当前位置: 仪器信息网 > 行业主题 > >

硫酸盐浓度计

仪器信息网硫酸盐浓度计专题为您提供2024年最新硫酸盐浓度计价格报价、厂家品牌的相关信息, 包括硫酸盐浓度计参数、型号等,不管是国产,还是进口品牌的硫酸盐浓度计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硫酸盐浓度计相关的耗材配件、试剂标物,还有硫酸盐浓度计相关的最新资讯、资料,以及硫酸盐浓度计相关的解决方案。

硫酸盐浓度计相关的资讯

  • EZ硫酸盐分析仪在垃圾焚烧厂中的应用
    EZ硫酸盐分析仪在垃圾焚烧厂中的应用哈希公司 Yesterday背景介绍Attero 是荷兰的一家大型生活垃圾焚烧厂,在了解到Hach的EZ1036硫酸盐分析仪后, 他们主动联系了Hach公司了解硫酸盐分析仪的情况。该公司的污水处理厂一直在使用Hach在线和实验室设备。在荷兰南部的Moerdijk,Attero运营着一家具有烟气净化设施的生活垃圾焚化厂,通过石灰洗涤和由此产生的石膏沉积来去除烟气中的硫酸盐。在这一工艺过程的出水中,需要实时监测向地表水排放的硫酸盐。当地环保部门对硫酸盐有严格的监控标准,必须使用在线仪表监测硫酸盐浓度。 EZ1036 硫酸盐分析仪应用情况到目前为止,Attero一直在使用EZ系列的硫酸盐分析仪,但在使用过程中,客户发现由于废水中石膏浓度较高,硫酸盐分析仪在使用过程中管路很容易堵塞。Hach公司根据客户的现场实际情况,提供了新的解决方案,方案由内部稀释的EZ1036硫酸盐分析仪和EZ9250过滤单元组成,能够改进分析仪正常运行时间,减少人工干预。改进后,现场的EZ1036硫酸盐分析仪持续运行了6周不需要任何维护,而在以前,每 2 天就需要维护一次。EZ1036硫酸盐分析仪的标准量程是10-40mg/L, 丰富的内部稀释装置可以帮助客户拓展测量范围,不仅能够测量低浓度硫酸盐,也可以测量高浓度的水样。图1 Attero垃圾焚烧厂总结EZ硫酸盐分析仪的测量量程范围丰富,可以配置内部稀释装置,极大地丰富了硫酸盐可测量的浓度范围。在垃圾焚烧厂硫酸盐监测中,配套EZ9250预处理器,可以稳定的在含有石膏浆液的废水中监测硫酸盐,同时提高仪器的在线时间,减少客户维护量与维护成本。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 雾霾中的硫酸盐如何生成?科学家们给出的答案是这个
    中德两国研究人员21日说,他们破解了北京及华北地区雾霾最主要组分硫酸盐的形成之谜,发现在大气细颗粒物吸附的水分中二氧化氮与二氧化硫的化学反应是当前雾霾期间硫酸盐的主要生成路径。这一发现凸显在继续实施减排措施的同时优先加大氮氧化物减排力度对缓解空气污染问题的重要性。  近年来,北京及华北地区雾霾频发。已有研究表明,硫酸盐是重污染形成的主要驱动因素。在绝对贡献上,重污染期间硫酸盐在大气细颗粒物PM2.5中的质量占比可达20%,是占比最高的单体 在相对趋势上,随着PM2.5污染程度上升,硫酸盐是PM2.5中相对比重上升最快的成分。因此,硫酸盐的来源研究是解释雾霾形成的关键科学问题。  清华大学贺克斌院士、张强教授、郑光洁博士和德国马克斯普朗克化学研究所的程雅芳教授、乌尔里希珀施尔教授、苏杭教授等人当天在新一期美国《科学进展》杂志上报告说,他们运用外场观测、模型模拟及理论计算等手段发现,在北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。颗粒物结合水是指PM2.5在相对湿度较高的环境下潮解所吸附的水分。  该结论与通常认为的硫酸盐形成机制有较大不同。现有基于欧美等地区的经典大气化学理论认为,硫酸盐主要是在云水环境中形成,由于云中的液态水含量远高于颗粒物结合水,通常高出1000到10万倍,所以与云水中的硫酸盐生成反应相比,颗粒物结合水中的反应可以忽略 理论计算还显示,在云水反应路径中,二氧化氮氧化二氧化硫生成硫酸盐这一路径的贡献也可忽略不计。  而在北京及华北地区雾霾期间,一方面,由于颗粒物浓度大幅上升及静稳气象条件下相对湿度较高等原因,颗粒物结合水含量远高于经典情景,颗粒物结合水中的反应总量大大提升 另一方面,重度雾霾期间二氧化氮浓度为经典云水情景下的50倍以上,这直接改变了二氧化氮氧化路径的相对重要性。此外,北京及华北地区大量存在的氨、矿物粉尘等碱性物质使得当地颗粒物结合水的pH值远高于美国等地,呈现出特有的偏中性环境,而二氧化氮氧化机制的反应速率会随pH值上升而大幅提高。  研究人员据此在论文中指出,优先降低氮氧化物的排放可能有助大幅降低中国雾霾中的硫酸盐污染水平。  “该研究表明我国复合型污染的特殊性,”贺克斌院士对新华社记者说,“高二氧化硫主要来自燃煤电厂,高二氧化氮主要来自电厂和机动车等,而起到中和作用的碱性物质氨、矿物粉尘等则来自农业、工业污染、扬尘等其他来源。这些不同的污染源在我国同时以高强度排放,导致硫酸盐以特有的化学生成路径迅速生成,这也是重度雾霾期间颗粒物浓度迅速增长的主要原因之一。”  伦敦酸雾通常被认为是由燃煤排放的烟尘以及二氧化硫等一次污染物所致。洛杉矶雾霾则是一种光化学污染,主要原因是机动车尾气在阳光作用下反应生成了二次污染物。而中国雾霾是一次与二次污染物混合造成。  贺克斌说,这种复合型污染的特殊性更加表明了多污染物协同减排的重要性,尤其是现阶段应优先加大氮氧化物减排力度。“之前我们虽然知道需要减排,但是如果无法弄清重霾污染形成的关键化学机制,就无法进行有效的模型定量模拟分析,也就无法准确评估如何减排最有效、最科学。不科学减排可能导致严重后果,可能花了很多人力物力,但收效甚微。”
  • RO反渗透系统氯和亚硫酸盐过程控制应用
    RO反渗透系统氯和亚硫酸盐过程控制应用解决方案众所周知,工业生产中会涉及到众多的反渗透(RO)系统,这些系统如果不采用一些氧化剂或者生物杀菌剂,就会极易受到生物污染,从而会导致该系统功能退化和膜的寿命显著下降,所以在这个过程中,一般都会加入氯(Cl2)来消灭大多数的致病微生物。然而,在反渗透(RO)系统中,膜极易受到进水中氯的破坏,这会导致较低的盐排斥率和较差的渗透。用户不得不频繁的更好价格昂贵的RO反渗透膜,以及面对频繁的设备停机。为了保护反渗透(RO)系统,氯的残留必须要维持到一个非常低得浓度,用户在除氯的过程中,一般采用颗粒活性炭(GAC)来消除水中的氯,那么实时监测GAC系统的健康状况,就变得尤为重要,这就需要一个非常灵敏、准确且易于使用的仪器来完成这项任务,但是传统的DPD法或者安培滴定法都存在一定的局限性。 另外,亚硫酸氢钠经常被用于降低进入反渗透系统(RO)中的氯,在这个过程中,亚硫酸氢钠的用量至关重要,因为亚硫酸氢盐会与溶解物发生反应,让水中的氧气导致厌氧生物生长加速,从而迅速污染反渗透(RO)系统。 但是由于氯或次氯酸盐的浓度会随着其年龄的变化而变化,因此获取氯或次氯酸盐的难度很大,这也意味着监测亚硫酸氢盐是困难的。传统的亚硫酸盐分析方法存在着一定的局限性,比如量程,准确性,精确度和易用性。即使不存在氯,过量的亚硫酸氢盐会降低pH值,也会导致ORP读数增加,这样会导致控制系统提示需要加入更多的亚硫酸氢盐,最终产生生物淤积,降低了膜的使用寿命。由此可知,一个灵敏、精确和易用的氯监测和亚硫酸盐检测仪器,对解决用户上述的痛点至关重要,传统的DPD法或者安培滴定法存在量程、精确性和易用性等方面的局限性,因而市场上缺乏可以真正解决用户这些痛点的在线或实验室,亦或者两者相结合的整体解决方案。哈希公司一直致力于对氯参数的分析和研究,在该领域拥有超过60年的技术研究历史,深厚的技术积淀为用户找到了一套切实可行的在线和实验室超低量程氯和亚硫酸盐监测方案提供了可能性。ULR CL17 sc总氯分析仪DR 1300 FL荧光比色计 滑动查看产品 ULR CL17 sc是哈希最新推出的一款超低量程的总氯分析仪,它的量程范围可达0 – 5 PPM,并且检出限可以做到8ppb, 是一款非常灵敏型和准确性的过程仪表,它既可以单独用于过程中超低浓度总氯的检测与控制,也可以配套最新上市的DR 1300 FL荧光比色计,这是一款实验室用途的分析仪,是采用荧光原理来监测RO反渗透系统进水中的超低浓度的总氯、余氯和亚硫酸盐等参数,ULR CL17sc和DR 1300 FL一起组成了哈希在RO反渗透系统中对超低浓度的氯和亚硫酸盐等参数的检测,为保护用户重要的设备和资产,以及过程工艺中精确控氯和加亚硫酸盐提供了科学的决策依据,帮助您降低生产成本,提高运营效率,创造更大价值。END
  • 硫酸盐气溶胶污染或导致中亚干旱区夏季降水增加
    南亚和东亚的人为硫酸盐气溶胶污染导致中亚干旱区夏季降水增加的机制示意图论文作者供图包括中亚五国和我国新疆的亚洲中部干旱区,称为“中亚干旱区”,常年干旱少雨,是地球上最大的非地带性干旱区之一,也属于水资源和生态系统最脆弱的地区。据研究文献报道和依据多种观测资料显示,中亚干旱区特别是我国新疆地区在过去几十年来呈现出显著的变湿趋势。但这一变湿趋势的影响因素和驱动机制至今尚不完全清楚。最近,中国科学院地球环境研究所气候模拟团队解小宁研究员等联合美国、欧洲及日本的科学家,通过基于降水驱动和响应模式比较计划(PDRMIP)进行多模式模拟研究。他们的研究结果表明,南亚和东亚的人为硫酸盐气溶胶污染会导致中亚干旱区夏季降水特别是对流性降水和极端降水显著增加。“由此可以解释中亚干旱区的显著变湿趋势。” 解小宁讲述,“南亚和东亚污染地区的硫酸盐气溶胶浓度升高,通过快反应过程降低了亚洲中纬度地区大气温度,从而引发对流层高层亚洲西风急流向赤道方向移动。”“我们又通过水汽收支分析发现,西风急流南移有利于来自低纬度的水汽供应增多及水汽在中亚干旱区的汇聚。” 解小宁进一步说明,“与此相反,吸收性黑碳气溶胶会使得亚洲西风急流向北移动,而导致中亚干旱区夏季降水有所减少,这可能会部分地抵消硫酸盐气溶胶的气候效应。”上述研究成果发表于《通讯-地球与环境》( Communications Earth & Environment)。该研究领域的专家认为,这一研究结果也表明中亚干旱区降水异常与南亚和东亚地区人为气溶胶排放之间存在遥相关,突出了人为气溶胶对大气环流和水循环影响的远程效应,并指出我国西北地区气候变化除了受到全球温室气体排放的影响,还依赖于南亚和东亚污染区的气溶胶排放,也为准确预估我国西北地区未来气候变化提供了新的线索。据悉,该研究得到国家自然科学基金重大项目 (41991254)和中国科学院战略性先导科技专项 (XDB40030100)等项目的共同资助。
  • 茂默新品:QuickChek SRB 硫酸盐还原菌快速检测试剂盒
    硫酸盐还原菌(srb)是石油和天然气行业中一个颇受关注的领域,主要是因为硫酸盐还原菌在管道等缺氧环境中能够将硫酸盐还原成硫化氢并在含铁环境中产生不溶性硫化亚铁,严重腐蚀金属表面,导致油气产量与产品品质下降,并增加了管路与系统维护成本。 modern water quickchek srb 检测试剂盒是一种采用酶免疫方法进行硫酸盐还原菌(srb)快速检测的设备。该方法采用了高纯度的抗体来探测腺苷-5’-磷酰磺酸酯酶(aps),这种还原酶是所有srb菌株拥有的共同特征。与传统的细菌培养检测方法相比,quickchek srb检测试剂盒具有很多优势,比如快速,准确等。该设备可以检测固态,半固体样品中的全部的srb含量,包括了在一些标准介质中无法存活的srb。测试结果不会被现场检测过程中常见的化学品或盐类所干扰。近的实验室测试结果表明quickchek srb测试结果与qpcr方法的结果具有高度相关性。
  • 多品牌牙膏被曝含亚硫酸盐 国标无相关检测
    亚硫酸盐已禁用 国产牙膏不含  “中华、高露洁、黑妹、佳洁士、黑人、立白6个品牌美白牙膏掺有漂白物亚硫酸盐及其类似物质”的消息让网友高呼中枪,美白牙膏真的会损伤牙齿吗?  口腔专家说,能美白牙齿的还有氧化剂,氧化剂并不等于漂白剂。希望权威机构予以检测,让大家都知道“美白成分”到底是否健康。  昨天,一则“中华、高露洁、黑妹、佳洁士、黑人、立白6种品牌美白牙膏掺有漂白物亚硫酸盐及其类似的物质,长期使用有健康隐患”的消息在网络上传播。  记者了解到,该消息来源于一广西媒体做的生活实验,用碘溶液、稀硫酸和淀粉调制出来的溶液作测试剂,6种牙膏使测试剂褪色,得出上述结论。  昨晚8点30分,中国口腔清洁护理用品工业协会为此发表声明,称该媒体采用的测试方法准确性有待考究,而且亚硫酸盐是国标中的禁用物质,“我国的牙膏产品是符合国家标准要求的。”  美白牙膏热销质监部门:未测过美白成分  昨天,华西都市报记者走访多家超市发现,目前正在销售的牙膏品牌功能繁多,销售人员称,能美白的牙膏已经持续热销几年。  销售人员称,在美白牙膏选择上,市民多会选择知名品牌,通常价格也更高。记者关注到各种美白牙膏都号称自己采用了“动态热能美白系统”“内层蓝光炫白科技配方”等,但在成分上并无标注。销售人员称,具体成分属于商业机密,厂家担心竞争对手剽窃,不会轻易透露。  记者通过电话采访了省质检院石化中心的专家,该专家直言:“日常对牙膏的检测只有针对一些微生物、含氟量等的标准,国家标准里也没有关于漂白物质的检测指标。”记者从省质监局多个部门也了解到,目前对于牙膏中的美白成分暂未实行针对性的检测。  口腔专家分析氧化剂也能美白牙齿  成都中医药大学附属医院口腔科副主任医师左渝陵介绍,牙膏能美白是因为其中含少量具有漂白功能的氧化剂,氧化剂并不等于漂白剂。  左渝陵说,国外长期的临床试验显示,短期使用含有低剂量氧化剂的牙膏,不会对牙齿造成损害。“从报道上看,媒体记者测试的是6种美白牙膏,其实用碘溶液、稀硫酸和淀粉调制出来的测试剂溶液褪色很正常,因为含有氧化剂的美白牙膏都可以让它褪色。”  而且,他声称,这样的测试方法他从未见过,无法确认这个检测方法是否科学。  涉事一企业回应不含亚硫酸盐物理美白  针对这些牙膏是否真的添加了漂白剂,记者昨日也电话或邮件采访了涉事的中华、高露洁、黑妹、佳洁士、黑人、立白6大品牌企业。其中,立白集团的新闻发言人徐晓东称:“确保立白旗下所有牙膏均符合国标,绝对不含亚硫酸盐”,他还称研发部门正在对美白牙膏进行检测,并且将寻求有资质的权威机构予以检测,预计一个星期会出结果。  黑人牙膏所在的好来化工(中山)有限公司,用邮件回复记者称,亚硫酸盐属于牙膏禁用物质,黑人牙膏不含亚硫酸盐,也不含过氧化物等漂白剂。好来化工(中山)有限公司还称,黑人美白牙膏是通过物理作用去除牙齿表面的外源性色斑,达到清洁和美白牙齿的效果。  口腔协会发声明亚硫酸盐属于禁用物  昨晚8点30分,牙膏行业唯一的国家级协会中国口腔清洁护理用品工业协会对此发声明称,“按照有关报道描述的实验细节,使用碘溶液、稀硫酸和淀粉做测试剂,测试美白牙膏中美白成分的方法,从科学原理上讲存在较大的不确定性,很多因素和物质都可以改变该溶液的颜色,如pH值的改变,以及原料维生素C等。”  记者也注意到,该报道有“本次实验非权威部门检测,仅对实验样品负责,结果仅供参考”的提醒。  同时,协会声明称“亚硫酸盐”是强制性国标GB22115-2008《牙膏用原料规范》中明确的禁用物质,根据目前国家轻工业牙膏蜡制品质量监督检测中心对牙膏产品的检测结果,“我国的牙膏产品均是符合国家标准要求的。目前牙膏常用美白成分有二氧化硅、碳酸钙、过氧化氢、焦磷酸钠、珍珠粉等。上述美白成分,都必须符合国标的具体规定。”  相关报道  美白牙膏含亚硫酸盐  5月1日,记者到南宁市聚福隆超市随意采购了中华、高露洁、黑妹、佳洁士、黑人、立白共6个品牌的美白牙膏,走进广西民族大学绿色化学与技术实验室做生活实验,看看结果如何。  实验用碘溶液、稀硫酸和淀粉调制出来的溶液做测试剂,如果牙膏中有漂白剂的存在,它会使这个溶液褪色。  “通过实验,我们可以看出,6种牙膏都或多或少有漂白剂成分。”实验人员黄普惠说,“根据实验推断,这种漂白物质是一种亚硫酸盐及其类似的物质。亚硫酸盐及其类似的物质在通常情况下,一般用在工业领域,如造纸以及类似的行业。
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD2.0%。 表1 样品重复性测定结果同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果 图4 催化剂状态 图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01 方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD2.0%。 表1 样品重复性测定结果 同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。 图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果图4 催化剂状态图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 土壤中可溶性硫酸盐的测定等三项国家环保标准征求意见
    关于征求《土壤 可溶性硫酸盐的测定 重量法》(征求意见稿)等三项国家环境保护标准意见的函  各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《土壤 可溶性硫酸盐的测定 重量法》等3项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2010年8月15日前反馈我部。  联系人:环境保护部科技标准司 李晓弢  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556215  传真:(010)66556213  附件:1.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)  2.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)编制说明  3.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)  4.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)编制说明  5.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)  6.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)编制说明   二○一○年七月十六日
  • 【瑞士步琦】药品质量控制中的灰分测定方法——根据不同标准方法(USP)(EP)(CP)测定硫酸盐灰分
    根据不同标准方法测定硫酸盐灰分灰分测定”硫酸盐灰分测定是药品质量控制中评价药品成分纯度和质量的一项重要分析技术。硫酸盐灰分的测定包括加入硫酸,然后焚烧样品,去除所有的有机物,然后测定残留物。所得的残留物主要由无机盐组成,可以对其进行分析,得到有关杂质存在和样品质量的信息。硫酸盐灰分的测定是评价原料药质量的一个重要参数,关系到最终产品的有效性和安全性。药物中杂质的存在和无机阳离子的水平会影响最终产品的药效和纯度,在某些情况下,会对患者身体健康产生不利影响。因此,需要准确可靠的硫酸盐灰分测定方法,以保证药品的质量和安全。1介绍各种药典方法已被开发用于测定药用物质中的硫酸盐灰分,包括美国药典(USP)、欧洲药典(EP)和中国药典(CP)方法。这些方法已在各地的药品质量控制实验室得到验证和广泛应用。然而,由于其中一些测定的复杂性和成本控制等,需要建立一种更简单、更经济、更准确的硫酸盐灰分测定方法。本研究在 USP 药典方法的基础上,建立了一种简单、准确、安全、可靠的测定原料药中硫酸灰分的方法。该方法具有良好的准确性、安全性和优异的高温性能,同时也适用于阿司匹林等药用物质中硫酸灰分的测定。所得结果与预期结果吻合较好。该仪器可用于药品质量控制实验室的常规分析,为评价药品成分的纯度和质量提供了可靠的工具。2硫酸盐灰分测定中国药典中对该硫酸灰分测定的方法为 0841 炽灼残渣检查法。具体方法:取供试品 1.0~2.0g 或各品种项下规定的重量,置已炽灼至恒重的坩埚中,精密称定,缓缓炽灼至完全炭化,放冷;除另有规定外,加硫酸 0.5~1ml 使湿润,低温加热至硫酸蒸汽除尽后,在 700~800℃ 炽灼使完全灰化,移置干燥器内,放冷,精密称定后,再在 700~800℃ 炽灼至恒重,即得。如需将残渣留作重金属检查,则炽灼温度必须控制在 500~600℃。根据对比不同国家药典的方法研究,USP 和 EP 可以说完全一样,只是叫法不一样,与 CP 的区别为:USP、EP 对加样品之前的坩埚不需要恒重,CP 要求加样品之前坩埚恒重。USP、EP 对整个炽灼过程中要求不能产生火焰,CP 没要求。USP、EP 判断结果是从首次完全炽灼后开始,如不超限度,判定合格,不需要再恒重 如超限度,需要循环最后一步,若在恒重前不超限度,判定合格,若直至恒重仍不合格,判定不合格。温度要求不一样。湿法消解仪 B-440尾气吸收仪 K-415湿法灰化系统由湿法消解仪 B-440 和尾气吸收仪 K-415 组成(如上图1),可以根据药品质量控制中的不同具体方法的选择可能取决于分析的目的、每天的样品量以及遵守官方标准方法的需要,轻松有效地进行灰化实验。此外,它可用于不同药典的各种应用(温度高达600°C):2302 灰分测定法原子吸收光谱法或ICP进行元素分析前处理镉和铅分析的预处理Residue on ignition (USP 281)Heavy metal test method (USP 231, Method II)Loss on ignition test method (USP 733)▲ 图 2. 湿法灰化系统示意图,由湿法消解仪B-440(左)和尾气吸收仪K-415(右)组成。湿法消解仪 B-440 将样品加热到高达 600°C 的温度,尾气吸收仪提供多步骤进行吸收,以确保完全中和吸收灰化过程中产生的有害烟雾。提供以下三个步骤:预冷凝含水烟雾的冷凝阶段用碱性溶液中和酸雾的中和阶段活性炭对残留烟雾的吸附阶段湿法灰化系统通过两种仪器的完美同步工作,得到最准确的结果。在这项研究中,通过对一些样品测试,如乳糖,玉米淀粉以及阿司匹林等。通过应用这些方法,测定的硫酸盐灰分含量低至 0.02 - 0.04 wt% (如表1),很好的吻合于样品的真值。表1:测定不同样品的仪器参数及数据结果3结论在这项研究中,我们提出了一种有效的方法,用于测定药用物质中的硫酸盐灰分。该方法在药典方法的基础上取得了良好的结果,证明了其作为药物质量控制实验室常规分析的可靠方法的潜力。使用湿法灰化系统,提高分析速度,精度和安全性。同时开发可靠的方法对于维持药品生产的高质量标准和确保患者安全至关重要。
  • 内蒙古石油和化学工业协会发布《水煤浆添加剂 水溶性硫酸盐含量的快速测定 离子色谱法》团体标准
    各相关单位:根据国家标准化管理委员会、民政部《团体标准管理规定》(国标委〔2019〕1号)的文件要求,按照《内蒙古石油和化学工业协会团体标准管理办法(试行)》的有关规定,由内蒙古大学牵头编制的《水煤浆添加剂 水溶性硫酸盐含量的快速测定 离子色谱法》(T/IMPCA 0009-2023)《团体标准已通过专家审定委员会审定,现予批准发布,并于 2024年1月1日起实施。 特此公告 内蒙古石油和化学工业协会2023年12月20日关于发布《水煤浆添加剂 水溶性硫酸盐含量的快速测定离子色谱法》团体标准的公告.pdf
  • 微塑料对红树林沉积物硫循环的影响研究取得进展
    微塑料(粒径小于 5 mm的塑料)是一类在海岸带环境中广泛分布的新污染物,对海岸带生态系统的健康构成严重威胁。红树林湿地是海岸带最重要的生态系统之一,约占全球海岸线的60-75%。受陆地和海洋活动的影响,红树林湿地已成为微塑料重要的汇。红树林湿地微生物丰富多样,驱动着湿地生态系统的营养物质循环和能量流动,在提高湿地固碳储碳、净化环境污染和维护生物多样性等方面发挥重要作用。湿地沉积物环境富含有机质、硫酸盐和硫化物,硫循环微生物十分活跃,是湿地生物地球化学过程的主要驱动者。然而,微塑料污染对红树林湿地微生物驱动的硫元素迁移和转化、硫循环微生物群落结构和功能的影响却并不清楚。此外,在氧化-还原条件快速波动的红树林湿地环境中,硫还原和氧化过程同时发生,给硫循环过程和机制研究带来了巨大的困难和挑战。针对上述问题,中国科学院广州地球化学研究所博士研究生王贺丽在导师钟音副研究员和彭平安研究员的指导下,开展了微宇宙实验,利用硫稳定同位素分析和宏基因组测序技术,研究了传统石油基微塑料和生物可降解微塑料对红树林湿地沉积物硫循环的影响。研究结果表明,经过20天培养,与不添加微塑料的空白组对比,石油基微塑料聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)处理没有显著影响硫酸盐的还原和硫酸根硫同位素组成(δ34SSO42-),而可生物降解微塑料聚乳酸(PLA)处理虽然没有显著降低硫酸盐的浓度,但是显著增加了硫酸根硫同位素分馏,表明PLA微塑料处理加速了硫酸盐还原过程(图1)。而硫酸盐的浓度变化较小可能与硫氧化进一步生成硫酸盐相关。图1 不同微塑料对上覆水硫酸盐浓度(A)和硫同位素组成(B)的影响此外,研究发现PLA微塑料不仅促进了硫酸盐的还原,还促进了酸可挥发性硫(AVS)的生成,AVS会进一步快速转化为单质硫(S0)和铬还原态硫(CRS)(图2)。S0的浓度在第10天后开始降低,这可能与S0进一步发生歧化反应有关。硫元素质量平衡分析显示CRS是主要的硫化物,CRS的浓度随反应时间的增加而增加。PLA微塑料处理导致硫酸盐-CRS之间硫同位素组成差异最大,表明PLA微塑料促进了硫酸盐还原生成CRS。图2 微塑料对沉积物硫物种和硫酸盐-CRS之间硫同位素组成差异影响研究团队通过宏基因测序分析发现PLA微塑料处理导致硫酸盐还原菌Desulfovibrio的丰度增加,而且Desulfovibrio的硫酸盐还原基因(dsrAB、aprAB和sat)丰度比其它参与硫酸盐还原微生物的要高,表明PLA微塑料处理促进硫酸盐还原和硫同位素分馏过程中Desulfovibrio可能发挥了重要作用(图3), 这可能与PLA微塑料能被降解为可利用碳源,从而促进了Desulfovibrio的生长有关。该研究揭示了在较短的反应时间(20天)里,可降解微塑料PLA会显著促进硫酸盐还原生成AVS、S0和CRS,影响红树林表层沉积物中硫循环的过程以及红树林沉积物中有机质的分解和碳储存。该研究成果为微塑料污染影响红树林湿地生物地球化学过程研究提供了启示,也为微塑料污染海岸带环境的生态风险评估提供了重要的信息。图3 不同微塑料处理对参与异化硫酸盐还原过程的功能基因和微生物的影响该研究获得了国家自然科学基金(42077285)、广东省科学基金 (2020B1212060053654、2022A1515011923)、广州市科技计划项目(202102080343)等的资助。研究成果于1月5日在线发表于国际期刊《环境科学与技术》(Environmental Science & Technology)。论文信息:Heli Wang (王贺丽), Qian Yang (杨倩), Dan Li (李丹), Junhong Wu (吴骏宏), Sen Yang (杨森), Yirong Deng (邓一荣), Chunling Luo (罗春玲), Wanglu Jia (贾望鲁), Yin Zhong (钟音)* and Ping’an Peng (彭平安). Stable Isotopic and Metagenomic Analyses Reveal Microbial-Mediated Effects of Microplastics on Sulfur Cycling in Coastal Sediments. Environ. Sci. & Technol., in press, DOI: 10.1021/acs.est.2c06546.
  • 北京市沃尔玛姜粉检出二氧化硫
    今日,沃尔玛又被检出一批不合格产品,沃尔玛一分店销售的姜粉检出二氧化硫残留。而二氧化硫因其对人体有一定的危害,在我国禁止用于姜粉这类食物。二氧化硫 二氧化硫通常由燃烧硫黄或黄铁矿而得。二氧化硫可以作为食品添加剂,在葡萄酒中很常见,在其它产品中也有使用。这些产品中二氧化硫的使用量都有严格的限制。为保证消费者健康,我国在食品添加剂标准中规定了二氧化硫类物质在食品中的使用范围、使用量及允许最大残留量。硫磺只限于熏蒸蜜饯、干果、干菜、粉丝和食糖;低亚硫酸钠可用于蜜饯、干果、干菜、粉丝、葡萄糖、食糖、冰糖、饴糖、糖果、液体葡萄糖、竹笋、蘑菇及蘑菇罐头,最大使用量为0.40g/kg;二氧化硫可用于葡萄酒、果酒等的最大使用量不应超过0.25g/kg。竹笋、蜜饯、蘑菇及蘑菇罐头、葡萄、葡萄酒和果酒等二氧化硫残留量均不得超过0.05g/kg。饼干、食糖和粉丝残留量不得超过0.1g/kg。二氧化硫的危害 消费者可能会出现恶心、呕吐、头昏、腹痛和全身乏力等不良症状。此外,二氧化硫会破坏酶的活力,影响碳水化合物及蛋白质的代谢,影响人体对钙的吸收。在硫磺熏蒸食品中产生的二氧化硫是强还原剂,能起漂白、保鲜食品的作用,可使食品表面颜色显得白亮、鲜艳。熏制过程中残留的硫遇高温会生成亚硫酸盐、焦亚硫酸盐、低亚硫酸盐等,这些盐类亦具有很好的漂白、抗氧化、防腐等作用。但是二氧化硫及亚硫酸盐等会破坏维生素 B1,影响生长发育,易患多发性神经炎,出现骨髓萎缩等症状,具有慢性毒性。长期食用会造成肠道功能紊乱,损害肝脏,严重危害人体的消化系统。亚硫酸盐还会引发支气管痉挛,引发哮喘。因此,严格控制食品中的二氧化硫及亚硫酸盐等含量,是治理餐桌污染,保障消费者的健康权益的重要工作。二氧化硫测定 (1)亚硫酸盐漂白法:亚硫酸盐是一种无毒无气味的白色结晶粉末,能安全、高效地清除食品中SO2的残留,有效地控制食品中SO2残留量,使之达到国家有关卫生标准,提高食品的质量,并且不会产生二次污染。应用于年糕、米粉、食用菌、蔬菜、水果、果脯、蜜饯、米粉、面制品等食品的加工以及药材、木筷等的加工。同时,它适用于焦亚硫酸钠、亚硫酸钠、硫代硫酸钠等硫化物作为漂白剂的残留物的清除。在使用亚硫酸盐进行颜色处理后,用清水冲洗,使用前先将亚硫酸盐用10-50倍清水稀释,然后将处理的物品在亚硫酸盐稀释液中浸泡15-30分钟 或用水稀释100-200倍,浸泡1-2小时。然后捞起,用清水清洗即可,亚硫酸盐的稀释倍数应视被处理的物品中SO2的残留量而定。亚硫酸盐浓度高,其去除SO2的能力就强。能把处理物品中SO2的残留量1000mg/Kg降到20mg/Kg以下,甚至为0。亚硫酸盐1Kg可处理至少500Kg含硫物料。 (2)气相色谱法:将食品中的游离亚硫酸和总亚硫酸分别用酒石酸提取液提取后,取出一定量在密封容器中使之成为酸性挥发亚硫酸,取顶空气体,注入附有火焰光度检测器(FPD)的气相色谱仪中进行定量。通过将膨化大枣中的结合态二氧化硫在酸性条件下转化为二氧化硫气体,取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量,间接测定样品中的二氧化硫含量,实验结果的相对标准偏差为1.65%。本方法具有操作简便、快速、准确、灵敏度高等优点。 (3) 二氧化硫测定法:北京智云达科技有限公司研发生产的二氧化硫速测盒就可以准确进行二氧化硫测定是否超标。操作也很简单,只要将在 1.5ml 离心管中先滴加 2 滴检测液 A,1 滴检测液 B,上下摇动,混匀;然后加入 1ml 样品液,搅拌或振摇混匀。放置5分钟观察颜色变化,并与色卡对照,就可以得出样中二氧化硫或亚硫酸盐是否超标的信息。
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p  在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。”/pp  “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!”/pp  “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!”/pp  从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的?/pp  在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。/pp  曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。/pp  我谈谈自己的经历。/pp  去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。/pp  我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。/pp  而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。/pp  这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。/pp  更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!/pp  今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。/pp  其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。/pp  我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。/pp  十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜:/pp  几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍!/pp  超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。/pp  既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。/pp  原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。/pp  燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。/pp  以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。/pp  也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。/pp  难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。/pp  有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。/pp  现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。”/pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667799730726.jpg" width="571" height="395" style="width: 571px height: 395px "//centerp  更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。/pp  湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。/pp  我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程:/pp  /pcenterimg alt="2" src="http://img.caixin.com/2017-07-10/1499668426791886.jpg" width="562" height="234"//centerpbr//pp  湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径:/pp  1. 在原来湿法脱硫的基础上打补丁。其具体措施是:/pp  1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /pp  2) 加装烟气除雾装置(例如旋风分离器) /pp  3) 加装湿法静电除尘器 /pp  4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667818346916.jpg" width="584" height="241"//centerpbr//pp  但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。/pp  但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。/pp  2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是:/pp  1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /pp  2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667826241238.jpg" width="567" height="179"//centerpbr//pp  德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667836914688.jpg" width="597" height="403" style="width: 597px height: 403px "//centerp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667844142957.jpg" width="460" height="496" style="width: 460px height: 496px "//centerp  上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。/pp  燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物 5~10毫克/立方米烟气,SOx 35毫克/立方米烟气 NOx 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。/pp  湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。/pp  这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。/pp  最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢!/ppstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任/strongstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "陶光远/strong/p
  • 气溶胶质谱在线分析北京雾霾成分
    16日夜间开始,北京经历今年来持续时间最长、程度最重的雾和霾天气过程。北京南部部分站点空气质量指数爆表,天地间一片昏暗。此时,网络上、朋友圈里各类关于空气质量的言论开始流传,其中人们最为关注的是“这次雾霾里主要是含硫酸铵,̷̷原来伦敦有次硫酸铵超标,有好多人没有防护而死亡”。  网络流传硫酸铵会致命。  此次重污染天气过程中,我们呼吸的空气里这到底包含什么物质?和之前的重污染天气相比有何不同?硫酸铵会直接导致死亡吗?为此,中国天气网记者采访了中国气象科学研究院大气成分所副研究员张养梅。  北京的霾里到底有哪些成分?  中国气象科学研究院位于北京市海淀区中国气象局大院内,在气科院大楼的楼顶,气溶胶质谱仪一直默默值守,在线采集、分析北京亚微米气溶胶的成分。张养梅介绍道,所谓亚微米气溶胶是指直径在1微米以下的粒子。大家熟悉的PM2.5其实是一个总称,包括空气中直径小于或等于2.5微米的固体颗粒或液滴。研究显示,直径1微米及以下的粒子占PM2.5的60%左右,因此质谱仪采集的数据对于分析大气成分是具有代表性的。  各类颗粒在采样颗粒中所占比重。绿色代表有机气溶胶,橙色为硫酸盐、蓝色为硝酸盐,粉色为氯化物,浅橙色为铵盐。有机气溶胶所占比重最大,硝酸盐次之。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过仪器采集数据及分析,12月5日至20日采集到的1微米及以下的粒子,主要包括有机气溶胶、硝酸盐、硫酸盐等构成。有机气溶胶是一个总称概念,具体的组成目前还没有完全研究清楚,大家经常听说的多环芳烃就是有机气溶胶的一种。硫酸盐主要来自燃煤,燃煤排放的二氧化硫发生一系列氧化反应,成为硫酸铵。硝酸盐主要来自燃煤和机动车排放,氯化物的主要来源包括垃圾焚烧、燃煤以及燃放烟花爆竹等。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过对12月16日至20日对北京的采样颗粒进行分析后,结果显示有机气溶胶是其中占比最大的颗粒,高达45% 硝酸盐颗粒占比24%排第二,主要来自燃煤和机动车排放等 硫酸盐占比15%,主要来自燃煤等 铵盐占比12%,氯化物占比4%。  北京霾和伦敦烟雾一样吗?有致命成分?  就在北京空气质量持续恶化之时,网络谣言也开始流传。针对网上流传的硫酸铵会致命,张养梅表示这是不可能的。空气质量好时,空气中也存在有机气溶胶、硫酸盐等颗粒,只是浓度较低、颗粒物较小。霾天气时,仪器不会观测到硫酸铵,观测到的是硫酸、铵两个离子,他们结合成硫酸铵的可能性很大,空气重污染时浓度更高一些。空气中含有硫酸铵并不是政府发布红色预警的必要条件。  硫酸铵是颗粒物,和二氧化硫气体有明显区别,颗粒物对人体健康的影响程度没有气体迅速。如果空气中二氧化硫气体浓度很高的话,相当于人在“吸毒气”,对人体有致命影响。当年的伦敦烟雾在短短几天内造成数千人死亡,就是因为空气中酸性气体浓度太高。监测显示,12月5日以来,北京硫酸盐的浓度峰值出现在20日,达40-50微克/立方米,远远低于伦敦烟雾事件时的浓度。  当然,硫酸铵等颗粒物也会影响人体健康。它们会随着呼吸进入人体肺部,引发心脑血管和呼吸道的疾病。另外,北京的空气污染物中,含有一定比例的铵,会和硫酸、硝酸发生中和形成颗粒,和酸性气体相比,颗粒的危害性相对轻一些。  污染物浓度日间变化明显 夜间高白天低  分析还表明,空气中各种污染物的浓度整体呈现白天低、夜间高的变化规律。分析时,将12月5日至20日每天同一时次颗粒浓度做分类平均统计,显示颗粒物夜间浓度明显偏高,白天下降明显。  各类颗粒的浓度白天下降明显,夜间明显上升。  张养梅表示,浓度变化主要受排放量和气象条件两个因素影响。在排放量相同的情况下,从气象条件来说,夜间湿度增大,可以吸附更多污染物。同时,冬季夜间气温较低,大气边界层下压。在气体容量不变的情况下,体积变小,空气污染物浓度升高。白天,大气边界层抬升,体积增大,污染物浓度降低。  和2008年相比硫酸盐浓度下降  总体来说,和之前相比,北京空气中的颗粒种类的浓度分布排位没有太大变化,有机气溶胶的浓度一直是最大。但是分析显示,今年12月和2008年1月相比,硫酸盐在不同颗粒物比重的排位下降。  从图中可见,今年12月5日至20日,硝酸盐(蓝色)在颗粒物组成中浓度上升,基本都排在第二位,硫酸盐下降排在第三位 而2008年1月5日至2月2日,硫酸盐浓度排第二位,硝酸盐排第三位。张养梅表示,这一数据的变化也可以说明,政府对二氧化硫排放的监管和控制,比如煤改气措施、工厂加装脱硫设备等发挥了作用。硝酸盐浓度的上升,则与燃煤、机动车排放增加有一定关系。  北京的雾霾将在明天减弱消散,但在近几年中,霾仍将在秋冬季反复出现。张养梅提醒大家,虽然霾天气对人体的危害没有那么“激烈”,但仍需防护,尽量减少在户外活动的时间,外出时戴口罩。在室内时,也可启动空气净化器等设备,营造相对安全的空气环境。
  • 应用丨高锰酸盐指数的测定
    高锰酸盐指数(CODMn)指在一定条件下,以高锰酸钾(KMnO4)为氧化剂,处理水样时所消耗的氧化剂的量。高锰酸盐指数是《GB3838-2002 地表水环境质量标准》24项基本项目之一和《GB5749-2022 生活饮用水卫生标准》水质常规指标之一。高锰酸盐指数方法,主要使用于地表水、地面水、城市末梢水、农村水、水源水等较干净的水。高锰酸盐指数法,氧化率低,操作比较简单,在测定水样中有机物含量的相对比较值时,可以采用。本文参考了GB/T5750.7-2023《生活饮用水标准检验方法 第7部分:有机物综合指标》、GB11892-1989 《水质高锰酸盐指数的测定 》,采用睿科AT100全自动高锰酸盐指数测定仪实现对大批量水样的高锰酸盐指数测定,质控样实验结果准确度高,精密度好,满足标准质控要求。仪器与耗材1.1仪器AT100全自动高锰酸盐指数测定仪1.2耗材搅拌子150 mL带刻度玻璃杯1.3试剂1.3.1 硫酸溶液(1+3) :将1体积硫酸(ρ=1.84g/mL)在水浴冷却下缓缓加到3体积纯水中,煮沸,滴加高锰酸钾溶液至溶液保持微红色。1.3.2 草酸钠标准储备溶液[c(1/2 Na2C2O4)=0.1000mol/L ]:称取6.701g草酸钠,溶于少量纯水中,并于1000 mL容量瓶中用纯水定容,置暗处保存,或使用有证标准物质。1.3.3 高锰酸钾标准储备溶液[c(1/5KMnO4)=0.1000mol/L] :称取3.3g高锰酸钾,溶于少量纯水中,并稀释至1000mL 。煮沸15min,静置2周,然后用玻璃砂芯漏斗过滤至棕色瓶中,置暗处保存并按下述方法标定浓度。a)吸取25.00mL草酸钠标准储备溶液于250mL锥形瓶中,加入75mL 新煮沸放冷的纯水及2.5mL硫酸(ρ=1.84g/mL)。 b) 迅速自滴定管中加入约24mL高锰酸钾标准储备溶液,待褪色后加热至65 ℃,再继续滴定呈微红色并保持30s不褪。当滴定终了时,溶液温度不低于55°C。记录高锰酸钾标准储备溶液用量。高锰酸钾标准储备溶液的浓度计算见式(1) :式中:c(1/5 KMnO4)—— 高锰酸钾标准储备溶液的浓度,单位为摩尔每升(mol/L); V —— 高锰酸钾标准储备溶液的用量,单位为毫升(mL)。1.3.4 高锰酸钾标准使用溶液[c(1/5KMnO4)=0.01000mol/L:将高锰酸钾标准储备溶液准确稀释10倍。1.3.5 草酸钠标准使用溶液[c(1/2Na2C2O4)=0.01000mol/L :将草酸钠标准储备溶液准确稀释10倍。1.3.6 质控样质控样1:编号为B22100123,标准值为0.978mg/L,不确定度0.127 mg/L,研制单位为坛墨质检科技股份有限公司质控样2:编号为B22050272,标准值为2.74mg/L,不确定度0.19 mg/L,研制单位为坛墨质检科技股份有限公司质控样3:编号为B22050204,标准值为6.40mg/L,不确定度0.50 mg/L,研制单位为坛墨质检科技股份有限公司质控样4:编号为GSB07-3162-2014(2031121),标准值为1.03mg/L,不确定度0.14 mg/L,研制单位生态环境部环境发展中心环境标准样品研究所质控样5:编号为GSB07-3162-2014(2031125),标准值为2.47mg/L,不确定度0.28mg/L,研制单位生态环境部环境发展中心环境标准样品研究所质控样6:编号为GSB07-3162-2014(2031127),标准值为3.65mg/L,不确定度0.34 mg/L,研制单位生态环境部环境发展中心环境标准样品研究所分析步骤2.1冲洗/填充管路将所有试剂管路按照标识放入对应的试剂瓶中,点击管路冲洗,将所有管路用试剂润洗一遍。2.2样品测定1)吸取100mL 充分混匀的水样(若水样中有机物含量较高,可取适量水样以纯水稀释至100mL ),置于洁净玻璃杯中,并将取好的样品依次放入样品架中。建立方法和序列,设置好样品类型和参数,点击运行序列,即可开始实验。2)参数设置界面和方法设置如下图所示图1参数设置图2方法设置实验结果3.1结果导出将草酸钠浓度、空白和K值依次填入,仪器内置公式会自动计算出滴定结果。3.2空白测试测试实验室纯水,16孔位消解,16个空白测试结果平均值为0.349 mg/L,RSD为6.09%。具体测试数据如下表1 空白测试结果3.3准确度和精密度测试选择环标所的3种不同浓度浓度质控样和坛墨的3种不同浓度质控样分别进行测试,环标所每种质控样分别测试6个平行样品,坛墨每种质控样分别测试16个平行样品,结果如下表所示。表2 坛墨质控样16平行测试结果表3 环标所质控样测试结果注意事项4.1 用纯水作为空白样品进行测试时,加入草酸钠后有时溶液很快变成无色,有时要搅拌30~60s后才会由黄色逐渐变成无色,此现象测试过程偶有发生,不影响空白测试结果。4.2 测试过程尽量控制高锰酸钾溶液的浓度略低于草酸钠溶液的浓度,使K值在0.98~1.01之间为宜,若高锰酸钾浓度高于草酸钠,在空白样品消解完后,加入10mL草酸钠,不足以完全还原溶液中还原的高锰酸钾溶液,导致溶液颜色不能完全褪去。4.3 样品量以加热氧化后残留的高锰酸钾标准溶液为其加入量的1/3~1/2为宜。加热时,如溶液红色退去,说明高锰酸钾量不够,需重新取样,经稀释后测定。4.4 每次测试结束后,一定要将管路冲洗干净,建议设置冲洗体积20~30mL,以免管路中残留溶剂干燥结晶,导致管路堵塞,影响测试结果。
  • 应用丨高锰酸盐指数的测定
    高锰酸盐指数(CODMn)指在一定条件下,以高锰酸钾(KMnO4)为氧化剂,处理水样时所消耗的氧化剂的量。高锰酸盐指数是《GB3838-2002 地表水环境质量标准》24项基本项目之一和《GB579-2022 生活饮用水卫生标准》水质常规指标之一。高锰酸盐指数方法,主要使用于地表水、地面水、城市末梢水、农村水、水源水等较干净的水。高锰酸盐指数法,氧化率低,操作比较简单,在测定水样中有机物含量的相对比较值时,可以采用。本文参考了GB/T5750.7-2023《生活饮用水标准检验方法 第7部分:有机物综合指标》、GB11892-1989 《水质高锰酸盐指数的测定 》,采用睿科AT100全自动高锰酸盐指数测定仪实现对大批量水样的高锰酸盐指数测定,质控样实验结果准确度高,精密度好,满足标准质控要求。仪器与耗材1.1仪器AT100全自动高锰酸盐指数测定仪1.2耗材搅拌子150 mL带刻度玻璃杯1.3试剂1.3.1 硫酸溶液(1+3) :将1体积硫酸(ρ=1.84g/mL)在水浴冷却下缓缓加到3体积纯水中,煮沸,滴加高锰酸钾溶液至溶液保持微红色。1.3.2 草酸钠标准储备溶液[c(1/2 Na2C2O4)=0.1000mol/L ]:称取6.701g草酸钠,溶于少量纯水中,并于1000 mL容量瓶中用纯水定容,置暗处保存,或使用有证标准物质。1.3.3 高锰酸钾标准储备溶液[c(1/5KMnO4)=0.1000mol/L] :称取3.3g高锰酸钾,溶于少量纯水中,并稀释至1000mL 。煮沸15min,静置2周,然后用玻璃砂芯漏斗过滤至棕色瓶中,置暗处保存并按下述方法标定浓度。a)吸取25.00mL草酸钠标准储备溶液于250mL锥形瓶中,加入75mL 新煮沸放冷的纯水及2.5mL硫酸(ρ=1.84g/mL)。 b) 迅速自滴定管中加入约24mL高锰酸钾标准储备溶液,待褪色后加热至65 ℃,再继续滴定呈微红色并保持30s不褪。当滴定终了时,溶液温度不低于55°C。记录高锰酸钾标准储备溶液用量。高锰酸钾标准储备溶液的浓度计算见式(1) :式中:c(1/5 KMnO4)—— 高锰酸钾标准储备溶液的浓度,单位为摩尔每升(mol/L); V —— 高锰酸钾标准储备溶液的用量,单位为毫升(mL)。1.3.4 高锰酸钾标准使用溶液[c(1/5KMnO4)=0.01000mol/L:将高锰酸钾标准储备溶液准确稀释10倍。1.3.5 草酸钠标准使用溶液[c(1/2Na2C2O4)=0.01000mol/L :将草酸钠标准储备溶液准确稀释10倍。1.3.6 质控样质控样1:编号为B22100123,标准值为0.978mg/L,不确定度0.127 mg/L,研制单位为坛墨质检科技股份有限公司质控样2:编号为B22050272,标准值为2.74mg/L,不确定度0.19 mg/L,研制单位为坛墨质检科技股份有限公司质控样3:编号为B22050204,标准值为6.40mg/L,不确定度0.50 mg/L,研制单位为坛墨质检科技股份有限公司质控样4:编号为GSB07-3162-2014(2031121),标准值为1.03mg/L,不确定度0.14 mg/L,研制单位生态环境部环境发展中心环境标准样品研究所质控样5:编号为GSB07-3162-2014(2031125),标准值为2.47mg/L,不确定度0.28mg/L,研制单位生态环境部环境发展中心环境标准样品研究所质控样6:编号为GSB07-3162-2014(2031127),标准值为3.65mg/L,不确定度0.34 mg/L,研制单位生态环境部环境发展中心环境标准样品研究所分析步骤2.1冲洗/填充管路将所有试剂管路按照标识放入对应的试剂瓶中,点击管路冲洗,将所有管路用试剂润洗一遍。2.2样品测定1)吸取100mL 充分混匀的水样(若水样中有机物含量较高,可取适量水样以纯水稀释至100mL ),置于洁净玻璃杯中,并将取好的样品依次放入样品架中。建立方法和序列,设置好样品类型和参数,点击运行序列,即可开始实验。2)参数设置界面和方法设置如下图所示图1参数设置图2方法设置实验结果3.1结果导出将草酸钠浓度、空白和K值依次填入,仪器内置公式会自动计算出滴定结果。3.2空白测试测试实验室纯水,16孔位消解,16个空白测试结果平均值为0.349 mg/L,RSD为6.09%。具体测试数据如下表1 空白测试结果3.3准确度和精密度测试选择环标所的3种不同浓度浓度质控样和坛墨的3种不同浓度质控样分别进行测试,环标所每种质控样分别测试6个平行样品,坛墨每种质控样分别测试16个平行样品,结果如下表所示。表2 坛墨质控样16平行测试结果表3 环标所质控样测试结果注意事项4.1 用纯水作为空白样品进行测试时,加入草酸钠后有时溶液很快变成无色,有时要搅拌30~60s后才会由黄色逐渐变成无色,此现象测试过程偶有发生,不影响空白测试结果。4.2 测试过程尽量控制高锰酸钾溶液的浓度略低于草酸钠溶液的浓度,使K值在0.98~1.01之间为宜,若高锰酸钾浓度高于草酸钠,在空白样品消解完后,加入10mL草酸钠,不足以完全还原溶液中还原的高锰酸钾溶液,导致溶液颜色不能完全褪去。4.3 样品量以加热氧化后残留的高锰酸钾标准溶液为其加入量的1/3~1/2为宜。加热时,如溶液红色退去,说明高锰酸钾量不够,需重新取样,经稀释后测定。4.4 每次测试结束后,一定要将管路冲洗干净,建议设置冲洗体积20~30mL,以免管路中残留溶剂干燥结晶,导致管路堵塞,影响测试结果。
  • 得利特实验室检测仪器---台式酸浓度计,台式碱浓度计
    目前,便携化、智能化、快捷化、多功能化的仪器才是市场发展的主流,虽然在某些场合对大型仪器的使用非常有必要,但在绝大多数的检测活动中,轻巧便携、操作简单、功能多样化的产品显然更受欢迎,所以我国的水质分析仪器制造水平要追平国际,就需要在这些方面下苦功夫,避免出现产品结构单一、功能单一、缺乏创新等状况。仪器生产商要积极进行市场调研,根据市场需求积极创新,发展出更满足客户需要的产品。当下我国的环保形势良好,国家对环境监测仪器的需求大,在政策上也多有扶持,所以行业内要及时抓住机遇,依托政策,积极引进先进技术,聚集人才,研发属于我们自己的国之重器,让国产仪器真正走出国门。当然,我国的仪器行业还存在一个状况,就是两极分化严重,一大批企业徘徊在中低端产品线上,而能与世界水平比肩的却寥寥无几,如果不能解决这个问题,长此以往,对我国的仪器行业发展并没有任何好处,水质分析仪器也如是,可见国产仪器商们要走的路还很长。B1120台式酸浓度计在电力工业中广泛应用的电磁式酸碱浓度计的新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示: 4位0.8英寸LED显示测量介质:HCl、NaOH、NaCl、H2SO4(每台仪表只能测量一种介质,订货时指明测量介质)量  程: HCl 0~10% H2SO4 0~5%精 度:  2.0级 (常用点校准后误差可小于0.05%)    分 辩 率:  0.01%温度补偿范围:(5~55)℃仪表供电: AC 220V 50Hz 5W仪表外形尺寸: 270×200×90mm探头尺寸: 39×100mm,引线长度1m仪表重量: 1.25kgB1130台式碱浓度计在电力工业中广泛应用的电磁式酸碱浓度计的zui新产品。在电力行业中主要用于离子交换法制取高纯水工艺中监测离子交换器中再生液的浓度,是离子交换法制取高纯水的必备仪表,可应用于电力、化工、冶金、食品、制药等行业中对各种HCl、H2SO4、NaOH、NaCl等强电解质的检测。仪器特点1、适合检查校验离子交换法制取高纯水工艺中的再生液浓度或锅炉管道酸洗液浓度配制2、它采用电磁感应原理,避免了酸、碱等强腐蚀溶液对电极的腐蚀、污染和极化效应。可以大大提高离子交换器的再生效果和避免发生阳床结钙、阴床结硅胶的事故,保障离子交换器的安全经济运行。技术参数显  示:4位0.8英寸LED显示测量介质:NaOH、NaCl(每台仪表只能测量一种介质,订货时指明测量介质)量  程:NaOH 0~5% NaCl 0~5%(重量百分比)精 度: 2.0级 (常用点校准后误差可小 于0.05%)    分 辩 率: 0.01%温度补偿范围: (5~55)℃仪表供电:AC 220V 50Hz 5W仪表外形尺寸:270×200×90mm探头尺寸:39×100mm,引线长度1m仪表重量:1.25kg
  • 硝酸盐为北京本轮重污染首要成分
    p style="text-indent: 2em text-align: justify "从11月1日午后开始,北京地区经历了一次PM2.5浓度迅速攀升的过程。昨天入夜以后,本市PM2.5浓度仍将维持重度污染,西北部山前地区浓度较高。北京环保监测中心预计,从今天早晨开始,冷空气逐渐渗透,有小雨,污染逐渐缓解,午后随着冷空气主体进一步南下,扩散条件转好,晚间空气质量改善至良好水平。/pp style="text-indent: 2em text-align: justify "昨天白天,在京津冀西北部低压辐合带影响下,京津冀中南部太行山沿线多城市出现重度污染,本市自上午9时开始,PM2.5浓度升至五级重度污染级别。截至昨天18时,房山、门头沟等西南部地区的PM2.5浓度最高,达到226微克/立方米。/pp style="text-indent: 2em text-align: justify "从11月1日午后开始,北京地区经历了一次PM2.5浓度迅速攀升的过程。1日17时,达到三级轻度污染;维持21小时后,2日14时达到四级中度污染。昨天白天达到五级重度污染水平。从区域范围看,1日,河南和河北南部等城市PM2.5浓度率先升高,相继达到轻、中度污染水平。随后,在西南风作用下,污染物向下风向传输并逐渐在太行山前堆积,2日,污染主要聚集在京津冀中南部地区,并开始叠加局地污染排放。/pp style="text-indent: 2em text-align: justify "从污染来源看,自2日白天起,来自河南和山东方向的传输贡献突然增加,并有逐渐上升趋势,同时北京市本地源贡献在该过程中逐渐减少,其余各邻近区域均有一定贡献。这表明,本次污染过程主要是先受到短距离西南输送通道影响,后转为受中长距离西南输送通道影响而导致的。/pp style="text-indent: 2em text-align: justify "昨天入夜以后,本市PM2.5浓度仍将维持重度污染,西北部山前地区浓度较高。北京环保监测中心预计,从今天早晨开始,冷空气逐渐渗透,有小雨,污染逐渐缓解,午后随着冷空气主体进一步南下,扩散条件转好,晚间空气质量改善至良好水平。提醒市民密切关注空气质量变化,妥善安排出行活动,注意做好健康防护。/pp style="text-indent: 2em text-align: justify "释疑/pp style="text-indent: 2em text-align: justify "近年本市PM2.5成分正在悄然变化/pp style="text-indent: 2em text-align: justify "北京青年报记者从市环保监测中心获悉,针对本轮空气重污染过程的PM2.5组分监测结果显示,硝酸盐为本市PM2.5首要组分,这主要与移动源和工业源排放氮氧化物等有关,京东南边界监测点位与燃煤相关的氯离子浓度也较高。/pp style="text-indent: 2em text-align: justify "许多在北京生活的人对空气重污染曾有过这样的体验:污染来临时,空气中就会有一种刺鼻的味道。这种味道,现在也渐渐发生变化,因为2013年至2017年,PM2.5中的主要组分也已经发生了变化,硫酸盐占比大幅下降,但是硝酸盐的比例相应有所增加。/pp style="text-indent: 2em text-align: justify "据环保专家介绍,硫酸盐的生成来自二氧化硫,而二氧化硫主要就是燃煤燃烧产生的污染物。北京市从1998年就开始治理燃煤,尤其是近年来“煤改电”“煤改气”政策控制效果更为突出,因此PM2.5组分中,硫酸盐的比例降低。但是,随着居民采暖和工业源排放的降低,机动车尾气等移动源、工厂企业排放等工业源的贡献比重日渐突出,释放在空气中的氮氧化物经过化学反应后,可形成硝酸盐。/pp style="text-indent: 2em text-align: justify "据了解,本次污染过程,首要污染物为PM2.5,提醒广大市民尽量避免不必要的出行,出行在外请注意佩戴口罩、帽子等,进入室内后及时清洗口鼻、头发与其他暴露在外的部位。/p
  • 酸碱浓度计的维护保养方法
    酸碱浓度计是通过测量溶液电导率的方法间接地测得该溶液的浓度,已知在某一恒定温度时,低浓度电解质的电导率与该溶液的浓度成对应关系,浓度不变而溶液温度发生变化时,电导率也发生变化,即该溶液的浓度是电导率和温度的函数。其采用电导电极式传感器进行测量(浓度电极材料采用铂金),为避免电极极化,仪表产生高稳定度的正弦波信号加在电极上,流过电极的电流与被测溶液的浓度成正比,由前置放大器测量流过电极的电流并转换为电压信号,经程控放大、相敏检波和滤波后得到反映浓度值的电压信号 微处理器通过开关切换,对温度信号和浓度信号交替采样,经过运算和温度补偿运算后,转换并显示为25℃时被测量的浓度值和即时的温度值。酸碱浓度计的维护保养方法:1、仪器不消时应及时切断电源,并放置在清洁、无尘、枯燥的环境下。2、每次做完实验后,应将仪器的外表、酸碱浓度计电极接口和温度接口擦洁净并坚持枯燥形状。酸碱浓度计电极的维护:1、应经常清洗电极,确保其不受污染及梗塞。2、每次清洗完电极后,运用滤纸吸干电极外表的水珠,然后装入流通杯中。3、电极在不消时,应放置在枯燥的无灰尘的环境下。
  • 悬浮物污泥浓度计是如何测量悬浮物浓度的
    悬浮物污泥浓度计是为测量市政污水或工业废水处理过程中悬浮物浓度而设计的在线分析仪表。无论是评估活性污泥和整个生物处理过程、分析净化处理后排放的废水还是检测不同阶段的污泥浓度,悬浮物污泥浓度计都能给出连续、准确的测量结果。   悬浮物污泥浓度计由变送器和传感器组成。传感器可以方便地安装在池内、排水管、压力管道或自然水体中,光电式污泥浓度计能自动补偿因污染而引起的干扰。传感器带有空气清洗功能,能根据预先设置的时间自动定时清洗,从而大大降低了仪器维护的工作量。   传感器上发射器发送的红外光在传输过程中经过被测物的吸收、反射和散射后仅有一小部分光线能照射到检测器上,透射光的透射率与被测污水的浓度有一定的关系,因此通过测量透射光的透射率就可以计算出污水的浓度。   四光束技术利用两个发射器和两个检测器,每个发射器发送的光线经过透射后照射到两个检测器上,这样就产生一系列的光路,得到一个数据矩阵,然后通过分析这些数据信号,即可得到介质中悬浮物的准确浓度,并能有效消除干扰,补偿因污染产生的偏差,使仪器能在较恶劣的环境中工作。   传感器的校准:   悬浮物(污泥浓度)传感器在出厂前已经经过校准,若需要自行校准可以按照如下步骤进行。悬浮物(污泥浓度)校准要求使用标准液,通过校正菜单,可以进行二点或者四点校正。以两点为例,具体步骤如下:   1)将传感器连接至变送器。   2)设置好相关参数(进入“校正”菜单,然后选择“校准方式”中选择“因子”   模式,将因子设为1),并擦净传感器。   3)将探头放入头一点标液中(一般将纯水作为头一点),待数据稳定后,读取   测量的实际值并记录数据。
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒  杂味的味精  小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。  小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。  小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。  小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。  “炒菜不用放盐了”  小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。  在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。  记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)  商户:这一个月我光在这个地方就十几吨吧。  商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。  商户:这个货就可以呀,一般酒店用都用这种。  商户:基本都是川菜馆。  商户:饭店都吃。  商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。  记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?  商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。  味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。  商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。  果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。  这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。  商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。  包装是一回事实际含量是另一回事  记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。  商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。  商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。  虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。  商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。  商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。  记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。  发苦的味精  其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?  记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。  小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。  这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?  这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。  村民:它家一直就是味精厂。  这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。  添加物不止是盐、淀粉、石膏  记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。  销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。  这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。  销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。  销售员说,别看只比标准低几个点,利润就是这样省出来的。  销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。  这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。  销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。  在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。  销售人员:还有厉害的。  除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。  销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。  据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?  打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。  五、六百元的硫酸镁不可能是食品级的  这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。  记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)  记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)  记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。  销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。  味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?  记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。  结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。  建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • ATAGO(爱拓)手持浓度计免费赠送火热招募中
    ATAGO(爱拓)成立70多年来,一直致力于物理特性测试仪器的研发和推广,作为全球折光仪与旋光仪的市场领导者,我们贴近基层客户测试需求和民用市场需求开发的手持数显浓度计广受用户认可,ATAGO(爱拓)也一直致力在各个领域于推广手持便携式浓度测试工具,为了让更多用户使用上国际先进技术的手持浓度计,我们特别回馈,推出&ldquo 100台PAL数显手持浓度计免费赠送试用&rdquo 活动,用户可根据自身检测需求选择合适的PAL系列的型号,免费试用一年。试用期间,客户可完全享有仪器的使用权和支配权。只要您符合以下情况,即可联系我们免费申请获取ATAGO(爱拓)PAL迷你系列任意一款:联系方式:TEL 020-38108256 FAX 020-38109695 info@atago-china.com 孙小姐A: 需要测试以下样品浓度的工业生产客户、全国连锁餐饮企业客户、果蔬生产或贸易流通企业;B:经营状况良好,对管理和质量控制有严格的要求和期望;C:愿意测试,并且愿意配合提供试用报告。获赠企业资格确认ATAGO(爱拓)拥有最终的选择权和解释权,获赠名单将定期公布。活动期限:即日起至申请数量结束,活动停止。先到先得。 产品型号名称赠送试用数量适用对象PAL-1糖度计80个适用于几乎任何果汁、调味品等食品与饮料的糖度测量和清洗液、工业助剂等水溶性液体的浓度测定PAL-03S盐度计1个盐水、腌制水等溶液的NaCl(g/100g)浓度控制PAL-06S海水盐度计1个 PAL-S乳制品浓度计2个测量含脂类、深色及乳状样品,如牛奶等乳制品的干物质含量PAL-Pâ tissier糕点糖度计2个适用于糕点制作过程中添加物的白利度控制和波美度控制PAL-27S豆浆浓度计2个餐饮豆浆浓度控制PAL-91S乙二醇浓度2个汽车、供暖、制造等行业冷冻液或防冻液浓度控制PAL-39SH2O2(双氧水)浓度计2个适用于医疗、化工、食品等行业中需要使用双氧水的场合PAL-40SNaOH(烧碱)浓度计2个适用于纺织化纤、化工、食品、造纸等行业中需要使用NaOH的场合PAL-38SDMF(二甲基甲酰胺)浓度计2个适用于皮革化纤、化工、造纸等行业中需要使用DMF的场合PAL-Urea车用尿素液浓度计2个适用于柴油发动机尾气处理中车用尿素液浓度控制PAL-102S切削油浓度计2个适用于金属加工、机械制造等过程中水溶性切削液浓度控制 PAL迷你系列更多的产品应用详情可登陆我们的官网:http://www.atago-china.com或联系ATAGO(爱拓)中国分公司联系方式:TEL 020-38108256 FAX 020-38109695 info@atago-china.com 孙小姐
  • 日本ATAGO(爱宕)折光仪、浓度计在纺织、化纤行业被成功应用
    中国是世界最大的化纤生产国,作为纺织工业的重要组成部分,化学纤维已占纺织纤维加工总量近三分之二,化纤工业的发展直接影响到我国纺织工业发展的整体水平和竞争能力。 而当前的各类化纤生产工艺中,形成了各具特点的工艺路线。这些工艺路线的共同点是:采用溶液(湿法和干法)纺丝方法,有相应的溶剂回收处理等。这些工艺路线的不同点是:不同的共聚物组成;不同的聚合(非均相沉淀聚合或均相聚合)方法;不同的纺丝溶剂(可采用二甲基甲酰胺,二甲基乙酰胺,二甲基亚砜,碳酸乙烯酯,硫氰酸钠,硝酸,氯化锌等):不同的纺丝方法(湿法或干法纺丝,湿法中采用不同凝固浴);不同的牵伸、后处理工艺;不同的溶剂回收工艺。各种工艺中,最主要的因素是溶剂,不同的溶剂决定了纺丝液的制备条件、纺丝条件、溶剂回收方法和废水处理方法等一系列工艺特点,也影响到防火、防毒及设备选材等许多方面。 例如在碳纤维生产工艺的纺丝溶剂选择中,二甲基亚砜(DMSO)以其独特的优势成为当前的首选,日本ATAGO(爱宕)生产的折光仪、浓度计在纺织、化纤行业的已经有了比较广泛的应用。如PAL-1手持折射仪、PR-40DMF手持浓度计、RX-5000a全自动折光仪、PRM-100a在线浓度计等,用于测量纺丝溶液浓度、凝固浴浓度,保证原丝品质。 现在溢达纺织、拓展纤维、常州纺织等纺织、化纤用户都有在使用日本ATAGO(爱宕)的在线折光仪和RX-5000a的台式折光仪,手持式浓度计的使用就更多了。
  • 在线浓度计等不断创新 为工业生产带来更多可能性
    随着科技的不断进步和工业生产的发展,仪器仪表在工业领域中的应用变得越来越重要。其中,在线浓度计等仪器仪表的不断创新为工业生产带来了更多的可能性。在线浓度计等仪器仪表通过实时监测和分析物质的浓度,为企业提供了精确的数据和关键的信息,从而促进了工业生产的效率和质量的提升。过去,工业生产过程中常常需要通过间歇性的采样和分析来确定物质浓度,这既耗时又费力。然而,随着在线浓度计等仪器仪表的出现,工业生产效率得到了显著提高。这些先进设备实时监测和测量物质浓度,消除了传统方法中的延迟和不确定性,使生产过程更加连续高效,进一步提升了生产能力。在线浓度计等仪器仪表的创新也为工业生产带来了更高水平的质量控制。在许多工业生产过程中,物质浓度对产品质量有着重要影响。传统的采样和分析方法往往存在误差和延迟。而在线浓度计等仪器仪表可以实时监测和反馈浓度数据,及时发现异常情况并进行调整。另外,在线浓度计等仪器仪表的创新也为工业生产带来了更高水平的安全性。传统的采样和分析方法需要人工操作,存在一定的风险和误差。而通过自动化监测和报警功能,在线浓度计等仪器仪表可以及时预警和控制潜在的危险情况,提高了工业生产过程的安全性。相信随着人工智能、物联网和大数据分析等技术的融合,在线浓度计等仪器仪表将更加智能化和自动化,提供更精准的预测和决策支持。在线浓度计等仪器仪表的创新发展也为工业生产带来了更广阔的可能性。
  • Nature:生物电子传感,实时监测环境污染物!
    研究背景淡水受到天然和合成化学物质的污染是一项全球性的环境挑战。特别值得关注的是影响脊椎动物繁殖的化学物质和刺激微生物繁殖的无机化合物,因为它们进入环境后都会产生严重的生态影响。由于化学物质的释放可能是动态且瞬态的,需要在原位实时检测这些化学物质。这种检测也必须具有不同非生物条件的环境准确性。实时化学传感对于环境和健康监测中的应用至关重要。生物传感器可以通过基因电路检测各种分子,利用这些化学物质触发有色蛋白质的合成,从而产生光学信号。关键问题虽然生物传感器可以满足污染物监测需求,但仍存在以下问题:1、传感速度通常较慢,难以实现原位监测生物传感器都依赖转录调节进行检测,而蛋白质表达过程将这种传感的速度限制半小时以上,光学信号通常很难原位检测到。2、工程化微生物传感器会降低信噪比和时间响应工程化的微生物虽然提供了机械完整性和支持连续传感,但它们会衰减信号传输,进而降低信噪比和时间响应。新思路有鉴于此,美国莱斯大学Caroline M. Ajo-Franklin等人将合成生物学和材料工程相结合,开发出能够产生电读数且检测时间为分钟的生物传感器。使用模块化的、八组分合成的电子传输链对大肠杆菌进行编程,使其产生电流以响应特定的化学物质。按照设计,该菌株在暴露于硫代硫酸盐后,在2分钟内产生电流。然后,对电流传感器进行了修改,以检测内分泌干扰物。将蛋白质开关纳入合成途径,并用导电纳米材料封装细菌,可在3分钟内检测城市水道样品中的内分泌干扰物。该研究结果提供了一种设计规则,可以用质量输运模型有限的检测时间来感知各种化学品,并为保护生态和人类健康的微型低功耗生物电子传感器提供了一个新的平台。技术方案:1、设计了基于大肠杆菌的生物传感器在大肠杆菌中设计了一种合成电子转移(ET)途径,制备了生物传感器,并评估了各个模块的性能,优化了输出模块的功能,并分析了其性能。2、证实了对硫代硫酸盐的快速检测和定量作者构建了I+C+O+菌株,测量了硫代硫酸盐依赖性EET。通过改进,获得了更高的信噪比,信号强度及再现性,证实了工程菌株产生的电信号能够快速、连续地检测和定量硫代硫酸盐。3、设计了多样化的活体电子传感器作者利用Fd开关以确定活体电子传感器是否可以多样化,证实了工程化Fd可测量合成ET途径中非代谢中间体的分析物,并将响应时间减少了约4倍。4、证实了传感器在城市水道样品的适用性作者证实了2-EWE传感器在具有不同非生物特征的城市水样中具有一致的功能,并通过改进实现了高度可再现的响应,提高了信噪比,获得了更高的稳态电流和更快的响应时间。技术优势:1、开发了超快的生物传感器作者开发了利用ET合成信号转导方法,通过结合合成生物学和材料工程开发了生物传感器,可以产生电子读数,并将检测时间由半小时以上缩短至几分钟。2、实现了城市水道内分泌干扰物的快速测量将蛋白质开关纳入合成途径,并用导电纳米材料封装细菌,可在3分钟内检测城市水道样品中的内分泌干扰物。快速的响应时间非常适合于环境中瞬时化学暴露的连续监测。3、开发了提高信噪比的改进方法利用细胞封装来实现比率传感,并加入导电纳米材料以提高EET的效率,这两种方法都提高了信噪比,并导致了质量传输有限的响应时间。4、为连续、实时环境传感的设计提供了研究平台本文研制的活体电子传感器为连续环境传感提供了一个可扩展的平台,可以在不同的环境中进行长时间的准确操作。技术细节传感器设计作者在大肠杆菌中设计了一种合成电子转移(ET)途径。使用硫代硫酸盐来测试该策略,用三个模块设计了硫代硫酸盐依赖的ET途径。为了评估各个模块的性能,使用了基因组编码和质粒编码的遗传电路的组合,使模块组件能够即插即用表达。为了优化输出模块的功能,作者分析了其表达、EET以及在不同诱导条件下对细胞适应度的影响。为了测量细胞色素的表达,监测了细胞颗粒的相对红色。为了以高通量的方式评估EET,测量了诱导细胞还原细胞不可渗透的WO3纳米棒的能力。使用最佳诱导策略,表明优化的输出模块是功能性的。作者确定了耦合模块的SQR,并证明了细胞可以在表达输出模块的同时在输入模块中合成全蛋白。图 带有合成ET链的大肠杆菌传感器硫代硫酸盐的快速检测和定量为了确定ET通过全合成途径是否依赖于硫代硫酸盐,将所有三个模块集成在一起以构建I+C+O+菌株,并在BES中测量浮游细胞的硫代硫酸盐依赖性EET。结果表明整个通路就像一个硫代硫酸盐传感器。为了改善低信噪比,将每个菌株和工作电极封装在藻酸盐-琼脂糖水凝胶中。与浮游细胞相比,封装细胞对硫代硫酸盐的反应具有更高的信噪比(平均增加30倍以上)。此外,相对于浮游细胞,它表现出更高的信号强度(增加5倍)、更高的再现性(标准偏差减少50%)和更高的线性(R2增加10倍)。探讨了该传感器对不同硫代硫酸盐浓度的响应,表明I+C+O+菌株的电流响应与硫代硫酸盐浓度呈线性关系,证实了工程菌株产生的电信号能够快速、连续地检测和定量硫代硫酸盐。图 活体电子传感器的封装实现了硫代硫酸盐的快速检测和定量传感器多样化为了确定活体电子传感器是否可以多样化,以响应影响脊椎动物繁殖的化学物质,利用Fd开关在翻译后对化学配体进行响应。为了量化每个反应器中4-HT诱导的电流变化,计算了IsC+O+应变相对于IC42AC+O+菌株的电流百分比差异。DMSO和4-HT信号的比较显示,在7.8分钟内以95%的置信度检测到4-HT,信号强度增加0.93%±0.33%。尽管工程Fd产生的信号低于野生型Fd,但它能够检测合成ET途径中非代谢中间体的分析物。因此,与以前的微生物生物电子传感器相比,IsC+O+活电子传感器按设计对4-HT作出响应,并将响应时间减少了约4倍。图 表达电子蛋白质开关的活体电子传感器能够快速检测内分泌干扰物城市水道样品测量在添加了硫代硫酸盐或4-HT的河流和海洋样品中测试了BES,证实2-EWE传感器在具有不同非生物特征的城市水样中具有一致的功能。由于这些城市水样的导电性差且氧化还原活性化合物丰富可能会干扰生物电子传感,引入了生物相容性和导电性TiO2@TiN纳米复合材料进入包封基质以增加接触表面并促进细菌-电极界面处的电子转移。这些纳米颗粒-活性传感器混合物在装置之间显示出高度可再现的响应,提高了信噪比,并且在1mM硫代硫酸盐存在下具有更高的稳态电流,并具有更快的响应时间。本工作开发的活体电子传感器可用来专门检测与环境相关的浓度和条件下的分析物,其传质限制动力学比之前的状态快十倍。图 用导电纳米颗粒封装的活体电子传感器能够快速检测环境中的污染物展望总之,本文研制的活体电子传感器为连续环境传感提供了一个可扩展的平台。实时传感需要快速的分析物检测,在没有样品准备的情况下,可以在不同的环境中进行长时间的准确操作。活体电子传感器可在各种环境条件下使用有限的仪器实时检测目标化学品。为了实现长期的环境部署,可以将碳源和辅助化学品纳入封装矩阵,以优化非生物-生物界面的电信号传输。此外,这些传感器可以被安装到通过清除环境中存在的能量来自我供电的设备中。小型、可部署的实时生物电子传感器可以分布在不同的环境位置,这将彻底改变监测化学品在生态系统中迁移的能力。这将为农业的可持续发展提供重要信息,减轻工业废物排放的影响,并确保水安全。参考文献:Atkinson, J.T., Su, L., Zhang, X. et al. Real-time bioelectronic sensing of environmental contaminants. Nature(2022).DOI:10.1038/s41586-022-05356-yhttps://doi.org/10.1038/s41586-022-05356-y
  • ATAGO(爱拓)推出豆乳浓度计新系列
    蛋白质含量2.0% 不叫豆浆 叫豆浆饮料据有关中国食品工业协会报道《豆浆》标准将与国际上先进国家的“豆浆”产品标准接轨,将豆浆分为豆浆、调制豆浆和豆浆饮料三大类。标准规定,标识为豆浆的产品,蛋白质浓度大于或等于2.0%而小于2.9%,固形物浓度大于或等于6.0%而小于7.0%,应在产品名称紧邻部位标明 “淡型”;蛋白质浓度大于3.8%,固形物浓度大于8.0%,应在产品名称紧邻部位标明 “浓型”;蛋白质浓度大于或等于2.9%而小于3.8%,固形物浓度大于或等于7.0%而小于8.0%的普通型豆浆可不标明。标准还明确规定了,蛋白质含量小于2.0%的不能称为豆浆只作为豆浆饮料。为此,向大家推荐日本ATAGO(爱拓)用于豆制品行业检测的新产品MASTER-SOY-α豆乳浓度计,为提高豆浆质量提供新利器,带给广大群众口感醇厚的豆浆,制造出不一样的享受。 ※测量豆浆的浓度※由于制造流程或使用的豆子原料的不同,豆浆在制作过程中的浓度( Brix )值会发生变化。豆乳浓度计是根据豆乳浓度与折射率的对应关系而设计的光学仪器,可同时测量豆浆、豆乳糖度和豆汁、豆乳浓度,仪器结构简单,使用简捷,测量液少,测量速度准确。豆浆浓度计、豆乳浓度计是豆浆饮料经营的必备仪器,该仪器广泛应用于永和豆浆连锁店。就餐饮店来说豆浆浓度计通常是测量豆乳类产品磨出来之后的豆乳浓度,因为同样的方法操作不一定会有一样的豆乳浓度,通常会随着气温、产地、季节等因素而造成差异,因此,对餐饮店来说,尤其是有豆乳类的产品,其浓度的品管非常重要。MASTER-SOY-α豆浆浓度计为双标度产品一边看豆汁浓度(%),一边是卤水Mgcl2浓度(%)。PAL-27S为迷你数显折射计,可用挂绳挂在质检员胸前,方便的检测豆浆浓度. 产品技术参数: MASTER-Soy-α 豆乳浓度计MASTER-Soy α是测量豆制品浓度最好的工具,双标度显示能测量豆浆浓度与卤水Mgcl2浓度。具有自动温度补偿与防水功能。 型号MASTER-Soy αCat.No.2681测量范围豆浆浓度0.0 至 20.0%Mgcl2浓度0.0至 12.0%最小标度豆浆浓度0.2% Mgcl2浓度0.2%测量精度豆浆浓度± 0.5%Mgcl2浓度± 0.2%(10 至30°C)IP防护等级 IP65 (目镜除外) 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 …查看详细仪器价格、技术资料并订购,请访问ATAGO(爱拓)中国官网或者致电联系我们:http://www.atago-china.com
  • 京都电子发布ALM-155数显酒精浓度计新品
    ALM-155数显酒精浓度计Digital Alcohol MeterALM-155数显酒精浓度计 适用范围:测定各类饮料酒的酒精度,如: 发酵酒/酿造酒(啤酒、葡萄酒、果酒、黄酒),蒸馏酒(白酒、白兰地、威士忌、伏特加/俄得克、朗姆酒、杜松子酒、奶酒、其他蒸馏酒),配制酒/露酒(植物类配制酒/植物类露酒、动物类配制酒/动物类露酒、动植物类配制酒/动植物类露酒、其它配置酒)的酒精度分析。注: 酒精度(乙醇含量): 系指在20°C时,100mL饮料酒中含有乙醇(酒精)的毫升数,即体积(容量)的百分数。ALM-155数显酒精浓度计 工作原理:数显酒精浓度计的测量,是酒类试样经直接加热蒸馏去除样品中的不挥发物,馏出物用水恢复至原体积,然后将酒样馏出液吸入数显酒精浓度计的U型振荡管,由于U型管中试样密度的变化会引起振动频率的改变,仪器可根据20°C时样品馏出液的振动频率自动计算得到馏出液的相对密度,仪器内置酒精水溶液相对密度与酒精度对照表,可直接测定试样中酒精含量的体积百分数。可取代酒精计法或密度瓶法之酒精度的试验方法。附注: 乙醇和水的二元混合物溶液,可以直接测量酒精浓度值。ALM-155数显酒精浓度计 主要特点:1. 高精确度、占地面积小、性能卓越的台式酒精浓度计。2. 酒精度的解析度为0.01%,密度的解析度为0.00001。3. 标配进样泵,一键启动进样和测量,样品量仅需8mL。4. 内置帕尔贴温控,温度固定20°C。仅需使用纯水校正。5. 可自动存储100组测量结果,数据可传输至U盘或电脑。6. 具酒精水溶液的相对密度与酒精度对照表,显示酒精度。7. 全范围酒精浓度测定,操作简单,精度高,测量速度快。ALM-155数显酒精浓度计 技术参数:测量范围: 酒精度0.00~100.00Vol%,密度0.69937~1.24887g/cm3,相对密度0.70000~1.25000。解析度: 酒精度0.01vol%,密度0.00001g/cm3,相对密度0.00001。重复性: 酒精度SD:0.05%vol%,密度SD:0.00005 g/cm3,相对密度SD:0.00005。测量温度: 20.00°C(固定)。酒精度对照表: 内建OIML和AOAC对照表。测量时间: 2~4分钟(使用标配蠕动泵)。最少样品量: 约8毫升(进样时间10秒)。显示: LCD液晶显示。进样方式: 使用蠕动泵进样或注射器进样。自动开始功能: 重复次数:2~100。校正方式: 使用纯水校正。电脑软件: SOFT-CAP(数据采集软件)。外接界面: USB(U盘或键盘),RS-232C(打印机和电脑)。数据输出: CSV格式至U盘。环境条件: 温度5~35°C,湿度85%RH以下。电源: 100~240V, 50/60Hz。耗电量: 约30W。尺寸: 270(宽)×402(深)×163(高)mm。重量: 约10kg。创新点:京都电子工业株式会社(KEM),从1978年开始生产U形管振荡式密度计,在技术方面有着宝贵的经验和悠久的历史。ALM-155的开发源自于清酒酒精度分析仪DA-155。DA-155多年来主要销售在日本的清酒酿酒厂。大多数清酒酿酒厂都是小型家族企业,他们对可靠的分析仪器需求非常强烈。KEM一直以合理的价格为他们提供简单易用、高性能的分析仪。ALM-155是一种专用的、小尺寸、高性能的台式数字密度计,主要用于分析葡萄酒、啤酒、白兰地、威士忌、伏特加等的密度、相对密度和乙醇浓度的测量。ALM-155的酒精度分辨率为0.01%,相对密度为0.00001。除了具备DA-155的特点外,另增加了密度值的显示、记忆100组测量结果、内置AOAC和OIML酒精度对照表、输出功能增加了USB串口,可利用U盘下载测量结果。在功能和数据储存输出上,更加提升。ALM-155数显酒精浓度计
  • 赛默飞发布变性乙醇燃料中氯离子和硫酸根的测定方案
    2014年5月13日,上海 —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布变性乙醇燃料中氯离子和硫酸根的测定方案。该方法选择性较好,氯离子和硫酸盐的分离不受样品基质的影响,其定量结果更加准确。 绿色能源的开发随着石油资源的逐渐枯竭越来越收到关注。乙醇由于其生产原料来源广、生产过程简单、燃烧释放能量高以及燃烧排污小等诸多优点而日益得到重视。众所周知,乙醇经过燃烧后转变为水和二氧化碳,但作为燃料的乙醇中如含有氯、硫等化合物时,将会腐蚀内燃机,降低发动机使用寿命。ASTMD4806对变性乙醇燃料中氯、硫化合物的含量进行了严格限制,并推荐以ASTM D7319或ASTM D7328为其含量检测方法。赛默飞离子色谱可实现对这些离子的有效检测,参照ASTM D7328对变性乙醇燃料样品进行前处理后,选用高容量IonPac AS22高效阴离子交换分离柱完成了样品中痕量游离氯化物和硫酸盐及总硫的含量测定。ICS-1600离子色谱系统 下载应用纪要请点击:http://www.thermo.com.cn/Resources/201404/3113151140.pdf 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 梅特勒-托利多推出全新在线分析仪——氯离子/硫酸根分析仪 Thornton 3000 CS
    p  日前,梅特勒-托利多推出了一款新的在线分析仪器——氯离子/硫酸根分析仪 Thornton 3000 CS,可直接用于测量发电厂水/蒸汽循环系统中的腐蚀性离子。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/d1733234-c737-4858-8132-132c617a9793.jpg" title="cq5dam.web.1280.1280.jpeg"//pp  据了解,氯离子和硫酸根是电厂循环化学中腐蚀性最强的污染物,会导致表面腐蚀、点蚀、应力腐蚀开裂,腐蚀产物沉积降低效率,沉积物下部腐蚀等。这些都极其容易损坏昂贵的电力设备,如锅炉、汽轮机等,导致意外停机和高昂的维修费用。因此,以低ppb水平监测氯离子和硫酸根已被确定为电厂化学的关键测量点。/pp  梅特勒-托利多Thornton 3000CS分析仪提供在线,痕量氯化物和硫酸盐测量以进行腐蚀控制,使用微流控毛细管电泳(MCE),一种离子分离技术,来取代离子色谱和电感耦合等离子体等昂贵的离线方法。该仪器具有半自动校准的特点和直观的触摸屏界面,无需复杂的培训就可以进行操作。同时,梅特勒-托利多智能传感器管理技术在分析仪中提供了诊断功能,可以预测何时需要维护或更换设备。/pp  梅特勒-托利多过程分析分析仪产品经理Akash Trivedi表示:“3000CS可以每45分钟提供精确的氯化物和硫酸盐测量数据而无需任何操作人员的干预。它可以提供对有害离子的连续监测,并通过消除对昂贵的内部或外部实验室测试的需要而实现快速的投资回报。”/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制