速度,以满足更苛刻的真空工艺要求。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=,690,305]https://ng1.17img.cn/bbsfiles/images/2021/07/202107311952439870_640_3384_3.jpg!w690x305.jpg[/img][/align]

  • 新研发的“触屏电动瓶口移液器”,大家看法如何?[专利]

    大家好!当您在前处理的时候可能有好多个瓶子里需要定量加入一些甲醇、乙腈、环己烷、乙酸乙酯等有机溶剂,可能大家所在的实验室里有“手动瓶口移液器”,它是安装在试剂瓶的头上,可以快速并定量的加入溶剂,当你做很多组实验的话“手动瓶口移液器”就非常方便,省去了用烧杯量筒量来量去的麻烦,大家的时间都是用在刀刃上的办事效率才高的。但是,“手动瓶口移液器”移液的准确性还不是特别可靠,我在实验室拿了4种“手动瓶口移液器”来做了一个准确度分析实验,数据如下:游标式数字可调式数字可调式数字可调式量程范围2.5-25ml1.0-10ml2.5-25ml5.0-50ml最小调节范围/ml0.050.050.10.2平均偏差/ml0.09 0.89 0.06 0.19 我们实验室里研发出了“触屏电动瓶口移液器”,有两种:1、蠕动连续式触屏电动瓶口移液器,精度±0.5ml,例:(10.0±0.5)ml(这种用来粗略量取液体很方便,省去洗烧杯量筒了)2、导轨连续式触屏电动瓶口移液器,精度±0.001ml,例:(10.000±0.001)ml(这种也可以实现目视滴定,把滴定管都代替了,后期有做就是配上一根离子选择性电极还可以实现自动电位滴定功能!)只需要在触屏面板上输入移取多少毫升,轻触START,剩下是由肚子里的计量泵自己来完成的,还有旋钮可以自由加入,加入多少毫升显示屏也会实时显示出来毫升数,相比手动瓶口移液器来讲就更加方便了,它的量程是没有上限的,专利已经申请下来了,因为还没有投放到市场,不知道大家对这个新家伙有什么看法呢?提点您的意见咯?http://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • 儿童电动车需要符合rohs不,在中国?

    中国ROHS有更新不,一直没太注意国内这方面。最近买了一辆儿童电动车,一眼看去怎么有些金属电镀的是不环保的六价铬啊?中国儿童玩具也没有对六价铬有要求吗?

  • 浅谈ARD3电动机保护器设计原理

    浅谈ARD3电动机保护器设计原理 安科瑞 蔡昀羲摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。 http://www.acrel.cn/cn/download/common/upload/2011/02/24/144022tl.jpg图1 信号采集放大电路  信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。http://www.acrel.cn/cn/download/common/upload/2011/02/28/921bm.jpg图2 开关量输入电路Fig.2 Switching input circuit  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。http://www.acrel.cn/cn/download/common/upload/2011/02/28/9147j9.jpg图3 继电器控制电路Fig.3 Relay control circuit  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。http://www.acrel.cn/cn/download/common/upload/2011/02/28/9133sh.jpg图4 通讯电路Fig.4 Communications circuit1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。http://www.acrel.cn/cn/download/common/upload/2011/02/28/9112xc.jpg图5 CPU电路Fig.5 Cpu circuit  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:http://www.acrel.cn/cn/download/common/upload/2011/02/28/9059hv.jpg图6 程序流程Fig.6 Flow chart of software3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电

  • 21世纪电动车用电池发展趋势 1

    1.铅酸电池(第一代电池)终将要退出 铅酸电池的应用历史最长,也是最成熟,成本售价最低廉的电池。当前存在的主要问题是一次充电的行程短,一般约在30-40km;就是快速充电也要4-6h,且质量能只有30Wh/kg。为此人们一直探索着如何改进铅酸电池的性能,开发能量效率更高、稳定性更好,电荷容量更大的新电池。这里讲的电池都是指可通过相应手段使电池能恢复性能的电池,即可充电的各种二次电池,可加注燃料的燃料电池,以及可通过更换锌片的锌空气二次电池等。 在改进铅酸电池性能方面,人们现在已在广泛使用免维护电池。免维护电池给人们带来了使用的方便性。为使使用铅酸电池更可靠,人们开发了胶体电池。胶体电池也是铅酸电池范畴的二次电池。它依然用密度为1.28g/cm3的硫酸水溶液,但在其中添加了Na2OSiO2,电解液呈胶体状--乳白色的凝胶,构成了胶体电解质。胶体的状况会随着温度和电场的作用而变化。当电池放电时,胶体的凝聚性会更明显;温度降低,胶体内部溶液扩散迁移及传导性变差,内电阻增加。在温度升到30℃以上,外施单格电压超过2.6V,要产生充电气泡;充电时间过长,温度过高,特别是单格电压超过2.7V,胶体常常会发生水解,放出大量H2和O2,并伴有硫酸和水外溢,胶体变成了液态。如及时停止充电,下降温度,去掉外电压,胶体还可重新恢复。它的性能、价格与铅酸电池差不多,只是由于胶体电解质具有不易渗漏性,能保证电源使用的可靠性。即使电池壳体产生了裂纹也可继续使用,不会产生对车辆的腐蚀作用。因此其可适用于道路状况差(乡间土路)和用电负荷变化大的车辆,如在中西部地区的山区、半山区、乡村使用车辆的电池,军用车辆的起动用电池,以及由于环保要求,限制酸腐蚀的特种车辆等用的电池。由于电解质中有Na2SO4存在,在极板硫化过程中,会同时产生硫酸铅、硫酸锅结晶,从而防止了极板生成粗大的硫酸铅结晶体,使极板不易硫化,容易再次充电活化;不易丧失极板的多孔性;还能防止正极板上生出尖锐的硫酸铅突起,避免隔板被刺穿形成极板间短路。从寿命讲,胶体电池是现在泛用铅酸电池的4倍以上,在50℃-30℃仍能很好工作,且工作性能相当稳定,可谓是比铅酸电池性能有了大幅度提高。估计此电池还能比普通铅酸电池能多存在一段时间,但此电池毕竟是铅酸电池。随着人们对环保要求的深入,含铅的重金属产品将会在2004年随着世界禁铅运动的深入而逐渐被淘汰。尽管胶体电池有许多优点,但终归也要退出历史舞台。 2镍氢电池将会有一席之地 镍氢电池是目前人们看好的第二代电池之一,是一取代镍镉电池的产品,当然也是取代铅酸电池的产品。 镍氢电池的生产过程中,存在着烧结体技术和发泡体技术两种。一般的生产厂家都经历了一个从发泡体向烧结体技术发展的过程。以烧结体技术对镍氢电池正板进行处理,电池的内电阻会大幅度减少,具有放电电压稳定和能进行大电流放电的特性。 烧结体镍氢电池还具有电池不易老化,不需要预充电,以及低温放电特性比较好等优点。经烧结处理的正极,其镍化合物粒子会转换成活性的镍化合物,能确保电池有平衡的输出电压,且具长时间的性能稳定性、长寿命和电池不老化。以发泡镍技术生产的电池在放置一段时间后,要有20%左右的电荷量流失。将这样的电池装车会发现与装新电池的差距很大,也说明其老化现象十分明显。为避免发泡镍电池的老化所造成的内阻增高,发泡镍电池在出厂时必须得进行预充电,且要提醒用户,使用此种电池的放电电压不能低于0.9V(单元体电池),给用户的使用带来了极大的不方便。除此外,发泡镍电池的工作电压极不稳定,不能进行长时间存放和流通。这也给销售和用户造成了很大负担。 烧结体镍电池由于镍极本身就是活性体,无需进行任何活性处理,不用进行预充电,能长时间的搁置和流通,从而为电池的使用提供了方便条件。烧结镍电池同样具备镍电池的低电阻和大电流,还具有发泡体镍电池所无法达到的低温工作特性。因此可以说,存在着重金属镉污染的镍镉电池终究要被镍氢电池所取代。而镍氢电池中的烧结体技术镍氢电池将以其优异的性能取代发泡体技术镍氢电池,发泡镍氢电池在电池发展史上将仅是昙花一现的产品而已。镍氢电池现在正得到广泛应用,但由于其存在着高温使用电荷量急剧下降等缺点,其也并非是一理想电池,也有可能只是一个过渡性的二次电池。3.镍锌电池可能是电动车的理想动力源 新型密封镍锌电池具有高质量能、高质量功率和大电流放电的优势。这种优势使得镍锌电池能够满足电动车辆在一次充电行程、爬坡和加速等方面对能量的需求。镍锌电池是美国国家能源研究公司(ERC)开发和生产的产品,厦门电池总厂已与其合作引进了此产品。镍锌电池是一极具竞争力的电池。其质量能与镍氢电池相当,体积能量已超过镍镉电池,小于镍氢电池。大电流放电,电池的电压将在宽广的范围是平衡的,且具很长的使用寿命。下面以12V30Ah密封镍锌电池为例,介绍一下镍锌电池性能。如以C/3放电,电池电荷容量≥30Ah,以C/3大电流连续放电≥22.5Ah;以C/3放电,质量能≥50Wh/kg,体积能≥90Wh/L;瞬间质量功率≥150W/kg(20%荷电状态,5C放电30s),体积功率≥250W/L(20%荷电状态,5C放电30s);瞬间再生质量功率≥80W/kg(80%荷电状态,2C放电10s),体积功率≥150W/L(80%荷电状态,2C放电10s);充电时间运≤3.5h,快速充电≤1h(40%荷电状态,20A充电或80%荷电状态,7A充电);循环寿命≥500次(C/3放电,80%放电深度)或C/3≥450次(C/3放电,100放电深度)。特别值得一提的是自放电抗电荷量衰减性十分好,在室温下搁置一个月,自放电量不到30%额定电荷量。在50℃高温,以C/3放电,电池电荷量衰减≤10%额定电荷量,而在-15℃,C/3放电≤30%。此电池与铅酸电池外廓上具有很好的兼容性。12V30Ah电池的长×宽×高=325mm×94mm×163mm,质量8kg,体积4.98L。12V10Ah电池的长×宽×高=152mm×98mm×99mm,质量2.7kg,体积1.47L。凡现在应用铅酸电池的车辆,均可换用镍锌电池。从现在的价格看,镍锌还显稍贵些,但相信待其应用量上去后,价格自然会降下来,由此可以说,镍锌电池有可能成为电动车的理想动力电源。

  • 离心机电动机转速达不到设定转速 ,还有就是使用离心机时应该注意些什么呀?

    一、电源电路部分故障。首先,对电源线、插座、插头、变阻器、继电器等易坏部件进行检修。然后,检查开关电源以及电路、空气开关、整流器、滤波器、变压器,直至电动机部分。 二、电动机自身故障。电动机是离心机的主要部件之一,电动机分为带碳刷电动机和无碳刷电动机。现在大多数电动机都是无碳刷电动机。电动机转速达不到设定转速,首先检查轴承,需更换时就更换,需要维护时(比如加注润滑油和清洗时)就维护。如是带碳刷电动机,则检查电动机整流子和电刷是否匹配、电刷磨损是否厉害、是否需要更换等。 三、转速控制部分故障。转速控制系统有一个集成芯片能确保离心机安全准确的运行。如果转速故障排除以上二个原因,可更换芯片或者控制面板。

  • 浅谈ARD3电动机保护器设计原理

    摘 要:本文着重介绍ARD3电动机保护器的具体设计方法,给出硬件原理图和软件流程图。文章按照产品的各硬件功能模块进行展开说明,介绍硬件功能模块时,对硬件功能模块原理图进行详细分析,结合各种实际应用的情况说明此处硬件是怎样设计的,为什么这样设计以及这样设计的优缺点。通常电动机保护器工作的条件比较恶劣,为使产品性能方面更加稳定可靠,需要使用一些抗干扰措施,文中介绍的这些抗干扰措施在实际使用中被证明是成功的。关键词:电动机保护器;ARD3;保护功能;ModBusAbstract: This paper highlights idiographic design methods of the ARD3 motor protector, gives hardware and software flow char diagram. According to hardware modules, the article starts description of the hardware modules schematic for detailed analysis, the combination of practical application note here is how to design the hardware, why this design and the advantages and disadvantages of this design. The conditions that motor protector usually works are poor, for the product more stable and reliable performance, needing to use some anti-jamming measures, described in the text of these anti-jamming measures in practical use has proved to be successful.Key words: motor protector;ARD3;protect function;ModBus0  引言  随着电子技术的发展,电动机保护器正向基于现场总线的智能型方向发展。我公司设计的ARD3电动机保护器立足于国内先进水平,是具有智能保护和可通信功能的电动机保护器。产品系列电流范围齐全,产品系列额定电流范围1.6~800A;可测量的电流范围宽,可以达到10倍电机额定电流;采用先进的软件算法和可靠的硬件设计,对电动机的过载、断相、三相不平衡、堵转、阻塞、过压、欠压等故障进行有效判断和可靠保护,过载保护采用计算分析当前电动机的热容量的方法,根据热容情况判断电动机的过载状态,此种方法可以最大发挥电动机的过载能力;配有可编程开关量输入、继电器输出,用于实现远程主站对电动机运行状态的遥信监视和直接起动、自耦降压、星-三角等起动方式;带有标准RS-485接口ModBus通讯协议实现计算机联网。1  硬件设计   ARD3电动机保护器用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、漏电流采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。1.1 信号采集单元  ARD3电动机保护器采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。  信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。ARD3电动机保护器中处理三相电流信号、剩余电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。   信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。  图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从P1.0输出大信号从P1.1输出。这样处理是因为:电动机保护器要处理的电流范围很宽(要从电动机1倍额定电流到10倍额定电流),分档处理可以提高测量精度。1.2 I/O单元  开关量输入处理电路如图2所示。电路开关量由IN1~IN7输入,通过光藕后产生IS1~IS7,并行信号IS1~IS7输入到74HC165,通过74HC165将并行信号转换为串行信号传送给CPU。电阻R11~R18起到限流作用保护光耦中的二极管不被损坏。RS1~RS8是上拉电阻与电容CS~CS8配合使用既可以稳定光耦输出电平又可以在上电时对光耦起到保护作用。  继电器控制电路如图3所示。JDQ1~JDQ4与CPU连接,三极管QJ11~QJ14的供电电压是+5V,三极管QJ1~QJ4的供电电压是+24V。现以QJ11,QJ1这路控制电路来说明电路工作原理,当CPU输出高电平时三极管QJ11不导通,OUT11不会输出电流光藕不会导通,JT1也输出高电平,QJ1不会导通继电器不会动作。当CPU输出低电平时三极管QJ11导通,OUT1输出高电平使光耦导通, JT1变为低电平,三极管QJ1导通OUT1输出低电平使继电器发生动作。图3中二极管DJ1~DJ4作为继电器续流二极管。  控制输出部分可采用机电式继电器或固体继电器。前者价格便宜,市场产品丰富,驱动线路也比较简单,但可靠性和使用寿命有限,且在触点动作时会产生“火花”,严重时可影响系统的正常工作。因此,在PCB板布局时应将继电器尽量远离单片机并靠近仪表的输出端口。另外,在继电器线圈两端应并联续流二极管,否则在继电器线圈断电瞬间会产生较高的感应电压,从而破坏电路。固态继电器具有寿命长、性能稳定,无火花等特点,本产品中考虑到产品的可靠性要求采用固态继电器。1.3 通讯单元  通讯电路如图4所示。通讯电路实现将CPU串口输出电平转换到RS485电平。本电路的巧妙之处在于数据收发直接由硬件来控制,不用CPU参与控制,这样可以节省CPU资源简化程序设计。1.4 CPU单元  CPU单元是电机保护器的核心单元。信号采集,各种报警处理,通信功能,显示功能……都是由它来完成的。本产品采用的CPU芯片是瑞萨公司的H8/3687芯片,该芯片功能如下:62条基本指令; RTC(片上实时时钟,可作为自由运算计数器使用),SCI(异步或者时钟同步串行通信接口)2路,1路IIC接口,8路10位A/D,8位定时器2个(Timer B1,TimerV),16位定时器1个(TimerZ),看门狗定时器,14位PWM,45个I/O引脚(H8/3687N有43个I/O引脚),包括8个可直接驱动LED的大电流引脚(IOL=20mA,@VOL=1.5V),片上复位电源POR电路,片上低电压检测电路(LVD)。该芯片有两种封装形式:LQFP-64(10mm×10mm)FP-64(14mm×14mm) 。CPU单元电路如图5所示。  因为A/D功能,IIC功能,RTC,定时器,看门狗等功能都已经集成到芯片内部,所以CPU单元的外围电路十分简洁,各引脚只需外接增加端口驱动能力的上拉电阻和稳定信号的滤波电容即可。2  软件设计  系统软件要完成三相电流、1路剩余电流、三路电压A/D,各种保护量计算,保护功能判断处理,显示电压、电流,故障记录,按键处理,通讯,变送等功能。只有合理安排程序流程来完成这些功能,保护器才能可靠工作。程序流程图如图6所示:3  抗干扰措施  电动机保护器作为保护电动机装置要具有很强的抗干扰性。在本产品软硬件设计过程中采取如下措施提高产品的抗干扰性:1硬件方面:电源部分加EMC滤波器,高频变压器次级与初级加高压电容,输出部分加滤波电路;信号采集部分增加滤波电路;在作信号处理的各芯片输入口处加端口保护电路;在各芯片电源输入处加去藕电容;继电器两端并联续流二极管,加光耦与CPU端口隔离;不使用的CPU端口定义为输出状态;PCB板布局时模拟部分与数字部分作分区处理,模拟信号在模拟区域内布线,数字信号数字区域内布线,二者不进入彼此区域内;布线时尽量加粗电源线与地线,信号线走线时走145º线,不走直角线;使用CPU内部看门狗监控程序运行。2软件方面:各路信号采集都使用软件滤波,增加采样值的准确性。通过采取一系列的措施,产品的抗干扰性能大幅提高,本产品一次性顺利通过3C安全认证型式试验。4  结论  ARD3电动机保护器采用先进的设计方案,集测量、保护、控制、通讯于一身,产品性能安全可靠,可以对电动机实施可靠有效的保护。ARD3电动机保护器在实际使用中完全可以替热继电器、温度继电器等传统的电动机保护产品,替代各种指针式电量表

  • 采用电动针阀和电气比例阀实现液氮气体低温温度的程序控制

    采用电动针阀和电气比例阀实现液氮气体低温温度的程序控制

    [size=16px][color=#339999]摘要:为了解决室温至液氮温区温控系统中需要昂贵的低温电动阀门进行液氮介质流量调节的问题,本文提供了三种不同精度的液氮温区内的低温温度控制解决方案。解决方案的技术核心是通过采用电动针阀和电气比例阀在室温环境下来快速调节外部气源流量或压力大小以实现低温温度的精准控制,不再需要具备耐低温性能的低温阀门。同时,在上述两种技术方案的基础上增加了电加热形式的第三种解决方案,可实现更高精度的低温温度快速控制。[/color][/size][size=16px][/size][align=center][size=16px][img=电动针阀和电气比例阀在流动液氮气体低温温度控制中的应用,600,336]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270648384200_9124_3221506_3.jpg!w690x387.jpg[/img][/size][/align][b][size=24px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 对于液氮温度范围内的低温温度控制, 目前常用的方法为以下两种:[/size][size=16px] (1)直接浸泡式:即试验件完全浸泡在液氮内进行降温冷却和相应的温度控制,但采用这种方式时试验件的冷却温度无法在较宽泛的低温温区内进行控制和调节,只能在接近-196℃的温度附近通过控制液氮气压来进行小范围的调节和控制。另外,直接浸泡法往往未等试验件达到冷却保温时间,液氮已基本完全挥发。同时,这种操作方式较为简陋,对实际操作人员要求较高,稍有不慎将会有安全事故发生。[/size][size=16px] (2)液氮吹扫法:即直接采用流量可控的液氮或液氮气体进行吹扫来进行试验件低温温度调节和控制。在采用吹扫法进行低温温度控制时,液氮或液氮气体的流量大小直接关系到试验件温度的稳定性和可靠性。同时,低温介质的流量控制一直是行业的难点和痛点,这要求低温管路上的流量控制阀内的各个元器件均需要很好的耐低温特性,且价格十分昂贵。有些简陋的低温控制采用了低温开关阀进行通断式控制,尽管降低了阀门成本,但这种开关控制模式的控制精度极差。另外,低温介质的出口与试验件或热交换器内的空气直接接触,空气中的水蒸气遇冷急剧结冰,随着降温时间增长,低温介质的出口很容易被结冰堵塞。现亟需研发一种核心控制器件在常温状态下便可实现超低温控制的试验装置。[/size][size=16px] 为了解决上述液氮吹扫法中存在的问题,本文提供了三种不同精度的液氮温区宽量程温度控制解决方案。解决方案的技术核心是通过调节室温环境下的气源流量或压力大小来实现低温温度的精准控制,不再需要控制阀门具有耐低温性能。同时,在上述两种技术方案的基础上将增加电加热形式的第三种解决方案,由此可实现更高精度的低温温度控制。[/size][size=24px][color=#339999][b]2. 原理和分析[/b][/color][/size][size=16px] 在传统液氮低温温度控制的吹扫法中,普遍是直接调节液氮低温介质的吹扫流量,同时结合温度传感器和PID控制器形成闭环控制回路,通过对流量的控制最终实现低温温度控制。[/size][size=16px] 通过分析上述的传统液氮吹扫法可以发现,实现低温介质吹扫的基本原理是在液氮罐(杜瓦瓶)内形成较高的气压迫使液氮或液氮气体溢出到设定管路内形成低温介质流动,最终再通过调节流动速度来进行低温温控。因此,液氮罐中的高压气体是所有这些的关键,只要能调节气体压力,同样能在固定管路内形成不同流速的低温介质而达到控温目的。同时,这种调节液氮罐内气体压力的方式可在室温环境中实现,这样就可以避免在直接低温介质流量控制中需要使用特殊且昂贵的电动低温调节阀。[/size][size=16px] 基于上述分析,本文设计了以下三种低温温度控制方案,并可实现不同的控制精度。[/size][size=24px][color=#339999][b]3. 进气流量控制方案[/b][/color][/size][size=16px] 对于任何具有一定空间大小的容器而言,其内部压力都可以归结为进气和出气流量所达到的一种动态平衡状态。因此,如果要对液氮罐内的气体压力进行控制,有效的方法之一就是对液氮罐的进出气体流量分别进行调节使其达到动态平衡。[/size][size=16px] 需要注意的是,在实际低温温度控制系统中,液氮罐的出液口或出气口往往直接与试验件的冷却管路连接,若在液氮罐出口处对低温介质流量进行直接控制又会需要使用低温阀门,因此这时可以基出口孔径不变而不对流量进行调节,只调节液氮罐的进气流量。具体方案如图1所示。[/size][align=center][size=16px][color=#339999][b][img=采用电动针阀调节流量的低温冷却试验装置温控系统结构示意图,690,354]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270650154160_155_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 采用电动针阀调节流量的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 从图1可以看出,高压气体(一般为氮气)经过减压阀形成固定压力的气体,此室温高压气体流经电动针阀和进气管进入杜瓦瓶中的液氮中。室温高压气体进入液氮后使液氮形成蒸发而挥发为气体,挥发气体在使密闭杜瓦瓶中压力逐渐升高的同时,通过出气管流经试验装置中的热交换器后排出。由此可见,通过调节安装在进气管路上的电动针阀,针阀开度越大,进气口流速越快,液氮挥发越激烈,杜瓦瓶中的压力越高,最终使得流经热交换器的低温介质流速越快,相应的降温速度也越快。此方案的另一个主要特点是电动针阀可以在室温下工作。[/size][size=16px] 由此可见,这种在室温下通过调节进气流量的解决方案是通过电动针阀、温度传感器和PID程序控制器构成了一个低温闭环控制回路,从而可实现低温温度的定点控制或程序控制。但这种方案存在的问题是控温精度较差,一般会有2~5℃的温度波动,主要原因如下:[/size][size=16px] (1)由于一定流量的高压气体使得杜瓦瓶内的压力产生变化,压力的改变又使得冷却介质的流量发生改变,这个升华过程和压力变化过程比较复杂,这使得进气流量与压力以及压力与温度并不是一个简单的线性关系,这都是造成温度控制不准的主要因素。除非整个调节过程的速度非常快,但实际往往是个慢速过程。[/size][size=16px] (2)这种仅仅采用低温介质进行温度控制的技术手段存在降温快而升温慢的弊端,一旦实际温度超过设定点温度,往往需要试验件缓慢散冷才能实现回温,这也是造成低温温度控制很难实现较高精度的另一个主要原因。[/size][size=24px][color=#339999][b]4. 进气压力控制方案[/b][/color][/size][size=16px] 为了解决上述流量控制过程中存在的压力不稳定问题,本文提出的另一个解决方案就是直接对杜瓦瓶中的压力进行控制,即采用对高压气体进气口压力的调节和控制来实现杜瓦瓶内部压力的精确控制。具体方案如图2所示。[/size][align=center][size=16px][color=#339999][b][img=采用电气比例阀调节压力的低温冷却试验装置温控系统结构示意图,690,358]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270651039090_5722_3221506_3.jpg!w690x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 采用电气比例阀调节压力的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 从图2可以看出,高压气体经电气比例阀在进气口处按照设定值进行压力控制,由此保证杜瓦瓶中的压力始终处于准确受控状态。通过电气比例阀、温度传感器和PID程序控制器构成的双闭环串级控制回路(其中电气比例阀为辅助控制回路,PID控制器与温度传感器和电气比例阀构成主控回路),通过调节比例阀的输出压力进而控制杜瓦瓶内的气体压力,杜瓦瓶中的压力越大,使得流经热交换器的低温介质流速越快,相应的降温速度也越快。由此,通过PID控制器自动根据设定点或设定程序来调节杜瓦瓶中的气体压力,从而可实现低温温度的更准确控制,规避了复杂得升华过程带来的控制不确定性。[/size][size=16px] 与前述流量控制方案相比,压力控制方案的结构同样十分简单,提高了温控系统的控温精度,同时还保留了可在室温下进行调节的优势。[/size][size=16px] 压力控制方案的另一个突出优势是可以进行大尺寸试验件的低温控制,这主要是由于大尺寸液氮杜瓦瓶内的压力控制要远比流量控制更为简便和准确,而流量控制方案会受到电动针阀口径大小对流量调节范围的限制,大口径针阀较慢的响应速度也会给温度控制带来误差。[/size][size=16px] 尽管压力控制方案是流量控制方案的升级,也提高了控温精度,但还是没有解决单一冷却方式存在的冷却快但回温慢的弊端,还存在控温精度比较有限和控温速度较慢的问题。[/size][size=24px][color=#339999][b]5. 电加热辅助进气压力控制方案[/b][/color][/size][size=16px] 为了彻底解决单一冷却方式存在的冷却块但回温慢造成控温精度不高和速度较慢的问题,本文提出了另一个优化方案,即在进气压力控制方案的基础上,在试验件上增加电热器以提供加热功能,由此提供一个主动加热装置配合冷却系统形成冷热双作用系统,在试验件温度低于设定值时自动主动加热形成微调,这样既可以实现温度快速回温达到设定值提高控制速度,同时还可以大幅度提高控温精度。具体方案如图3所示。[/size][align=center][size=16px][color=#339999][b][img=采用电气比例阀调节压力以及辅助电热器的低温冷却试验装置温控系统结构示意图,690,387]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270651428613_3754_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 辅助电加热式电气比例阀调节压力的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,优化方案是在图2所示方案的基础上增加了电热器,即增加了一路纯加热功能的温度控制。同时,为了配套此加热功能的实现,除增加了一只温度传感器之外,另外还采用了VPC2021-2系列的双通道PID调节器。由此形成了两个独立控制回路,一个回路控制进气压力实现低温温度的粗调,另一回路控制加热实现低温温度的细调,由此同时保证控温速度和精度。[/size][size=24px][color=#339999][b]6. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,彻底解决了以往液氮温区低温控制中需要配备昂贵电动低温调节阀的问题,也解决了低温开关阀控温精度很差的问题。[/size][size=16px] 本文所述的三个解决方案,可适用和满足液氮温区内宽量程范围内不同要求的温度控制,在实际应用中可根据具体情况选择使用。其中控制流量和控制压力的方案可适用的温度控制范围为0℃~-150℃,而辅助加热器功能后控制压力方案的可控温度范围为150℃~-150℃,这里的上限温度主要受加热器耐低温特性决定。[/size][size=16px] 上述所有低温控温方案仅适用于液氮气体的吹扫形式,因此温度不是很低,但为更低温度的液氮介质直接流动冷却以及温度控制提供了技术上的借鉴。[/size][size=16px][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 新研发的“触屏电动瓶口移液器”,大家看法如何?[专利]

    大家好!当您在前处理的时候可能有好多个瓶子里需要定量加入一些甲醇、乙腈、环己烷、乙酸乙酯等有机溶剂,可能大家所在的实验室里有“手动瓶口移液器”,它是安装在试剂瓶的头上,可以快速并定量的加入溶剂,当你做很多组实验的话“手动瓶口移液器”就非常方便,省去了用烧杯量筒量来量去的麻烦,大家的时间都是用在刀刃上的办事效率才高的。但是,“手动瓶口移液器”移液的准确性还不是特别可靠,我在实验室拿了4种“手动瓶口移液器”来做了一个准确度分析实验,数据如下:游标式数字可调式数字可调式数字可调式量程范围2.5-25ml1.0-10ml2.5-25ml5.0-50ml最小调节范围/ml0.050.050.10.2平均偏差/ml0.09 0.89 0.06 0.19 我们实验室里研发出了“触屏电动瓶口移液器”,有两种:1、蠕动连续式触屏电动瓶口移液器,精度±0.5ml,例:(10.0±0.5)ml(这种用来粗略量取液体很方便,省去洗烧杯量筒了)2、导轨连续式触屏电动瓶口移液器,精度±0.001ml,例:(10.000±0.001)ml(这种也可以实现目视滴定,把滴定管都代替了,后期有做就是配上一根离子选择性电极还可以实现自动电位滴定功能!)只需要在触屏面板上输入移取多少毫升,轻触START,剩下是由肚子里的计量泵自己来完成的,还有旋钮可以自由加入,加入多少毫升显示屏也会实时显示出来毫升数,相比手动瓶口移液器来讲就更加方便了,它的量程是没有上限的,专利已经申请下来了,因为还没有投放到市场,不知道大家对这个新家伙有什么看法呢?提点您的意见咯?http://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    [color=#ff0000]摘要:氢气供应系统作为燃料电池系统的重要组成部分,其空气侧与氢气侧之间压力差的动态控制对于整个燃料电池系统可靠性尤为重要。本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用,690,518]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101053487958_1868_3384_3.png!w690x518.jpg[/img][/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size]  氢气供应系统作为燃料电池系统的重要组成部分,与电堆、空气供应系统、水热管理系统和电子电力系统协同工作,保证氢气流量、压力的稳定供应,并实现氢气循环利用。燃料电池氢气供应系统简化结构如图1-1所示。高压储氢罐是系统的氢气来源,氢气经过减压阀,压力降至适宜系统使用的范围,通常情况为几巴左右。氢气进气阀用于控制进入电堆的氢气量,进而控制电堆氢气回路的压力,目前常用的氢气进气阀为比例调节阀、开关阀或多个开关阀组。[align=center][color=#ff0000][img=燃料电池氢气供应系统简化图,690,66]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055206617_6144_3384_3.png!w690x66.jpg[/img][/color][/align][align=center][color=#ff0000]图1-1 燃料电池氢气供应系统简化图[/color][/align]  由于燃料电池自身膜电极的厚度逐渐降低,其机械强度相应下降,因此空气侧及氢气侧压力的动态控制对于整个燃料电池系统可靠性尤为重要,一般要求是氢气侧压力要等于或者稍高于空气侧压力,并且在调节两侧压力时要确保同升同降,以减少对质子膜的损害。然而,在目前氢燃料电池电源系统中,对于这两侧压差的控制存在以下几方面的问题:  (1)采用开关阀进行氢气进气的控制,使得整个氢气回路中的波动太大而不易控制;  (2)采用电磁比例阀尽管可以按照一定比例进行类似PID模式进行压力控制,但电磁比例阀由于存在较大磁滞现象,会带来控制不稳定的严重问题。  本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[size=18px][color=#ff0000]2. 电动针阀[/color][/size]  电动针阀如图2-1所示。[align=center][img=各种规格电动针阀,599,513]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055582033_8168_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#ff0000]图2-1 各种规格电动针阀[/color][/align][size=18px][color=#ff0000]2.1. 技术指标[/color][/size][align=center][color=#ff0000][img=电动针阀技术指标,690,453]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057223127_3501_3384_3.jpg!w690x453.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-2 电动针阀技术指标[/color][/align][align=center] [img=电动针阀尺寸,690,421]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057371906_4688_3384_3.jpg!w690x421.jpg[/img][/align][align=center][size=16px][color=#ff0000]图2-3 电动针阀尺寸[/color][/size][/align][size=18px][color=#ff0000]2.2. 驱动模块[/color][/size]  数控电动针阀配备有步进电机驱动电路模块,以提供所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供RS485串口通讯的直接控制。[align=center][color=#ff0000][img=驱动模块及其尺寸,690,220]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101058555517_9466_3384_3.jpg!w690x220.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-4 驱动模块及尺寸[/color][/align][size=18px][color=#ff0000]2.3. 特点[/color][/size]  新一代用于比例流量调节的数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级换代产品。与各种PID控制算法和压力控制器相结合,可构成快速准确的氢气压力控制装置。  电动针阀具有以下几方面的特点: (1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。  (2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。  (3) 高重复性:通过每次达到0.1%的相同流量,可提供长期稳定的一致性。  (4) 宽压力范围:通过5或7bar的压力,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。  (5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。  (6) 高分辨率:0.2%的分辨率允许电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。  (7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=,690,355]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101059518215_4501_3384_3.jpg!w690x355.jpg[/img][/align][align=center][/align][align=center][/align]

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 耐腐蚀电动调节阀应用:亚硫酸法澄清工艺中磷酸流量的自动控制

    耐腐蚀电动调节阀应用:亚硫酸法澄清工艺中磷酸流量的自动控制

    [color=#990000]摘要:目前亚硫酸法澄清工艺中普遍采用调节阀来控制磷酸液体的流量,但调节阀普遍存在耐腐蚀性差、响应速度慢和自动化水平低的问题。本文介绍了一种基于针型阀的新型耐腐蚀电动调节阀,采用了步进电机推进和FFKM全氟醚橡胶密封技术,具有可用于真空下的良好密封性能和微秒量级的响应速度,可采用直流电压信号或RS 485直接驱动,并已在蔗糖生产线得到了应用。[/color][size=18px][color=#990000]一、问题的提出[/color][/size]目前的蔗糖生产过程中普遍采用亚硫酸法澄清工艺,其中的磷酸自动控制系统要求能够进行磷酸的自动配比,并根据蔗汁流量实时连续自动调节磷酸添加量以保证磷酸添加的准确性。磷酸添加量控制是通过对浓度85%磷酸液体的流量进行调节,但存在以下迫切需要解决的难题:(1)耐腐蚀性差:85%浓度的磷酸液是一种无机中强酸,具有一定的腐蚀性,而目前绝大多数电动流量调节阀的耐腐蚀性普遍较差,无法用于硫酸流量调节。(2)自动化水平低:目前磷酸流量调节中大多还采用耐腐蚀的手动调节阀,磷酸添加准确性和及时性差影响产品质量,无法准确掌握磷酸使用情况。(3)精度差和响应速度慢:尽管也有用于流量调节电/气动球阀和蝶阀,但普遍口径太大,调节精度差,响应速度慢,无法满足磷酸流量ppm级调节精度要求。[size=18px][color=#990000]二、耐腐蚀精密电动调节阀[/color][/size]上海依阳实业有限公司开发的NCNV系列耐腐蚀数控电动针阀是一种灵巧型的电子式双向计量针阀,采用高精度直线步进电机驱动阀轴。[align=center][img=耐腐蚀电动调节阀,400,297]https://ng1.17img.cn/bbsfiles/images/2021/12/202112281632323226_702_3384_3.png!w603x449.jpg[/img][/align]主要技术指标如下:(1)接触材料:不锈钢;(2)密封材料:全氟醚橡胶(FFKM);(3)响应时间:0.8s(全关到全开);(4)流体:气体和液体;(5)压力范围:-1~7bar;(6)阀芯节流内径:0.9~4.1mm;(7)流量范围:0.1~2000L/m;(8)线性度:±0.1~±11%(9)重复精度:±0.1%(全量程);(10)使用温度范围:0~84℃;(11)控制信号:0~10VDC或RS485;(12)工作电源:24V(≤12W)。[align=center][/align][align=center]=======================================================================[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制