当前位置: 仪器信息网 > 行业主题 > >

离线监测系统

仪器信息网离线监测系统专题为您提供2024年最新离线监测系统价格报价、厂家品牌的相关信息, 包括离线监测系统参数、型号等,不管是国产,还是进口品牌的离线监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离线监测系统相关的耗材配件、试剂标物,还有离线监测系统相关的最新资讯、资料,以及离线监测系统相关的解决方案。

离线监测系统相关的资讯

  • 在线监测还是离线吸样检测TOC?
    用户常问,在线监测和离线吸样检测,哪种方法更好?Sievers TOC分析仪可以用不同的取样方法来准确测量水样中的总有机碳(TOC):在线进样、离线吸取进样、离线自动进样器进样。本文讨论为什么在线监测能够持续提供准确性最高的超纯水测量结果。各种取样方法面临的挑战样品会被样品瓶污染,也会在取样和处理过程中被外界污染物所污染,因此可以看到吸样样品的TOC浓度偏高。如果取样过程和仪器所在环境中有挥发性有机化合物,样品会被这些挥发性物质所污染。为了证明上述情况存在,我们做了以下一系列测量:直接从低TOC水系统中取样,进行10小时的在线TOC测量。然后用预先清洗过的烧瓶装满该系统的水,用吸样方法测量TOC浓度。最后,将分析仪连接到自动进样器,从该系统加注样品瓶,测量TOC浓度。在用自动进样器取样时,分别使用两种样品瓶。一种样品瓶是带旋盖的新试管,用低TOC去离子水冲洗20次;另一种样品瓶是市售的预先清洁的样品瓶,测量前未被冲洗过。在线测量测得的水系统的TOC浓度范围为2.2至2.4 ppb,平均测量值为2.28 ppb,标准偏差为0.06 ppb (%RSD = 2.46)。用预先清洁的烧瓶进行测量时,测得的水样TOC值比在线测量结果高出约7 ppb,平均TOC值为9.13 ppb,标准偏差为0.26 ppb(%RSD = 2.80)。用自动取样器取样时,测得的TOC值更高。用彻底冲洗的新试管来测量时,平均TOC值比在线测量结果高出25 ppb(平均TOC值为27.8 ppb,标准偏差为10.2 ppb)。用预先清洁的样品瓶来测量时,平均TOC值也偏高(22.6 ppb)。结论以上测量结果表明,在线TOC监测是测量超纯水的首选方法,在线监测可以防止样品被污染。而对于其它取样方法来说,在通常环境中,样品的采集和处理过程会为污染物进入样品提供大量机会。以下情况有助于大大减少污染:采用好的取样技术,在没有挥发性有机物的环境中取样和分析,使用严格清洁的玻璃样品。如要使用自动进样器,应使用预先清洁的样品瓶(关于样品瓶的选择,可点击这里查看更多内容)。◆ ◆ ◆联系我们,了解更多!
  • 154万!福建省环境监测中心站离线VOCs处理、进样及分析系统等仪器设备货物类采购项目
    项目编号:[3500]FJTH[GK]2022047项目名称:离线VOCs处理、进样及分析系统等仪器设备货物类采购项目预算金额:154.0000000 万元(人民币)最高限价(如有):154.0000000 万元(人民币)采购需求:品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100499-其他分析仪器离线VOCs处理、进样及分析系统1(套)否详见招标文件15000001-2A021099-其他仪器仪表RTK系统1(套)否详见招标文件300001-3A021099-其他仪器仪表全站仪1(套)否详见招标文件10000合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。本项目( 不接受 )联合体投标。
  • 《关于加快建立现代化生态环境监测体系的实施意见》印发实施
    日前,生态环境部印发《关于加快建立现代化生态环境监测体系的实施意见》(以下简称《意见》),构建现代化生态环境监测体系框架,明确现代化监测体系建设的基本思路、总体目标、主要任务和保障措施,作为今后一个时期监测发展的指导性文件。未来五年,生态环境监测数智化转型加速推进,监测数据质量持续改善,应用支撑更加高效,先行示范取得实效,监测管理体制机制更加顺畅,监测基础能力全面加强,现代化监测体系建设取得重要进展。展望2035 年,现代化生态环境监测体系基本建成,生态环境监测综合实力达到世界先进水平。《意见》中的主要任务包括五方面,健全天空地海一体化监测网络需要统一规划布局、提高一体化水平、促进提质增效、推进联网共享,塑造数智化监测技术新优势要完善监测技术体系、突破一批关键技术应用、加速新技术标准化进程、提升装备自主化水平,强化高水平监测业务支撑需开展美丽中国监测评价、支撑持续深入打好污染防治攻坚战、强化生态质量监督监测、推进减污降碳协同监测、加强生态安全风险监测预警,筑牢高质量监测数据根基要求健全质量管理制度、提高质控技术水平、严厉打击数据造假、引导市场有序发展,推进高效能监测管理完善国家监测格局、强化省域统筹协调、理顺市域运行机制。附件:《关于加快建立现代化生态环境监测体系的实施意见》
  • 在线监测 自动高效 | SUPEC 5240 现场在线监测系统,助力污水毒情研判
    背景意义毒品滥用问题已经成为全球性的社会顽疾,污水验毒就是一种科学有效的管控手段。通过测定某地区污水中毒品及代谢物的浓度水平,可推算出该地区毒品的用量,从而客观、全面的反映城市毒情,为公安机关锁定“毒源”,提供有力的技术支持。目前,污水毒品检测主采用离线固相萃取(SPE)法和在线SPE法两种前处理方法,且都具有较高的检测准确度。但以上实验方法也存在诸多不足,毒品及代谢物在样品采集、保存及运输过程中易被降解或发生理化反应,最终影响检测结果准确性。且离线方法前处理操作繁琐,样品用量大,增大了有机试剂用量及人力投入成本。在线监测、自动高效谱育科技SUPEC 5240 污水违禁药物在线监测系统应运而生,通过全自动污水采样-固相萃取-仪器分析在线联用技术,显著缩短分析时间、减少人为误差、提高数据时效性,实现对区域毒品快速筛查、时空趋势精准研判,助力公安禁毒数据化、自动化高质量发展。 产品概述 SUPEC 5240 污水违禁药物在线监测系统 SUPEC 5240 污水违禁药物在线监测系统基于性能出色的三重四极杆质谱技术,集成自动采水、样品过滤、前处理、分析检测、数据传输等模块,实现一键式操作,解决传统检测模式步骤繁琐、时效性差的痛点。通过发挥其兼准确性及便捷性优势,实现水质中毒品及其代谢物、环境污染物等物质的在线监测、实时预警,满足多项相关标准检测要求。 在线监测软件污水样品质控截图 产品特点01大体积进样灵敏度高支持大体积进样,样品利用率高,保障更高的灵敏度,低含量物质也能检出。02 在线SPE减少人为误差在线SPE,双柱交替运行,无需人为手动操作,减小人为操作误差。03省时省力、经济高效系统自动高效运行,减少人力投入,提升实验过程质控水平;相对离线方法,取样量少,减少试剂耗材成本。04大数据监控、实时预警自动监控仪器及系统运行状态,实时将监测数据上传至官方公共平台,24h连续自动监测,实时预警。应用领域SUPEC 5240可有效应对生活污水中毒品、环境水体中污染物等多项检测需求,可广泛应用于公安司法、环境监测等诸多行业。
  • 生态环境部印发《关于加快建立现代化生态环境监测体系的实施意见》
    各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:  为深入贯彻党的二十大精神和全国生态环境保护大会部署,全面推进现代化生态环境监测体系建设,全力支撑深入打好污染防治攻坚战和美丽中国建设,我部研究制定了《关于加快建立现代化生态环境监测体系的实施意见》,现印发给你们,请遵照执行。  生态环境部  2024年3月4日  (此件删减后公开)  抄送:各流域海域生态环境监督管理局,中国环境科学研究院、中国环境监测总站、中日友好环境保护中心(环境发展中心)、南京环境科学研究所、华南环境科学研究所、环境规划院、卫星环境应用中心、国家海洋环境监测中心。  生态环境部办公厅2024年3月13日印发
  • 生态环境部在《求是》发表文章,要加快建立现代化生态环境监测体系
    11月16日,生态环境部在《求是》杂志发表文章《准确把握新征程上推进生态文明建设需要处理好的重大关系》。习近平总书记2023年7月在全国生态环境保护大会上强调,总结新时代10年的实践经验,分析当前面临的新情况新问题,继续推进生态文明建设,必须以新时代中国特色社会主义生态文明思想为指导,正确处理几个重大关系,即高质量发展和高水平保护的关系、重点攻坚和协同治理的关系、自然恢复和人工修复的关系、外部约束和内生动力的关系、“双碳”承诺和自主行动的关系。此文章中提到:要处理好重点攻坚和协同治理的关系。我国生态环境保护结构性、根源性、趋势性压力尚未根本缓解,污染物和碳排放总量仍居高位,环保历史欠账尚未还清,生态环境质量稳中向好的基础还不稳固。新征程上,要处理好重点攻坚和协同治理的关系,以改善生态环境质量为核心,坚持精准治污、科学治污、依法治污,持续深入打好污染防治攻坚战,推动污染防治在重点区域、重要领域、关键指标上实现新突破。加大对突出生态环境问题集中解决力度,以细颗粒物控制为主攻方向,强化多污染物协同控制和区域污染协同治理,统筹推进水资源、水环境、水生态治理,强化土壤污染风险管控,加强固体废物综合治理和新污染物治理,不断提高人民群众生态环境获得感、幸福感、安全感。要处理好外部约束和内生动力的关系。我国生态环境治理体系仍有待健全,有的地方生态环境监管流于表面、监管不到位,有的企业法律意识淡薄,存在不正常运行污染治理设施、超标排放、监测数据造假等问题。新征程上,要处理好外部约束和内生动力的关系,打好法治、市场、科技、政策“组合拳”,加快健全党委领导、政府主导、企业主体、社会组织和公众共同参与的现代环境治理体系。继续发挥中央生态环境保护督察利剑作用,把严的基调和问题导向贯穿始终,进一步压紧压实各级党委和政府生态环境保护政治责任。持续推进重点领域法律法规制修订,建立健全和严格执行生态环境法规制度,强化执法监管,保持对环境污染和生态破坏问题高压态势。全面实行排污许可制,深化省以下生态环境机构监测监察执法垂直管理制度改革。实施生态环境科技创新重大行动,加快建立现代化生态环境监测体系,提高生态环境监管效能。要处理好“双碳”承诺和自主行动的关系。党的十八大以来,我们完整、准确、全面贯彻新发展理念,将碳达峰碳中和纳入经济社会发展全局和生态文明建设整体布局,坚持全国统筹、节约优先、双轮驱动、内外畅通、防范风险的原则,建立碳达峰碳中和“1+N”政策体系,推动地方和相关行业开展碳达峰行动。完善碳排放统计核算制度,健全碳排放权市场交易制度,启动和稳定运行全球最大的碳市场,年覆盖二氧化碳排放量约45亿吨。10年来,我国碳排放强度累计下降超过35%,扭转了二氧化碳排放快速增长的态势。2020年,我国二氧化碳排放强度比2005年下降48.4%,超额完成第一阶段国家自主贡献承诺。同时也要看到,实现“双碳”目标是一场广泛而深刻的经济社会系统性变革,不是轻而易举就能实现的,而是要付出持续艰苦努力。当前,全球生态环境问题政治化趋势增强,部分西方国家打“气候牌”,出台碳关税等政策,向发展中国家转嫁减排责任。新征程上,要处理好“双碳”承诺和自主行动的关系,落实好碳达峰碳中和“1+N”政策体系,有计划分步骤实施碳达峰行动。强化煤炭清洁高效利用,构建清洁低碳安全高效的能源体系。推动能耗“双控”逐步转向碳排放“双控”,健全碳排放权市场交易制度。推动减污降碳协同增效,开展多领域、多层次协同创新试点。
  • 203万!黑龙江烟草工业有限责任公司牡丹江卷烟厂离线检测仪器(气相色谱质谱联用仪和顶空气相色谱仪)购置项目
    项目概况黑龙江烟草工业有限责任公司牡丹江卷烟厂离线检测仪器(气相色谱质谱联用仪和顶空气相色谱仪)购置项目 招标项目的潜在投标人应在黑龙江省哈尔滨市南岗区闽江路75号华鸿国际中心写字楼25楼开标一室获取招标文件,并于2022年03月15日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:2022-30011项目名称:黑龙江烟草工业有限责任公司牡丹江卷烟厂离线检测仪器(气相色谱质谱联用仪和顶空气相色谱仪)购置项目预算金额:203.0000000 万元(人民币)最高限价(如有):203.0000000 万元(人民币)采购需求:气相色谱质谱联用仪1台和顶空气相色谱仪1台。合同履行期限:以合同约定为准(含安装)本项目( 不接受 )联合体投标。
  • 重磅推荐!Traceable TMS实时环境监测系统
    #Traceable TMS实时环境监测系统#生物制药和生命科学领域涉及的产品质量和人类息息相关,这些食品或药品等的研发、生产、存储、运输等关键环节往往受到诸多规范约束。如食品安全要求全部环节都遵循 HACCP,药品安全则受到更多约束,如WHO、GSP、GMP、FDA 21CFR11等诸多法规或法律的管控。要确保食品和药品从研发到市场流通环节均处于受控,过程环节参数的连续不间断监控是重中之重。Antylia旗下Traceable分析测量产品,致力于帮助用户智能化、高效地获得各类关键参数数据,并及时做出响应。功能介绍Traceable TMS环境监测系统由TMS环境监测软件、无线网关、无线数据记录仪以及相适应的传感器探头组成。系统具有多种功能,包括:实时数据监测功能审计追踪功能各种类超限报警功能多及权限管理功能客户自定义的各类报告功能数据自动备份功能 系统特色Traceable TMS环境监测系统具有显著的产品优势,操作简单、超限报警、电子签名、数据自动上传并可以生成自动报告等功能,确保满足GxP要求。😄界面良好使用简单、页面清晰易于理解。😄灵活报警超限或故障的远程或本地报警通过邮件、短信、微信、电话、声光报警器等多种形式发出。报警可通过PC或手机端进行确认。😄数据安全全面数据保护,每个记录仪和网关均具备离线缓存功能,服务器数据备份,确保网络中断或断电期间数据不中断。😄自动报告数据自动汇总包括日分析、数据曲线、最大值、最小值、平均值… … 可按需创建定制报告并通过电子邮件自动生成和发送经过分析后的数据报告。😄满足GXP安全合规地记录并存储数据,数据不可篡改,所有操作记录可追溯,具有符合法规的审计追踪和电子签名功能。 优势一览亮点一数据呈现方式多样化Traceable TMS数据呈现方式多种多样,包含:历史数据、最大、最小、平均值数据趋势图报警原因统计全局数据分析此外,数据报告可以自动发送,包括:按需创建报告发送模板数据周期可选按天、按周、按月数据内容可选历史数据、日分析、报警原因分析等内容亮点二灵活、及时的报警管理TMS系统可以记录和分析环境参数,当关键环境参数违反限值,系统会立即发出警报。用户可以根据需求进行个性化的智能报警管理设置,可选包括如下的功能:微信报警短信报警电话报警邮件报警声光报警音乐报警弹出报警亮点三严格合规的审计追踪TMS系统符合21CFR Part11的审计追踪要求,详细记录每一次操作,包括登录日志、操作日志和变更日志,确保监测过程安全、透明、合规。Traceable TMS系统易于安装与扩展,可实时监测环境参数并提供多样化的数据报告,且具有远程超限报警功能,可以提高工作效率,确保测量过程安全、透明、合规。了解更多信息,联系我们‍‍
  • 禾信推出PM2.5在线源解析质谱监测系统
    目前,中国大气污染严重,治理迫在眉睫。污染状况如何、污染是什么、如何快速判断污染来源、以及治理效果如何评估等问题,均是大气污染治理的难点。为了应对大气成分染污来源解析的需求,增强大气颗粒物污染防治工作的科学性、针对性和有效性,禾信公司全新推出基于国际领先的单颗粒气溶胶飞行时间质谱技术的PM2.5在线源解析质谱监测系统(SPA-MS 05系列),实现气颗粒物的在线源解析功能,不仅对快速变化大气污染过程进行监测,而且可在短时间内对污染来源进行判定。PM2.5 在线源解析质谱监测系统SPA-MS 05系列(实现PM2.5在线源解析的一种高效、可靠手段)  PM2.5 在线源解析质谱监测系统SPA-MS 05系列,是禾信公司具有完整自主知识产权、基于质谱技术的国际先进的在线源解析设备,是实现PM2.5在线源解析的高效、可靠手段。  开展快速精准的在线源解析工作  为政府及时了解污染现状及来源提供技术支撑  为重点城市、重点行业、重点企业的污染状况监测提供技术支撑  在AQI接近临界点时,为政府及时采取有效控制措施提供科学依据  为产业结构调整等治理措施提供科学依据  为环境管理部门检验治理成效提供技术支撑  为环保精细化管理提供科学依据  在环境应急、污染投诉排查时快速找到污染源  在线源解析(质谱直接测量法)的优势  基于国际领先的单颗粒气溶胶飞行时间质谱技术  直接进样、不需要前处理  高时间分辨率,1小时可得到源解析结果  不同的来源,颗粒物的质谱特征不同  实时在线监测每一个颗粒物的粒径和质谱特征  智能高效的在线源解析功能,实现快速精准分析  具备全天候监测能力,在恶劣气象条件下发现污染排放现象  具备捕捉间歇式瞬间污染排放现象的能力在线源解析(质谱直接测量法)在线源解析技术与传统离线源解析综合对比  在线源解析的基础:丰富的谱图库资源  结合全球顶尖科学家20年的应用成果,与国内权威机构多年合作完成建立拥有100余类典型源谱谱库;  具备在线源谱库自建功能;  与用户紧密合作不断完善和修订谱库资源,提高源解析精确度。  领先的飞行时间质谱技术  实时在线:无需繁琐的前处理过程  快速、高时间分辨:可捕捉到瞬时变化  单颗粒质谱技术:粒径,有机、无机成分正负离子同时检测  数据分析:每天几十万个颗粒物质谱信息记录与处理  机动性强:实验室、车载、船载  智能高效的在线源解析软件  禾信自主研发的应用于SPA-MS系列仪器的在线源解析软件,可实时显示颗粒的粒径、正负谱成分信息,融合了在线源解析、颗粒类型统计的功能,具备在线源谱库自建功能,实时采集大气颗粒物,对其进行在线源解析。  同时,基于Matlab平台,软件以简捷的数据结构,直观的界面操作,并融入各种成熟的数据模型,满足客户离线获取数据的需要 并且能够根据科研需求,兼容其它多种数据分类方法。
  • 清华山西院LIBS煤质在线监测系统成功投用
    近期,晋能控股电力集团塔山发电公司成功投用LIBS煤质在线监测系统,标志着该公司在“智慧电厂”建设中又迈出新的一步。该监测系统是2020年度山西省科技重大专项(揭榜招标项目第一批)“火电机组全过程节能智能监控技术及工程示范”项目里的一项重大课题,由清华大学科研团队揭榜进行技术研发及其成果转化应用,清华大学和塔山发电公司经过近2年的高效合作,目前该系统成功投运。该公司投用的LIBS在线煤质监测系统,使用先进的激光诱导穿透光谱分析方法,能够在短时间内检测出煤炭的特性参数,并将结果直接反馈到运行控制中心,为控制系统实时提供相关参数。同时,发电机组DCS显示入炉煤皮带、原煤仓料位、磨煤机出力等基本参数,对煤流行程可视化实时监督,实时显示、跟踪、查询、分析运行机组的煤质变化趋势,动态监控优化锅炉燃烧,为煤炭的高效低污染燃烧提供了技术支持。对提高能源利用效率,确保火力发电厂生产的经济性、安全性具有十分重要的意义。除了测量速度快、多元素同时分析等优势,激光诱导击穿光谱(LIBS)还具有安全无辐射、成本低等优点,是目前先进的煤质在线监测技术。它可完全取代时间滞后的人工煤质离线采制化分析,节约人工2到3人,使煤质检测分析时间缩短到12分钟。该成果是由清华大学山西清洁能源研究院(简称清华山西院)智慧能源研发团队牵头完成。清华山西院是由清华大学独立举办、山西省人民政府支持设立和建设,从事科研相关活动和成果转化的事业单位。自2015年12月正式成立以来,清华山西院充分发挥清华大学学科、技术、人才优势,与山西资源、产业、政策实现优势互补,诞生了一批卓有成效的科研和转化成果。智慧能源研发团队则围绕智慧能源系统的关键技术开展研发和应用。该团队开发的火电机组性能监测系统,与太原理工大学、山西华仁通电力科技有限公司、山西漳电大唐塔山发电有限公司合作承担山西省科技计划揭榜招标项目——火电机组全过程节能智能监控技术及工程示范,实现了上述技术在山西省火电机组的示范应用。
  • 赛默飞VOCs:离线+在线 全方位应对标准要求
    p  大气中挥发性有机物(VOCs)是形成臭氧污染的重要前体物,是生成光化学烟雾污染物的主要前体物,也是大气细粒子中有毒有害有机组分的重要来源。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,大气污染控制中又一新关注点。掌握VOCs 浓度水平和变化规律,能够有的放矢地开展污染防治工作。随着2017 年12 月中华人民共和国生态环境部下发的环办监测函[2017]2024 号文件,中国正式拉开环境大气VOCs 检测的序幕。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 196px " src="https://img1.17img.cn/17img/images/201912/uepic/2216a98c-19ce-4279-8e7f-b983a638ab5e.jpg" title="赛默飞VOCs解决方案.jpg" alt="赛默飞VOCs解决方案.jpg" width="600" height="196" border="0" vspace="0"//pp  span style="color: rgb(0, 112, 192) font-size: 18px "strong完美应对环境标准/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) font-size: 18px "strong/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 236px " src="https://img1.17img.cn/17img/images/201912/uepic/eb04758a-8dcd-40ac-b9fd-08550145239b.jpg" title="11.jpg" alt="11.jpg" width="600" height="236" border="0" vspace="0"//pp  span style="color: rgb(0, 112, 192) font-size: 18px "strong离线监测方案/strong/span/pp  赛默飞VOCs 离线监测方案全方位应对标准列明的117 项VOCs,其中包括PAMS-57 种,TO15-47 种, 醛酮13 种。/pp  strong1. 罐采样- 气相色谱- 质谱法监测环境大气中VOCs/strong/pp  在中国环境保护厅发布的环办监测函[2017]2024 号文件中,对大气VOCs 监测做了明确要求,其中城市需要具备手动监测的能力,且推荐使用HJ759-2015《环境空气 挥发性有机物的测定 罐采样- 气相色谱- 质谱法》作为57 种原PAMS 监测的方法。赛默飞与低温冷阱预浓缩连接,能够成功分析PAMS 中多组分,满足检测要求。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 306px " src="https://img1.17img.cn/17img/images/201912/uepic/97c69c45-9018-4b98-99dd-c2bd2c1e677c.jpg" title="22.jpg" alt="22.jpg" width="600" height="306" border="0" vspace="0"//pp  strong2. 热脱附- 气相/ 气质监测环境大气中VOCs/strong/pp  赛默飞公司拥有业界领先的气相色谱及单四极杆气质联用仪,联合合作伙伴热脱附技术, 采用吸附管离线采集空气样品的方式对空气进行监测,可以满足HJ644-2013、HJ734-2014 的方法,做出完全符合标准要求的结果。该解决方案拥有如下特点:/pp  ◆ 连接简单,应用灵活:TD 和GC-MS 连接,只需要一个进样口适配器即可完成仪器的连接。可以随时根据需要连接仪器或断开连接,使应用更加灵活。/pp  ◆ 安全可靠:电子制冷的捕集阱,无需制冷剂操作—— 最大程度地降低成本,并更加完全可靠。/pp  ◆ 仪器稳定、可靠:GC-MS 和TD 两者的气路均由电子气路控制,使得仪器稳定性更好。且TD 样品测试前均有严格的泄漏测试,防止样品失真。/pp  ◆完全符合国际标准方法:US EPA 方法 TO-17、ASTM D6196-03、EN/ISO 16017、EN/ISO 16000 等。/pp  strong3、液相色谱法测定大气VOCs 中醛酮类化合物/strong/pp  赛默飞高效液相/ 超高效液相色谱方法,将空气中的醛酮类化合物吸附至装填有2,4- 二硝基苯肼(DNPH)涂渍的硅胶采样管,使醛酮化合物与DNPH 反应生成稳定有色化合物-醛(或酮)-DNPH 衍生物。衍生后的化合物具有苯环和双键结构,为强紫外吸收官能团,利用液相色谱法的高效分离能力可准确并有效地分析空气中的醛酮化合物含量。样品前处理简单,灵敏度高,有良好的线性范围和重现性,可监测标准内要求的13 种醛酮化合物。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 377px " src="https://img1.17img.cn/17img/images/201912/uepic/aa782025-172d-457b-972f-692bed699836.jpg" title="33.jpg" alt="33.jpg" width="600" height="377" border="0" vspace="0"//pp  span style="color: rgb(0, 112, 192) font-size: 18px "strong在线监测全流程解决方案/strong/span/pp  环境空气中需要监测的PAMS 和TO-15 中共计104 种VOCs,中国目前仍未出台相应的在线监测标准。目前市面上对这104 种组分在线分析主要有两种解决方案:Deans Switch-FID/MS 解决方案和双通道-FID/MS 解决方案。赛默飞及其合作伙伴能够完整地提供这两种解决方案,均适用于环境大气中VOCs 的在线分析。/pp  strong24 × 7 全天候/strong/pp  专利化真空锁定装置,保证系统24 × 7 全天候运行,满足环办监测函[2017]2024 号文件中“重大活动保障和重污染时段不得停机”的要求。/pp  strong享誉业界的数据处理系统/strong/pp  数据处理系统是分析检测的一个核心环节,关系到分析流程简便性、分析结果的准确性。Chromeleon 软件控制,界面友好,操作简单。同时具备Auto-SIM 和T-SIM 功能,快速建立测试方法。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C236130.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/f304c28e-4a20-496f-be66-8d723f886681.jpg" title="44.jpg" alt="44.jpg"//a/pp  strong预浓缩模块,多方法可选/strongbr//pp  · 电子制冷/pp  · 吸附管/pp  strong整体化方案,一应俱全/strong/pp  · 数据采集模/pp  · 气源模块/pp  · 数据传输模块/pp  · 标定模块(可选)/pp  · UPS(可选)/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 378px height: 450px " src="https://img1.17img.cn/17img/images/201912/uepic/3830fa00-ea29-4f51-bae9-0713177fdc25.jpg" title="55.jpg" alt="55.jpg" width="378" height="450" border="0" vspace="0"//pp  strong优势GC-MS,全面应对VOC 检测/strong/pp  · 专利化ExtractaBright 离子源和超高灵敏度AEI 源可供选择。/pp  · “S”型预四极杆,保证仪器超高灵敏度,应对超痕量VOCs。/pp  · 二合一检测:实现一台机器能同时检测高碳VOC 组分和低碳VOC 组分。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 245px " src="https://img1.17img.cn/17img/images/201912/uepic/676931e3-29de-43b3-b215-6ff84b74a209.jpg" title="66.jpg" alt="66.jpg" width="450" height="245" border="0" vspace="0"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C283211.htm" target="_blank"ISQ 7000 GCMS/a/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/0cdeb521-2e1d-4b5c-b971-38bb9f43f94c.jpg" title="77.jpg" alt="77.jpg"//pp  strong多方案可选,提供定制化方案/strong/pp  1.span style="color: rgb(0, 112, 192) "Deans Switch-FID/MS 解决方案/span:目标化合物从浓缩仪转移到GC& GC/MS 上进行分析时,所有化合物先在第一根色谱柱上进行分离,未能完全基线分离的低碳组分采用中心切割技术切割另外一根色谱柱上进行再次分离,FID 检测。能够基线分离的继续第一根色谱柱分离,GC/MS 检测。/ppbr//ppimg style="width: 300px height: 156px " src="https://img1.17img.cn/17img/images/201912/uepic/06653d4a-acf0-47ab-9839-4f1303a0e11e.jpg" title="881.jpg" width="300" height="156" border="0" vspace="0" alt="881.jpg"/img src="https://img1.17img.cn/17img/images/201912/uepic/d0ab024f-bfab-4a0a-a730-6a82be4bc6fc.jpg" title="882.jpg" width="300" height="161" border="0" vspace="0" alt="882.jpg" style="width: 300px height: 161px "//pp  2. span style="color: rgb(0, 112, 192) "双通道-FID/MS 解决方案/span:气体浓缩仪在线气体采集时即分成双通道(双冷阱)分别用于分析低碳VOCs(FID 通道)和高碳VOCs(GC-MS 通道)的分析检测。/ppimg style="width: 300px height: 159px " src="https://img1.17img.cn/17img/images/201912/uepic/2672fde5-14c5-451d-b556-886d58da467e.jpg" title="991.jpg" width="300" height="159" border="0" vspace="0" alt="991.jpg"/img src="https://img1.17img.cn/17img/images/201912/uepic/14fb74b0-1323-4ab1-8e72-bbab3f76c3d1.jpg" title="992.jpg" width="300" height="158" border="0" vspace="0" alt="992.jpg" style="width: 300px height: 158px "//p
  • 泽铭公司新一代走航式环境监测系统投入运行
    走航式水环境监测系统是一套全自动、实时水生态水质走航在线监测系统,由泽铭公司设计集成,是一套以多参数水质监测仪,在线光谱监测仪和营养盐原位监测仪为核心,运用现代物联传感技术和自动控制技术,专用数据分析软件和通讯网络构成的水质自动监测体系。其基本涵盖了常规水质监测参数(水温、pH、溶解氧、电导率、氨氮、浊度、蓝绿藻、叶绿素、COD、BTX苯系物(苯-甲苯-二甲苯)、TOC、NO3、指纹图和光谱报警),具有多参数、智能化、测量周期短、低维护的特点,适合于船载走航式测量。图1.水质监测集成箱体走航式水环境监测系统具有以下特点:(1)整体集成度高、体积小、可在中小型船只上安装使用。(2)提供全套解决方案,涵盖了五参数+氨氮+蓝绿藻+叶绿素+COD等主要水质参数和气象要素气温、气压、温度、湿度、风速、风向、航行方向、航速、视频图像等,测量周期短,连续、及时和准确监测目标水域的水质变化,适用于不同水体的走航式监测。(3)在线连续监测,无需药剂,无耗品,无二次污染。(4)自动化程度高,自带清洁功能,几乎免维护。(5)监测频次高,5分钟一组数据,适合宽阔水域走航式监测。(6)强大软件系统:图形化应用界面,分屏图形与数据曲线互动,数据查询统计和存储,区域水质与航行状况,异常数据报警等。(7)可持续研发并不断扩展可监测指标。(8)测量方法符合现行国标/行标规范要求,或与传统方法监测结果具有可比性。图2.走航式水环境监测系统软件功能说明:该软件是离线式可升级的数据分析应用平台,具体包含图形化航行轨迹、数据查询统计存储、区域水质状况模拟、异常数据报警、监测报告生成、系统管理等功能。图3.软件登录 图4.功能界面1.图形化航行轨迹用户可利用工具对显示界面进行放大、中心放大、缩小、中心缩小、漫游、全景显示、返回前/后操作视图,定义视图书签等图形化操作。提供经纬度定位实时信息并加载地图。系统在进行缩放时,可自动根据当前视窗地比例尺,调整显示图层和某一图层中信息量的疏密关系及效果,保证最佳的视觉效果和最快显示速度。地图具备漫游操作等常见功能,可以将当前屏幕显示的整幅地图随着鼠标的移动而显示,直至移动到目标位置。地图中水质图层与数据曲线可实现多屏实时互动。图5.水质动态模拟2.数据查询统计和存储 用户可以选择以表格、二维曲线形式显示单个/多个/全部指标的实时监测数据和历史监测数据,可选择查看不同时段的数据和统计结果;实时数据和趋势曲线可在不刷新页面的情况下自动生成、动态更新;地图上点位数据可点击转到数据曲线中高亮显示,实现地图上水质信息与数据查询互动。图6.数据曲线图7.后台数据管理3.区域水质状况模拟以监测结果数据为依据,利用地理信息系统(GIS)技术,实现对区域水质状况的模拟与三维可视化表达;可依据软件内嵌的模型算法对蓝藻分布和污染物扩散趋势进行预测预警。图8.水质动态模拟4.异常数据报警(1)超标报警:根据监测结果和预设标准限值,提供实时报警服务,当监测数据超出预设限值时产生超标报警事件,向指定用户发出报警信息,信息内容包括发生超标报警的时间、测点名称或地理位置、报警项目、监测值、处理情况等;在地图上用警示记号标红出超标位置和超标水质指标。(2)系统故障报警:当系统出现故障时,向指定用户自动发送故障报警信息,同时停止采集数据;用户可查询某一时间段内的故障报警信息,内容包括故障发生时间、测点名称或地理位置、故障描述、处理情况等。5.监测报告生成根据用户要求,利用监测数据自动生成监测报告,内容应包括文字描述和统计图表,能正确表述监测水域水质总体状况、监测指标均值、最大值、最小值,最值所在测点名称/位置,同比环比变化趋势,报告格式符合规范要求。6.系统管理根据用户需要,划分用户角色并分配权限,记录监测设备信息、厂商维护信息、系统操作日志和软件版本信息,实现统一管理。图9.多屏实时互动图10.多参数水质藻类分析仪EXO2图11.Spectro::lyser TM v2 紫外可见UV-VIS多参数分析仪
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断
    总有机碳TOC (Total Organic Carbon),是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如GE的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。◆ ◆ ◆案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:1. 为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;2. 加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:a. 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;b. 在超滤后增加活性炭过滤器;c. 或在电除盐EDI前增加脱氧膜组;d. 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。◆ ◆ ◆为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部0682章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。◆ ◆ ◆如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。Sievers M9便携式、M9在线型、500RL在线型TOC分析仪均使用选择性膜电导检测技术CheckPoint在线/便携式TOC分析仪使用直接电导检测技术
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断案例
    总有机碳TOC (Total Organic Carbon)是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如苏伊士Sievers分析仪的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:01为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;02加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:- 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;- 在超滤后增加活性炭过滤器;- 或在电除盐EDI前增加脱氧膜组;- 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部0682章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。Sievers M9便携式、M9在线型、500RL在线型TOC分析仪均使用选择性膜电导检测技术CheckPoint在线/便携式TOC分析仪使用直接电导检测技术◆ ◆ ◆联系我们,了解更多!
  • 十四五正式开启,扬尘环境监测系统将得到怎样的发展?
    根据有关部门采访显示,“十四五”期间将全面提高环境监测能力。当前,生态环境监测工作仍面临统一的生态环境监测体系尚未形成、对污染防治攻坚战精细化支撑不够、法规标准有待完善、数据质量仍需提高、保障力度依然不足等问题。 针对尚未解决的环境治理、污染防治问题,政府有关领导做了如下发言:“十四五”监测规划将重点从理顺监测的体制机制、优化生态环境的监测网络、深化监测业务体系、强化新技术的引领、全面提升监测能力等方面发力,全面推动国家、区域、地方的监测能力和水平提高,有效支撑升级版的污染防治攻坚战。通过上述发言以及近期政府各项表态来看,相较于十三五期间,针对环境治理的热度不降反增,也就是说2017年两会的《蓝天保卫战》虽然收官了,但是新一轮扬尘环境治理政策又即将要推行,我们在进行城市建设时,除了具体规划之外,还是要重视扬尘监测设备的使用。 扬尘监测在当今社会的意义建大仁科扬尘监测系统起初是为了节省人力物力,提高准确率,为现场处理和行政执法提供历史的数据支持的一款设备。随着科技的进一步发展,扬尘监测系统逐渐开始完善,补充了有效的实时监测技术和定量化监管手段,补足颗粒物总量核定办法和依据,为环境进一步治理提供了大数据支撑预警分析。扬尘监测系统的功能扬尘监测系统会对环境进行连续不断的监测,并实时上传数据。主要监测的项目为可吸入颗粒物,并且根据功能不同可分为感知层、传输层和应用层。 扬尘监测系统主要用于在线扬尘、环保、气象站、隧道等在线扬尘监测无组织烟尘污染源排放及居民区、商业区、道路交通、施工区域等等;环境空气质量在线实时自动监控,并能通过摄像头取证;气象站监测以及隧道地铁站所得实时数据均能通过有线或无线网络及时传递到环境监测便于管控。感知层和传输层为视频监控系统、噪声监控系统、气象系统、数据采集系统和通信系统等。因为这两项在之前文章中讲述了很多,所以今天我们重点讲述应用层,也就是扬尘监测云平台。扬尘监测云平台扬尘监测云平台是部署在云端的环境监控平台,可解决客户自建服务器无公网IP、外网攻击、日常维护繁琐、经常断电等诸多不便,云平台可实现数据的实时查看、历史数据查看,导出,多种方式报警等功能。 该云平台可以同时监控温度、湿度、噪声、光照、PM10、PM2.5、风速、风向、大气压力等16种环境因子实时信息。界面简洁,可以实时监控数据变化,特有设备可视化与大屏可视化设计页面,方便监管人员监控。可查看多个监测地点,自动弹跳报警框,更快发现报警、离线设备,地图显示设备位置,问题设备的坐标点快速变色,可在地图中快速查找到问题设备。拥有综合分析界面,快速总结监控环境的问题所在。云平台可接入监控摄像头,实时查看监控的工地环境具体变化。支持历史数据、报警数据导出,符合政府存档要求。拥有设备监控环境排名界面,可以查看多场所环境质量优劣。
  • 喜报:先正达引进芬兰Pixact公司PCM结晶监测系统!
    喜报:先正达引进芬兰Pixact公司PCM结晶监测系统! 先正达是世界领先的农业公司,总部位于瑞士巴塞尔,通过帮助广大农民更有效率地使用现有资源、以提升全球的粮食安全。遍布全球90多个国家,致力于改进作物种植方法,拯救濒临退化的耕地,提高生物多样性并繁荣农村社区。 创新,尤其是研发,是先正达战略的核心。先正达在全球拥有5000多名研发人员,与大学、研究机构和商业组织建立了500多项研发合作,凭借对植物的深入理解,广泛的技术实力以及全球覆盖,先正达能够为种植者提供整合解决方案,帮助他们可持续地提高农业生产力;同时,持续满足法规制定者、作物加工者和消费者的更高望。近日,先正达南通技术中心引进芬兰Pixact公司的PCM结晶监测系统,此次新设备引进将促进先正达为全球的种植者提供定制化、规模化的整合解决方案,以满足其多样化的需求。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。 PCM结晶监测系统不需要离线取样,可以实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。 PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等。 PDM液滴监测系统是为在线分析液滴和乳液而设计。 PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等)。 芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管,均可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。创新是企业兴旺的灵魂,先正达与时俱进,不断推动理念创新,管理创新,科技创新,此次与北京海菲尔格科技有限公司合作,引进世界先进设备武装科研,必将实现农业生产力全球性的飞跃。
  • 许昌市生态环境局鄢陵分局682.20万元采购空气监测系统
    详细信息 Y2022HZ152“许昌市生态环境局鄢陵分局12个镇2参数升级6参数环境空气质量监测站项目(不见面开标)招标公告 河南省-许昌市-鄢陵县 状态:公告 更新时间: 2022-12-29 招标文件: 附件1 附件2 项目概况 许昌市生态环境局鄢陵分局12个镇2参数升级6参数环境空气质量监测站项目招标项目的潜在投标人应在《全国公共资源交易平台(河南省﹒许昌市)》(http://ggzy.xuchang.gov.cn:8088/ggzy/)获取招标文件,并于2023年02月02日09时30分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:2022-10-7 2、项目名称:许昌市生态环境局鄢陵分局12个镇2参数升级6参数环境空气质量监测站项目 3、采购方式:公开招标 4、预算金额:6,822,000.00元 最高限价:6822000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 2022-10-7-1 第一标段 3411000 3411000 2 2022-10-7-2 第二标段 3411000 3411000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1采购内容:本项目拟在2019 年鄢陵县乡镇环境空气站PM10、PM2.5、气象五参数及站房等基础上增加气态四因子(S02、CO、NOx、03)及配套附属质控设备等升级为标准六参数环境空气监测站,一标段:6套,二标段6套,共计 12套。5.2质量要求:合格。 5.3交付(实施)时间(期限):自合同签订生效之日起30日历天,完成安装并具备验收条件。5.4交付(实施)地点(范围):采购人指定地点。 6、合同履行期限:同交付实施时间期限 7、本项目是否接受联合体投标:否 8、是否接受进口产品:否 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无 3、本项目的特定资格要求 无 三、获取招标文件 1.时间:2022年12月30日 至 2023年02月02日,每天上午00:01至12:00,下午12:01至23:59(北京时间,法定节假日除外。) 2.地点:《全国公共资源交易平台(河南省﹒许昌市)》(http://ggzy.xuchang.gov.cn:8088/ggzy/) 3.方式:在线下载 4.售价:0元 四、投标截止时间及地点 1.时间:2023年02月02日09时30分(北京时间) 2.地点:本项目采用网上投标,请符合投标条件的供应商使用CA数字证书加密上传投标文件。 五、开标时间及地点 1.时间:2023年02月02日09时30分(北京时间) 2.地点:本项目采用“不见面开标”网上开标方式,请投标供应商使用CA数字证书登录《全国公共资源交易平台(河南省﹒许昌市)》—进入公共资源交易系统(http://ggzy.xuchang.gov.cn:8088/ggzy/)—点击“项目信息—项目名称”在规定的开标时间内进行解密开标。逾期提交或不符合规定的投标文件不予接受。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《许昌市政府采购网》、《全国公共资源交易平台(河南省.许昌市)》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 1.本项目采用电子系统进行招投标,请在投标前详细阅读全国公共资源交易平台(河南省.许昌市)首使用页“资料下载”栏目的《交易系统全电子操作手册(投标人)》及其附件。2.投标供应商在电子系统使用过程中遇到涉及系统的问题,可致电0374-2961598进行咨询。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:许昌市生态环境局鄢陵分局 地址:鄢陵县北关街406号 联系人:潘先生 联系方式:0374-7361657 2.采购代理机构信息(如有) 名称:中鼎景宏工程管理有限公司 地址:郑州市高新区瑞达路96号创业中心D区 联系人:李先生 联系方式:18137497080 3.项目联系方式 项目联系人:李先生 联系方式:18137497080 扫描件.doc 环保局招标文件(最终).pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:空气监测系统 开标时间:2023-02-02 09:30 预算金额:682.20万元 采购单位:许昌市生态环境局鄢陵分局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中鼎景宏工程管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 Y2022HZ152“许昌市生态环境局鄢陵分局12个镇2参数升级6参数环境空气质量监测站项目(不见面开标)招标公告 河南省-许昌市-鄢陵县 状态:公告 更新时间: 2022-12-29 招标文件: 附件1 附件2 项目概况 许昌市生态环境局鄢陵分局12个镇2参数升级6参数环境空气质量监测站项目招标项目的潜在投标人应在《全国公共资源交易平台(河南省﹒许昌市)》(http://ggzy.xuchang.gov.cn:8088/ggzy/)获取招标文件,并于2023年02月02日09时30分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:2022-10-7 2、项目名称:许昌市生态环境局鄢陵分局12个镇2参数升级6参数环境空气质量监测站项目 3、采购方式:公开招标 4、预算金额:6,822,000.00元 最高限价:6822000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 2022-10-7-1 第一标段 3411000 3411000 2 2022-10-7-2 第二标段 3411000 3411000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1采购内容:本项目拟在2019 年鄢陵县乡镇环境空气站PM10、PM2.5、气象五参数及站房等基础上增加气态四因子(S02、CO、NOx、03)及配套附属质控设备等升级为标准六参数环境空气监测站,一标段:6套,二标段6套,共计 12套。5.2质量要求:合格。 5.3交付(实施)时间(期限):自合同签订生效之日起30日历天,完成安装并具备验收条件。5.4交付(实施)地点(范围):采购人指定地点。 6、合同履行期限:同交付实施时间期限 7、本项目是否接受联合体投标:否 8、是否接受进口产品:否 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无 3、本项目的特定资格要求 无 三、获取招标文件 1.时间:2022年12月30日 至 2023年02月02日,每天上午00:01至12:00,下午12:01至23:59(北京时间,法定节假日除外。) 2.地点:《全国公共资源交易平台(河南省﹒许昌市)》(http://ggzy.xuchang.gov.cn:8088/ggzy/) 3.方式:在线下载 4.售价:0元 四、投标截止时间及地点 1.时间:2023年02月02日09时30分(北京时间) 2.地点:本项目采用网上投标,请符合投标条件的供应商使用CA数字证书加密上传投标文件。 五、开标时间及地点 1.时间:2023年02月02日09时30分(北京时间) 2.地点:本项目采用“不见面开标”网上开标方式,请投标供应商使用CA数字证书登录《全国公共资源交易平台(河南省﹒许昌市)》—进入公共资源交易系统(http://ggzy.xuchang.gov.cn:8088/ggzy/)—点击“项目信息—项目名称”在规定的开标时间内进行解密开标。逾期提交或不符合规定的投标文件不予接受。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《许昌市政府采购网》、《全国公共资源交易平台(河南省.许昌市)》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 1.本项目采用电子系统进行招投标,请在投标前详细阅读全国公共资源交易平台(河南省.许昌市)首使用页“资料下载”栏目的《交易系统全电子操作手册(投标人)》及其附件。2.投标供应商在电子系统使用过程中遇到涉及系统的问题,可致电0374-2961598进行咨询。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:许昌市生态环境局鄢陵分局 地址:鄢陵县北关街406号 联系人:潘先生 联系方式:0374-7361657 2.采购代理机构信息(如有) 名称:中鼎景宏工程管理有限公司 地址:郑州市高新区瑞达路96号创业中心D区 联系人:李先生 联系方式:18137497080 3.项目联系方式 项目联系人:李先生 联系方式:18137497080 扫描件.doc 环保局招标文件(最终).pdf
  • 安徽省计量院顺利通过“机动车尾气遥感检测系统”建标考核
    近日,安徽省考核专家对安徽省计量院新建“机动车尾气遥感检测系统”进行了现场考核。   评审专家对此次申报建标的技术报告进行详细审阅,并进行了认真细致的现场考核。最后,专家认为此次安徽省计量院新建的“机动车尾气遥感检测系统”符合《机动车尾气遥感检测系统校准规范》(JJF1835-2020)要求,给予一次性通过。   机动车尾气遥感检测系统是应用遥测技术来测量由汽车排气污染物引起的长距离光度的变化。它可在路边直接测量汽车尾气浓度,不影响汽车正常行驶。   其主要目的是建设城市机动车尾气遥感网络化监测体系,可在很短的时间内监测行驶中机动车排放的一氧化碳、二氧化碳、碳氢化合物、氮氧化合物、温湿度压力差、车速等信息,同时可以在线或者离线对监测数据进行分析,为机动车尾气排放监控、城市大气污染源解析及尾气污染治理提供有力的数据支持,同时为社会提供该项目的计量校准服务。安徽省是继北京、上海后第三个建立该项计量标准的省份。
  • 岛津应用:农产品农残的离线SFE-GC/MS分析方案
    日本于2006年颁布执行了日本肯定列表制度。该制度对800多种农药规定了最大残留限量标准。因此,需要进行包括样品预处理在内的性质各异的多农残同时分析。在当前食品残留农药的分析中,通常使用LC/MS或者GC/MS对通过溶剂萃取法萃取出的农药进行分析。但是,溶剂萃取法不仅在预处理操作中需要花费大量的劳力和时间,还需要使用大量有机溶剂。 因为二氧化碳低极性、低粘度、高扩散,将超临界二氧化碳流体作为萃取溶剂,进行超临界流体萃取(Supercritical FluidExtraction,SFE)。可以在短时间内进行萃取,并且与当前使用的有机溶剂相比,使用的有机溶剂量少,是一种环保型萃取方法。 本文向您介绍通过Nexera UC离线SFE系统从农产品中萃取出残留农药,然后使用GC-MS进行分析的示例。 了解详情,敬请点击《通过Nexera UC离线SFE-GC/MS系统分析农产品中的残留农药》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 热烈庆祝浙江新和成股份有限公司引进芬兰Pixact公司PCM结晶监测系统
    热烈庆祝浙江新和成股份有限公司引进芬兰Pixact公司PCM结晶监测系统 浙江新和成股份有限公司创建于1999年,2004年作为国内中小企业板第一股在深交所成功上市。公司现有浙江新昌、浙江上虞、山东潍坊、黑龙江绥化4个现代化生产基地,新和成始终坚持“创新精细化工,改善生活品质”的使命,专注于精细化工,坚持创新驱动发展和在市场竞争中成长的理念,不断创新发展营养品、香精香料、高分子材料和原料药等功能性化学品,并在这些领域为全球100多个国家和地区的客户创造了可持续的价值。浙江新和成股份有限公司坚持以技术创新为驱动力,坚持研发是创新的保障。近期引进芬兰Pixact公司PCM结晶监测系统助力研发。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。PCM结晶监测系统不需要离线取样,可以实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。 芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统、PSM浆料监测系统等。PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;PDM液滴监测系统是为在线分析液滴和乳液而设计;PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等);PSM浆料监测系统是为在线分析工业过程中的残留颗粒物或杂质、颜色和光泽度而设计,可以在暗黑、棕色、浓稠多相体系中测试。芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管。可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。浙江新和成股份有限公司勇于创新的开拓精神加之PCM结晶监测系统的助攻,相信不久的将来,新和成将成为中国新和成、世界新和成,成为一个全球化企业,在化工制造、工业发展史上留下浓墨重彩的一笔。
  • 《关于加快建立现代化生态环境监测体系的实施意见》专家解读:科技创新与质量管理专题
    2024年3月13日,生态环境部印发《关于加快建立现代化生态环境监测体系的实施意见》(以下简称《意见》),为新时代下生态环境监测事业发展指明了方向。为进一步指导全国监测系统准确把握《意见》精神,中国环境监测总站(以下简称总站)组建政策解读专家团队,从多个角度提供专业解读,助力《意见》落地见效。本期围绕科技创新和质量管理两个主题,对《意见》中提出的相关政策进行详细解读并指明实施路径。科技创新篇从科技创新工程支撑监测业务、领域科技促进产学研用、自主创新促进成果转化和多源交流强化多方合作四个维度引领现代化生态环境监测体系建设。质量管理篇以质量管理体系设计、质量管理信息化建设、质量管理效能提升三方面为抓手,从国家层面先试先行引导地方直联共享,为生态环境监测现代化提供坚实的质量后盾。坚持科技创新引领现代化生态环境监测体系建设 党的二十届二中全会对科技体制改革作出重大部署,赋予了生态环境部推动生态环境领域科技创新的历史使命和重大责任。科技创新不仅是驱动经济发展的强大引擎,也是美丽中国建设的关键支撑。《意见》要求强化科技保障,实施生态环境监测科技创新工程,激发科技创新活力。生态环境监测作为生态环境领域战略科技力量,要坚持问题导向,以数智化转型为驱动,开展生态环境监测领域重大科技需求凝练,积极参与京津冀环境综合治理科技重大专项设计与实施,开展与美丽中国相适应的现代化生态环境监测理论体系研究,强化生态环境天空地海一体化监测关键技术攻关,加强监测技术科研和成果转化,推动科技创新成果从理论走向实践,从实验室走向应用场。为更好发挥科技创新支撑、引领和服务作用,在建设现代化生态环境监测体系中应重点把握以下内容。 一、坚持科研与业务深度融合,实施生态环境监测科技创新工程。 充分了解监测行业发展动态,特别是国际和国内监测技术研究水平和趋势,做到了然于心、有的放矢。聚焦生态环境监测的关键科学问题和业务瓶颈,认真梳理科技创新目标,开展与美丽中国相适应的现代化生态环境监测理论体系研究,强化天空地海一体化监测关键技术攻关,重点围绕减污降碳协同增效、改善生态环境质量、扩绿增汇、风险防范等方面加强一体化监测核心技术研究。积极参与京津冀环境综合治理科技重大专项和国家重点研发计划项目设计与实施,推动实施生态环境监测科技创新工程。 二、以开放、协作的理念,打造生态环境监测领域科技支撑力量。 广泛联合高等院校、科研院所和骨干企业,牵头申报大项目,凝练大成果,积极申报高水平科技奖,共建监测装备研发与应用创新基地。通过强强联合,深度参与生态环境领域大科学装置研发和重点实验室、工程技术中心、科学观测研究站等创新平台建设。推进实施高层次生态环境监测科技人才工程,培养高水平生态环境监测科技人才,打造生态环境监测领域科技力量。 三、鼓励自主创新,推动科技成果向新质生产力转化。 认真贯彻落实科技创新引领现代化产业体系建设的有关要求,聚焦生态环境监测重大技术需求,围绕创新决策、研发投入、科研组织、成果转化等,打造“基础研究-科技攻关-成果转化-业务应用”贯通式研发新模式。发挥部属单位、科研院所、省级监测机构技术优势和专家库作用,组织开展重点急需领域监测标准预研究,加快水质自动采样、自动实验室分析系统等先进技术与现行监测标准的衔接,积极推进新技术、新产品测试验证,加强自主创新技术成果产出,促进新科技成果转化落地应用。鼓励设立职工创新专项资金,鼓励职工开展小发明、小革新、小改造、小设计、小建议等技术创新活动,推动生态环境监测科技成果向新质生产力转化。 四、高端引领,打造生态环境监测学术交流大平台。 面向生态环境科技前沿,紧贴监测业务工作重大需求,注重学术交流的质量与实效,不断提高监测行业科技水平。积极搭建以年度生态环境监测学术交流会、生态环境监测大家讲坛、监测专题分会场、青年科学家论坛为主的生态环境监测学术交流大平台。持续拓展国际交流渠道,重点加强中日韩沙尘暴、中俄中哈界河水质联合监测、粤港澳等多双边的国际交流与合作。坚持质量管理数智化筑牢现代化生态环境监测数据根基 现代化生态环境监测体系建设离不开监测质量管理的数智化转型,数智化质量管理体系建设是推动监测的高质量发展,推进监测能力现代化的重要基石。《意见》在数据质量方面提出明确目标,要建立覆盖全部监测活动的“人机料法环测”全过程质量管理体系,使全国环境质量监测数据真、准、全得到有效保障。黄润秋部长在全国生态环境监测工作会议上也对生态环境监测质量管理体系建设和运行做出明确指示。为落实《意见》精神和会议要求,总站将以数智化转型为契机在监测质量管理领域提出体系化、信息化和智慧化的数智化改革方案,提高质量管理效能,保障监测活动全过程的质量控制。 一、推进质量管理体系化,健全监测活动全方位质量管理机制 当前,生态环境监测质量管理体系的构建主要围绕实验室监测的CMA,而自动监测等新型监测手段缺乏统一的质量管理体系要求。目前总站以建立监测数据真实性、准确性的内部驱动型质量管理体系为目标,实现监测全要素全手段全流程质量控制。一是尽快补齐自动监测质量管理体系短板。以业务流程标准化、规章制度系统化、央地质量一体化为目标,率先启动国控网环境质量自动监测质量管理体系建设,带动地方环境质量监测网质量体系建设与实施。二是扩展质量管理的深度与广度。一方面,强化对实验室监测和自动监测的“人机料法环测”质量环节管理深度,包括人员能力的动态管理、仪器设备全生命周期管理、关键试剂耗材的性能评价及供应商管理、标准/方法适用性评估、监测点位干扰防范的技防措施等;另一方面,除环境质量自动监测外,逐步完成实验室自动监测、污染源自行监测、生态调查、遥感遥测等质量管理体系的统一设计。三是充分发挥科学质量管理体系对监测业务的引导作用。按照《质量管理体系要求》(ISO 9001)等相关要求,引入如策划-实施-检查-处置的PDCA闭环管理、过程控制、风险意识等质量管理领域的先进理念,系统分析影响监测数据质量的过程及主要风险点,实现敏锐筛查异常问题,精准预判潜在质量风险的效果。 二、加强质量管理信息化,推动质量管理数据标准统一与互联互通 当前监测系统的信息化建设程度参差不齐,部分地区开展了实验室信息管理系统和自动监测网络管理系统的建设工作,但由于质量数据标准化体系不健全,不同信息化系统的监测数据质量难以统一判定,无法开展有效的互联互通。同时,大量的环境监测设备难以满足数智化转型的需要,监管人员获取质量数据较为滞后,无法对监测进度进行实时把控。为解决上述问题,总站以建设统一标准的数智化质量管理通用平台为抓手,促进通用实验室信息管理、环境质量自动监测监督检查以及行业管理系统在全国推广应用,为质量数据的互联互通奠定基础。一是推动通用实验室信息管理系统的建设与应用。总站正在建设标准化、可复制、可推广的实验室信息管理系统模版,以此作为质量管理全过程控制的基石,推动构建系统内外间、央地间统一的数据架构,打破数据壁垒,形成分布式部署的实验室信息管理系统网络,实现实验室质量数据的全面联网,提高全过程质量管理智能诊断与风险评估能力。二是推动通用环境质量自动监测监督检查系统建设。以“规范自动监测网络运行”为目标,实现数据异常点位精准识别、人为干扰行为及时报警,监督检查任务智能推送等功能,推动自动监测网络质量体系落实,提高问题发现能力,保障自动监测网络的数据质量。三是开展监测仪器设备数智化改造与在线核验技术研究。通过构建仪器数据采集方法体系,实现仪器监测数据、原始信号和过程参数直联直采,并将仪器分析计算的算法进行统一备案,构建数字孪生模型,实现对现场监测设备的远程在线数据核验,防止监测设备“黑箱”造假,实现对监测仪器设备的穿透式管理。四是推动行业管理系统建设。构建以“审核评价标准化、监管过程精细化、监管方式智慧化”为目标的行业监测活动质量管理评价体系,推动监测技术智能化发展和行业自律,并通过构建分级管理的社会化检测机构监管机制,抓取监测过程信息,对监测过程进行实时的穿透式管理。 三、提升质量管理智慧化,深化质量数据的多元融合、提升质量管理水平 当前的各类质量管理信息平台对质量数据的分析方式较为单一,利用大数据、AI算法等新技术对多元数据融合分析的能力较为薄弱,质量数据的应用潜能没有被充分挖掘。为提升质量管理的智慧化水平,强化大数据、AI算法、大模型等智能技术的深度应用,从算法开发、数据融合和风险绩效评估提升监测质量管理关键环节效率。一是开发质量管理领域相关算法。重点研发应用监测过程优化算法、行业管理智能分析算法、实验室质量状况与风险预警算法、自动监测网异常数据和人为干扰识别算法等,提升质量管理效能。二是强化多元数据融合。将污染源排放数据、地区环境状况数据、能源使用数据、地区考核排名等多种外部数据与监测数据质量的分析相融合,提升质量风险的识别能力。三是开展质量风险与质量绩效评估。实现质量数据同步实时传输,开发基于过程数据的质量成本、绩效与风险评估算法,分析质量状况与质量风险,具备潜在质量问题预警能力;分析质量成本与质量绩效,形成过程智能诊断与优化方案。 内容转载自“中国环境监测”公众号
  • 全在线双冷阱大气预浓缩飞行时间质谱VOCs监测系统 成功落户上海环科院
    2016年7月,磐合科仪推出的全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统在上海市环境科学研究院(简称:上海环科院)安装成功。众所周之,上海环科院是上海设立较早、规模大、专业齐全的综合性环境科研机构,长期致力于区域环境问题研究、环境战略咨询、环境技术开发和示范应用 ,为政府环境管理和决策以及环境污染防治提供了有力的技术支撑。全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统作为全国重量级的环境科研机构,上海环科院对数据采集、分析灵敏度、分析时间及定性准确性等要求非常严格。本次安装成功的全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统,为业界高端大气vocs监测系统,配有双冷阱交替采样浓缩系统,搭载先进的高灵敏度飞行时间质谱。可无盲点采样,实时分析环境空气中从c2至c12范围内烃类、含氧、含氮挥发性有机化合物和有机硫化合物,可同时得到定性定量结果。全自动热脱附系统应用于环境空气中半挥发性有机化合物(svocs)如多环芳烃的检测,能满足分析超痕量化合物、需要大体积样品浓缩的应用要求。两套仪器的完美搭配可对环境大气中vocs 和svocs进行在线和离线分析检测,两种进样方式可自动切换,操作方便,充分满足上海环科院多种科学研究及各项应用分析的需求,为环境空气雾霾成因和成分研究分析提供有力工具。为了更好地服务用户,磐合科仪特邀英国技术专家提供专业技术安装和培训,配合用户进行数据分析,帮助用户更快更好地使用该系统,为vocs在线监测提供可靠的科学数据。磐合科仪专注于环境监测领域,近年来通过不断加大研发投入,先后推出多个系列的环境监测新产品以及应用方案,在大气vocs在线监测、土壤有机污染物监测、水质监测等方面取得了重要突破。本次全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统在上海环科院的成功启用,为上海环境用户、全国环境科研机构乃至全国在线监测用户树立了新榜样,将在线监测技术及产品推上一个新台阶,同时也让更多vocs监测与治理工作者认识了磐合科仪,更加增强了我们在环境监测领域发展的信心。
  • PM2.5监测利器:PILS-IC-VA联用系统,横空出世!
    近日,PM2.5再度引发各大媒体的热议,也引起国家相关部门的高度重视。PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。它的直径还不到人的头发丝粗细的1/20。PM2.5粒径小,富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。2011年11月15日,著名大气环境专家、北京大学环境科学与工程学院院长张远航表示,PM2.5纳入评价后仅2成城市空气质量达标。 瑞士万通(Metrohm)作为世界顶级分析仪器公司,一直关注人类环境健康,关注大气污染,并长期致力于气溶胶阴阳离子及重金属监测和分析技术解决方案。 日前,针对PM2.5的监测分析,瑞士万通隆重推出PILS-IC-VA联用系统,它包括全自动的气体样品液化器(Particle-Into-Liquid-Sampler)、阴阳离子双通道离子色谱仪及伏安极谱重金属分析模块,可以及时的检测气溶胶中的各阴阳离子及重金属污染物,同时该系统也可用作长时间无人监守的在线分析装置。 常规的膜过滤采样分析体系响应滞后,而且样品必须带回实验室离线分析。PILS-IC-VA系统则不然,它可以及时且持续的通过饱和蒸汽将收集的空气样品转化成液体,并及时进行后续的阴阳离子及重金属分析。待测的空气样品以一定的速度进入旋风分离器(PM10或PM2.5)后去除颗粒,然后通过气蚀器去除空气中的阴阳离子,而气溶胶能顺利通过气蚀器。在PILS腔体内,进入的气溶胶被注入过饱和蒸汽,并形成逐渐变大的冷凝液滴,直至到达收集壁(Impactor)后汇集。这些汇集的液体将会分作三个流路,分别用作阴、阳离子及重金属的检测。 欢迎您联系我们当地办事处获取详细信息。www.metrohm.com.cnwww.metrohm.com 关于瑞士万通: 1950年,瑞士万通发明了第一支复合pH电极。1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。1956年,瑞士万通开发出第一支活塞型滴定管。1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。̷�年,瑞士万通研发出首台智能型离子色谱仪。2010年,瑞士万通研制出世界首台紫外离子色谱。 Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 喜讯不断!祝贺万华化学成功引进芬兰Pixact公司PCM结晶监测系统
    喜讯不断!祝贺万华化学成功引进芬兰Pixact公司PCM结晶监测系统 万华化学集团股份有限公司是一家全球化运营的化工新材料公司,依托不断创新的核心技术、产业化装置及高效的运营模式,为客户提供更具竞争力的产品及解决方案。 万华化学始终坚持以科技创新为第一核心竞争力,持续优化产业结构,业务涵盖聚氨酯、石化、精细化学品、新兴材料四大产业集群。所服务的行业主要包括:生活家居、运动休闲、汽车交通、建筑工业、电子电气、个人护理和绿色能源等。作为一家全球化运营的化工新材料公司,万华化学拥有烟台、宁波、四川、福建、珠海、匈牙利六大生产基地及工厂,形成了强大的生产运营网络。 万华化学秉承“化学,让生活更美好!”的使命,始终以创建受社会尊敬、让员工自豪、国际一流的化工新材料公司为公司愿景,一如既往地在化工新材料领域持续创新,引领行业发展方向!万华化学此次引进芬兰Pixact公司的PCM结晶监测系统,为万华化学的科技创新再添新动力,必将创造更加辉煌的未来。PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。PCM结晶监测系统不需要离线取样,可以在线原位实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。 PCM结晶监测系统,非常适合结晶工艺的开发与优化,速度快,效率高;帮助工艺问题原因被快速发现及快速解决,可以实现生产质量稳定性监控,原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整等。PCM结晶监测系统是结晶工艺研究与控制的强有力工具,是结晶过程的眼睛,代表了当前结晶成像及颗粒度监控领域的国际最高水平。 芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。(1)PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;(2)PDM液滴监测系统是为在线分析液滴和乳液而设计;(3)PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等);芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管,均可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。 万华化学始终坚持以科技创新为第一核心竞争力,伴随着芬兰Pixact公司的PCM结晶监测系统的成功引进,相信万华化学必将创造自我、超越自我!北京海菲尔格科技有限公司作为Pixact在国内的总代理,继续致力于将最先进的仪器设备推广到所需要的各个领域,让我们一起加油向未来,让生活变得更美好!
  • 四川大学绿色磷化学工程技术研究开发中心喜添PCM结晶监测系统
    四川大学绿色磷化学工程技术研究开发中心喜添PCM结晶监测系统 绿色磷化学工程技术研究开发中心(以下简称“磷工程中心”)是依托于四川大学化学工程学院,从事磷化学工程技术开发的一个研究集群。中心现拥有“化学工程”国家重点学科、教育部“磷资源综合利用与清洁加工”工程研究中心,四川省“先进磷化工技术与装备”协同创新中心,四川省“磷化工技术与装备”工程实验室和四川省“磷化学与工程”重点实验室。在几代磷化工人的努力下,经过半个多世纪的发展,磷工程中心成功开发了料浆法磷铵技术、饲料级磷酸氢钙技术、湿法磷酸净化技术、湿法磷酸制工业级磷酸一铵技术、硫磺分解磷石膏制硫酸技术等,完成了从湿法磷酸生产到各种磷复肥及精细磷酸盐产品的实验室研究开发及工程转化,提供了我国磷化工领域多项关键技术。磷工程中心具有突出的人才优势,形成了以高级专家、教授为核心,中青年专业人员为骨干的磷化工科研工程开发100余人的团队。中心配备有较为完善的实验研究、中试转化条件,一直致力于解决磷化工领域所面临的挑战。近日,四川大学-绿色磷化学工程技术研究开发中心与北京海菲尔格科技有限公司达成合作,喜添芬兰Pixact公司PCM结晶监测系统,PCM结晶监测系统的引进犹如锦上添花,为推动中心的工程转化研究添一把力。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体颗粒度数据:晶体尺寸D10、D50、D90等、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。 PCM结晶监测系统不需要离线取样,可以原位在线实时监测晶体成核、生长、聚结、破碎、晶型转变等过程。测试过程清晰直观,既大大提高了结晶工艺研究效率和准确性,又可以避免传统显微镜结晶研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制结晶工艺流程,以及排除工艺过程故障。 PCM结晶监测系统,非常适合结晶工艺的开发与优化,速度快,效率高;帮助工艺问题原因被快速发现及快速解决,可以实现生产质量稳定性监控,原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整等。PCM结晶监测系统是结晶工艺研究与控制的强有力工具,是结晶过程的眼睛,代表了当前结晶成像及颗粒度监控领域的国际最高水平。芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;PDM液滴监测系统是为在线分析液滴和乳液而设计;PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、索特平均直径、体积平均直径、数量平均直径和累积分布参数(D10、D50、D90等);磷工程中心始终紧密围绕磷资源的综合利用和清洁加工开展工作,旨在解决磷化工行业技术难题,引领现代磷化工的发展,相信经过磷化工人的努力和先进技术设备的助力,磷工程中心必将突破一个个难题,取得一个个技术创新,支撑和引领磷化工行业的可持续发展,建成具有国际先进水平的磷化工产业化技术研究和应用平台,成为国际领先的磷化工技术研究中心。
  • 聚光科技牵头项目—《基于荧光技术的气体中重金属在线监测系统研制与应用》获国家环境保护科学技术奖及杭州市科技进步奖
    2015年12月,由聚光科技(杭州)股份有限公司牵头,中国环境监测总站和浙江大学参与的《基于荧光技术的气体中重金属在线监测系统研制与应用》分别获得了国家环境保护科学技术奖二等奖及杭州市科技进步奖一等奖。该项目研制的基于荧光技术的气体中重金属在线监测系统实现了对气体中重金属污染物(大气/烟气颗粒物中重金属及烟气中气态汞)的在线监测,弥补了常规离线方法(手工采样后送入实验室进行分析)的不足,满足了人们日益增长的对气体中重金属污染物浓度和变化趋势实时感知的需求。经专家鉴定,该项目研制的基于荧光技术的气体中重金属在线监测系统达到国际先进水平,打破了国外产品在我国的垄断局面,填补了国内该领域空白,提升了我国环境监测技术水平。
  • 新规范来了!聚光科技携手自主孵化子公司双谱科技全流程参与《车载水质污染监测溯源系统技术规范》编制
    9月22日,由聚光科技携手自主孵化子公司双谱科技参与编制的团体标准T/AHEPI 0010—2023《车载水质污染监测溯源系统技术规范》发布。该规范由大地安柯(合肥)科技有限公司、浙江双谱科技有限公司、北京大学、南开大学、江苏省环境监测中心、浙江省生态环境监测中心、浙江农林大学、安徽大学、合肥综合性科学中心环境研究院、聚光科技(杭州)股份有限公司、安徽中科智慧环境检测技术服务有限公司共同起草完成。技术规范规定了车载水质污染监测溯源系统的方法原理和测定范围、设备与装置、检测方法和性能指标、实施步骤、溯源流程和质量保证与质量控制,适用于对江河湖库、工业园区、重点水源地等领域开展的应急监测和污染溯源及入河/湖排口精细指纹调查及痕量新型污染物监测。T/AHEPI 0010—2023《车载水质污染监测溯源系统技术规范》水质有机物与重金属特征因子溯源移动实验室双谱科技水质有机物与重金属特征因子溯源移动实验室完全符合技术规范。溯源车基于SPME 前处理技术、全二维气相色谱-飞行时间质谱联用技术、水质重金属XRF监测等技术,可以实现水中上千种有机物和四十余种重金属元素的高精度测量。针对不同场景提供合理溯源路线,结合多种溯源算法,追溯污染迁移过程,识别水中污染来源。水质有机物与重金属特征因子溯源移动实验室GC×GC-TOFMS 3000W水中VOCs/SVOC在线监测全二维色谱质谱系统 可实现上千种水中有机物组分分离检测; 超高灵敏度,检出限低至ppt级; 丰富四维图谱信息,指纹特征表征全面,实现精准溯源; 多种进样方式结合,适用于在线、离线、应急等多场景;XRF-3000水质重金属在线监测系统 广谱监测,可同时监测40余种重金属元素; ppb级别检测限,满足地表水Ⅰ类监测需求; 自动标定; 维护简单,无二次污染;SIA-3000常规水质在线分析系统小型模块化、体积小,重量轻,便于运输安装与集成;多种量程可选,实现自动量程切换,适应多变工况需求;连续测量、周期测量、远程触发测量等多测量模式;周期自动清洗、周期自动标准标定,提升仪器可靠性;水质污染溯源分析软件 海量特征污染物排放指纹谱库及质谱信息自建库; 样品信息管控系统,保证样品信息追踪及结果可靠; 高精细指纹匹配及相似性算法,快速摸清污染源头; 水体污染物传输分析,立体展示污染物迁移转化规律;溯源流程溯源流程以“查-测-溯”为重点,依次制定溯源方案、开展溯源分析、呈现溯源结果、校验溯源结果,为“管”提供基础数据和技术支撑。“查”:摸清污染底数,构建基础信息库;“测”:科学合理布点,全面监测污染物;“溯”:融合溯源算法,快速精准溯源;“管”:提供排污名单,协助制定管控策略;溯源案例① 某流域氮磷超标溯源浙江某水质监测站监测到流域断面总磷含量升高。双谱科技根据站点周边污染源整体分布情况,设置采样点位,通过溯源移动实验室进行总磷浓度及有机成分分析,并进行污染溯源。采样点5至采样点1 TP浓度逐渐升高,经水质监测站后降低。其中采样点5至采样点4 TP出现突升。水样中有机物种类数量与TP浓度变化一致。根据有机物二维图谱显示,采样点4、采样点3和采样点1分别出现了TP升高的伴随物质,且物质存在差异,说明这两处分别存在影响TP浓度的排放源。经分析,伴随物质主要为药物合成中间体,对比周边污染源排放信息,锁定影响源为A医药企业及B生物公司。② 某河道死鱼事件应急溯源某医药化工园区周边河道,出现死鱼现象,周边伴有密集浮藻。双谱科技受业主委托出动溯源移动实验室至现场,分别从该河道死鱼点以及其上、下游设点取样,对比指纹差异,分析特征物质,溯源排污单位。对比上、中、下游水质有机指纹图谱发现,在中游(死鱼事件点位)污染物丰度最高,且出现明显指纹。死鱼点及上下游水中有机物分析全二维图谱根据周边企业排污许可信息披露的工艺过程中的原辅料信息,对比非靶向扫描结果,识别到A制药科技有限公司原辅料对三氟甲氧基苯胺在环境样本中检出。对三氟甲氧基苯胺MSDS信息危险性概述-健康危害-急性毒性(经口) 第3级 ;急性毒性(经皮) 第2级 ;皮肤腐蚀/刺激 第2级 ;严重损伤/刺激眼睛 第1级 。关于双谱聚光科技自主孵化子公司双谱科技是一家以产品技术研发为核心的高新技术企业,公司以全二维色谱飞行时间质谱/离子迁移谱技术为特色,专注于解决复杂体系中有机及无机组分高精准检测难题,打造集复杂样品前处理、多维分离、高端检测器和高维数据分析为一体的多维分析技术完全自主研发的高科技公司。在大气光化学、恶臭异味、化工园区、工业过程、食品药品、公共安全、生命健康等领域为客户提供全方位、专业化的科学分析解决方案。
  • 岛津应用:离线SFE-SFC-PDA分析营养辅助食品中的维生素E
    维生素E也被称为生育酚,是一种脂溶性维生素,也是一种可以在人体内产生抗氧化作用的重要化学物质。生育酚根据甲基的数量和位置分为α 、β 、γ 、δ 等4种。α -生育酚的抗氧化作用的活性最强,所以市售的维生素制剂等众多营养辅助食品中都会添加α -生育酚。由于是高脂溶性成分,所以使用超临界流体对生育酚进行迅速简便地萃取备受瞩目。 在线SFE-SFC 系统有很多希望与SFC以外的现有分析方法进行组合使用。因为样品的处理简单,SFE领域也受到了瞩目。SFE具有以下特点:1. 通过超临界流体的高透过性和高扩散进行迅速高效萃取2. 在温和的温度条件、遮光处理下萃取不稳定化合物3. 与溶剂萃取相比成本低4. 萃取过程完全自动化5. 萃取样品容易处理6. 支持各种分析方法 本文向您介绍使用超临界流体对α -生育酚进行萃取(SFE)的过程。 离线SFE 系统的流路结构 岛津超临界流体萃取 (SFE)/色谱 (SFC)系统Nexera UC荣获2015年 Pittcon Editor' s Award奖、日本“十大新产品奖”等多个奖项 了解详情,敬请点击《使用离线SFE-SFC-PDA 分析市售营养辅助食品中的维生素E》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 津津有卫 | 油罐车混拉食用油?岛津矿物油解决方案了解一下(在线&离线法)
    近期,一则“煤油车装运食用油”的消息冲上热搜。两辆刚刚卸完煤制油的罐车,在完全未洗罐的情况下,直接装上了食用油,两家涉事企业均为国内知名企业。煤制油属于矿物油,油罐车混拉食用油的行为,必然会造成食用油污染。矿物油在GB 2760-2014《食品安全国家标准 食品添加剂使用标准》中,可作为“需要规定功能和使用范围的加工助剂”;但在明年2月即将实施的新版GB 2760-2024中,矿物油已经全面禁用。世界卫生组织将矿物油定义为“未处理或低级处理的工业品形态”,作为1号致癌物的一类。多项研究也表明,矿物油对人体健康存在潜在风险,如肝脏毒性、致突变性和致癌性。那么如何检测食品中的矿物油呢?目前主流方案包括离线法和在线法两种,如下表所示:以上两种方案,岛津均有成熟应用案例可供各位用户参考。离线法——固相萃取-PTV-GC 法测定食用油脂中饱和烃矿物油气相色谱仪 Nexis GC-2030PTV-GC气相色谱参数色谱柱:5%苯基-甲基聚硅氧烷石英毛细管柱(耐高温柱),0.1μm×0.25mm×15mPTV温度参数:45°C(1min)_250°C/min_360°C(22 min)PTV 分流比参数:200:1(1min),关闭分流阀(2 min),100:1(至结束)进样量:50 uL色谱柱程序升温:35°C(4 min)_25°C/min_370°C(10 min)进样口温度:360°C载气控制模式:恒线速度载气流量:1.3 mL/min载气类型:氮气FID 检测器温度:380°CFID 尾吹流量:30 mL/minFID 空气流量:400 mL/minFID 氢气流量:40 mL/min部分实验结果表1 食用油样品中MOSH含量(mg/kg)表2 食品油样品的加标回收率及相对标准偏差(n=6)图1 食用油样品MOSH谱图在线法——HPLC-GC-FID 测定大米中矿物油含量液相色谱仪Nexera LC-40HPLC参数色谱柱:硅胶柱,2.1mm×250mm流动相:正已烷/二氯甲烷梯度洗脱程序:0~0.1min,100%正已烷(流速0.3mL/min);3.5~9.5 min,70%正已烷/30% 二氯甲烷(流速 0.3 m/min);9.5~18.5 min,100%二氯甲烷反冲柱子(流速 0.5 mL/min);18.5~28.5 min,100%正已烷平衡柱子(流速 0.5 mL/min)柱温:40℃进样量:50 μL注入时间:2.0~3.5 min(MOSH);4.0~5.5 min(MOAH)检测波长:230nmGC 参数色谱柱:5%苯基-甲基聚硅氧烷石英毛细管柱(耐高温柱),0.1μm×0.25mm×15m柱温程序:35℃(4 min)40℃/min 370℃(5 min)流速:45 cm/sec进样模式:分流进样(180:1)1min,随后关闭分流口2.4min,之后再开启分流口(分流比100:1)FID检测器:380℃样品前处理大米样品粉碎后,精确称取10 g,加入20 μL内标(浓度为300 μg/mL),加入20 mL正已烷静置过夜,离心取10 mL上清液。采用SPE柱净化上清液,氮吹浓缩定容到1mL,注入 HPLC-GC-FID分析。部分实验结果图2 矿物油标准曲线图3 大米中MOSH的GC谱图以上两种解决方案,可前往岛津官网-资源中心-应用文章下载完整版。岛津长期致力于食品安全领域研究,可为用户提供全方位应用支持,欢迎咨询。本文内容非商业广告,仅供专业人士参考。
  • 燃!禾信康源全自动微生物质谱检测系统获批医疗器械注册证
    广州禾信康源医疗科技有限公司(以下简称“禾信康源”)在全面掌握核心技术和先进制造工艺下,历时5年,完全自主、正向研发的一款基于基质辅助激光解吸电离法的质谱检测系统--全自动微生物质谱检测系统(CMI-1600)近日获广东省药品监督管理局颁发的医疗器械注册证(注册证编号:粤械注准 20202220695)。全自动微生物质谱检测系统(CMI-1600)全自动微生物质谱检测系统(CMI-1600)应用于临床细菌等微生物的快速鉴定分析,主要原理是利用已知菌种建立数据库,通过检测获得微生物的蛋白质图谱。由于不同菌种核糖体蛋白(2~20k Da)大小有差异,将所得的谱图与数据库中的微生物参考图谱比对,从而实现细菌等微生物的快速鉴定和分型。相比于表型鉴定、生理生化法、化学发光法等传统微生物鉴定技术,质谱鉴定在鉴定速度、鉴定准确率、技术成本、操作便捷等各方面都具有明显优势,是微生物检验技术史上一次里程碑式的革新。应用领域1.临床微生物鉴定2.疾病预防控制中心病原微生物鉴定3.食药监局微生物污染检测4.科研院所微生物研究5.科研院所微生物研究6.其他微生物鉴定领域技术原理质谱分析技术的基本原理是使样品分子离子化,具有不同质荷比(M/Z)的离子经质量分析器通过测定得到该样品的分子量。硬件系统▲一体化免清洗离子源,集成独创的微小角度激光入射,有效提高灵敏度▲智能化、高抽速真空泵系统,进靶即可采样,无需等待▲超高频、长寿命固体激光器,寿命优于传统氮气激光器,使得样品分析速度更快,终身免维护▲专利性双脉冲延时引出技术,提升全质量范围分辨率▲高稳定性信号采集系统,极大提升了仪器的重复性▲模块化设计,内置前级泵,整机结构更加紧凑,维护更加简单软件系统▲拥有自主知识产权的自动化控制采集软件,全过程智能化监控仪器状态,可自由切换多个数据库▲提供专业的菌种中文名称,无需另外翻译,国内客户使用更便捷▲多台云服务器同时执行鉴定,全面提升鉴定效率,可及时完成软件升级与数据库更新▲专业便捷的离线分析软件,满足各类用户数据分析需求数据库▲源于中国疾控中心(CDC)多年研究积累,品质保证,包含3500余种、60000余菌株谱图,满足各应用领域微生物检测需求▲数据库存于云服务器,可随时更新,客户也可根据自身需求建立自己的专属数据库产品研发历程2014年7月:微生物鉴定质谱仪项目启动2015年2月:开展系统搭建及测试2015年9月:采集第一张微生物鉴定质谱仪谱图2017年10月:全自动微生物质谱检测系统(CMI-1600)首次亮相......产品不断升级中2019年5月:通过注册检验报告2020年5月:获批医疗器械注册证自主创新,20余项产品专利 “十年磨一剑”,熬过了漫长的研发期,也赶上了《“十三五”医疗器械科技创新专项规划》将质谱技术作为科技创新重点的好时期,一家国产高端医疗质谱企业就要崛起了。 关于禾信康源禾信康源系广州禾信仪器股份有限公司控股子公司,专注于高端医疗质谱仪器的研发、制造、销售及服务。秉承“锲而不舍,开拓创新,打造健康之源”的宗旨,在微生物鉴定、基因检测、药物分析等新业务领域,为用户提供全面领先的临床质谱综合解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制