当前位置: 仪器信息网 > 行业主题 > >

全磁浮分子泵

仪器信息网全磁浮分子泵专题为您提供2024年最新全磁浮分子泵价格报价、厂家品牌的相关信息, 包括全磁浮分子泵参数、型号等,不管是国产,还是进口品牌的全磁浮分子泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全磁浮分子泵相关的耗材配件、试剂标物,还有全磁浮分子泵相关的最新资讯、资料,以及全磁浮分子泵相关的解决方案。

全磁浮分子泵相关的论坛

  • 磁浮子液位计出现乱磁现象原因

    近几年来,随着一些有实力、重质量的仪表生产厂的技术进步,磁钢的磁性得以增强,磁稳定性得以提高,由于上述原因费起的“乱磁”现象减少,而另一种不易被察觉的原因显现出来。在练油化工生产过程中,磁浮子液位计因其成本低,测量范围广,指示清晰、压力等级高、安全性好等诸多优点广泛用于练油化工装置中。但如果磁浮子液位计因为磁钢的性能不稳定,使用一段时间后,磁性减弱,浮子中的磁锅和指示器中的小磁钢之间失去磁连接作用,使指示器不能进行磁跟随而失去指示作用,由于指示器中的若干小磁钢磁性减弱程度不同而产生乱磁现象,这是早期磁浮子液位计产生乱磁的主要原因。 还有,在正常生产的密闭管路中,有时由于各种各种原因也会在某种液相中混杂许多大小不等的气泡,严重时甚至也会产生“气想段”。这些液相中混杂的气想的出现会随着生产上的变化而变化,如果某个安装有常规磁浮子液位计的设备的进料管路与液位计的相对位置有利于汽泡进入液位计,当混杂着[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的液相进入这个设备时,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]就会进入磁浮子液位计的测量室,如果是一些分散的小气泡进入,由于磁浮子液位计的测量室内的介质密度发生变化,浮子所受的浮力就会发生变化,浮子的位置就要改变,磁浮子液位计指示器所指示的液位值就会产生或大或小的误差,就是说,这种情况干扰了磁浮子液位计的正常指示,如果是很大的气泡或一个“[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]段”进入了磁浮子液位计测量室内,也会产生如前面没理液化烃时所述的“乱磁”现象。 上面这些导致常规磁浮子液位计不能正常工作的现象的发生都是由于液位计测量的液相介质中混杂的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]对液位计的冲击所造成的,要想使磁浮子液位计正常工作,就必须加以改造,让它能适应这种冲击。 液位仪表的正确选择,会让工业生产进行得更顺利更节能节时。

  • 磁浮子液位计在原油分离器液位测量中的现场校准方法

    前言按照国家检定规程的形貌,2m 以下液位计需通过标准水箱装置进行检定,但是,受原油分离器磁浮子液位计现场安装存在问题及本身尺寸的限制,现场所使用的磁浮子液位计无法拆除送检定单位进行检定,所以对磁浮子液位计进行简单而有效的现场校准方法,以期能够达到在现场安装条件下液位误差准确性及其科学性的目的,具有实际作用。1 磁浮子液位计布局与工作原理磁浮子液位计主要部件即是工作筒、磁浮子、外部指示器及一个远传检测传感器。液位计从上部和下部的侧面引出管线法兰与被测介质的器壁连接,通过中间阀门来实现磁浮子液位计的使用和切除。在磁浮子液位计下部通过法兰连接安装有一个排污泄压阀,在维护时进行排污泄压。测量筒内壁安装一个可以自由上下活动的磁性浮子,浮子里面密封有永远磁铁。在测量筒的法兰面上固定一个缓冲弹簧,用来减轻测量筒对浮子的硬性冲击。磁浮子液位计与原油分离器组成连通器,行使浮力原理和磁耦合,磁浮子随被测介质的液面的变化上下挪动,浮子内置永磁磁组与显示器的磁柱之间产生磁性耦合作用,吸引外部显示器磁柱的翻转,从而现场显示器可清楚地指示出液位的高度。当容器内的液面发生时,伴随磁性浮子随液面升降的同时,磁浮子液位变送器或防爆磁浮子液位变送器内干簧管经与磁性浮子耦合后随之动作,输出与液面比较应的电阻、电流或开关信号。2 原油分离器浮子液位计日常维护浮子液位计日常维护是巡检人员和自动化维护人员巡回检查所例行的具体内容,采用“看、摸、试”等方式对仪表进行检查。2.1 外观检查外观检查内容是检查人员在不采用工具、不进行拆卸、不表正常工作的情况下所进行的检查。主要针对仪表的连接部位、电路片面和相关附件进行一系列检查。在检查中,应做到:仪表防爆密封良好,防爆软管无破损,电气连接坚固,显示器磁柱无损坏;变送器、干簧管套、液位开关及固定部位无锈蚀;分离器与液位计联接处无漏油、气现象。2.2 性能检查性能检查是自动化维护人员在不影响正常生产的情况下,对磁浮子液位计不拆卸的检查,一般为每周一次。在怀疑磁浮子液位计发生故障时,可采用性能检查的方法进行排除。性能检查方法:改入液量较大油井,关闭出油阀,观察液位由下行程直至上行程。往复几次,根据浮子的阻力变化校验浮子遇阻情况。同时观察变送器输出信号变化量是否随浮子变化而变化。根据以上的检查可校验磁浮子液位计工作性能的好坏。原油分离器浮子液位计由于测量介质的结垢、结蜡的影响,至少每月对磁浮子室、分离器上下流阀门进行清洗、除垢,对磁浮子磁性进行检查。2.3 使用时的注意点原油分离器浮子液位计使用时应注意,当出现浮子难以浮起且浮子挪动不灵活的情况。这基本上是因为磁性浮子上沾有铁屑或其他污物造成的。可先排空介质,再取出浮子,消除磁性浮子上沾有的铁屑或其他污物即可。检查液位计时,不要用强磁铁在连通管外上下拉动浮子进行检查,否则会导致磁性浮子磁化而改变极性,乃至会使浮子磁性减弱,以致难以正常工作。3 在线校准方法原油分离器浮子液位计校准与每年分离器校验时同时进行,在发现浮子液位计存在误差时及时进行校准;新装浮子液位计、拆卸及维修后的浮子液位计均进行校准。校准内容一般包括确定介质密度、显示校准与信号输出校准。3.1 确定介质密度介质密度可以用标准密度计测量,也可以根据用户提供的具体资料查取,介质密度需记录备案,确保介质密度能够符合液位计磁浮子对密度的要求。虽然理论上介质密度对液位计的示值有影响,但是实际使用中液位计的零位和满度值都可以通过电位器直接调整过来。3.2 显示校准磁浮子液位计显示的是液位浮子的测量位置,它的准确程度是用于分离器液位控制的重要保证。现场人员往往通过现场观察磁浮子液位计的显示来校验液位的变化。校准方法:向分离器在不带压力的状况注水,用连通法测量液位计测量点。将液位计按照行程的高度均分成 0、25%、50%、75%、100%等五个测量点,其磁翻板显示应逐步与比较应。磁翻板调整通过安装位置进行调整其比较应的高度。3.3 信号输出校准通过对信号输出的校准,确保现场采集的信号能够准确地传送到控制终端及电动调节仪表中,可对整个分离器的液位回路、产量进行控制和计量。校准方法:将电流表串接入液位计测量回路中。将液位保持在磁翻板零位的基准刻线,电流表指示在 4mA,如输出电流小于 4mA,调节 0 位螺丝,反之亦然。然后将液位控制在满量程上,电流表指示在 20mA 如有误差调节满度螺丝至 20mA。然后将行程高度均分成0、25%、50%、75%、100%等五个测量点,其输出信号应为 4、8、12、16、20mA,信号误差不超过 0.4mA。远程终端及电动调节仪表显示为0、25%、50%、75%、100%。4 结束语在油田生产中,有较多的种类仪器、仪表无法在计量检定单位进行检验,原油分离器磁浮子液位计现场校准所用的仪器简单实用,可操作性强,可以保证原油分离器液位测量的准确性,确保了原油生产的安全运行和计量的准确性。

  • 【讨论】磁浮列车对人体有无害吗?

    【讨论】磁浮列车对人体有无害吗?

    磁浮列车对人体有无害吗?磁浮列车有辐射污染吗??http://ng1.17img.cn/bbsfiles/images/2011/03/201103022004_280441_1638489_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/03/201103022004_280442_1638489_3.jpg

  • 【讨论】分子泵启动时会不会产生磁场?

    一个假期没开机,现在在开机的时候我是先开的分子泵,在分子泵的启动过程中我再把电脑打开,结果电脑的显示器很快就出现了大量的纵向条纹,而且是全屏,根本不显示任何的内容,我以为是一个假期显示屏环了,就换到能谱用电脑的显示器上用,可是我又不相信主机的显示屏在一个假期后会出问题,所以又重新检查了主机用电脑的显示器,结果是好的.后来我分析显示器出问题的主要原因是分子泵的启动过程中形成了强大的磁场影响到了显示器,可见其磁场之强.我以上的分析不知对不对?请大家帮着给分析下,你们平时在有没有遇见过这种现象.现在我刚买了一套分子泵机组,在启动的时候也没遇过这种情况啊!

  • 涡轮分子泵维修保养

    专业维修所有进口品牌的分子泵,涡轮分子泵,高真空分子泵,磁悬浮分子泵,真空泵,油泵~有问题的可以联系我一起交流学习![img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/06/202306200746344571_7322_5579689_3.png[/img]

  • 分子泵功能介绍

    [color=#fe8637]¢[/color][color=black]涡轮分子泵的简介[/color][color=black]:[/color][color=black]1956[/color][color=black]年[/color][color=black],[/color][color=black]德国人贝克([/color][color=black]W.Becker[/color])发明了涡轮分子泵,以高速旋转的动叶片和静止的定叶片配合来实现抽气,极限压强可达[color=black]10[/color][color=black]-9[/color][color=black]Pa[/color][color=black]以下[/color][color=black]。[/color][color=#fe8637]¢[/color][color=black]轮轮分子泵的生产产家很多[/color][color=black],[/color][color=black]它用于高真空的设备。例如[/color][color=black]BOC [/color]Edwards,Leybold[color=black], [/color][color=black]Alcatel,Varian[/color][color=black](Merged by [/color][color=black]Aglient[/color]),Alcatel,Pfeiffer, Osaka, Shimadzu, Ebara[color=black]。等等。分子泵可分为磁悬浮轴承分子泵[/color][color=black],[/color]机械轴承分子泵[color=black],[/color][color=black]和半磁悬浮轴承分子泵[/color][color=black].[/color][color=#fe8637]¢[/color][color=black]气体分子理论[/color][color=black]:[/color][color=black]在正常的大气压力下[/color][color=black],[/color]也就是[color=black]760Torr,[/color][color=black]由于空间内的气体分子分布密集[/color][color=black],[/color][color=black]各气体分子的平均自由径仅为[/color][color=black]0.07[/color]微米[color=black],[/color][color=black]因而气体为粘滞流状态[/color][color=black],[/color]几乎是在原地振动。[color=#fe8637]¢[/color][color=black]随着真空度的提高[/color][color=black],[/color][color=black]单位体积内的气体分子数量逐渐减少。当真空度达到[/color][color=black]1x10-3Torr[/color][color=black]之後[/color],[color=black]其平均自由径为[/color][color=black]5cm,[/color]气体分子呈现出“分子流”的状态。这也是[color=black]Turbo Pump[/color][color=black]被称为分子泵的原因。[/color][color=#fe8637]¢[/color][color=black]磁悬浮轴承分子泵:泵的转动轴承以磁悬浮形式为主。当泵的主体通电后,首先是轴承部由电磁铁产生磁悬浮力,将泵的转子浮起。而后是转子部的回旋加速,直至额定转速。此类泵可以减少定期的维护保养的周期[/color][color=black]([/color][color=black]保养周期的决定主要是在于是用于哪一种[/color][color=black]Process)[/color][color=#fe8637]¢[/color][color=black]机械轴承分子泵:泵的转动轴承以陶瓷轴承为主。当泵的主体通电后,转子部即开始回旋加速,直至额定转速。此类泵因使用环境的不同,需要按一定的周期做维护保养,主要维护内容是轴承部的润滑和轴承的更换等。[/color][color=#fe8637]¢[/color][color=black]半磁悬浮轴承分子泵:[/color][color=black]在一个单一泵中使用两个轴承的概念[/color],[color=black]在这种情况下, 油润滑球轴承安装在前真空侧上轴的端部[/color].[color=black]且高真空侧配备了免维护和无磨损的永磁轴承,其将转子置于径向中心位置。正常工作期间,轴颈在该轴承仔由旋转。如果存在强劲的径向冲击,安全轴承则稳定转子并只在短时间转动。[/color][color=#fe8637]¢[/color][color=black]工作原理[/color][color=black]:[/color][align=left](1)[color=black]动量传输作用:碰撞于表面的分子离开表面时[/color],[color=black]获得与表面速率相近的切向速率。利用高速旋转的动轮叶将动量穿给气体分子[/color],[color=black]使气体产生定向流动而抽气。[/color][/align][align=left](2)[color=black]气体分子经过第一动轮叶作用後[/color],[color=black]除了少数未与叶片碰撞而直接飞过去以外[/color],[color=black]大部份与动轮叶碰撞并获得近乎动轮叶的切向速率[/color]…[color=black]然後接下来进入静轮叶[/color],[color=black]因为两者有相对速率[/color],[color=black]就能发生碰撞并有向下飞行的运动分量。[/color][/align][align=left][color=#fe8637]¢[/color][color=black]分子泵的优缺点[/color][color=#fe8637]¢[/color][color=black]优点[/color][color=black]:[/color][/align][align=left](1)[color=black]无油蒸气的污染[/color][color=black],[/color][color=black]能获得清洁的高真空[/color][/align][align=left](2)[color=black]启动快[/color][color=black],[/color][color=black]激活快。[/color][/align][align=left](3)[color=black]涡轮分子泵多占空间小[/color],[color=black]安装方向不受限制[/color]([color=black]油润滑轴承除外[/color][color=black]),[/color][color=black]可用于安装位置受限制的地方。[/color][/align][align=left](4)[color=black]气体输送能力强[/color][color=black],[/color][color=black]适用于气体负荷高的工艺过程[/color][color=black],[/color][color=black]如溅射[/color][color=black],[/color][color=black]蚀刻等。[/color][/align][align=left](5)[color=black]入口压力范围可在[/color]10x-1[color=black]~[/color][color=black]10x-3Torr[/color][color=black]之间运行[/color][color=black],[/color][color=black]在这个压力范围内[/color][color=black],[/color][color=black]离子泵不能应用[/color][color=black],[/color][color=black]对于低温泵需要节流抽速或经常再生[/color][color=black],[/color][color=black]对扩散泵的工作也会变得不稳定[/color][/align][align=left][color=#fe8637]¢[/color][color=black]缺点[/color][color=black]:[/color][/align][align=left](1)[color=black]价格高[/color][/align][align=left](2)[color=black]对颗粒物或沉积物敏感[/color][/align][align=left](3)[color=black]有的泵耐大气冲击能力不足[/color],[color=black]叶片会因共振弯曲相碰而损坏。[/color][/align][align=left][color=#ffffff]目前我在一家分子泵维修保养的公司担任销售的工作,欢迎进行分子泵的交流和讨论,如果有需求也可站内私信我...[/color][/align]

  • 【转帖】分子涡轮泵的维护

    一般来讲,如果说前级泵没有问题,而真空在规定的时间内没有达到规定的真空值或者有漏气(排除其它的漏气)、或着解吸附作用降低,说明真空泵有点脏了,需要进行清洗,这时不用进行拆卸就可以直接进行清洗,如果太脏的话,就必须进行拆卸清理了。直接清洗的方法如下: 关掉分子泵,进行排气。从机器上拆下分子泵,注意不要碰到接口的边缘部分。拆掉冷却器、加热器(如果有的话)等拆掉润滑的油包将分子泵的高真空接口朝下垂直地放入一个适合的容器中。往容器中用人无水酒精,高度以前级真空接口略低为宜,如下图。上下活动分子泵几次,便于分子泵的定子和转子的叶片清洗,在无水酒精中浸泡大概5~10分钟。换掉无水酒精,加入新的无水酒精,重复前面的工作,最少要重复一次。拿出分子泵。将高真空接口朝上,从垂直慢慢放倒到180度,以便排除磁性轴承中的酒精。用一个网格放在高真空接口上,然后朝下放置,利用一个泵抽大概30分钟左右。注意接口的密封表面不要损坏。接上前级真空泵,不要开分子泵,利用前级泵抽真空,达到大概10E-1左右,以便完全清除分子泵中残留的无水酒精。更换真空泵中的真空油,接上分子泵开始工作。注意第一次抽真空时是比较慢,这是因为分子泵中有残留的酒精,属于正常情况。在分子泵中最容易损坏的就是轴承了,所以更换轴承是一个主要的工作。更换轴承需要爱一个干净的环境中更换,我们一般更换的是马达这边的轴承。更换轴承需要一些特殊的专用工具。值得注意的是,在每次更换轴承的时候,油包也一定要更换。[color=#DC143C][size=4]以上内容来自网络,质谱工程师不建议自己对分子涡轮泵进行维护,工程师说他们只负责拆装,也不做维护,都是发回厂家维护的。[/size][/color]

  • 【转帖】电液伺服万能试验机与电液比例伺服万能试验机

    文献: 新编液压工程手册 北京理工大学出版社 一九九八年十二月出版  [URL=http://www.okyiqi.com]电液伺服试验机[/URL]分为动态电液伺服和静态电液伺服[URL=http://www.okyiqi.com]试验机[/URL]两种,伺服阀更适合于动态试验机,而电液比例阀在静态试验机上有无可比拟的优越性。电液比例阀式万能试验机及老产品技术改造自开始生产至今已有100多台,所有产品都正常工作,小至100kN大至15000kN微机控制电液伺服试验机压力试验机。电液比例阀控制技术是目前国内外最新控制技术填补了试验机行业空白,将电液比例阀成功运用于静态电液伺服试验机,打破伺服阀在静态试验机上的垄断局面,使其具有更高可靠性、稳定性及技术先进性,为我国液压试验机发展开辟更为广阔的前景。将该项技术成功应用于普通液压式试验机技术改造,使老产品更新换代成为可能,使之达到与新的电液伺服试验机具有相同的技术水平,使用更为方便可靠。欢迎订购我公司产品,我们将以先进的高技术产品、优越的性能价格比回报广大用户。让用户买了放心,使用放心,使用上质量可靠、稳定性高、功能齐全、性能优良、操作简单、使用方便的一代高科技产品。  一. 当前国内外同类产品技术概况  随着[URL=http://www.okyiqi.com]试验机[/URL]技术的发展,国内外电子液压[URL=http://www.okyiqi.com]万能试验机[/URL],近年来发展了三种不同控制方式;一种是电液伺服阀控制,一种是采用具有速度控制器的压力阀控制,第三种是宽流量范围的比例阀控制,除了控制系统外,还采用高精度力与位移测量系统及计算机采集处理等技术,在功能上达到甚至超过电子万能试验机,尤其在大负荷上液压万能试验机及各种[URL=http://www.okyiqi.com/pages_products/prolist_9.html]压力试验机[/URL]具有更大的优势。日本岛津UEH型及美国STEX公司的HVL型液压万能试验机均采用电液伺服阀控制双向油缸;负荷、变形、位移控制由电液伺服闭环控制,同时具有电子测量和计算机数据处理功能,电液伺服阀的优点是静动态性能良好,分辨率高、滞环小、线性度高、工作范围广更适合动态电液伺服试验机。其缺点是用于静态液压万能试验机上未能发挥其特点,使其造价提高、抗污染能力变差、工作噪声较大,油温升高快,有些还需水冷却。  西德申克公司的UPM液压[URL=http://www.okyiqi.com]万能试验机[/URL],其控制原理是由速度控制器控制力矩电机而带动压力控制阀施加负荷,并具有速度电流反馈,是一种传统的控制方式。  在国内济南试验机厂与其他厂家合作研究了500kN微机控制液压万能试验机与日本岛津产品相似,采用伺服阀控制,此外济南试验机厂已引进日本500kN的UDH型电液伺服阀式液压万能试验机,目前上述产品均在济南试验机厂生产。  二. 电液比例阀与伺服阀控制技术在静态万能试验机上应用比较(见下表)  “比例控制阀发展的初期阶段,仅仅是将比例电磁铁代替普通液压阀的开关型电磁铁或调节手柄,这种比例阀的结构原理和设计准则没有变化。这种比例阀工作频宽小,稳定滞环大,只能用于开环控制。七十年代中期至八十年代初,是比例阀发展的第二个阶段,比例阀开始采用各种内反馈原理,耐高压,比例电磁铁出口比例放大技术日趋成熟。阀工作频宽达到5~10Hz稳定滞环降低到3%左右,八十年代以后,比例阀技术发展进入第三阶段,比例阀原理进一步改善,采用了压力流量位移反馈和动压反馈及电校正等手段,使阀稳定精度动态相应和稳定性都有进一步提高。除中位仍有部分死区外其控制性能与伺服阀更为接近”。“此外比例放大技术也相应迅速发展,不仅集成了各种反馈信号传感接受和处理功能,而且尺寸大为减小,可安装在阀体上使整个控制系统组成一体,使用更为方便,比例电磁铁驱动力的提高,也为阀的动态特性的改善提供了条件”,将其应用于静态电液伺服万能试验机中,配合微机精密调速控制系统已完全满足其使用要求。  电液比例阀与伺服阀控制技术在静态万能试验机上应用比较 电 液 比 例 阀 伺 服 阀 电液比例阀:抗污染能力极强,对液压油的过滤要求为20μm,可实现无故障运行。伺服阀:对液压油的过滤要求需达到3μm以内,抗污染能力极弱,尤其对静态液压式试验机间隙密封的柱塞油缸,更易引起油质污染,阻塞伺服阀。控制方式:电液比例阀是纯数字电器伺服控制、电路简单,稳定性非常高。控制方式:伺服阀多数采用模拟电器控制、电路复杂,稳定性较弱。 工作状态:电液比例阀是在低压起动,系统压力随试验力增加而比例增加,噪音低、油温不易上升,不需冷却装置。 工作状态:伺服阀是在高压状态下起动,正常工作时始终处于最高压力下,工作噪音大、油温升高快,容易渗漏,需要进行水循环冷却。 电器测量控制系统:采用计算机总线插卡式设计,所有功能通过软件来完成,有利于功能扩展、软件升级及微机联网,并且具有故障自诊断功能,维修极为方便,只需更换微机内相应插卡即可。 电器测量控制系统:伺服阀电器测量控制系统大多数采用德国都利公司电箱,需自配计算机及软件去管理电箱,显示试验数据,打印报告等工作,一旦电箱出现故障,试验机厂家无能力维修。性能:电液比例阀反应速度较低,适合于静态液压试验机(频宽Hz/-3dB)~25 性能:而伺服阀反应速度较高,频宽(Hz/-3dB)20~200,适合于动态试验机。 闭环控制 闭环控制性能价格比:高 性能价格比:低

  • 电液伺服万能试验机维护时需注意的几大问题

    电液伺服万能试验机在建筑资料,金属资料的力学检测上,由于其杰出的操控功能和试验精度,得到了广泛的运用。在大型钢铁企业,及质检单位实验室里,试验机往往是多台进行高负荷任务。而实验人员大多缺少保护保护经历,所以,常常出现这些那些的问题。厂家及用户都不胜其烦。有些用户乃至诉苦设备太娇贵,还不如旧式液压机。殊不知,电液伺服万能试验机是光、机、电连系的高精细仪器,并不是生产性设备,哪能当“老黄牛”使唤呢?其实,电液伺服万能试验机虽精细但并不娇贵,只需把握以下十点心得,运用就会称心如意了。    1、打扫与卫生:在试验过程中不可避免的会发生一些粉尘,如氧化皮、金属碎屑等等,若是不及时打扫洁净,不只会对某些零件的外表发生磨损、划伤等,更严峻的是若是这些粉尘进入电液伺服万能试验机液压体系,会发生阻塞阀孔、划伤活塞外表等十分严峻的结果,所以每次运用后的打扫十分要害,一定要坚持实验机的卫生;    2、用适宜的夹具完结相应的试验,不然不光试验不会很成功,并且还会损坏夹具:电液伺服万能试验机普通只装备了做规范试样的夹具,若是要做非规范的试样,比方钢绞线,搭接钢精等,必需求增配相适应的夹具;还有一些超硬度的资料,比方弹簧钢等,必须运用特别资料的夹片,不然会损坏夹具;    3、液压油:必须常常查看油箱液面并及时补油;普通要每运用2000至4000小时换一次油;但是最重要的是油温不得超越70℃,在油温超越60℃时必须翻开冷却体系;    4、过滤器:关于不带阻塞指示器的过滤器,普通每隔6个月要替换一次。关于带阻塞指示器的过滤器,要不断监督,当指示器报警后必须当即替换;    5、蓄能器:有些电液伺服万能试验机上配有蓄能器,必须包管蓄能器的压力处于正常任务状况,若是发现压力不敷,需求立刻弥补压力;只准向蓄能器充入氮气;    6、元器件定时巡检:一切压力操控阀、流量操控阀、泵调节器以及压力继电器、行程开关、热继电器之类的信号设备,都要进行定时查看;    7、冷却器:选用风冷的冷却器的积垢要定时整理;选用水冷的要定时调查冷却铜管有没有决裂漏水的表象;    8、润滑油:电液伺服万能试验机丝杠及传动局部要定时涂润滑油,避免发生干冲突;    9、电液伺服万能试验机紧固件要定时进行锁紧:试样拉断后的振荡常常会使一些紧固件退松,一定要定时进行巡检(正常运用三十个任务日左右),以避免由于紧固件松动造成大的丢失。    10、其他查看:进步警觉并密切注重细节,可以及早发现事端预兆,避免酿成大的事端。在设备开始投入运转的时分尤其是这样。应该一直注重外走漏、污染物、元器件损坏以及来自泵、联轴器等的反常噪声。

  • 【分享】【转】真空分子泵简介+真空开机关机

    在我们论坛上质谱综合版面专家的帖子里发现一大学网站里的这个资料,转来给我们[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的版友分享。专家的分享,我已投票感谢了。还有,希望了解较多、懂行的版友能够跟帖,纠正错误,给广大版友带来方便。再次首先感谢您的支持^_^分子泵的作用利用高速旋转的动叶轮将动量传给气体分子,使气体产生定向流动而抽气的真空泵。涡轮分子泵的优点是启动快,能抗各种射线的照射,耐大气冲击,无气体存储和解吸效应,无油蒸气污染或污染很少,能获得清洁的超高真空。涡轮分子泵广泛用于高能加速器、可控热核反应装置、重粒子加速器和高级电子器件制造等方面。1958年,联邦德国的W.贝克首次提出有实用价值的涡轮分子泵,以后相继出现了各种不同结构的分子泵,主要有立式和卧式两种,图1 为立式涡轮分子泵的结构图。涡轮分子泵主要由泵体、带叶片的转子(即动叶轮)、静叶轮和驱动系统等组成。动叶轮外缘的线速度高达气体分子热运动的速度(一般为150~400米/秒)。单个叶轮的压缩比很小,涡轮分子泵要由十多个动叶轮和静叶轮组成。动叶轮和静叶轮交替排列。动、静叶轮几何尺寸基本相同,但叶片倾斜角相反。图2为20个动叶轮组成的整体式转子。每两个动叶轮之间装一个静叶轮。静叶轮外缘用环固定并使动、静叶轮间保持1毫米左右的间隙,动叶轮可在静叶轮间自由旋转。分子泵的结构-涡轮分子泵在运动叶片两侧的气体分子呈漫散射。在叶轮左侧,当气体分子到达A点附近时,在角度α1内反射的气体分子回到左侧;在角度β1内反射的气体分子一部分回到左侧,另一部分穿过叶片到达右侧;在角度γ1内反射的气体分子将直接穿过叶片到达右侧。同理,在叶轮右侧(图3b),当气体分子入射到B点附近时,在α2角度内反射的气体分子将返回右侧;在β2角度内反射的气体分子一部分到达左侧,另一部分返回右侧;在γ2角度内反射的气体分子穿过叶片到达左侧。倾斜叶片的运动使气体分子从左侧穿过叶片到达右侧,比从右侧穿过叶片到达左侧的几率大得多。叶轮连续旋转,气体分子便不断地由左侧流向右侧,从而产生抽气作用。 分子泵泵的排气压力与进气压力之比称为压缩比。压缩比除与泵的级数和转速有关外,还与气体种类有关。分子量大的气体有高的压缩比。对氮(或空气)的压缩比为108~109 对氢为102~104;对分子量大的气体如油蒸气则大于1010。泵的极限压力为10-9帕,工作压力范围为10-1~10-8帕,抽气速率为几十到几千升每秒(1升=10-3米3)。涡轮分子泵必须在分子流状态(气体分子的平均自由程远大于导管截面最大尺寸的流态)下工作才能显示出它的优越性,因此要求配有工作压力为1~10-2帕的前级真空泵。分子泵本身由转速为10000~100000转/分的中频电动机直联驱动。 分子泵的维护一般来讲,如果说前级泵没有问题,而真空在规定的时间内没有达到规定的真空值或者有漏气(排除其它的漏气)、或着解吸附作用降低,说明真空泵有点脏了,需要进行清洗,这时不用进行拆卸就可以直接进行清洗,如果太脏的话,就必须进行拆卸清理了。直接清洗的方法如下: 1.关掉分子泵,进行排气。2.从机器上拆下分子泵,注意不要碰到接口的边缘部分。3.拆掉冷却器、加热器(如果有的话)等4.拆掉润滑的油包5.将分子泵的高真空接口朝下垂直地放入一个适合的容器中。6.往容器中用人无水酒精,高度以前级真空接口略低为宜。7.上下活动分子泵几次,便于分子泵的定子和转子的叶片清洗,在无水酒精中浸泡大概5~10分钟。8.换掉无水酒精,加入新的无水酒精,重复前面的工作,最少要重复一次。9.拿出分子泵。10.将高真空接口朝上,从垂直慢慢放倒到180度,以便排除磁性轴承中的酒精。11.用一个网格放在高真空接口上,然后朝下放置,利用一个泵抽大概30分钟左右。注意接口的密封表面不要损坏。12.接上前级真空泵,不要开分子泵,利用前级泵抽真空,达到大概10E-1左右,以便完全清除分子泵中残留的无水酒精。13.更换真空泵中的真空油,接上分子泵开始工作。注意第一次抽真空时是比较慢,这是因为分子泵中有残留的酒精,属于正常情况。在分子泵中最容易损坏的就是轴承了,所以更换轴承是一个主要的工作。更换轴承需要爱一个干净的环境中更换,我们一般更换的是马达这边的轴承。更换轴承需要一些特殊的专用工具。值得注意的是,在每次更换轴承的时候,油包也一定要更换。参考资料Working with turbo pumps,Pfeiffer vacuum[color=#DC143C]我们不一定要自己拆卸真空系统清洗,资料也可能落后了,但是可以了解下。以下链接有版友回帖,并冒失的总结一句,最好不要自己动手拆洗还能用的分子泵,代价很大[/color]此贴中把图也附上了,可以一起学习。[URL=http://www.instrument.com.cn/bbs/shtml/20090412/1834110/]http://www.instrument.com.cn/bbs/shtml/20090412/1834110/[/URL][URL=http://www.instrument.com.cn/bbs/shtml/20090412/1834157/]http://www.instrument.com.cn/bbs/shtml/20090412/1834157/[/URL]

  • 请教分子泵

    真空系统中,关泵时,头晕了一下,先关了机械泵,过了一会反应过来关错了,然后又开机械泵了,再按正常的步骤关了设备,结果再抽的时候,机械泵抽不出 好想是漏气似的,检查来检查去实在是不知道那里漏气。 机械泵是好的,分子泵会不会出问题?那地方会出问题呢? 我也不太懂,是新设备上的。就是机械泵连在分子泵上。如果分子泵不开,机械泵抽一会,真空会上去,应该是负责分子泵前级和真空室预抽。 它这个是有保护功能,一般不是说分子泵是二级泵,必须在一定的的真空下才可以开吗?它这各可以同时开,只是在真空度不上去时,分子泵不工作而已。 抽的时候阀门没有动。 气路就是一个scroll pump 连在turbo pump 再接闸板阀,再接到腔。 现在的症状就是机械泵抽的声音很大,不断有气从排气孔出来,显然是漏气了。别的地方又没有动,分子泵内部是不是哪里破了,漏气呢? 谢谢!

  • 分子涡轮泵坏了,如何搞?

    一台热电Trace1300 的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url],分子涡轮泵坏了,坏的过程经历几个阶段,请大神解疑答惑。1. 第一次是做样分析的时候,质谱端Vacuum灯一直闪烁,发现分子涡轮泵和机械泵均停止了工作。然后我把质谱端电源断开后再通电,分子涡轮泵和机械泵均恢复正常,真空度一会就达到60mtor。2. 正常工作一个星期左右,质谱端Vacuum灯又一直闪烁,发现分子涡轮泵和机械泵再次停止了工作。这次我放空关机后,把机械泵泵油更换新的,换下来的泵油也就一点点黄。然后再正常开机,分子涡轮泵和机械泵均恢复正常,抽完真空后,真空度也达到约60mtor。3.正常工作约2天左右,质谱端Vacuum灯又一直闪烁,发现分子涡轮泵和机械泵还是停止了工作。这次没辙了,也不敢再断电重启MS,直接关机待修了。呼唤厂家工程师上门。昨天开机后,机械泵启动几分钟后停止工作,分子涡轮泵一直不工作了。请问,这个分子涡轮泵故障的原因有哪些?换一个新的要10多万大洋[img]https://simg.instrument.com.cn/bbs/images/default/em09509.gif[/img]急急急!

  • 【资料】液压伺服系统

    【资料】液压伺服系统

    液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明  液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。  电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912151106_190054_1634361_3.jpg[/img]  图所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值xi。对应给定值xi,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量xv。阀开口xv使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移xp。当xp所对应的电压与xi所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。  液压传动中具有随动作用的液压自动控制系统。在这种系统中,大功率的液压元件(包括液压伺服阀和液压执行元件) 跟随小功率的指令信号元件动作。执行元件所控制的通常是位置、速度等机械量。指令信号元件又称参考信号元件,它发出代表位置、速度或其他量的指令信号。大功率与小功率之比可以达几百万倍以上。液压伺服系统是反馈控制系统,反馈回来代表实际状态的信号与指令信号比较,得到误差信号,如果误差不是零,便进行调节。例如在高射炮自动瞄准系统中,雷达跟踪飞机,并将信号送给指挥仪,指挥仪计算出高射炮管应处的位置,炮管的实际位置与指挥仪算出的指令位置在系统中不断进行比较和调节,直到误差小于许可值时才射击。液压伺服系统通常应包括:实际状态的测量反馈元件;小功率指令信号的传递元件和大功率液压执行元件;期望状态和反馈状态的比较元件;差值信号的放大元件。液压伺服系统分为机械液压伺服系统、电液伺服系统和气液伺服系统。它们的指令信号分别为机械信号、电信号和气压信号。电液伺服系统因电气控制灵活而得到广泛的应用;气液伺服系统用于防爆的环境或容易获得气压信号的场合。液压伺服系统应具有必要的性能:工作稳定;对指令信号反应快;稳态误差小;对干扰不敏感。液压伺服系统是自动控制系统中应用最广泛的一种。在精密加工的定位系统中,液压伺服系统能保证小于0.1微米的加工误差。世界上许多巨大天文望远镜的动作,都是用星光作为伺服系统的指令信号,通过液压伺服系统和执行元件进行跟踪的。  液压伺服系统的组成  液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统﹐分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。其中﹐机械液压伺服系统应用较早﹐主要用於飞机的舵面控制和机床仿型装置上。随著电液伺服阀的出现﹐电液伺服系统在自动化领域占有重要位置。很多大功率快速响应的位置控制和力控制都应用电液伺服系统﹐如飞机﹑导弹的舵机控制系统﹐船舶的舵机系统﹐雷达﹑大炮的随动系统﹐轧钢机械的液压压下系统﹐机械手控制和各种科学试验装置(飞行模拟转台﹑振动试验台)等。   液压伺服系统的优缺点  液压伺服系统与电气伺服系统相比有三个优点﹕  (1)体积小﹐重量轻﹐惯性小﹐可靠性好﹐输出功率大﹔  (2)快速性好﹔  (3)刚度大(即输出位移受外负载影响小)﹐定位准确。  缺点是加工难度高﹐抗污染能力差﹐维护不易﹐成本较高。

  • 【转帖】电液伺服万能试验机使用维护要注意的十大问题

    [URL=http://www.okyiqi.com/pages_products/proshow_9.html]电液伺服万能试验机[/URL]在建筑材料,金属材料的力学检测上,由于其良好的控制性能和试验精度,得到了广泛的应用。在大型钢铁企业,及质检单位试验室里,电液伺服万能试验机往往是多台进行高负荷运转。而试验人员大多缺乏保养维护经验,所以,经常出现这些那些的问题。厂家及用户都不胜其烦。有些用户甚至抱怨设备太娇贵,还不如老式液压机。殊不知电液伺服万能试验机是光、机、电结合的高精密仪器,并非生产性设备,哪能当“老黄牛”使唤呢?其实,[URL=http://www.okyiqi.com/pages_products/proshow_9.html]电液伺服万能试验机[/URL]虽精密但并不娇贵,只要掌握以下十点心得,使用就会得心应手了。 1、清扫与清洁:在试验过程中不可避免的会产生一些粉尘,如氧化皮、金属碎屑等等,如果不及时打扫干净,不仅会对某些零件的表面产生磨损、划伤等,更严重的是如果这些粉尘进入电液伺服[URL=http://www.okyiqi.com]万能试验机[/URL]液压系统,会产生堵塞阀孔、划伤活塞表面等非常严重的后果,所以每次使用后的清扫非常关键,一定要保持试验机的清洁; 2、用合适的夹具完成相应的试验,否则不但试验不会很成功,而且还会损坏夹具:电液伺服万能试验机一般只配备了做标准试样的夹具,如果要做非标准的试样,比如钢绞线,搭接钢精等,必须要增配相适应的夹具;还有一些超硬度的材料,比如弹簧钢等,必须使用特殊材料的夹片,否则会损坏夹具; 3、液压油:必须经常检查油箱液面并及时补油;一般要每使用2000至4000小时换一次油;然而最重要的是油温不得超过70℃,在油温超过60℃时必须打开冷却系统; 4、过滤器:对于不带堵塞指示器的过滤器,一般每隔6个月要更换一次。对于带堵塞指示器的过滤器,要不断监视,当指示器报警后必须立即更换; 5、蓄能器:有些电液伺服万能试验机上配有蓄能器,必须保证蓄能器的压力处于正常工作状态,如果发现压力不够,需要马上补充压力;只准向蓄能器充入氮气; 6、元器件定期巡检:所有压力控制阀、流量控制阀、泵调节器以及压力继电器、行程开关、热继电器之类的信号装置,都要进行定期检查; 7、冷却器:采用风冷的冷却器的积垢要定期清理;采用水冷的要定期观察冷却铜管有没有破裂漏水的现象; 8、[URL=http://www.okyiqi.com/pages_products/proshow_9.html]电液伺服万能试验机[/URL]丝杠及传动部分要定期涂润滑油,防止产生干摩擦; 9、电液伺服[URL=http://www.okyiqi.com]万能试验机[/URL]紧固件要定期进行锁紧:试样拉断后的振动经常会使一些紧固件退松,一定要定期进行巡检(正常使用三十个工作日左右),以避免由于紧固件松动造成大的损失。 10、其他检查:提高警惕并密切注意细节,可以及早发现事故苗头,防止酿成大的事故。在设备最初投入运行的时候尤其是这样。应该始终注意外泄漏、污染物、元器件损坏以及来自泵、联轴器等的异常噪声 原文地址:[URL=http://www.okyiqi.com/pages_jishuzixun/47.html]http://www.okyiqi.com/pages_jishuzixun/47.html[/URL]

  • 微机控制电液伺服压力试验机

    微机控制电液伺服压力试验机

    YAR系列(二柱式)微机控制电液伺服压力试验机 ·主机跨度大,压缩空间可调节,适合于大型构件试验; ·5000、10000、20000kN机为双油泵配置,空载时低压大流量泵快速充液完成快速进、回程,加载时自动切换成高压小流量泵,极大地节约电能消耗,大大提高工作效率;·油源采用压差伺服技术,电机消耗功率随负荷而变化,因而功率损耗小,噪声低,发热量少,油温升低;·电液比例伺服阀作为控制执行元件,对油清洁度要求低,使用寿命长;匀试验力速率、恒试验力、恒速控制功能; ·测量分辨力高,全程范围内不变化,且内外不分档; ·具有过流、过速、超试验力、超行程等保护功能;http://ng1.17img.cn/bbsfiles/images/2012/06/201206011517_369725_2290385_3.jpg

  • 涡轮分子泵的工作原理

    涡轮分子泵是高或者超高真空泵,可以提供无油的超高真空度,因此是质谱仪的重要组成部分,想要更好的使用质谱仪,就不得不了解涡轮分子泵工作原理的基础及合适的(前级)泵的择。第一台涡轮分子泵是在1955年发明的。当时,Willi Becker博士在Arthur Pfeiffer Vakuumtechnik GmbH(现在的Pfeiffer Vacuum)已经任职13年,担任技术实验室负责人。他关注的问题是如何防止扩散泵中的油回流到泵壳中。为此,他将一个旋转风扇轮作为挡板。通过这种方式,气体粒子沿压力梯度方向流动,没有明显的传导损失。在这相反方向,倒流的油分子被旋转的风扇轮反射。这阻止了分子到达高真空一侧。在进一步的研究中,贝克尔博士注意到,这种设计不仅减少了扩散泵油回流的问题,同时还产生了较低的总压力。然后,他应用了一个转子-定子组合和多个串联的泵级。在这种设计中,他使用了左右两侧对称流模式--一个由皮带驱动的转子,速度达到16,000转/分钟。该泵重62公斤,抽速为900立方米/小时,在1956年获得专利,是今天所有涡轮分子泵的先驱。1958年,在比利时纳穆尔举行的国际真空大会上,该泵首次被展示。如果没有这项发明,我们的现代生活将是不可想象的--因为没有涡轮分子泵,半导体生产的许多制造步骤以及无数的真空镀膜工艺将不可能实现。[img]https://file.jgvogel.cn/134/upload/resources/image/323927.jpeg?x-oss-process=image/resize,w_700,h_700[/img]* 威利-贝克尔博士,1958年在阿瑟-普发真空技术有限公司(今天的普发真空)的实验室里[color=#222222]工作原理和压缩比[/color]涡轮分子泵是如何工作的?从快速旋转的叶片到被抽气的气体分子的动量转移是转子和定子叶片排列的泵送作用的基本原理,如图1。[img]https://file.jgvogel.cn/134/upload/resources/image/323928.jpeg?x-oss-process=image/resize,w_700,h_700[/img] 图1 涡轮分子泵的工作原理[color=#222222]撞击到叶片上的分子被吸附在那里,并在短时间内再次离开叶片。叶片速度v被叠加到分子热运动速度c。分子热运动速度c是分子离开泵的速度。分子流动必须在泵中占主导地位。否则,叶片传递的速度分量将通过与其他分子的碰撞而丢失。因此,平均自由路径T必须大于通道高度h。在泵送气体的过程中,动能泵中会出现背压,导致倒流。S[/color] [font=&][color=#222222]0 [/color][/font] [color=#222222]表示没有前级压力的抽速。它随着前级压力的增加而减少,在最大压缩比K时达到0值。[/color]压缩比K0,可以根据Gaede来估计。对于视觉密集型叶片结构,Gaede的公式适用。[img]https://file.jgvogel.cn/134/upload/resources/image/323929.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图2 转子和定子叶片的排列方式Gaede的公式[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323930.png?x-oss-process=image/resize,w_700,h_700[/img][/align]其中: p[size=11px]V[/size] = 前级真空压力 p[size=11px]A[/size] = 吸气压力 v = 叶片速度[font=微软雅黑, &][size=14px] = 平均分子热运动速度[/size][/font] L = 通道长度 h = 通道高度 g = 用于指定平均冲击距离的系数,是通道高度的倍数(1g3)在图中用v-cos α替换公式v,用b替换L,用t-sin α替换h,我们可以得到[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]根据Gaede的估计,假设叶片是视觉密集的,因此满足cos α = t/b的条件(见图1)。对于较大的叶片间距,这意味着压缩量减少。[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font][font=微软雅黑, &][size=14px]几何比率取自图1。因子g在1到3之间[2]。K[size=11px]0 [/size]因此,随着叶片速度v和 [/size][/font][font=微软雅黑, &][size=14px] aaan的增加呈指数增长。[/size][/font][font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]R 是通用气体常数。T 是热力学温度和。M 是分子质量。因此,氮气的压缩比要比氢气的压缩比高得多。抽气速度的计算抽气速度S [size=11px]0 [/size]与吸气面积A和叶片的平均圆周速度v,即旋转速度成正比。如果考虑到叶片角度α,就可以得到这个结果。[img]https://file.jgvogel.cn/134/upload/resources/image/323931.png?x-oss-process=image/resize,w_700,h_700[/img][font=微软雅黑, &][size=14px][color=#222222]图3 的Y轴上画出了以[/color][i]l[/i][color=#222222]s[/color][font=&]-1[/font][color=#222222] cm-2为单位的比抽速,X轴上画出了循环频率f和叶片的外半径(Ra)和内半径(Ri)的平均叶片速度v=π-f-(Ra+Ri) 。从X轴上的一个选定点垂直向上移动,与曲线的交点显示了该速度下泵SA的最大特征泵送速度。乘以输入盘的叶片面积:[i]A[/i]=(Ra2-Ri2)π ,就可以得到抽气速度。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/323932.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图3 涡轮泵的具体泵送速度[img]https://file.jgvogel.cn/134/upload/resources/image/323933.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图4|泵送速度是相对分子量的函数[color=#222222]图3中输入的点是根据所示的Pfeiffer Vacuum泵的测量值确定的。远高于曲线的点在实际上是不可能的。以这种方式确定的泵送速度还不能说明轻质气体的数值,例如氢气(图4)。如果涡轮分子泵是为低极限压力而设计的,就会使用不同叶片角度的泵级,并对氢气的最大泵速进行分级优化。这样就能同时为氢气(约1000)和氮气提供足够的压缩比的泵。由于空气中的氮气分压很高,压缩比应该在10的9次方左右。对于由转子和定子盘组成的纯涡轮分子泵,由于其分子流的要求,前级真空压力需要达到约10[/color][font=&][color=#222222]-2[/color][/font][color=#222222] hPa(图5)。[/color][img]https://file.jgvogel.cn/134/upload/resources/image/323934.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图5|抽速与抽气压力的关系[img]https://file.jgvogel.cn/134/upload/resources/image/323935.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图6|霍尔韦克级的工作原理[color=#222222]霍尔韦克级的特殊功能[/color]Holweck级(图6)是一个多级Gaede分子泵,有一个螺旋形的泵通道。由于转子的旋转,进入泵通道的气体分子在泵通道的牵引方向上得到一个速度。由于转子和分离分隔Holweck级的挡板之间存在间隙,因此会出现回流损失。为了尽量减少回流,间隙的宽度必须保持较小。圆柱形套筒(1)被用作霍尔韦克平台的转子,它在定子(2)的螺旋通道中旋转。如果定子被安排在转子的外部和内部,两个霍尔韦克级可以很容易地被整合到一个泵中。这样,被泵送的气体颗粒首先通过转子外侧的定子通道,然后再通过转子内侧的定子通道向上输送。从那里,它们通过一个收集通道,到达前级泵。现代涡轮分子泵有时有几个这样的"折叠式"霍尔韦克级,其泵送速度S [size=11px]0[/size]是相同的。[font=微软雅黑, &][size=14px] [/size][/font]这里,b - h是通道的横截面,v - cos α是通道方向的速度分量。随着通道长度L和速度v - cos α[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323936.png?x-oss-process=image/resize,w_700,h_700[/img][/align]压缩比就会增加。[img]https://file.jgvogel.cn/134/upload/resources/image/323937.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图7|纯涡轮分子泵和涡轮拖动泵的压缩比今天,涡轮泵配备了Holweck级,是为了使极限压力在0.5-5hpa之间,以隔膜泵为前级建立起涡轮分子泵系统,这些被称为涡轮拖动泵。由于涡轮泵的高压缩比,只需要很小的泵送速度就可以为Holweck级产生低的本底压力。因此,排气通道--特别是通道高度和到转子的间隙--可以保持得非常小,分子流可以保持在1 hPa范围内。氮气的压缩比同时增加了所需的10的3次方数量级。在图9中,我们可以看到压缩比曲线向更高压力的方向移动了大约10的2次方。在为高气体吞吐量而设计的涡轮分子泵中,在气体吞吐量、前真空兼容性和颗粒容忍度之间做出了妥协。在这种情况下,Holweck级的间隙距离尺寸要大一些。[img]https://file.jgvogel.cn/134/upload/resources/image/323938.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图9|纯涡轮分子泵和涡轮拖动泵对氢气的压缩比[font=&]选择正确的前级泵[/font]涡轮分子泵和前级泵的压缩在获得最低的压力范围方面起着重要作用。这对于氢气等轻质气体来说尤其如此。在以前的超高真空应用中,前级泵已经能够提供10-2hPa左右的低压。涡轮分子泵的压缩比可以在此基础上确定。旋片泵、多级罗茨泵或泵站等前级泵可以提供这样的低前级压力。尽管旋片泵是比较经济的选择,但当涡轮泵关闭时,有油倒流的风险,特别是在错误操作的情况下。干式前级泵甚至泵站,能产生很低的前级真空,其价格要高得多,而且需要相对较大的空间,这在许多应用中是一个不利因素。这里最理想的解决方案是使用一个小型的、低成本的干式前级泵。大多数涡轮分子泵是全能型的。除了良好的压缩性能,它们还提供大的泵送速度和高的气体吞吐量。然而,在极少数超高真空应用中,高气体吞吐量根本没有发挥任何作用。相反,泵送速度和对轻质气体的出色压缩比才是最重要的。涡轮分子泵的霍尔韦克级为最大压缩值进行了优化,这不可避免地减少了泵的气体吞吐量。然而,这对上述应用来说是次要的。然而,备用泵和涡轮分子泵的总压缩比的很大一部分可以转移到涡轮泵上的事实是非常有利的。因此,带有压缩优化的霍尔韦克级的涡轮分子泵可以在明显高于前级压力的情况下排气,以达到相同的极限压力。因此,在使用带有压缩优化的霍尔韦克级的涡轮分子泵时,一个小型隔膜泵就足以产生超高真空(见图9,表1)。[font=微软雅黑, &][size=14px][font=&][img]https://file.jgvogel.cn/134/upload/resources/image/323939.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/font][/size][/font][font=&][/font][font=微软雅黑, &][size=14px][font=&]表1|使用Hipace300H和不同的前级泵所能达到的极限压力[/font][/size][/font] [img]https://file.jgvogel.cn/134/upload/resources/image/323940.gif?x-oss-process=image/resize,w_700,h_700[/img][align=left]这种优化的涡轮分子泵具有很高的真空兼容性,因此隔膜泵毫无疑问仍然可以在间歇模式下运行。只有当前级的真空压力达到一个不允许的高值时,才需要开启它。众多的应用表明,隔膜泵的运行时间不到总时间的10%。除了由此带来的能源节约外,前级泵较低的热辐射和最终在实验室中几乎无噪音的运行也不应被低估。[/align][align=left]此外,为了保持极低的压力(见图9和表1),通常连接在涡轮分子泵下游的离子捕集泵就不再需要了。[/align][align=left]因此,通过现代涡轮分子泵中Holweck级的智能互连,可以大大增加压缩比,特别是对轻质气体。简单、小型的前级泵可用于在低UHV范围内产生非常低的压力。与过去使用的选择相比,这是一个非常大的优势。然而,同样重要的是指出这些解决方案的局限性。高压缩比的涡轮泵不太适合大气体负荷。[/align]激光平衡技术[img]https://file.jgvogel.cn/134/upload/resources/image/323941.jpeg?x-oss-process=image/resize,w_700,h_700[/img]2021年,Pfeiffer真空公司已经推出了激光平衡技术。最后,小析姐分享给大家几个涡轮分子泵在使用小tips:1、为防止涡轮分子泵返油,开机前先将前级泵抽至2托,然后再启动涡轮分子泵。2、在涡轮分子泵与前级泵之间可串入一只挡油阱以防止机械泵油蒸汽的返油。3、不能在前级泵工作时(前级管路接通)和真空室处于真空状态时将涡轮分子泵停掉,否则将会使油蒸汽迅速从前级管路返流到泵的清洁端。4、选择系统前级泵大小时,应使涡轮分子泵的前级泵保持在分子流状态下。5、不能让涡轮分子泵在低于额定工作转速下运行。6、分子泵入口应装设防护网,以免异物进入泵内损坏转子和定子叶片。7、规范使用涡轮分子泵,可有效提升真空泵的使用效率,延长使用寿命

  • 磁悬浮轴承

    磁悬浮轴承(Magnetic Bearing) 是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。其原理是磁感应线与磁浮线成垂直,轴芯与磁浮线是平行的,所以转子的重量就固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,在固定运转轨道上。一、概述磁悬浮轴承是利用磁力实现无接触的新型轴承,具有无接触、不需要润滑和密封、振动小、使用寿命长、维护费用低等一系列优良品质,属于高技术领域。二、基本原理磁浮轴承系统主要由被悬浮物体、传感器、控制器和执行器四大部分组成。其中执行器包括电磁铁和功率放大器两部分。下图是一个简单的磁浮轴承系统,电磁铁绕组上的电流为I,它对被悬浮物体产生的吸力和被悬浮物体本身的重力mg相平衡,被悬浮物体处于悬浮的平衡位置,这个位置也称为参考位置。假设在参考位置上,被悬浮物体受到一个向下的扰动,它就会偏离其参考位置向下运动,此时传感器检测出被悬浮物体偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器使流过电磁绕组上的电流变大,因此,电磁铁的吸力也变大了,从而驱动被悬浮物体返回到原来的平衡位置。如果被悬浮物体受到一个相上的扰动并向上运动,此时控制器和功率放大器使流过电磁场铁绕组上的电流变小,因此,电磁铁的吸力也变小了,被悬浮物体也能返回到原来的平衡位置。三、特点1、机械方面磁悬浮轴承完全消除了磨损,因此,磁悬浮轴承寿命实质上是控制电路元器件的寿命,比机械接触应力疲劳寿命要长很多。另外,通过对控制电路的冗余设计或更换,理论上可获得永久的工作寿命,比机械硬件冗余或轨道更换要方便得多。磁悬浮轴承无需润滑和密封,不用相应的泵、管道、过滤器和密封件,不会因润滑剂而污染环境,特别适用于航天航空产品。磁悬浮轴承适应环境性强,能在极高或极低的温度下工作。磁悬浮轴承发热少、功耗低,仅由磁滞和涡流引起很小的磁损,因而效率高,功耗大约仅为普通轴承的1/10。磁悬浮轴承圆周转速高,轴承转速只受转子材料抗拉强度的限制。2、控制方面磁悬浮轴承可对转子位置进行控制。磁悬浮轴承不同于其他轴承,即使转子不在轴承中心也能支承转子,转轴可在径向和轴向自由移动。磁悬浮轴承刚度和阻尼由控制系统决定,在一定范围内不但可自由设计,而且在运行过程中可控可调,所以轴承的动态特性好。磁悬浮轴承可以自动绕惯性转子旋转,而不是绕支承的轴线转动,因此消除了质量不平衡针起的附加振动。由于磁悬浮轴承具有以上优点,所以特别适合于高速、真空、超洁净等特殊环境,在航空航天、超高速超精密加工机床、能源、交通及机器人等高科技领域具有广泛的应用前景。湖南银河天涛科技有限公司( atitan.com.cn/)

  • 【转帖】真空分子泵简介

    【转帖】真空分子泵简介

    涡轮分子泵的作用利用高速旋转的动叶轮将动量传给气体分子,使气体产生定向流动而抽气的真空泵。涡轮分子泵的优点是启动快,能抗各种射线的照射,耐大气冲击,无气体存储和解吸效应,无油蒸气污染或污染很少,能获得清洁的超高真空。涡轮分子泵广泛用于高能加速器、可控热核反应装置、重粒子加速器和高级电子器件制造等方面。分子泵的结构1958年,联邦德国的W.贝克首次提出有实用价值的涡轮分子泵,以后相继出现了各种不同结构的分子泵,主要有立式和卧式两种。图1 为立式涡轮分子泵Pfeiffer TPU 150 的结构图。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904122107_143695_1623180_3.jpg[/img]涡轮分子泵主要由泵体、带叶片的转子(即动叶轮)、静叶轮和驱动系统等组成。是由多级叶列串联,即按动片、定片、动片、……次序交替排列的。动叶轮外缘的线速度高达气体分子热运动的速度(一般为150~400米/秒)。单个叶轮的压缩比很小,涡轮分子泵要由十多个动叶轮和静叶轮组成。动叶轮和静叶轮交替排列。动、静叶轮几何尺寸基本相同,但叶片倾斜角相反。20个动叶轮组成的整体式转子。每两个动叶轮之间装一个静叶轮。静叶轮外缘用环固定并使动、静叶轮间保持1毫米左右的间隙,动叶轮可在静叶轮间自由旋转。

  • 【原创】请教分子泵换泵油

    仪器是Agient6890/5973,用了四年了,刚接手,不知道该不该换泵油,怎么换分子泵换泵油。请各位大侠不吝赐教,谢过!

  • 【分享】电液伺服万能试验机使用维护要注意的十大问题

    [url=http://www.okyiqi.com/pages_products/proshow_9.html][color=black]电液伺服万能试验机[/color][/url]在建筑材料,金属材料的力学检测上,由于其良好的控制性能和试验精度,得到了广泛的应用。在大型钢铁企业,及质检单位试验室里,电液伺服万能试验机往往是多台进行高负荷运转。而试验人员大多缺乏保养维护经验,所以,经常出现这些那些的问题。厂家及用户都不胜其烦。有些用户甚至抱怨设备太娇贵,还不如老式液压机。殊不知,电液伺服万能试验机是光、机、电结合的高精密仪器,并非生产性设备,哪能当“老黄牛”使唤呢?其实,电液伺服万能试验机虽精密但并不娇贵,只要掌握以下十点心得,使用就会得心应手了。 1、清扫与清洁:在试验过程中不可避免的会产生一些粉尘,如氧化皮、金属碎屑等等,如果不及时打扫干净,不仅会对某些零件的表面产生磨损、划伤等,更严重的是如果这些粉尘进入电液伺服万能试验机液压系统,会产生堵塞阀孔、划伤活塞表面等非常严重的后果,所以每次使用后的清扫非常关键,一定要保持试验机的清洁; 2、用合适的夹具完成相应的试验,否则不但试验不会很成功,而且还会损坏夹具:电液伺服万能试验机一般只配备了做标准试样的夹具,如果要做非标准的试样,比如钢绞线,搭接钢精等,必须要增配相适应的夹具;还有一些超硬度的材料,比如弹簧钢等,必须使用特殊材料的夹片,否则会损坏夹具; 3、液压油:必须经常检查油箱液面并及时补油;一般要每使用2000至4000小时换一次油;然而最重要的是油温不得超过70℃,在油温超过60℃时必须打开冷却系统; 4、过滤器:对于不带堵塞指示器的过滤器,一般每隔6个月要更换一次。对于带堵塞指示器的过滤器,要不断监视,当指示器报警后必须立即更换; 5、蓄能器:有些电液伺服万能试验机上配有蓄能器,必须保证蓄能器的压力处于正常工作状态,如果发现压力不够,需要马上补充压力;只准向蓄能器充入氮气; 6、元器件定期巡检:所有压力控制阀、流量控制阀、泵调节器以及压力继电器、行程开关、热继电器之类的信号装置,都要进行定期检查; 7、冷却器:采用风冷的冷却器的积垢要定期清理;采用水冷的要定期观察冷却铜管有没有破裂漏水的现象; 8、电液伺服万能试验机丝杠及传动部分要定期涂润滑油,防止产生干摩擦; 9、电液伺服万能试验机紧固件要定期进行锁紧:试样拉断后的振动经常会使一些紧固件退松,一定要定期进行巡检(正常使用三十个工作日左右),以避免由于紧固件松动造成大的损失。 10、其他检查:提高警惕并密切注意细节,可以及早发现事故苗头,防止酿成大的事故。在设备最初投入运行的时候尤其是这样。应该始终注意外泄漏、污染物、元器件损坏以及来自泵、联轴器等的异常噪声

  • 分子泵转速只有1000

    真空蒸镀机,普发分子泵转速只有1000左右,抽真空只能抽到2*10-1,,然后分子泵就会报错run up time error。监测机械泵能抽到10-2,分子泵的开关电源之前烧了,换了电源和保险丝后开机,就是这个样子了。

  • 涡轮分子泵运转时需要注意的问题6

    (3)在何处充气  在涡轮分子泵的前级侧充气,能强制使碳氢化合物立刻通过涡轮分子泵流入真空室。另一方面,若在涡轮分子泵吸入侧充气,能达到以清洁气体覆盖表面的目的。并使气流流向涡轮分子泵(自上而下),能暂时阻止、延迟碳氢化合物的返流,也有些涡轮分子泵在压缩级之间进行中间充气,它和在吸入侧充气控制碳氢化合物返流几乎同样有效。在超高真空系统中,在压缩级充气尤其优越。因为中间充气不需要价格昂贵的金属密封的可烘烤的充气阀。

  • 【求助】分子泵报警

    我在用分子泵抽真空时忘记开循环水了,结果抽了三小时至6.8*E-4Pa,分子泵开始报警,迅速将闸板阀关上了,因为此时分子泵的停止按钮无效,最后关掉了电源,请问这样后果是不是很严重?如果不关电源,而是直接把循环水打开,让它边转边冷下来,报警会消失吗?这样做是否可取?还望各位高手多多指点~~~

  • ISQ故障:分子泵自动关机

    赛默飞的ISQ,在一次UPS突然断电后,重启发现分子泵开启一段时间后,会一个小时内自动功率下降回到0。更换过UPS后,故障未排除。联系工程师上门检查,更换过一块电路板后,故障仍未排除。工程师高度怀疑是分子泵故障,但报价昂贵,领导要求自己继续查找原因[img]https://simg.instrument.com.cn/bbs/images/brow/em63.gif[/img]。想请教下各位有遇到类似情况过吗?附件有维修过程。谢谢。

  • 【求助】关于分子涡轮泵的问题求助

    最近要评估GC/MS,厂家在分子涡轮泵这快有很大争议,请高手帮忙指点迷津!我们是做RoHS的实验室,有厂家说配制70L/S的分子涡轮泵就可以了,有厂家说要配制255L/S的分子涡轮泵,由于本身2种型号的分子涡轮泵价格差异不少,也想请问下各位你们在使用的仪器用的哪种分子涡轮泵呢?非常感谢

  • 【分享】电液伺服卧式拉力试验机

    【分享】电液伺服卧式拉力试验机

    试验机用于较长的柔性及刚性材料、结构件和成品件的拉伸性能试验。■特点◎按结构分为单空间、双空间、双油缸式三种方式;◎伺服液压源采用双泵系统,空载时低压大流量泵工作,完成活塞快进、快退;加载时自动切换成小流量高压柱塞泵工作,消耗功率小;◎压差式伺服液压系统,电机消耗功率随负荷变化而功率损耗小,发热量少,油温升低;◎保留手动阀,机器调试力值标定方便,并具有屏显机功能;◎全数字测量控制器,分辨力高,且全程范围内不变化。可实现试验力、位移闭环控制,以多步骤方式控制恒试验力、恒位移、匀应力速率、匀位移速率;◎计算机通过串行口与测量控制系统通讯,在中文windows2000/xp界面上用虚拟键盘操作。http://ng1.17img.cn/bbsfiles/images/2012/03/201203221558_356661_2290385_3.jpg

  • 【气相色谱之家】气质分子涡轮泵开机不运行,为何

    【问题】有没有人知道安捷伦[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]分子涡轮泵开机不运行什么情况啊?开机一会还会停掉。【回复】可能是大漏或者分子泵故障可能性高,或者是放空阀没关,或是侧版松了,也可能是机械泵的泵油不够了。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制