迁移池迁移槽

仪器信息网迁移池迁移槽专题为您提供2024年最新迁移池迁移槽价格报价、厂家品牌的相关信息, 包括迁移池迁移槽参数、型号等,不管是国产,还是进口品牌的迁移池迁移槽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合迁移池迁移槽相关的耗材配件、试剂标物,还有迁移池迁移槽相关的最新资讯、资料,以及迁移池迁移槽相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

迁移池迁移槽相关的厂商

  • 400-860-5168转6251
    苏州越质生物技术有限公司(越质生物)是一家专注于小型离子迁移谱和离子迁移质谱在医学及相关领域研发、生产和应用推广的企业。越质生物是Excellims Corporation子公司,Excellims由吴青博士于2005年创立,是全球高效离子迁移谱技术的发明者和引领者。越质生物依托吴青博士的研发团队,搭建了国际领先的小型离子迁移谱和离子迁移质谱研发平台,独立研发了全球首款直接用于临床医学的离子迁移质谱仪。公司持有多项质谱仪核心技术的专利,多年来不断进行自主知识产权研发,提供先进的分析仪器。向妇幼、内分泌、心血管、肿瘤、神经、药物浓度、毒物、科研、中医药、化工、食品、化妆品、农业、环保和司法等方向提供设备及解决方案。
    留言咨询
  • 400-860-5168转3730
    济南赛成电子科技有限公司成立于2007年,是一家致力于实验室检测仪器研发、生产和销售的高新技术企业。公司成立以来,坚持贯彻“包装检测仪器和检测服务专家”的企业定位,专注包装前沿技术和包装材料检测仪器研发;秉承“持续改进、追求卓越”的经营理念,持续为食品行业、药品行业、胶粘制品行业、日化行业、质检机构、科研院校提供优质高端的检测仪器和全面质量控制方案。公司提供完善的材料测试服务。2014年公司成立了包装测试科研中心,占地面积1000多平米,中心涵盖了公司自主研发的100余套检测仪器,产品覆盖包括透湿、透氧、透气等软包装阻隔性能类;质构、拉力、剥离、摩擦、折断、穿刺等材料力学性能类;偏光应力、轴偏差、垂直载压等玻璃制品物理性能类;初粘、持粘、阻水、黏着力等胶粘制品粘性测试类;密封泄漏、正负压密封、真空衰减等气密性能类;残氧、提袋疲劳、迁移等其他物性分析类产品,为客户提供准确的检测数据和可靠的服务,方便客户购买之前进行选型比对,真正做到让客户买得放心。公司以“赛出品质、成就你我”的产品价值理念,配置高素质的产品研发、生产、售后团队,以追求极致的创新力和精益化生产管理,为客户提供包装检测全系列、高品质产品;搭建完善、高效的服务体系,以客户需求为导向,承诺售后问题30分钟快速响应,设备三个月内只换不修,终身提供技术支持。通过十余年的发展和积累,公司已通过知识产权管理体系认证,ISO9001质量管理体系认证,通过 “高新技术企业”评定,拥有多项自主知识产权,参与起草了多项国家标准和团体标准。公司产品介绍:压差法气体渗透仪、水蒸气透过率测试仪、氧气透过率测试仪、王研式透气度仪、真空衰减法无损密封仪、无损密封性仪、正压法泄漏与密封强度测试仪、密封性测试仪、拉力试验机、医药包装性能测试仪、质构仪、剥离试验机、黏着力测试仪、摩擦系数仪、摩擦系数/剥离试验仪、热封试验仪、测厚仪、瓶盖扭矩仪、顶空气体分析仪、残氧仪、落球冲击试验仪、落镖冲击试验仪、初粘性测试仪、环形初粘测试仪、持粘性测试仪、提袋疲劳试验机、纸张柔软度测试仪、迁移池、偏光应力仪、折断力测试仪、垂直度轴偏差测试仪、壁厚底厚测试仪、铝箔针孔检查台、121°颗粒耐水性装置、耐内压力测试仪、耐冷热冲击测试仪、抗冲击测试仪、垂直载压测试仪
  • G.A.S. 银牌4年
    400-876-2155
    G.A.S.成立于1997年,是一家从事仪器制造的高科技公司。公司将气相色谱分析与离子迁移结合在一起,研发了气相色谱-离子迁移谱仪(GC-IMS),用于测定空气中、人体呼气中以及液体和固体顶空中痕量的挥发性有机化合物(VOC)。G.A.S.由一个跨学科的团队组成,根据客户提出的分析问题,开发、生产和相适的气相色谱-离子迁移谱仪(GC-IMS)平台。这些量身定制的解决方案可应用于不同的业务领域,如食品质量控制、环境分析和人体呼吸分析。自2013以来,G.A.S.隶属于IMSPEX Diagnostics Ltd.。通过自己的经销商网络,集团和公司团队的全球客户有了显著增长,市场份额明显提高,尤其是在英国。公司的一些绩优客户,如Airbus DS、SABMillerInc、Barilla、SYMIRISE AG等都十分信任我们的产品。
    留言咨询

迁移池迁移槽相关的仪器

  • 仪器简介:Measurement of the migration of low-molecular substances from packaging's by sample preparation with the migration cell and following analytical quantification.技术参数: 迁移池/迁移槽 规格 单面接触面积 双面接触面积 容积(ml ) 备注 150 2.0 dcm2 120 1.00 dcm2 2.0 dcm2 200 100 0.75 dcm2 1.5 dcm2 150 80 0.50 dcm2 1.0 dcm2 100 70 0.35 dcm2 0.7 dcm2 70 60 0.25 dcm2 0.5 dcm2 50 30 0.05 dcm2 0.1 dcm2 10 主要特点:可以做单面迁移量测试,也可以做双面迁移量测试
    留言咨询
  • 包装材料迁移测试池 食品接触材料迁移池 迁移试验槽LABTHINK  Labthink自主研制的迁移测试池,该器具用于安装、固定待测试样,并注入食品模拟物进行迁移试验预处理操作。目前支持购买的共三款迁移测试池,分别为QYC-B、QYC-C和QYC-E。器具符合国家最新标准GB 5009.156-2016《食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则》的要求,接触主体材质采用符合美国牌号要求的高品质不锈钢,不会析出微量物质污染食品模拟物。   QYC-B迁移测试池,按照GB 5009.156-2016附录B中的图B.4 迁移测试池B设计制造,采用加粗丝杆中心压紧式密封结构,保证单面密封无渗透。支持单面接触食品模拟物,接触面积为196cm2,最大容积为390mL。适用于GB 31604.1-2015《食品接触材料及制品迁移试验通则》中水、植物油等所有不挥发性食品模拟物。  QYC-C迁移测试池,按照GB 5009.156-2016附录B中的图B.5 迁移测试池C设计制造。两个试样面可同时接触食品模拟物,接触面积分别为51.5cm2(单面)和103cm2(双面),最大容积为120mL。密封处采用耐高温、耐腐蚀、自清洁的密封圈,能获得良好的密封性能。适用于GB31604.1-2015《食品接触材料及制品迁移试验通则》中的所有食品模拟物。   QYC-E迁移测试池,按照EN 13130-1:2004附录D中的图D.6-迁移测试池C设计制造,同样支持单面或双面接触食品模拟物,接触面积分别为100cm2(单面)和200cm2(双面),最大容积为200mL。适用于GB 31604.1-2015《食品接触材料及制品迁移试验通则》中的所有食品模拟物。
    留言咨询
  • QYC-E不锈钢迁移槽 食品包材迁移试验池 包装迁移测试池适用于食品接触材料及制品的迁移试验预处理。符合国家最新标准GB 5009.156-2016要求,适用于GB 31604.1-2015《食品接触材料及制品迁移试验通则》中的所有食品模拟物。QYC-E不锈钢迁移槽 食品包材迁移试验池 包装迁移测试池产品特点:产品符合相关标准,完全按照EN13130-1:2004附录D中的图D.6-迁移测试池C设计制造,确保迁移试验的一致性主体采用符合美国牌号要求的高品质不锈钢,材料本身无微量物质析出密封螺柱、底脚等辅件均采用符合美国牌号要求的高品质不锈钢,材料本身无微量物质析出、耐高温、使用寿命长两个试样面可同时接触食品模拟物,提高了接触面积采用耐高温、耐腐蚀、自清洁的密封圈,确保密封性能良好,保证了各类模拟物在试验过程中无 泄漏、无挥发。迁移测试池的密封结构,确保了试样测试面积之外的部分不与食品模拟物接触,保证了测试面积的有效性适用于范围更广的材料做迁移试验预处理参照标准:GB 5009.156-2016 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则GB 31604.1-2015 食品安全国家标准 食品接触材料及制品迁移试验通则QYC-E不锈钢迁移槽 食品包材迁移试验池 包装迁移测试池测试应用:基础应用——适用于片状食品接触材料及制品单面接触水、乙醇、乙酸、植物油、正已烷、正庚烷、异辛烷等食品模拟物的迁移试验预处理。QYC-E不锈钢迁移槽 食品包材迁移试验池 包装迁移测试池技术参数:接触形式:单面或双面接触单面接触面积(直径):100cm2(Ф112.8mm)双面接触面积:200cm2容积:200mL使用温度:5℃~180℃外形尺寸:175mm(L) × 140mm(W) × 63mm(H)净重:2.3kg以上信息由Labthink兰光 济南兰光机电技术有限公司发布!济南兰光,包装检测仪器优秀供应商,国际知名品牌,专业致力于为包装、食品、医药、日化、印刷、胶粘剂、汽车、石化、生物、建筑及新能源等领域提供行业咨询、产品销售、售后服务和风险控制。成立至今,公司秉承“以客户为中心”的服务理念,已为全球一万家科研机构、第三方检测机构以及企业品管部门提供了全面、专业、精准的包装产品质量控制解决方案。如欲了解更详细信息,欢迎致电垂询!
    留言咨询

迁移池迁移槽相关的资讯

  • 新品速递 | 新款化学迁移测试池,速看!!
    各位朋友好久不见,十佳今天给大家带来了两款迁移测试方面的新产品——专用材料迁移测试池&体积减半的不锈钢中心环,这两个新产品相较于先前型号有哪些升级呢?让我们来快速了解一下。专用材料迁移测试池// 耐腐蚀性优越 //// 避免干扰重金属迁移测试 //新款专用材料迁移测试池,历时一年半研发,意在解决不锈钢和玻璃对重金属迁移检测造成的干扰,主要由专用材料固定板和中心环组成,使用专用材料中心环+不锈钢支架测试时,可以将上下都夹上样品,最后得到的结果除以2。体积减半不锈钢中心环 新款原款 // 降本增效——检测效率更高、成本更低//// 升级新工艺,细节出色、强度更高 //// 不锈钢材质强度高、检测位置平坦 //新款体积减半不锈钢中心环,采用了DN80和DN120两种常用规格,在原有中心环接触面积不变的基础上,所需测试液体体积仅是原来的一半。并且这样还可以更快的检出迁移析出,提升检测效率,减少溶剂使用,降低使用成本。同时,新款半体积中心环升级了焊接加工工艺,相较于原款内圈更光滑平整,强度更高;值得注意的是其他的框架、密封盖等均为通用,现在购买半体积中心环会一并赠送配套的固定螺丝。LABC迁移测试池BeiJing ShiJia WanLian Scientific Co.Ltd北京仕家万联科技有限责任公司迁移测试池 Migration CellLABC迁移测试池,全球用户多年使用认可:01优越的试验精度与数据的可靠、一致性02 符合欧盟EN 1186-1等多项标准03多样化的材质、尺寸可供选择 04耐-15°C低温至180°C高温05O型圈密封,更好的密封性 感兴趣的朋友欢迎与我们交流~Migration Cell●●●//性能 质量 服务//编辑:十佳同学声明:本图文内容来源于公开资料或者互联网,转载的目的在于传递更多信息及用于网络分享,若您发现图文内容(包含文字、图片、表格等)等对您的知识产权或者其他合法权益造成侵犯,请及时与我们取得联系。
  • 北大电镜室:原位电子显微学法研究锂电池离子迁移
    对于锂离子电池,锂离子在电极材料中迁移的动力学过程决定了电池的宏观性能。比如,离子迁移的快慢决定了充电放电的速率,离子迁移的数量对应了电池的容量,离子迁移引起的结构恶化是电池寿命变短的根本原因。因此研究锂离子在电极材料中的迁移过程是我们了解电池工作原理、失效原理等的关键。透射电子显微镜是研究材料结构的利器,结合原位局域场探测的手段,则能在原子尺度下实时监控外场下的结构演化。这种表征手段很适合于研究锂电池中电化学势驱动的离子迁移。北大电镜室俞大鹏院士团队的高鹏研究员在过去几年在一直从事原位电镜局域场探测固态离子迁移的研究。他们与合作者曾成功地观察到离子导体中氧空位的迁移(JACS 132, 4197,2010),阻变存取器件中的Ag、Ni、Cu、Pt等金属离子的迁移行为(Nat.Commun. 3, 732 ,2012) Nat.Commun. 5, 4232,2014))等。  最近,高鹏研究员课题组研究了Li和Na离子在二维材料中的迁移行为,取得了系列进展, 包括Li离子在SnS2中的迁移(Nano Lett 16, 5582,2016,作者:Peng Gao*, Liping Wang, Yu-Yang Zhang*, Yuan Huang, Lei Liao, Peter Sutter, Kaihui Liu, Dapeng Yu, En-Ge Wang),Na离子在SnS2中的迁移(Nano Energy 32, 302,2017),Na离子在MoS2中的迁移(ACS Nano 9, 11296,2015)。这些具有van der Waals相互作用的二维材料,不仅仅展现出了优异电学、力学、光学性能,也是重要的能源存储材料。作为电池电极材料,van der Waals相互作用系统的最主要特征就是层间相互作用很弱,碱金属离子能够比较容易地在其中发生迁移。他们的研究发现,在二维材料中离子插入和拔出的反应路径是不对称的,这种不对称的反应路径对应着充放电过程中不对称电压平台。该研究揭示了这些层状锂电池电极材料中低能量效率的一个根源。高鹏研究员为这些论文第一作者和通讯作者。  另外,他们与东南大学合作研究了Na离子在尖晶石NiCo2O4纳米结构的迁移行为(Adv. Fun. Mater., DOI: 10.1002/adfm.201606163,2017),也发现了类似的非对称反应路径。高鹏研究员为论文共同通讯作者。  原子尺度上实时跟踪锂电池电极材料SnS2中的离子迁移过程电子束诱导的spinel -rocksalt的核壳结构。Rocksalt 核的直径约3 nm,相界宽度约1~2nm。  此外,他们和日本东京大学的合作者用电子束激发的方法,发现LiMn2O4中的Li和Mn离子都会发生迁移,发生从尖晶石到岩盐的结构相变(Chem. Mater. 29,1006,2017)。一般认为,这种结构相变会导致LiMn2O4电池的容量损失和电压降低。他们利用球差矫正透射电子显微镜,跟踪了Li和Mn 在氧四面体和氧八面体之间的迁移过程,揭示了离子迁移过程中的中间相、迁移路径、相界的原子结构、以及阳离子迁移伴随着的氧原子位置的自我调整,据此提出了一些可能的提高电极材料稳定性和电池寿命的方法。高鹏研究员为论文第一作者和共同通讯作者。  由俞大鹏院士领导的北京大学“电子光学与电子显微镜实验室”-校级大型公共仪器平台在2015年底増置了两台国际上迄今最先进的球差矫正透射电镜: Nion公司的配置单色仪的U-HERMES200(能量分辨率8 meV)和FEI公司的双球差矫正的Titan Cubed Themis G2 300 (空间分辨率60 pm)。与此同时,俞大鹏院士也积极在国际上积极招募青年才俊,重点发展电子显微学新技术在材料科学方面的应用,进一步提高大型高端仪器的管理水平、提升电镜平台服务效率和质量。目前,FEI双球差矫正电镜正在调试当中。  该研究工作得到了国家自然科学基金委、科技部、量子物质科学协同创新中心、千人计划和电子显微镜实验室等的大力支持。  论文链接:  http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02136  http://pubs.acs.org/doi/full/10.1021/acsnano.5b04950  http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b03659  http://www.sciencedirect.com/science/article/pii/S2211285516306176
  • 钙钛矿太阳能电池离子迁移行为与器件稳定性关系研究获进展
    钙钛矿太阳能电池(PSCs)作为新兴的薄膜光伏器件,通过最近10年的发展,光电转换效率从3.8%提升到了25.7%,展现出巨大的商业化应用前景。然而高效的n-i-p结构电池批次重复性和稳定性较差,成为钙钛矿电池产业化应用的关键限制。而目前研究人员对导致器件重复性和稳定性较差的原因理解还不够充分。   中国科学院苏州纳米技术与纳米仿生研究所马昌期团队系统地研究了n-i-p结构PSCs在空气氧化过程中的离子迁移行为。结果表明,Spiro-OMeTAD薄膜的氧化是通过非接触电化学方式进行的,其中,空气中的氧气和水分子作为氧化剂将Spiro-OMeTAD氧化,进而提高了Spiro-OMeTAD薄膜的导电性能。更为重要的是,这一氧化过程促使Spiro-OMeTAD层内的Li+向电池内部迁移并在SnO2/Perovskite界面富集。Li+离子的迁移与富集促进了Spiro-OMeTAD氧化并降低SnO2的LUMO能级,提高了器件内部的内建电场,并同时改善了钙钛矿/Spiro-OMeTAD以及钙钛矿/SnO2界面处的空穴和电子提取效率,进而提升了器件的效率(图1)。该工作为n-i-p型钙钛矿太阳能电池中Spiro-OMeTAD的氧化提供了完整的机理解释。相关成果以Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ions Migration in Improving the Performance of n-i-p Type Perovskite Solar Cells为题发表于Journal of Materials Chemistry A。 图1 n-i-p结构钙钛矿太阳能电池中Spiro-OMeTAD的电化学氧化过程中的Li+离子迁移机制   研究团队在后续研究n-i-p型钙钛矿太阳能电池工作稳定性过程中发现,钙钛矿电池在运行过程中会出现器件的突然失效(Catastrophic Failure)。通过光致发光(PL)成像分析确定短路位置发生在金属Ag电极的边缘。进一步通过SEM和TOF-SIMS分析证明了Ag+离子在器件边缘发生迁移扩散,而器件内部的电极以及钙钛矿薄膜却没有发生明显的变化。研究人员利用SEM表征了沉积在Spiro-OMeTAD上的Ag薄膜的形貌,结果表明由于Ag与Spiro-OMeTAD的不浸润性,边缘的Ag颗粒团簇尺寸比中心部分的尺寸更小、更疏松。基于此,研究团队推断器件突然短路失效的机制为:光照下钙钛矿薄膜分解并形成多碘化合物发生扩散并与电极边缘松散的Ag簇并发生反应而导致Ag电极被腐蚀,腐蚀产生的Ag+离子穿过Spiro-OMeTAD而向钙钛矿中迁移,最终在Ag电极和钙钛矿之间形成丝状电导,导致器件短路。基于此,研究团队在Spiro-OMeTAD上沉积一层MoO3薄膜,改善沉积Ag电极过程中Ag的生长,获得了边缘更加致密的Ag电极。此外,由于MoO3薄膜的引入使得Spiro-OMeTAD和Ag电极之间的空穴提取效率更高,避免了空穴在该界面的积累,进而有利于稳定性的提升,实现器件运行600h以上而不发生前述的突变失效(图2),有效提升器件的稳定性能。相关成果以Revealing the Mechanism behind the Catastrophic Failure of n‐i‐p Type Perovskite Solar Cells under Operating Conditions and How to Suppress It为题发表于Advanced Functional Materials。 图2 钙钛矿电池运行过程中Ag+离子迁移引起的“突变失效”及MoO3的引入提高运行稳定性机制   虽然该结构电池的运行稳定性得到提升,但是该类光伏电池运行过程中初始几十个小时内往往存在效率的快速衰减过程(burn-in衰减),严重降低了器件的稳定输出效率。针对该问题,研究团队通过器件结构设计及稳定性测试过程中器件内部离子分布、界面复合变化,证实该结构电池中的“burn-in”衰减与SnO2中Li+迁移至钙钛矿/空穴传输层界面有关。通过在SnO2/Perovskite界面引入一个薄层交联PC61BM(CL-PCBM)后可以抑制“burn-in”衰减。TOF-SIMS的结果证明了CL-PBM薄层可以将Li+离子固定在Perovskite/SnO2界面中,而且CL-PCBM的引入可以增加器件的内建电场并提高电子提取效率;最终在Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3体系钙钛矿电池中获得了22.06%的效率,在光照下持续运行1000h后仍保留初始效率的95%,而参比电池仅保留75%;在FAPbI3体系钙钛矿电池中时,获得了24.14%的光电转换效率,同时也消除了“burn-in”衰减过程。这表明利用CL-PCBM界面修饰来消除“burn-in”衰减具有普适性。综上,通过降低器件工作过程中的Li+迁移可以大幅降低钙钛矿太阳能电池稳定性测试初期存在的“burn-in”衰减,提高器件的稳定输出功率(图3)。相关成果以Boosting Perovskite Solar Cells Efficiency and Stability: Interfacial Passivation of Crosslinked Fullerene Eliminates the "burn-in" Decay为题发表于Advanced Materials。图3 CL-PCBM界面修饰抑制Li+离子迁移提高器件效率并消除器件的“burn-in”衰减

迁移池迁移槽相关的方案

迁移池迁移槽相关的资料

迁移池迁移槽相关的试剂

迁移池迁移槽相关的论坛

  • 新国标中迁移池的购买

    各位大侠,实际测试中大家用到迁移池多不多,有哪位童鞋帮忙介绍一下哪家的迁移池比较好用,求联系方式。谢谢

  • 单面迁移测试池----寻找多年,现在国内有了分享一下

    单面迁移测试池----寻找多年,现在国内有了分享一下

    以前做国外的食品接触材料的圈子很小,很小. 现在国标采用欧标,一下子人就多了起来了.单面测试的迁移池,以前都是进口的,又贵又不好买.现在国内有市场了,终于有厂家愿意做了.今天有个供应商拿了个玻璃材质的迁移测试池过来试用,还不错. 适用于所有模拟液,操作相当方便.寻找迁移测试池多年 ,终于可以买一批了. 忍不住给大家分享下.价格一两千吧也还算可以.截图给大家看看:产品名称: D型迁移测试池 (莱普瑞迁移测试池)定制标准: EN 1186-1(SN/T 3389)、EN 13130-1(GB/T 23296.1) D 型迁移测试池主体材质: 玻璃(适用于所有模拟物测试,易清洗,可看得到模拟液浸泡情况,耐温差200-300度,最高温度500度)密封圈 : 包氟密封圈(耐高温、耐腐蚀优于氟橡胶以及硅胶密封圈)接触口径: 约114mm(标准接触口径)接触面积: 约1平方分米(标准接触面积)最大容积: 约350ml锁紧方式: 卡扣式 (操作上最为方便)适用范围: 国内外食品接触材料测试,适用于121度高压测试.联系方式: 罗先生 18682282876看到大家挺感兴趣的,我补充了些规格参数,添加了个联系方式.每款迁移测试池,都有优有劣,分享给大家,大家多个选择,选择最适合自己的!--2017-05-16http://ng1.17img.cn/bbsfiles/images/2017/03/201703242254_01_3197852_3.png

  • 【求助】全面迁移、特殊迁移

    各位筒子:向大家求教一个食品接触中关于迁移的事。这个全面迁移的定义是什么?特殊迁移的定义又是什么?经常看到3项全面迁移,5项全面迁移的搞不明白。

迁移池迁移槽相关的耗材

  • 电介质毛细管清洁粉,用于离子迁移毛细管清洁
    污染通常由质谱图上过高的背景而确认,污染可能来自于 GC 或者 MSD。有时污染源能通过鉴定污染物来确定。一些污染物更可能来自于 GC,另一些污染物则更可能来自于 MSD。
  • 动态水分吸附仪-渗透率组件
    渗透率是薄膜类材料的重要特性,精确测量薄膜、纸张等的水分子渗透率对于评估其作为包装材料在不同水蒸汽分压环境下隔绝水分的功能有着重要的意义。 ProUmid公司生产的动态水分吸附仪可以选配一个渗透率组件,精确检测薄膜的渗透率。该渗透率组件有六个样品盘,可以同时测量5个薄膜(纸张)样品的渗透率,大大节省了试验时间。该仪器包括一个高灵敏度的天平和能够调节温湿度,气流循环的密闭空间。为渗透率的检测提供最理想的环境。 检测原理:将薄膜(纸张)覆盖在样品盘上,将盘内放置干燥剂、饱和食盐水溶液或水来制造一个与环境不同的水蒸汽分压,从而使水分子透过薄膜(纸张),迁移到达另一边。这种水分子的迁移可以通过称量样品盘的重量来检测。 这种方法结果非常准确,可以得到薄膜(纸张)材料的精确渗透率。特点:ProUmid公司生产的SPS和Vorp系列动态水分吸附仪能够精确的检测水蒸气透过薄膜的渗透率。仪器温湿度可调,可以模拟在范围非常广的环境条件下检测渗透率。仪器的称重精确度很高,可以检测低至0.05g/(m2 day)的渗透率。SPS和Vsorp系列动态水分吸附仪具备多样品高通量的特点,每次可同步检测5个样品,非常适合对比不同组成薄膜之间渗透性能的差异。
  • 4英寸的圆形单层石墨烯薄膜在石英片上
    透明度:97%,外观(形状):薄,覆盖率:95%,石墨烯层数:1,厚度(原理上):0.345毫微米,场效应管电子AI203迁移率:2,000cm2/Vs,场效应管SIO2/SI的电子迁移率:4,000cm2/Vs,表面电阻:170欧姆平方米,晶粒尺寸:约10μm,石英片厚度:500μm,平整度:弓:20μm,弯:30μm,粗糙度:6埃(在圆滑边),圆滑:双面,应用:太阳能电池、触摸显示器。光电探测器、聚光设备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制