当前位置: 仪器信息网 > 行业主题 > >

气体混合系统

仪器信息网气体混合系统专题为您提供2024年最新气体混合系统价格报价、厂家品牌的相关信息, 包括气体混合系统参数、型号等,不管是国产,还是进口品牌的气体混合系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体混合系统相关的耗材配件、试剂标物,还有气体混合系统相关的最新资讯、资料,以及气体混合系统相关的解决方案。

气体混合系统相关的资讯

  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可各种气体的精确稀释使用户能够获得最准确的混合气体伊斯埃欧气体混合设备
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可各种气体的精确稀释使用户能够获得最准确的混合气体伊斯埃欧气体混合设备
  • 超高纯气体、标准混合气体技术研讨会邀请函
    超高纯气体、标准混合气体在分析行业的应用和未来发展趋势技术研讨会邀请函  跟过去相比,现在的生产过程和分析更加依赖于严格的控制。用户期望越来越高,法规要求日益严格,价格竞争压力日益增大,从而使得高生产精度并不是值得炫耀的资本,而是必须满足的基本要求。无论生产或分析哪种产品,都可能在其中某个阶段直接使用到特种混合气体。实验室、在线生产或空气和水污染物的监控过程中所使用的校准分析仪和其他测量仪器,都几乎需要间接用到气体,而这些气体和分析仪器的质量和可靠性非常关键。  举办此次技术研讨会的目的即是为解决上面提及的分析工作者所面临的诸多挑战。研讨会由在全球为工业,能源,科技,医疗等领域提供气体产品的空气产品公司主办,中国分析测试协会协办, 并且联合中国计量科学研究院标准物质中心——权威的国家标准物质机构,具有世界领先技术的分析仪器的生产厂家——安捷伦公司、瓦里安公司。会议主题为超高纯气体和标准混合气体在分析行业的应用和未来发展趋势。时间为2008年3月13日星期四,在第六届中国国际科学仪器及实验室装备展览会期间举行。  在这个研讨会上,来自空气产品公司欧洲总部的Gary Yates 博士,将要演讲超高纯气体在工业气体中的发展方向以及杂质在分析结果中的影响。安捷伦公司、瓦里安公司、中国计量科学研究院标准物质中心将分别做相关专题学术报告,介绍气相色谱仪器、气质联用、质谱的最新技术进展,国家标准物质的溯源体系,交流分析应用技术和经验。  研讨会结束后,将邀请您参观空气产品公司在北京的工厂——位于美丽的西山脚下的北京氦普北分气体工业有限公司。我们将展示一些世界最新  的气体生产设备, 演示高质量的超高纯气体和标准气体的生产工艺过程,您将看到非常罕有的,全国首屈一指的世界一流技术水平的气体工厂,它拥有欧洲同步的气体配制和检验技术水平。  在这个展览会上, 您也会看到空气产品公司的各种气体产品介绍,还会看到空气产品公司独有的BIP超高纯气体和 Experis系列标准混合气体新产品。  有关研讨会座位预定和欲了解更多信息, 请联系毕媛媛或王长玲,电话:010-62459280-220, 或326, 手机:13801214241 或13501132348,传真:010-62451440 电子邮件:bijy@airproducts.com 或wangc3@airproducts.com。日 程 安 排  日期: 2008年3月13日星期四  地点: 二楼会议室, 北京展览馆, 西直门外大街 135号  议程:9:00 -9:30 入场 签到  9:30-10:00气相色谱仪器和气质联用仪器的发展趋势  分析仪器使用中气体的选择和要求  微板流路控制在复杂分析中的应用  吴华博士——安捷伦科技有限公司  10:05-10:35气体中不纯物质对于分析质量和结果的影响   Gary Yates博士,分析和实验室 产品经理 空气产品公司  10:40-11:10国家气体标准物质溯源体系及气体的生产,检验偏差  周泽义博士——中国计量科学研究院 标准物质中心  11:15-11:45 复杂化学物质中的痕量检测和分析及快速炼厂气分析   李运勇博士——美国瓦里安技术中国有限公司  12:00-1:30 集体午餐,午餐后集体乘车至北京工厂  1:30-4:30 工厂参观: 超高纯气体和Experis系列标准气体生产演示  海淀区温泉北清路160号 北京氦普北分气体工业有限公司  4:30-5:30 集体乘车返回市中心 空气化工产品(中国)有限公司2008年1月 超高纯气体,标准混合气体在分析行业的应用和未来发展趋势研讨会报名回执表 单位名称:  所属行业   地址:   邮编  姓名:性别职位电话传真手机号E-mail                     仪器使用气相色谱是____否___ 台 气质联用是____否___ 台 参观工厂 是____否___ 人
  • 塑料回收或迎新突破!新催化剂可混合分解塑料,不产生温室气体
    塑料垃圾是我们这个时代最紧迫的环境问题之一,对不同类型的塑料垃圾进行分类使回收变得棘手。而现在,麻省理工学院(MIT)的工程师们已经开发出一种有效的新催化剂,它可以将混合塑料分解成丙烷,然后丙烷可以作为燃料燃烧或用于制造新的塑料。塑料在我们的现代世界中无处不在,这意味着大量的塑料最终会进入环境,而且令人担忧的是,似乎很少有地方不受影响。现在,从南极到北极,从海底到珠穆朗玛峰顶,都可以发现塑料,而且正在沿着食物链向上移动,以至于现在我们的身体里也能找到塑料。塑料有非常强的碳键,这使它们在使用过程中具有弹性和可靠性,但回收起来却非常麻烦。更糟糕的是,不同类型的塑料需要不同的回收方法,使其难以分类和大规模回收。但MIT的研究小组现在提出了一种新技术,可以处理混合在一起的多种塑料,并将它们转化为丙烷,而丙烷本身有很多用途。解决问题的关键是一种催化剂,它由一种叫做沸石的多孔晶体组成,里面塞满了钴纳米颗粒。研究人员指出,其他催化剂会在不可预测的地方打破碳键,产生不同的最终产品时,而新的催化剂只会在一个特定的、可重复的位置打破碳键。这个位置意味着它基本上切断了丙烷分子,留下剩下的碳氢化合物链,准备反复进行这个过程。这适用于多种类型的塑料,包括最常用的塑料,如聚乙烯(PET)和聚丙烯(PP)。在对现实世界的混合塑料样品进行的测试中,研究小组发现,该工艺可以将大约80%的塑料转化为丙烷,而不产生甲烷作为副产品。甲烷是仅次于二氧化碳(CO2)的第二大人为制造温室气体。由此产生的丙烷可以直接作为一种相对低影响的燃料,或者作为原料在一个部分封闭的循环系统中制造新的塑料。而最重要的是,催化剂的成分(沸石、钴和氢气)相对便宜且容易获得。这项研究成果已于近期发表在了《JACS Au》杂志上。尽管这项研究很吸引人,但研究人员表示,未来的工作将需要关注该技术如何在现实世界的塑料回收流中应用,以及胶水和标签等污染物如何影响该技术。
  • Dr.Yaghi在Autosorb-1上建立二元混合气体分析方法
    二氧化碳是人为造成的最大的温室气体,同时二氧化碳也是自然界存在的最大的碳资源。自然界就是依靠太阳能将二氧化碳转化成人类所需要的所有粮食、化石能源、其他生物质资源等。预计地球上存在的化石资源将在数十年至数百年内消耗殆尽,实现二氧化碳资源化利用(包括物理与化学利用)是人类社会实现可持续发展的必然。二氧化碳的大规模贮存和利用越来越受到联合国,各国政府和科学家的重视.世界MOF研究的领袖级科学家美国加州大学洛杉叽分校的Dr.Omar Yaghi及其合作者在在2008年五月的自然杂志上发表文章Colossal cages in zeolitic imidazolate frameworks (ZIF) as selective carbon dioxide reservoirs,将其MOF储氢或储能的研究心得用于CO2储存研究,并在美国康塔仪器公司(QuantchromeI nstruments)的AUtosorb-1全自动比表面和孔径分析仪上建立了二元混合气体分析方法,ZIF是具有四面体网络结构的多孔晶体材料,类似于沸石,但用过渡金属(Zn, Co)取代四面体的配位原子(如, Si),但咪唑链取代氧原子. 作者分别使用ZIF-95(入口宽0.365nm, 孔内径2.40nm )和ZIF-100(入口宽0.335nm, 孔内径3.56nm ) 两种材料,在Autosorb-1上分别利用氮吸附和氩吸附进行了微孔分析,并利用NLDFT模型确定了孔径, 然后对CO2,CH4,CO及N2的绝对吸附量曲线进行了测定, 并在Autosorb-1上测定了以下二元混合气体的动力学曲线: CO2/CH4, CO2/CO or CO2/N2 (50:50 v/v).混合气体通过ZIFs后,只有二氧化碳留在了ZIFs内,其他的气体则完全通过.实验证实, ZIFs可以作为.选择性的二氧化碳存储器. 在标准温度和压强下,每升ZIF-100能从混合气体中分离并存储28升的二氧化碳.
  • 安捷伦推出SFC/UHPLC混合系统 兼容两种模式
    2012年3月1日,安捷伦科技公司(以下简称为:安捷伦)宣布推出1260 Infinity SFC/UHPLC(超临界流体色谱/超高效液相色谱)混合系统,该系统是首个可以兼容SFC和UHPLC商品化产品。该系统是分离复杂样品最合适的工具,并提可以供全面的信息。1260 Infinity SFC/UHPLC系统  “现在,色谱工作者可以在同一系统上进行UHPLC和SFC切换,而无需进行硬件或方法的改变。”安捷伦液相色谱业务高级营销主管Stefan Schuette说, “使用这两个正交技术而获得的结果可以使用户获得很大的信心。”  1260 Infinity SFC/UHPLC通过UHPLC的性能可以提供LC一样的灵敏度。它是唯一一台可以提供600bar耐压的SFC系统。混合系统是经济的,因为客户只购买一台仪器就可以完成两种模式的分离,这也节省了宝贵的工作台空间。在SFC模式下,仪器使用标准气体二氧化碳,可以大大节省二氧化碳气体用量,节约成本。与LC相比,减少溶剂的消耗和SFC废物的产生。  客户也可以只选择购SFC模块,从而将现有的1100、1200和1260液相色谱系统的升级为SFC/UHPLC系统。  1260 Infinity SFC/UHPLC系统可以与安捷伦 6100系列单四极杆LC/MS系统兼容。
  • 中国科大利用磁光力混合系统实现可调谐微波-光波转换
    中国科学技术大学郭光灿院士团队在磁光力混合系统研究方面取得新进展。该团队的董春华教授研究组将光力微腔与磁振子微腔直接接触,证明该混合系统支持磁子-声子-光子的相干耦合,进而实现了可调谐的微波-光波转换。该研究成果于2022年12月9日发表在国际学术期刊《Physics Review Letters》。   不同的量子系统适合不同的量子操作,包括原子和固态系统,如稀土掺杂晶体、超导电路、钇铁石榴石(YIG)或金刚石中的自旋。通过将声子作为中间媒介,可以实现对不同量子系统的耦合调控,最终构建能发挥不同量子系统优势的混合量子网络。目前,光辐射压力、静电力、磁致伸缩效应、压电效应已被广发用于机械振子与光学光子、微波光子或磁子的耦合。这些相互作用机制促进了光机械领域和磁机械领域的快速发展。在前期工作中,研究组利用YIG微腔中的磁振子具有良好的可调谐特性,结合磁光效应实现了可调谐的单边带微波-光波转换(Photonics Research 10, 820 (2022))。但是由于目前磁光晶体微腔的模式体积大、品质因子难以进一步突破,从而限制了磁光相互作用强度,导致微波-光波转换效率较低。相比之下,腔光力系统虽已实现高效的微波-光波转换,但由于缺乏可调谐性,在实际应用中会受到限制。 图注:a-b.磁光力混合系统示意图,支持磁子-声子-光子相干耦合;c.微波-光波转换。   该工作中,研究组开发了一种由光力微腔和磁振子微腔组成的混合系统。系统中可以通过磁致伸缩效应对声子进行电学操控,也可以通过光辐射压力对声子进行光学操控,而且不同微腔内的声子可以通过微腔的直接接触实现相干耦合。基于高品质光学模式对机械状态的灵敏测量,课题组实现了调谐范围高达3GHz的微波-光学转换,转换效率远高于以往的磁光单一系统。此外,研究组观测了机械运动的干涉效应,其中光学驱动的机械运动可以被微波驱动的相干机械运动抵消。总体而言,该磁光力系统提供了一种有效进行操控光、声、电、磁的混合实验平台,有望在构建混合量子网络中发挥重要作用。   沈镇、徐冠庭、张劢为该论文的共同第一作者,董春华为该论文的通讯作者。上述研究得到了科技部重点研发计划、中国科学院、国家自然科学基金委、量子信息与量子科技前沿协同创新中心等单位的支持。
  • 前处理小能手-多管漩涡混合仪
    还在为样品前处理花费大量时间吗?在制药、材料科学、食品检测等化学研究领域都需要大量的样品前处理过程,非常耗时但却对实验结果起到至关重要的作用。前处理的问题会影响到后续的一系列实验结果。传统的混合器往往只能处理一个试管样品,处理多个时需要轮流接替,并且还需要手扶,操作不便并且效率不高,大大影响实验进度。今天,为了解决前处理这块难题,我们为大家带来一款前处理小能手——多管漩涡混合仪。规格参数可选配试管架规格多管漩涡混合仪一次最多能混合处理50个样品,规格模块更换十分方便,只需替换当中的试管架,另外我们的试管架种类很多,能适应实验过程中大部分的试管规格。多管漩涡混合仪在操作上十分便捷,将样品瓶放入试管架内放平,下压上方压板,即可开始运行。LED屏显示调节转速以及运行时间,操作面板简洁,再说下操作按钮:点动混匀键按住,仪器会按最高转速运行,松开仪器则停止运行;运行/停止键通过短按进行开关程序;两侧的上下键则是对转速以及运行时间进行相应调解。另外建议将仪器放在较为平整的台面操作,通过仪器底部吸盘对桌面的吸取,起到仪器的固定作用。同时仪器的保护工作也是十分重要的,提高使用寿命,也是降低仪器成本的方式。仪器在使用前,建议先将调速按钮调制最低,再打开电源开关,减小对仪器的损耗。为了保护仪器的安全,在不使用的时候,最好放在干燥、通风、无腐蚀气体的位置。特别要注意的是使用过程中一定要防止试剂液流入机芯,避免破坏内部器件。多管漩涡混合仪能将效率大大提高,增加生产数量,当样品越多,越能体现这款仪器的高效性。大家是否有使用其他前处理仪器呢,如果您对自己现阶段的前处理仪器不太满意,可以了解我们这款B100250多管漩涡混合仪,相信会给您的实验带来意想不到的收获!
  • 爱威森举办在线药品混合均匀性监测系统讲座
    2009年6月, 公司经理JASON陪同加拿大C-Therm公司Managing Director在中国广州,西安,上海举办了多场公司代理的Mathis在线药品混合均匀性监测系统技术讲座. 多家药品生产厂家,设备制造厂家的相关生产质检部门领导及技术人员应邀参加了会议. 对于其先进的技术特点有了进一步地了解. 我公司正在此基础上大力开展相关技术咨询及业务联系. 详细技术特点请参阅 http://www.aws.cn/C14761.htm
  • 《Small》:微流控混合器件实现一步式构建靶向脂质体
    脂质体是一种由磷脂分子在水相中自组装形成的球状泡囊体。脂质体具有良好的生物兼容性和低免疫原性,能够保护药物不被降解,是一种极具前景的药物递送载体。近年来,脂质体已经被广泛应用于肿瘤免疫治疗、基因治疗、多模态分子影像等领域。相比于常规的脂质体,靶向脂质体能够有效地改善药物的细胞摄取以及靶向富集能力,能够显著地提升药物递送效率。但是,常用的制备靶向脂质体的方法正面临着一些挑战,例如,操作复杂、耗时久、批次差异性大等问题。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院等研究团队在《Small》(IF=15.153)期刊上在线发表题为 “ One-Step Formation of Targeted Liposomes in a Versatile Microfluidic Mixing Device ” 的原创性论著。该研究提出了一种基于微流控混合器件的靶向脂质体的一步式合成方法,成功实现了多种靶向脂质体的高通量、高可控性制备。使用微流控混合器件制备的靶向脂质体,在光声成像、小动物活体成像、光热治疗等研究中都表现出了优异的靶向性能。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。20级博士研究生单晗和20级硕士研究生孙鑫为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员和中南大学机电工程学院陈泽宇教授为共同通讯作者。 首先,作者基于靶向脂质体的制备流程筛选了微流控混合器的组合方案,提出了微流控混合器件实现靶向脂质体的一步式合成策略。然后,作者使用高精度3D打印技术(nanoArch S140,摩方精密)制作了微流控混合器件(MMD)。 图1 微流控混合器件(MMD)制备靶向脂质体策略图2 微流控混合器件(MMD)制造随后,作者对脂质体的组分、反应机理进行了设计,选择了吲哚菁绿(ICG)作为模型药物以及靶向PD-L1的适配体作为靶向基团,在MMD内发生混合后,巯基修饰的适配体和功能辅料DSPE-PEG-Mal发生共价结合,最终将适配体修饰到脂质体的表面(Apt-ICG@Lip)。 图3 一步式合成靶向脂质体Apt-ICG@Lip反应机理接下来,作者对靶向脂质体Apt-ICG@Lip的性质进行了测试,包括脂质体的粒径分布、重复性、稳定性、包封率、形貌、细胞毒性、适配体结合效率等。结果显示,使用微流控混合器件(MMD)制备的靶向脂质体Apt-ICG@Lip具有粒径小、批次重复性好、稳定性好、包封率高、低细胞毒性、适配体结合效率高等优点,适用于生物医学应用。图4 靶向脂质体Apt-ICG@Lip性质测试接着,为了验证靶向脂质体Apt-ICG@Lip的靶向性能,作者进行了光声成像(PACT)和小动物活体荧光成像研究。作者将高表达PD-L1的LLC肿瘤模型小鼠分为两组,实验组注射靶向脂质体Apt-ICG@Lip,对照组注射常规脂质体ICG@Lip。结果显示,靶向脂质体Apt-ICG@Lip具有更明显的肿瘤摄取和药物富集能力。 图5 靶向脂质体Apt-ICG@Lip光声成像和小动物活体成像研究接着,作者进一步进行了光热治疗研究。作者将LLC肿瘤模型小鼠分为PBS、ICG@Lip、Apt-ICG@Lip三组,在注射药物后分别使用808 nm激光进行照射,观测肿瘤的体积变化,并使用免疫组化和免疫荧光评估了肿瘤的治疗效果。结果表明,Apt-ICG@Lip由于具备主动靶向能力,具有更好的光热治疗效果,也进一步验证了MMD构建的靶向脂质体的性能。 图6 靶向脂质体Apt-ICG@Lip光热治疗研究最后,作者为了验证MMD构建靶向脂质体的通用性,进一步制备了多种不同用途的靶向脂质体。除了吲哚菁绿(ICG)外,作者还选择了FITC、NHWD-870和亚甲基蓝(MB)作为模型药物,并使用MMD制备了一种anti-Her2抗体修饰的靶向脂质体。作者使用Apt-FITC@Lip进行了细胞实验。结果表明,高表达PD-L1的细胞和Apt-FITC@Lip具有更明显的结合效果。 图7 靶向脂质体Apt-FITC@Lip细胞实验该工作提出的微流控混合器件(MMD)一步式构建靶向脂质体的方法,适用于多种靶向脂质体的制备,在靶向药物递送系统(分子成像、肿瘤治疗等)研究中具有巨大的应用前景。
  • 实例解析:如何防止混合溶剂“碰撞”导致的样品损失?
    之前聊过关于不同沸点的单一溶剂在蒸发过程可能产生的暴沸以及浓缩过程中可能产生的暴沸都可以用Dri-Pure技术解决。最糟糕的混合溶剂“碰撞”问题是否也能解决呢?1、“容易碰撞”的溶剂类型下面列举的一些“容易碰撞”的溶剂类型,看看是否你也遇到过:● 极易挥发的溶剂;● 含有可溶性气体的溶液(e.g.一水合氨);● 两种溶剂混合,容易蒸发的溶剂密度更大(倒置);● 两种溶剂的密度非常接近,但溶液可能不能很好地混合;● 溶剂或溶剂混合物中有导致碰撞的溶质(e.g.HPLC馏分);● 干燥后的化合物会在溶液表层形成覆盖物的溶液。 典型例子一个典型的例子是二氯甲烷(又称DCM)和甲醇。由于DCM的密度更大但比甲醇更容易蒸发,这意味着DCM会下沉到底部但理论上应该先沸腾,我们称之为倒置。这种混合溶液特别容易发生碰撞,底部溶剂暴沸会导致样品飞溅。(即使是完全混溶的溶剂,在高离心力下也能发生一些分离)2、如何解决溶剂暴沸?通过使用GeneVac系统,你完全不需要担心这些,只需要选择相应的溶剂类型,一键开启。 GeneVac S3 HT GeneVac 4.0 EZ-2实例说明——DCM和甲醇例如:有一个混合溶液(离心后)在1cm DCM的顶部分离出1cm甲醇,在500g离心力作用下,管中1cm深的甲醇受到压力比表面高出近400mbar(比重为0.79)。 我们设定从25℃开始,压力先下降到550mbar,而DCM的沸点是25℃,如果不是因为上面的甲醇,DCM现在就可以蒸发了。但因为有Dri-Pure技术存在,即使腔体内的气压是550mbar,DCM实际上受到的压强是950mbar,所以还无法沸腾。因此,压力继续下降到160mbar时,甲醇的沸点是25℃,所以甲醇开始在表面沸腾。当下降到150mbar时,DCM将受到总压力为550mbar开始沸腾。此时甲醇层可能已经变浅了,所以实际上400mbar的压力差会由于甲醇的蒸发一直在减少,但是蒸发会带走热量,所以整个溶液也会冷却一点,降低温度从而进一步延迟DCM沸腾的时间。 未采用Dri-Pure 防暴沸技术 Dri-Pure 防暴沸的效果确切的数字在不同的情况下会有所不同,但需要注意的是,仍然存在一个节点会有大量的甲醇层,但它下面的DCM想要开始沸腾。另外,机器内置Sample Guard功能会通过红外探温器来探测支架和样品温度,防止温度过高引起溶剂沸腾,并且不直接接触样品,避免样品的污染与损坏。 3、GeneVac助力加速研发效率 GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载特有的Dri-Pure技术,能够轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。 同时,有上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,很大程度上保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,并且,该系列还具备更多高端功能,详细可拨打热线400-006-9696或者点击填写表单进行咨询。
  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • SK海力士将在HBM生产中采用混合键合技术
    据韩媒报道,半导体封装企业Genesem已向韩国芯片制造商SK海力士提供了用于生产高带宽存储器(HBM)的下一代混合键合设备。据悉,混合键合取消了铜焊盘之间使用的凸块和铜柱,并直接键合焊盘,这意味着芯片制造商可以装入更多芯片进行堆叠,并增加带宽。消息人士称,两台设备已安装在SK海力士的试点工厂,用于测试混合键合工艺。Genesem提供的设备包括两种类型:一种是模具转移设备,用于在混合键合之前定位模具;第二种是真空贴片机。该设备用于将薄膜安装在真空室中,真空室用于从载体中取出晶圆片。
  • 中科院高强度稳态磁场混合磁体研制成功
    11月13日下午,中国科学院强磁场科学中心磁体实验大厅一片欢呼,我国自主研制的混合磁体装置调试获得成功,实现了任务目标——40万高斯稳态磁场。  “这台混合磁体装置也正式成为磁场强度在世界排名第二高的稳态强磁场装置,不久还有望冲击45万高斯稳态磁场的世界纪录。”中国科学院合肥物质科学研究院院长兼强磁场中心主任匡光力告诉《中国科学报》记者。  匡光力介绍,混合磁体由外超导磁体和套在其中的水冷磁体组合而成。一个月前,水冷磁体单独调试成功,能够产生30万高斯的稳态磁场 一周前,低温孔径达920毫米的大型高场超导磁体调试成功,能够产生10万高斯的稳态磁场。今天,两个磁体成功合体,共同产生了40万高斯的稳态磁场,终于圆了相关科研人员奋斗了八年的梦想!  强磁场是支持科学前沿探索的一种极端实验条件,磁场越高,科学发现的机遇越多,因此,强磁场装置必然追求更高的磁场。匡光力说:“追求极高的磁场就像攀登珠穆朗玛峰,到达极限之前,需要克服许多困难方能成功。”  混合磁体是国际上产生最高稳态磁场的主要选择,但选择它就意味着选择了一系列重大技术挑战——其水冷磁体必须解决材料和结构的优化选择问题,面临巨大电磁力和严峻的发热问题,差之毫厘,失之千里,且给它供电的数千万瓦级的稳态直流电源本身也是一项重大技术挑战 其超导磁体孔径巨大,导体的材料选择、结构选择和磁体生产工艺以及与之配合的低温冷却技术等都是技术难题,此前国际上已有多个大型高场超导磁体因技术问题而失败,而我国在高场超导磁体技术方面原有基础薄弱。  混合磁体研制难度大不仅体现在上述方面,看似简单的磁体安装稍有偏差即可能导致巨大破坏,两个磁体的磁中心面或磁轴如不能重合,即便相差一毫米,磁体也将面临数吨的相互作用力。一位著名的国际强磁场技术专家此前曾一再感叹:“世界上还没有真正完全研制成功的混合磁体装置。”  刚调试成功的混合磁体装置是中国科学院强磁场科学中心承担的国家“十一五”重大科技基础设施——稳态强磁场实验装置项目所包含的九台磁体装置中产生磁场最高的磁体,也是最后研制成功的磁体,此前研制成功的水冷磁体中有三台创造了单项世界纪录。  这次混合磁体的调试成功标志着强磁场中心承担的稳态强磁场装置项目的主要任务已经完成,它的研制成功是我国强磁场技术发展的重要里程碑。据悉,混合磁体装置将主要用于新型功能材料的量子行为研究。
  • 中山大学在重要工业混合物分离纯化方面取得重要突破
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/0efb0394-27e8-4a6b-b92a-cc01c6e37729.jpg" title="tpxw2017-06-23-10.jpg"//pp style="text-align: center "图. 控制不同柔性客体分子选择性吸附的策略/pp  在国家自然科学基金项目(项目编号:21225105,21290173,21473260)等资助下,中山大学张杰鹏教授、陈小明院士及其他合作者在重要工业混合物分离纯化方面取得进展,相关研究成果于2017年6月16日以“Controlling guest conformation for efficient purification of butadiene”(控制客体分子构象实现丁二烯的高效分离)为题在线发表在Science上。/pp  为了使产品或原料达到足够高的纯度,工业界需要花费大量时间与成本对混合物进行分离。对于分子量相似的碳氢化合物,绝大多数多孔材料选择性吸附极性更大、分子更小和具有配位能力的烯烃。因此,通常需要经过耗能较高的萃取分馏过程将1,3-丁二烯从丁烷、丁烯和异丁烯等其他C4碳氢混合物中分离,目前很难利用多孔材料优先分离得到1,3-丁二烯。该研究团队发现常温常压下将C4碳氢化合物的混合物通过亲水性多孔配位聚合物MAF-23填充的固定床吸附装置后,只有1,3-丁二烯的构象发生转变,且构象转变导致很大的构象弯曲能量损失,从而大大减弱与MAF-23的吸附。该团队利用C4碳氢化合物的柔性差别和构象变化引起的能量损失以及由此导致的与多孔材料的吸附性差别,实现了温和条件下选择性达99.5%的1,3-丁二烯的高效纯化,避免了常规蒸馏和吸附纯化过程中因加热而产生的丁二烯自聚问题,实现了反常且最优的C4碳氢化合物吸附分离顺序。/pp  该团队致力于配位聚合物多孔材料的设计、合成、气体吸附和相关机理研究,近年来取得了系列进展,发展了多种提高二氧化碳捕获效率的策略,实现了常压、烟道气和大气环境中的多个吸附量记录 提出了利用气—固反应机理对多孔框架进行精确修饰的策略,设计合成了兼具拟铜蛋白氧气活化中心和易氧化有机配体的新型多孔配位聚合物MAF-42,可以将材料的吸附选择性改变四个数量级,适于天然气中提纯乙烷和甲烷 提出了“亲水孔道捕获疏水分子”的概念,利用超微孔表面精确排列的氢键受体高效结合极性较低的乙烷分子而非极性较大的乙烯分子,并据此合成了新型多孔配位聚合物MAF-49。常温常压下,将乙烯/乙烷混合物通过MAF-49填充的固定床吸附装置后,乙烷被选择性吸附保留,流出的乙烯纯度很容易超过99.99%。/p
  • 可用于检测大气中有机污染物的混合材料
    p  混合材料的发展是材料科学的一个新兴领域。研究人员解释说,对这些材料的兴趣源于“将无机成分的稳定性与有机成分的多功能性相结合的成功,将它们混合起来,使两者的性质相结合甚至改善。”她指出。“更重要的是,混合材料可以以凝胶,薄膜,纤维,颗粒或粉末的形式加工。有机和无机组分的组合在生产混合材料方面几乎没有限制,其在医药,微电子,传感器,光学系统,汽车工业和装饰性表面涂料方面具有大量的应用。/pp  Paula Moriones采用允许合成混合材料的方法(称为溶胶 - 凝胶),这产生具有在环境温度下可控属性的多孔材料,与其他工艺相比节约了成本。这些混合材料的合成导致干凝胶的生成——一种处于脱水状态的凝胶,其内部没有任何液体。/pp  研究人员证实,凝胶形成时间和所得材料的性质受合成这些材料的条件和有机物的比例的影响。尽管材料总是以纳米尺寸呈现,但是它可以具有更小或不那么小的孔,她指出:“这些材料的应用中,孔径是至关重要的,因为它们可以用来控释药物。/pp  包括留在里斯本大学(葡萄牙)的Paula Moriones的研究也得出了其他结果。“某些合成材料是高疏水性和排斥水的,这种性质使它们能够用作制药工业中的元素,用于选择性地捕获其表面上的其他材料或保留它们,并在玻璃工业中用作保护涂层。”研究员总结到。/p
  • 岛津新型超快速液相色谱仪用梯度混合器问世
    近日,以减小梯度延迟体积与实现混合性能最优化为目的,岛津公司推出了用于超快速液相色谱仪Nexera系列的MR40&mu L、MR100&mu L、MR180&mu L II梯度混合器系列。今后该产品线包括MR20&mu L、MR40&mu L、MR100&mu L、MR180&mu L II这4种产品。 此次发售的超快速液相色谱仪用混合器增加了容量的变化,同时在MR100&mu L、MR180&mu L II上采用了新设计的混合方式,即使在流动相中含有紫外吸収较大的酸时,也可以获得稳定的基线。 从左至右分别是MR180&mu L II,MR100&mu L,MR40&mu L 有关详细内容,敬请向岛津公司咨询。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 沈阳工业大学张贺课题组《Micromachines》:基于Pμ SL 3D打印的微混合器芯片用于研究单元连接对混合性能的影响
    被动式微混合器,是一种用于样品预处理的关键微流控器件。常见的两种微混合器有两个入口呈现180°的T型微混合器和呈现任意角度(通常小于180°)的Y型微混合器。这两类混合器结构简单、易于制备,但是混合时间比较长、混合效率比较低,很少单独使用,通常同另一种微混合器一起使用。为了提高微混合器的混合效率,科研工作者尝试进行微混合器入口、混合腔室结构的优化设计研究。在混合腔室的结构设计方面,常见的设计方案是在微通道中周期性的添加障碍物;另外,弧形微通道的引入、分流合并结构的设计以及微通道底部交错结构的设计等方案也极大地提高了混合效率。上述混合腔室的设计方案具有一个共同特点,即采用周期性重复混合单元结构提高混合效率。其中,两个混合单元的连接处既是前一个单元的出口,同时也是下一个单元的入口。然而,在设计过程中,关于单元连接的研究并没有得到重视。近日,沈阳工业大学张贺课题组基于面投影微立体光刻(PμSL) 3D打印技术制备了微混合器芯片,通过模拟结果与测试结果的对比,研究了单元连接对微混合器芯片性能的影响。该团队基于PμSL (nanoArch P150,摩方精密) 技术打印了一种具有重复结构的微混合器。微混合器是由平面T型入口通道和混合腔室组成,其中混合腔室是由6个立方混合单元以及单元之间的连接组成。最初设计的结构是一种研究中常见的微混合器结构,连接通道位于立方混合单元的几何中心,且微混合器的入口和出口位置同立方混合单元的连接通道位置重合。微混合器总长度为12.3mm;立方混合单元的边长是1mm;单元连接通道的长度是500μm,截面是边长为200μm的正方形。 图1. 最初设计的具有重复结构的微混合器图2.具有不同连接位置的微混合器的混合指数(模拟结果)图3.两种不同连接位置组合的微混合器的混合指数(模拟结果)图4. 可视化测试系统以及3D打印的微混合器的显微图像(Location 5) 图5. 3D打印的两种不同连接位置组合的微混合器在不同时间的显微图像 根据单元连接位置的不同分为九种微混合器,分别命名为Location 1- Location 9;该九种微混合器的混合指数模拟结果表明单元连接位置对微混合器的混合性能有显著的影响。在此基础上,将两种不同单元连接位置进行组合,用以提高混合器的混合效率。基于PμSL 技术制备了三种微混合器并进行了可视化测试。测试结果同模拟结果一致,表明单元连接位置对微混合器的性能确实有显著的影响,并且仅通过改变单元连接的位置,可以极大地改善微混合器的性能。该研究成果为优化微混合器的结构设计、提高微混合器的性能提供了新思路,以“The Influence of the Unit Junction on the Performance of a Repetitive Structure Micromixer”为题发表在Micromachines上。官网:https://www.bmftec.cn/links/10
  • 智能高效混合浓缩省心组合,3年质保无忧购!
    智能高效混合浓缩省心组合,3年质保无忧购!MFV智能氮吹仪+MultiVortex多样品涡旋混合器MFV智能氮吹仪Detelogy热销爆款MFV系列智能氮吹仪,经典圆盘主机上引领革新,全系列具备氮吹通道分组控制、氮吹针一键快速升降、数字微调阀清晰微调、5寸高清触屏控制等一系列性能优势,还可兼容试管、离心管、梨形瓶、圆底烧瓶、烧杯等多种规格的浓缩管。 *可根据需求定制专属样品支架样品通道分组控制⭐通过分组控制器,直接快速开关多个氮吹通道,无需逐个调节⭐可自由组合不同的氮吹通道开启数量,进而有效节省氮气量⭐分组控制器有序规整氮吹通道,样品架旋转自如,氮气管路不易打结氮吹针一键升降⭐按下按钮,可随时根据样品液面调整氮吹针高度,松开后立即固定⭐氮吹针位置可平移调节,保证针口正对样品液面中心 氮吹针支持快换⭐氮吹针采用316不锈钢材质特制,支持多种清洗和消毒方式⭐可选配兼容一次性移液枪头的两用型氮吹针管,兼容性更佳 数字刻度盘微调阀⭐通过每氮吹通道上的数值显示,可清晰微调相应通道的气流强度⭐浓缩多个样品时,各个氮吹通道气流可设为同一档位,有效保障平行性⭐没用到的闲置氮吹通道可完全关闭,避免浪费氮气 曲面水浴观察窗⭐无需暂停浓缩进程和抬升样品管架,即可随时观察样品状态⭐可开启照明功能,观察更清晰,便于调节氮吹针和观察水浴锅水量 便捷式快插排水⭐水浴模块整体经严格防护涂层工艺处理,耐用性更佳⭐ 具备快插式排水口,便于定期更换水浴锅用水,延长使用寿命 一体化触屏控制⭐5寸触摸彩屏控制,显示水浴温度、氮气压力和浓缩时间⭐PID技术精确控温,可设自动预热,浓缩完成后自动报警提示 MultiVortex多样品涡旋混合器圆周式涡旋振荡可使样品基质与溶剂、分散填料、萃取盐进行充分的液液、固液混匀,常用于在食品、肥料、化妆品、生物组织等样品前处理流程,近年新兴的QuEChERS快速样品前处理技术中, 单台MultiVortex多样品涡旋混合器在实现高通量前处理的基础上,可支持更高转速,并可轻松实现多段自动变速涡旋运行。高通量,兼容多种规格样品管: 高转速,应对各类难溶样品⭐转速范围:200-3000rpm,3mm圆周振幅⭐轻松应对各类溶液、分散填料、萃取盐 高清屏,实时监控还可存方法⭐5寸触屏上支持自动程序时模式,可随时启停⭐根据不同样品,可存12个涡旋方法程序⭐每方法中可设多达6段自动变速,渐进提速 智能高效应用方案(示例 )方案一:土壤农残测定称取10 g试样(精确至0.01 g),于100 mL塑料离心管中,加入10 mL水和10 mL乙腈,将配置好的样品置于12位圆盘试管架上,设置方法程序,添加多段变速,涡旋振荡10 min,运行过程中随时启停,结束自动蜂鸣报警。加入5 g~7 g 氯化钠,再次涡旋1 min后,设置3000 r/min变速涡旋5 min。取上清液直接上样固相萃取柱,收集全部滤液。水浴氮吹洗脱液(温度设置为50℃),将氮吹针调至适宜高度,缓慢吹入氮气,使液面持续微微抖动,浓缩至近干状态,用甲醇复溶,过0.22 μm滤膜后待测。方案二:GB5009.284-2021 食品中香兰素、甲基香兰素、乙基香兰素和香豆素的测定称取1 g奶粉试样(精确至0.01 g)于50 mL试管中,加入10 mL水和微量盐酸溶液,将试管放至12位圆盘型试管支架上,设置MultiVortex方法程序,涡旋1 min。运行开始后,样品开始混合。预设运行时间结束后,自动提示,无需人员值守。第一次涡旋完成后,在试管中加入20 mL乙腈,再次涡旋1 min。超声完成后,加入5 g氯化钠,变速涡旋2 min。离心后,取上清液至试管中,把试管转移至MFV智能氮吹仪中,40℃下氮吹至近干,倒计时结束后自动报警提示,定容待测。
  • 多肽药物质控丨当混合多肽遇见蛋白质测序仪
    在多肽类药物的生产质控中,氨基酸序列的测定是必不可少的检测项目。对于常规组成单一的合成多肽药物来说,氨基酸序列的分析较为简单,可通过Edman降解法或质谱法进行测定,其中Edman降解法被认为更加直接可靠。但对于组成复杂的混合多肽药物来说,比如,醋酸格拉替雷(Glatiramer acetate,简写为GA),由于多肽组成形式复杂多变,可能具有超过一万亿个不同序列的独特多肽,如果对每种多肽成分的氨基酸序列进行精确测定,似乎既不可能,其实也无必要,我们需要考虑新的方法对混合多肽进行整体表征。 n 快速了解醋酸格拉替雷醋酸格拉替雷是一种人工合成的多肽类制剂,由Glu(谷氨酸)、Ala(丙氨酸)、Tyr(酪氨酸)和Lys(赖氨酸)四种氨基酸随机聚合而成,原研药由以色列药厂TEVA研发制造(商品名Copaxone),于1996年获美国FDA核准用于治疗多发性硬化症(MS),其2020年全球销售额达到13.37亿美元,2021年7月,TEVA的“醋酸格拉替雷注射液”在中国的上市申请获得受理。多发性硬化症是一种常见的以中枢神经系统炎性脱髓鞘为主要特征的自身免疫性疾病,临床表现包括视物模糊,感觉、运动异常,智能、情感等高级功能障碍,在中青年人群中多发,且有较高致残率。醋酸格拉替雷被认为是通过改变造成MS发病机制的免疫过程而起作用的,其疗效与耐受性在临床上获得了十足的肯定。 醋酸格拉替雷是一种由Tyr、Lys、Glu、Ala随机聚合而成的多肽混合物(CAS号:147245-92-9) 醋酸格拉替雷的第一个仿制药Glatopa (由Sandoz 公司和 Momenta公司共同开发)于2015年上市,由于原研药的专利到期,未来将有更多的仿制药上市。 n 醋酸格拉替雷的合成与质量评估在醋酸格拉替雷的生产过程中,通过聚合及解聚反应,可以将其分子量控制在一个较窄的范围(平均分子量4700~11000 Da)。生产工艺的改变以及所用试剂的变化都有可能使药物的组分比例发生变化。利用Edman降解法,通过监测N端每一个循环的4种氨基酸的组成比例以及变化趋势,可以对药品质量进行评估。 岛津解决方案 l 蛋白质测序仪对醋酸格拉替雷进行质量评价的原理Edman降解法是进行N端氨基酸序列分析的经典方法,岛津以其为原理设计的全自动蛋白质测序仪(以下简称PPSQ),由液相系统和可执行自动化Edman降解反应的主机组成,将氨基酸从多肽链的N端依次切割下来,通过色谱的保留时间判定氨基酸种类,结果直接可靠。PPSQ除了对N端氨基酸序列进行定性分析外,利用液相色谱稳定的定量能力,还可以对多肽特定循环氨基酸的摩尔生成量及组成比例进行定量分析。 岛津在售蛋白质测序仪PPSQ-51/53A Edman降解反应图解 l 样品前处理取适量稀释后的样品加入经聚凝胺处理的玻璃纤维膜上,干燥后安装到PPSQ反应器上进行分析。实验仅作示例,共测试了3个批次的原研药Copaxone以及4个批次的某在研仿制药,每个批次测试N端前6个循环。 反应器构造图 l 实验结果 1)N端氨基酸组成定性分析醋酸格拉替雷原研药每个循环均检测到Glu、Ala、Tyr、Lys等4种氨基酸,这与药品由Glu、Ala、Tyr、Lys等4种氨基酸随机聚合而来,结果一致。 醋酸格拉替雷原研药Copaxone与某在研仿制药N端氨基酸分析色谱图示例(1-6循环)(黑色:原研药Copaxone;红色:某在研仿制药;DTT、DMPTU、DPTU为试剂峰) 2)各循环中每种氨基酸的相对摩尔含量的分析根据仪器自动生成的氨基酸生成量,计算每种氨基酸的摩尔含量,例如,Glu的相对摩尔含量为: 根据氨基酸的相对摩尔含量,绘制各循环中各氨基酸生成量的趋势图,如下。 醋酸格拉替雷Copaxone 与某在研仿制药N端前6个循环相对氨基酸水平分析(纵坐标:相对摩尔含量;横坐标:循环数) 3)原研药与某在研仿制药的比较从趋势图来看,仿制药各循环氨基酸生成量趋势,与原研药整体相似,但GA仿制药-批次1的Glu的相对含量略低,GA仿制药-批次4的各循环Tyr的相对含量略高,批次1中Glu的偏低与批次4中Tyr的偏高是否正常,需要对原研药进行多批次实验,以判断是否超出正常范围。GA仿制药-批次2及GA仿制药-批次3的Tyr生成量趋势与其他样品有明显不同,提示仿制药生产工艺可能存在与原研不同的地方。 结 语通过醋酸格拉替雷N端各氨基酸生成量的趋势变化的分析比较,可为仿制药的开发及生产质控提供参考,醋酸格拉替雷N端相对氨基酸水平分析亦可作为醋酸格拉替雷仿制药与原研药一致性评价的依据。这也为我们今后分析类似混合蛋白或多肽药物提供了参考思路。 参考文献:J. Andersona, C. Bell, et al., Demonstration of equivalence of a generic glatiramer acetate (Glatopa™ ), Journal of the Neurological Sciences 359 (2015) 24–34 撰稿人:顿俊玲 *本文内容非商业广告,仅供专业人士参考。
  • 日本拟建混合动力及电动汽车国际安全标准
    据《日刊工业新闻》2010年9月29日报道,随着混合动力及电动汽车的普及,许多新问题浮出水面,如行驶途中过于安静,难以引起行人注意 车载铅电瓶、镍氢电池和锂离子电池的起火 电动汽车信息传输系统是否会遭雷击 随着智能交通系统发展,汽车电子化程度越来越高,每台车犹如一台计算机,招致病毒和黑客攻击如何应对等等。  对此,日产汽车公司高层领导认为,电动汽车技术历史悠久,不论行驶声音还是蓄电池等所有能够考虑的安全问题几乎全都解决了。然而,日本国土交通省还是提出,要尽快建立装载蓄电池等混合动力、电动汽车的安全标准。今年7月,Benesse Holdings, Inc.等60多家企业和团体与检测机构合作成立了“电动汽车普及协议会”,着手制定燃油车改装电动车的安全规格。本田汽车公司高层也表示,日本乃至全世界低价位车需求量很大,向国外采购廉价蓄电池等企业会逐渐增多,建立国际标准有助于保证国外采购产品的安全性和可靠性。
  • Nanoscribe客户成就 |3D打印微流控混合器研发
    研究背景微流控技术广泛应用于不同领域,例如分析化学、微生物分析和即时医疗应用的芯片实验室设备(lab-on-chip)等,来帮助控制微小流体。集成化是微流控设备的关键所在,而小型化的微流体系统不能实现液体的湍流混合,扩散式混合作为主要的混合流程则需要借助很长的微通道来实现。这会占用设备的面积,或者实施耗时的微纳加工技术来制造复杂的混合元件。Nanoscribe微纳加工技术助力微流控混合器研发近日,来自不来梅大学微型传感器、致动器和系统(IMSAS)研究所的科学家们发明了一种全新的微流道混合方式,即通过堆叠彼此交替的液流来减少扩散长度,并提出了微流控混合的新概念:多级互换混合器。科学家们使用Nanoscribe公司的3D打印系统,将自由形式3D微流控混合元件集成到预制的晶圆级二维微流道中。该微型混合器可以处理高达100微升/分钟的高流速样品,适用于药物和纳米颗粒制造,快速化学反应、生物学测量和分析药物等各种不同应用。上图:在预制的二维微流道中3D打印制作壁厚约为2 µm的螺旋状结构三级微流控混合器。图片来自于Martin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen通过使用Nanoscribe的 Photonic Professional系列打印系统制作的微流控元件完全嵌入进预制的二维微流道系统中,换句话说,科学家们运用3D微纳加工技术将自由形式的3D微流体混合器直接做成微流体芯片。每个微纳混合器都能在30秒内制作完成,从而确保了在一小时内完成加工整个晶圆。这要归功于3D微纳加工技术,可以实现混合器的快速制作,即从电脑模型设计(CAD)到打印样品的一步式操作流程。当双光子聚合原理应用到传统光刻技术互换式混合器是通过Nanoscribe的双光子聚合技术(2PP)结合光刻技术来实现制作的。第一步,使用SU-8光刻胶在硅晶圆上利用光刻技术制作二维微通道系统;第二步,运用双光子聚合技术将3D混合器元件集成到开放式为通道中;打印结束后在显影阶段将残留的未聚合材料冲洗掉,除去通道中所有抗蚀剂残留物;最后,通过将聚二甲基硅氧烷(PDMS)片压在微通道的顶部来密封微流体装置。这种制造方法将3D微纳结构集成到了预制的晶圆级二维微流体通道中,突出了传统光刻和双光子聚合技术的完美兼容性和卓越性能。研究人员能够利用系统的高设计自由度和超高精度的特点,将复杂形状的3D微流体混合器定位到二维微流体通道中。使用Nanoscribe微纳加工技术打印的三阶微流控混合器电镜图。图片来自于MMartin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen了解更多双光子微纳3D打印技术和产品信息请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备
  • 湃睿半导体完成数千万元A轮融资 用于传感与混合信号芯片研发
    近日,南京湃睿半导体有限公司(以下简称“湃睿半导体”)完成由毅达资本领投的数千万元A轮融资。本轮融资将用于传感与混合信号芯片的新产品拓展、新技术研发等。湃睿半导体成立于2020年,专注于高端ATDC(Analog-Time-Digital Converter,又称模拟-时间-数字转换)芯片的研发、生产和销售。ATDC芯片,是用于将真实世界产生的模拟信号(如温度、压力、声音或者图像等),转换成更容易储存、处理和传输的数字形式。湃睿半导体总部设立于南京,在无锡、厦门设有控股子公司,分别专注于MEMS技术和标准化技术开发,在深圳设有销售与技术支持办公室。此外,在德国法兰克福、多特蒙德分别设有后端设计与验证团队,致力于利用全球技术优势,同时立足本土制造与运营,打造融合传感与混合信号领域的创新品牌。ATDC芯片与传统的ADC芯片作用一样,主要用于模数转换,但两者在实现原理上有较大差异。ADC全称为AVDC,即“模拟-电压-数字转换”,ATDC则是“模拟-时间-数字转换”,两者的差别在于转换的介质从电压变成了时间。ATDC芯片引入时间要素作为中间变量,可以减少混合信号中的模拟部分,提高数字部分占比,实现更高精度、更低噪声、极低功耗和极低成本。同时,客户使用时,两种芯片的方案一致,并不会产生迁移门槛。因此,ATDC芯片有望逐步替代传统的ADC芯片。湃睿半导体创始人黄孙峰表示,此前,不少芯片巨头也尝试过ATDC路线,但由于本地工艺变异的影响,导致最终成片表现不佳。而湃睿半导体则凭借在前端VTC(电压-时间)、后端TDC(时间-数字)上的技术创新,使得ATDC芯片能够在更成熟的90-180nm芯片制程下实现,突破了困扰行业多年的技术壁垒。湃睿半导体拥有全球化的创始团队,四位联合创始人拥有慕尼黑工业大学(MUT)、卡尔斯鲁厄理工学院(KIT)、东南大学、浙江大学等高校硕士及以上学历,在传感器半导体领域都有着20年以上的经验,拥有研发和市场的复合背景。公司产品进展迅速,在2023年上半年正式流片了两款细分产品,截至目前,公司已出货接近五百万颗。此外,公司已经和新能源汽车、工业传感器、轨道交通系统等多个行业的头部客户完成了产品验证和导入,预计将在2024年进入快速增长阶段。毅达资本投资总监姚博认为,当前国内模拟芯片厂商面临需求不振、海外巨头低价倾销等多方面挑战。湃睿半导体在艰难的市场环境中仍能保持订单快速增长,并获得行业头部客户高度认可,充分展示出其颠覆式创新的巨大价值。毅达资本长期看好ATDC技术在消费、工业、汽车领域的应用,并相信其在医疗、通信等高端传感场景的延展价值。期待湃睿半导体未来能够依托自身的技术优势,持续增强研发力度,进一步为ATDC赛道的标准化发挥引领作用。
  • 赛默飞世尔最新推出一款近红外混合过程分析仪
    赛默飞世尔科技(Thermo Fisher Scientific Inc. 原热电公司)北京时间6月29日宣布最新推出一款极具创新的近红外光谱仪,命名为“Antaris Target”的近红外混合过程分析仪专为制药工业中混合过程质量控制的需求而设计,能够实时监测产品研究和生产的混合过程,极大地改善了药物生产的质量稳定性。Antaris Target近红外混合过程分析仪被美国著名杂志《研究与发展》(R&D Magazine)的《微/纳米通讯》(MICRO/NANO Newsletter)评为2006年度25个最佳微/纳米技术产品之一。获得该奖项的产品均为各行业内最具创新性、最新颖的发明,这将可能极大推动工业和社会的发展。 混合过程是固体制剂生产过程的重要环节,对于保证批次内所有药片均匀地含有各种药效成分具有重要意义,混合不充分将导致药片质量不均一,而混合过久则是极大地浪费能源。传统的混合过程监测方法是在每一批次间人工收集约30个样品,送往实验室进行HPLC或其他均匀性测试,该方法需要较长的时间和较高的检测费用,且不能及时有效地实时反映混合过程的变化趋势。 Antaris Target混合分析仪可以为GMP生产环境提供完全解决方案。采用了先进的微电子机械系统(Micro-Electro-Mechanical Systems, MEMS)技术,使得该分析仪具有一流的光谱分辨率和分析性能;混合分析仪能够直接安装于不同大小的混合罐上,无需事先建立分析模型,采用移动窗口法直接分析光谱偏差变化,实时判别混合终点。该分析仪采用一体式设计,尺寸紧凑,并配置了无线通讯技术和大容量充电电池,能够方便地在多个混合罐间移动使用,提高了利用率,节约投资成本。 关于赛默飞世尔科技(原热电公司) Thermo Fisher Scientific(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过90亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。Thermo Fisher Scientific将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermofisher.com 及在本网的展位: thermo.instrument.com.cn###
  • 便携离子阱质谱仪现场快速鉴定混合毒品研究取得新进展
    p  近日,中国科学院大连化学物理研究所快速分析与检测研究组研究员李海洋和侯可勇团队与云南警官学院毒品分析及禁毒技术公安部重点实验室合作,研制了一种可以快速同时检出易挥发和难挥发毒品混合物的离子阱质谱仪,该仪器对于芬太尼类等难挥发毒品的检测灵敏度达到了50pg,相关研究成果以全文的形式发表于《美国分析化学》(Anal.Chem,2019)杂志上。/pp  打击毒品滥用长期以来一直是全球重点关注问题。近年来,制毒者为了提升毒品的“快感”,同时降低毒品的成本,经常将多种毒品进行混合,配置成混合药效新型毒品,这类不同毒品相互掺杂促进药效的混合毒品危害性很大。2017年,北美地区因吸食毒品过量造成的死亡人数超过5000人,其中大部分是因为吸食海洛因中掺入了廉价芬太尼毒品所致。2017年,我国云南省临近金三角地区缴获毒品达到89.2吨,严峻的禁毒形势对毒品现场快速识别技术提出了更高的要求,但是目前传统的检测仪器包括光谱、色质联用、免疫反应等无法适用于现场快速、准确检测的要求。/pp  研究人员一直致力于发展基于真空紫外灯和丙酮辅助光化学电离-热解析的便携式离子阱质谱仪(Anal.Chem,2019)。由于各类毒品沸点差异较大,混合毒品检测中难挥发毒品灵敏度低,而易挥发毒品出峰时间短,导致混合毒品全成分检测难度较大。为解决该问题,该研究设计了一种新型光闪热解析系统,3s内可将解析池内焦点附近的毒品加热至290℃,实现了难挥发性毒品的快速汽化。相比于过去,该仪器对难挥发毒品那可汀的检测灵敏度提高了60倍以上。此外,该设计中还加入了脉冲吹扫装置,可以将热解析池内挥发出来的难挥发和易挥发样品在20ms内同时吹入质谱,减小了因为连续气流传输而造成的进样损失,样品的利用率提高了5倍以上。沸点差异达到300℃的10种毒品混合物通过光闪热解析结合脉冲吹扫进样后,可实现样品同时检测,且分析时间仅为3s。/pp  该离子阱质谱仪在示范应用阶段曾多次深入云南禁毒一线,不断根据现场试验的结果对仪器进行细节的改进,先后在玉溪市青龙场检查站、德宏州木康边防检查站、腾冲市、保山市、墨江市等地点进行了实地应用,成功对现场缴获的疑似鸦片、大麻、芬太尼胶囊等混合毒品进行了准确的鉴定,离子阱质谱仪毒品检测指认的毒品达到37种。/pp  该研究得到国家自然科学基金、大连化物所自主部署基金等的支持。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/5705bfd7-d628-47fa-9a7a-1bfa2a9fd172.jpg" title="0820-1.jpg" alt="0820-1.jpg"//ppbr//p
  • 青岛能源所提出混合物组分分离及结构确证的新方法
    混合物组分分离及结构确证一直是分析化学面临的重要任务。近日,中国科学院青岛生物能源与过程研究所公共实验室黄少华等利用核磁共振(nmr)技术在该领域取得了新进展,提出了一种全新的能够同时实现组分分离和结构确证的简易通行分析方法,相关成果于9月4日在线发表于《德国应用化学》( angewandtechemie)。传统混合物组分分离及结构确证方法通常利用色谱学工具与波谱学工具进行联用,比如gc-ms、hplc-ms、hplc-nmr等。近年来,nmr方法学家们开发了一种被称之为&ldquo 核磁共振中色谱技术&rdquo 的dosy技术,能够无需进行实际色谱分离就能同时实现混合物组分分离及结构确证,大幅节约了分析时间与成本。但是,纯dosy技术需要在&ldquo 虚拟色谱固定相&rdquo 辅助下,才能在实际应用中显示出其优势。黄少华带领的研究小组经过两年时间的摸索,发现了一种适用于dosy技术的通用&ldquo 虚拟色谱固定相&rdquo &mdash &mdash 聚二甲基硅氧烷(pdms)。该物质结构简单、成本低廉,并且其nmr信号接近于tms,不干扰其它分析物的信号,是天然的理想&ldquo 虚拟色谱固定相&rdquo ,可广泛应用于分析化学的各个领域。研究表明,pdms拥有强大的分离能力,所分离的化合物类型基本包括了大部分有机化合物类型。例如,pdms能够轻松基线分离氘代氯仿中的苯、萘和蒽混合物,并且能够同时得到每个组分的nmr信号。这些特点使得基于pdms的dosy技术具有重要的理论研究意义和实际应用价值。在此基础上,合成化学家们可以用该技术部分代替tlc技术,实时跟踪目标化合物,了解化合物的组成与结构信息,而无需进行大量的分离提纯工作。同时,还可利用此技术部分代替经典色谱工具对复杂混合物进行分析,节约大量分析时间和成本。上述研究得到了国家自然科学基金项目支持。  氘代氯仿溶液(0.6 mL)中苯(5 mg)、萘(5 mg)和蒽(5 mg)的1H DOSY(600 MHz)谱图。左图为溶液中没有添加PDMS的DOSY谱图;右图为溶液中添加PDMS的DOSY谱图。实验温度:298K。
  • 成都科研成果混合所有制:成果分割确权 个人最低拿70%
    p  12月13日,成都市召开新闻发布会解读新出台的《关于支持在蓉高校院所开展职务科技成果混合所有制改革的实施意见》,其中,首次对改革的实施方式、流程、收益分配方式进行细化,并明确职务发明人与高校院所可约定按不低于7∶3的比例共享职务科技成果知识产权。/pp  作为四川省全面创新改革试验重大成果之一“职务科技成果混合所有制”,在四川省、成都市新近发布的“四川十六条”“成都新十条”等政策中均明确鼓励实施。此次,成都作为国内单个城市出台专项文件明确实施科技成果混合所有制改革的方式,在全国尚属首例。/pp  《意见》首先提出“分阶段分割确权”原则,即对既有和正在申请中的成果,由职务发明人提出奖励申请,高校院所审查后签订奖励协议,并向相关部门申请将成果变更为高校院所和职务发明人共同所有。对新产生的职务科技成果知识产权,双方签订奖励协议后,即可共同申请知识产权。/pp  在完成上述分割确权后,“混合”后的成果则可采取转让、许可或作价投资的三种方式转化。《意见》称,在转化交易中,可采取协议定价、技术交易市场挂牌交易和拍卖等方式定价。其中,协议定价须遵从“议价、公示、审定”三步走流程,即由高校院所与成果发明人共同聘请第三方与受让方协商,之后对拟交易价格进行不少于15天的公示,最后在公示无异议后由高校院所审定确立。而收益分配方面,完成分割确权的职务科技成果通过转让或许可所获得的收益,在扣除有关成本和税费后,由高校院所与职务发明人按照成果权属比例对所获收益进行分配。/pp  “愿意开展职务科技成果混合所有制改革的学校,按照这个流程可以很方便地实施。”成都市科学技术局局长卢铁城说,此项改革将是科技成果“所有权、收益分配权”的双重确立,将最大限度地保证职务发明人的个人收益,调动其成果转化的积极性。/p
  • 汗诺新品RH-18+系列3D旋转混合仪
    RH-18+系列3D旋转混合仪是一款设计独特的仪器,可通过水平、垂直或任意角度的旋转对各种样品管内的样品进行混合。通过对旋转面板的调整,可以使产品水平或垂直或介于两者之间的角度旋转,广泛应用于分子杂交、血液等需要混合的样品,旋转速度温和,位于旋转面板上的两个夹具可单独调正,这样就可以在一次混合中可以有两种不同的方式。 仪器精小、方便,可以很容易地转移到其他地方。实验台、冷库或者培养箱中,仪器的外壳和面板都采用了专门的设计,方便清洁及除污。 Three-Dimensional Rotating Mixer The new series of three-dimensional rotating mixer is a uniquely designed instrument which can mix samples by horizon, vertical or any angled rotation with a variety of sample tubes.Adjusting the rotating frame (tube holder) can make the products either horizontally or vertically or between the angles of horizon and verticality to rotate. It is widely used in molecular hybridization, blood and various samples requiring mixing. Its rotation speed is moderate. In addition, the two rotating frame (tube holder) on each side of the rotating roller can be adjusted individually to meet different hybrid modes in one mixture.The 3D rotating mixer is compact, light and convenient. It is easily moved to different places, such as to a test-bed, a refrigerator or an incubator. The shell and rotating panel of this instrument adopt a special design. It&rsquo s very easy to clean and decontaminate. 产品特点:1、独有的可调旋转架组合。2、多种旋转方式,从温和旋转到翻跟头式旋转。3、广泛应用于生物分子学、组织化学、生物化学、临床医用等 。4、提供3种离心夹具,极大的满足了实验需求。5、旋转时,用手轻按旋转夹具,可实现正反旋转 。6、RH-18+可实现往复式振荡,20-99度。 Product Features1. Unique combination of adjustable rotating frame.2. A variety of rotation modes including mild rotation to somersault type rotation mode.3. With reciprocating oscillation function from 20angel to 99angle.4. Achieve positive and negative rotation just gently press the rotating tube frame when instrument is working.5. Widely used in molecular biology, histo-chemistry, bio-chemistry, clinical applications, etc.6. Provide with three types of rotating tube frame for centrifuge tube, greatly meet the testing requirements. 产品技术参数产品型号RH-18 3D旋转混匀仪RH-18+ 3D旋转混匀仪转速18r/min10-40r/min定时范围无1s-999min往复式振荡无可调范围20-99度功率4W重量1kg1.2kg电源220V/110V AC100-230V产品尺寸240x145x210mm Technical ParametersModelRH-18 3D Rotating MixerRH-18+ 3D Rotating MixerRotating Speed18rpm10~40rpmTime Range/1s~999minReciprocating Oscillation Range/20 angle~99 anglePower4WWeight1kg1.2kgPower Supply220V/110V AC100~230VDimension240*145*210mm 标准配置:A5x(Ф15mm-Ф16mm)可用10ml/15ml离心管6x(Ф12mm-Ф13mm)可用5ml/7ml离心管B3x50ml离心管 + 18x0.5ml离心管C18x1.5ml/2.0ml离心管 Standard configurationA2 pieces5 centrifuge tubes of 10ml /15 ml (Ф15mm-Ф16mm) +6 centrifuge tubes of 5ml /7 ml (Ф12mm-Ф13mm)B2 pieces3 centrifuge tubes of 50ml +18 centrifuge tubes of 0.5mlC2 pieces18 centrifuge tubes of 1.5ml / 2.0ml
  • 混合驱动软连续体机器人实现大转角和高精度操作,香港城大申亚京《Advanced Intelligent Systems》
    对于生物医学领域的多个应用场景(心血管手术、支气管手术等),小型软连续体机器人都展现了其巨大的应用潜力(图1a)。然而,现有的连续体机器人却在驱动选择方面经历相应的瓶颈期,其难以同时拥有小尺寸、柔顺驱动、大转角以及高精度操作等特性,因而在一定程度上限制了其在体内某些狭长受限环境下的广泛应用。而传统的加工制造方法不能很好的实现驱动方式综合性能的改善。近日,香港城市大学生物医学工程系申亚京教授带领的研究团队开发了一款毫米级的软连续体机器人(图1),其在线控和磁场的混合驱动模式下同时拥有大转角和高精度操作能力。为了实现毫米级外形尺寸的混合驱动,该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch P140打印出超薄的镂空型机器人骨架(长度30mm,外径3.0mm,壁厚300μm),并在薄壁上形成150μm的贯穿孔用于腱索的布置。此外,该团队通过在机器人骨架外表面涂覆铁磁弹性体薄层(100~150μm)来获得磁响应性能。所提出的混合驱动软连续体机器人能实现约100°的大角度导向以及高精度(静定位精度低至2μm,动态跟踪精度低至10μm)的微操作。该成果以“Millimeter-scale Soft ContinuumRobot for Large Angle and High Precision Manipulation by Hybrid Actuation”为题发表在Advanced Intelligent Systems上。https://doi.org/10.1002/aisy.202000189在该工作中,所研发的毫米级软连续体机器人整体示意如图1所示。图一b左上角展现了机器人在目标区域—狭长受限环境内的导向能力。其中,线控功能由两对拮抗型腱索的拉紧/放松策略来实现,而磁驱性能则来自于弹性表皮中定向排列的铁磁颗粒在外加磁场中受力/力矩导致的偏转。在微尺度3D打印技术的加持下,该连续体机器人拥有较大的中空腔体,这一特性为后续多种微创手术器械的携带创造了条件。图1. 毫米尺度软连续体机器人整体示意图。先使用摩方精密(BMF)nanoArch P140打印出超薄的镂空型机器人骨架(长度30mm,外径3.0mm,壁厚300μm),并在薄壁上形成150μm的贯穿孔用于腱索的布置;再通过在机器人骨架外表面涂覆铁磁弹性体薄层(100~150μm)来获得磁响应性能。该混合驱动机器人的大转角导向能力及高精度操作性能验证如图2所示。线驱模式下,软连续体机器人成功在具有多个三维分叉的狭长受限管道内实现了导向行进(如图2a,b)。而在外加磁场的驱动下,该机器人展现了极好的动态跟踪效果(如图2c,d)。图2. 大转角导向能力及高精度操作性能验证受益于线驱模式的大转角导向以及较好的抵抗外力的能力,该软连续体机器人能够在狭窄血管模型中实现病理区域的搜寻(如图3a)。将所携带的微创手术工具递送至前端之后(图3b),该机器人可在外磁场的驱动下实现高精度的微操作(图3c),并进一步完成例如微注射和微切除(图3d)等工作。此外,磁驱模式下,所研发的毫米级软连续体机器人通过携带鼻咽拭子展现了鼻咽采样的现实功能(如图3e,f),其为当前新冠疫情的采样检测提供了新的思路。图3. 生物医学应用场景总而言之,该工作中所提出的结合了微尺度3D打印技术而得到的毫米级软连续体机器人同时具备小尺寸、柔顺驱动、大转角、高精度等特性,其在狭长受限环境下展现了优异的运动操作性能。与此同时,此项工作也为连续体机器人的小型化设计提供了一种新的方法,并将在生物医学工程领域展现更大的应用潜力。
  • 同济大学-上海城建沥青混合料联合实验室揭牌
    4月29日下午,同济大学和上海城建(集团)公司共建的&ldquo 国家大学生校外实践教育基地&rdquo 和&ldquo 国家级工程实践教育中心&rdquo 在同济大学召开2014年度教育指导委员会会议。教育指导委员会主任、校党委副书记方守恩,上海城建集团副总工程师叶国强等专家委员,同济大学教务处、交通运输工程学院、土木工程学院、机械与能源工程学院及上海城建集团组织人事部相关负责人等出席了会议。    会上,实践教育中心负责人系统介绍了工程实践教育中心各项建设内容的进展、成果和近期安排。与会专家围绕联合课程建设、多元专业实习、联合毕业设计、联合实验室、创新能力训练工场、队伍建设等方面进行了详细讨论,充分肯定了中心自建设以来取得的成效,并对中心的下一步工作提出了宝贵的指导意见。叶国强认为中心可在现有成果的基础上,加强对同济大学和全国其他高校相关专业的辐射。方守恩在总结中强调,强化中心在联合培养人才方面的作用,深化创新训练与企业生产的结合,通过中心建设形成稳定的卓越人才联合培养机制,是中心建设的一贯目标与重点。  随后,&ldquo 同济大学-上海城建(集团)公司沥青混合料联合实验室&rdquo 揭牌成立,为后续进一步加强本科生实验和实践训练,提供了有力条件。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制