当前位置: 仪器信息网 > 行业主题 > >

红外波谱仪

仪器信息网红外波谱仪专题为您提供2024年最新红外波谱仪价格报价、厂家品牌的相关信息, 包括红外波谱仪参数、型号等,不管是国产,还是进口品牌的红外波谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外波谱仪相关的耗材配件、试剂标物,还有红外波谱仪相关的最新资讯、资料,以及红外波谱仪相关的解决方案。

红外波谱仪相关的论坛

  • 【讨论】仪器分析中光谱与波谱的区分在哪里?

    我们都知道,在仪器分析中有光谱与波谱之分。而物理学中,光是一种电磁波,光与光波是一回事。(拿红外光谱来说,有的书上归到光谱一类,而有的书上归到波谱一类)那么在仪器分析中,为何要划分开光谱与波谱呢,这两者究竟有何区别??大家是如何理解这个问题的,公认的归入到波谱一类的有哪些分析方法?欢迎讨论!

  • 【我们不一YOUNG】+核磁共振波谱法的入门知识分享

    [back=transparent][b]核磁共振波谱法[/b](Nuclear Magnetic Resonance,简写为NMR)[/back]是研究原子核对射频辐射的吸收,它是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析,在多种类型实验室里被使用,但仍会有大部分实验员对它的原理不是很清楚,今天就和你一起学习它的原理和使用吧。核磁共振波谱法是材料表征中最有用的一种仪器测试方法,它与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”。应用于物理学、化学、生物、药学、医学、农业、环境、矿业、材料学等学科,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。目前核磁共振与红外、质谱仪等其他仪器配合,已鉴定了十几万种化合物。[b]一、核磁共振波谱法[/b]原理:核磁共振谱来源于原子核能级间的跃迁。只有置于强磁场中的某些原子核才会发生能级分裂,当吸收的辐射能量与核能级差相等时,就发生能级跃迁而产生核磁共振信号。用一定频率的电磁波对样品进行照射,可使特定化学结构环境中的原子核实现共振跃迁,在照射扫描中记录发生共振时的信号位置和强度,就得到核磁共振谱。核磁共振谱上的共振信号位置反映样品分子的局部结构(如官能团,分子构象等),信号强度则往往与有关原子核在样品中存在的量有关。[b]二、[/b]核磁共振波谱法特点:核磁共振波普法具有精密、准确、深入物质内部而不破坏被测样品的特点。此外,核磁共振是目前唯一能够确定生物分子溶液三维结构的实验手段。三、[b]核磁共振波谱法[/b]分类1.连续波核磁共振谱仪(CW-NMR)射频振荡器产生的射频波按频率大小有顺序地连续照射样品,可得到频率谱;2.脉冲傅立叶变换谱仪(PET-NMR)射频振荡器产生的射频波以窄脉冲方式照射样品,得到的时间谱经过傅立叶变换得出频率谱。连续波核磁共振谱仪由磁场、探头、射频发射单元、射频、磁场扫描单元、[k1] [WU2] 射频检测单元、数据处理仪器控制六个部分组成

  • 【求助】KBr压片可测红外波普范围是多少?

    各位高手最近想做中近红外(12000-400cm-1)查文献看到:[font=宋体]溴化钾[font=仿宋_GB2312]透光范围[/font]:[font=Times New Roman]5000-400 cm-1[/font][/font]那KBr压片可测红外波普范围是多少?只能是[font=Times New Roman]5000-400 cm-1吗?多谢!!!!![/font]

  • 【FAQ】能谱仪和波谱仪的比较-zz

    http://bbs.matwav.com/post/view?bid=69&id=259507&sty=3&tpg=1&age=0一,能谱仪 能谱仪全称为能量分散谱仪(EDS).目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管.Si(Li)能谱仪的优点: (1)分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线光子信号,故可在几分钟内分析和确定样品中含有的所有元素,带铍窗口的探测器可探测的元素范围为11Na~92U,20世纪80年代推向市场的新型窗口材料可使能谱仪能够分析Be以上的轻元素,探测元素的范围为4Be~92U. (2)灵敏度高 X射线收集立体角大.由于能谱仪中Si(Li)探头可以放在离发射源很近的地方(10㎝左右),无需经过晶体衍射,信号强度几乎没有损失,所以灵敏度高(可达104cps/nA,入射电子束单位强度所产生的X射线计数率).此外,能谱仪可在低入射电子束流(10-11A)条件下工作,这有利于提高分析的空间分辨率. (3)谱线重复性好.由于能谱仪没有运动部件,稳定性好,且没有聚焦要求,所以谱线峰值位置的重复性好且不存在失焦问题,适合于比较粗糙表面的分析工作. 能谱仪的缺点: (1)能量分辨率低,峰背比低.由于能谱仪的探头直接对着样品,所以由背散射电子或X射线所激发产生的荧光X射线信号也被同时检测到,从而使得Si(Li)检测器检测到的特征谱线在强度提高的同时,背底也相应提高,谱线的重叠现象严重.故仪器分辨不同能量特征X射线的能力变差.能谱仪的能量分辨率(130eV)比波谱仪的能量分辨率(5eV)低.(2)工作条件要求严格.Si(Li)探头必须始终保持在液氦冷却的低温状态,即使是在不工作时也不能中断,否则晶体内Li的浓度分布状态就会因扩散而变化,导致探头功能下降甚至完全被破坏. 二,波谱仪 波谱仪全称为波长分散谱仪(WDS).在电子探针中,X射线是由样品表面以下 m数量级的作用体积中激发出来的,如果这个体积中的样品是由多种元素组成,则可激发出各个相应元素的特征X射线.被激发的特征X射线照射到连续转动的分光晶体上实现分光(色散),即不同波长的X射线将在各自满足布拉格方程的2 方向上被(与分光晶体以2:1的角速度同步转动的)检测器接收. 波谱仪的特点:波谱仪的突出优点是波长分辨率很高.如它可将波长十分接近的VK (0.228434nm),CrK 1(0.228962nm)和CrK 2(0.229351nm)3根谱线清晰地分开.但由于结构的特点,谱仪要想有足够的色散率,聚焦圆的半径就要足够大,这时弯晶离X射线光源的距离就会变大,它对X射线光源所张的立体角就会很小,因此对X射线光源发射的X射线光量子的收集率也就会很低,致使X射线信号的利用率极低.此外,由于经过晶体衍射后,强度损失很大,所以,波谱仪难以在低束流和低激发强度下使用,这是波谱仪的两个缺点.

  • 【我们不一YOUNG】+核磁共振波谱法的试用范围知多少

    [back=transparent] 核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的强有力的工具之一,亦可进行定量分析。本文就是为您介绍[/back][b]核磁共振波谱法的试用范围[/b][back=transparent]。[/back] 一、测定对象元素 NMR波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。根据谱图确定出化合物中不同元素的特征结构。 二、可测试的性能 除了运用在医学成像检查方面,在分析化学和有机分子的结构研究及材料表征中运用较多。 三、有机化合物结构鉴定 一般根据化学位移鉴定基团;由耦合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等,因为它们都影响核外化学环境的状况,从而谱图上都应有所反映。 四、高分子材料的NMR成像技术 核磁共振成像技术已成功地用来探测材料内部的缺陷或损伤,研究挤塑或发泡材料,粘合剂作用,孔状材料中孔径分布等。可以被用来改进加工条件,提高制品的质量。 五、多组分材料分析 材料的组分比较多时,每种组分的 NMR 参数独立存在,研究聚合物之间的相容性,两个聚合物之间的相同性良好时,共混物的驰豫时间应为相同的,但相容性比较差时,则不同,利用固体 NMR 技术测定聚合物共混物的驰豫时间,判定其相容性,了解材料的结构稳定性及性能优异性。 此外,在研究聚合物还用于研究聚合反应机理、高聚物序列结构、未知高分子的定性鉴别、机械及物理性能分析等等。

  • 波谱学在多相催化中的应用

    第一章 绪论第二章 红外光谱第三章 拉曼光谱第四章 漫反射光谱和光声光谱第五章 穆斯堡尔谱第六章 电子自旋共振谱第七章 核磁共振谱第八章 X光电子能谱[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14424]波谱学在多相催化中的应用[/url]

  • 【我们不一YOUNG】+核磁共振波谱仪的应用优势

    [font=微软雅黑][size=16px]核磁共振波谱仪(NMR)是一种重要的科学仪器,它在许多领域中发挥着重要作用。下面我将为大家介绍一下核磁共振波谱仪的应用优势。[/size][/font][font=微软雅黑][size=16px]首先,核磁共振波谱仪在化学领域中具有广泛的应用。它可以用来确定化合物的结构和组成,帮助化学家们研究分子的性质和反应机理。通过核磁共振波谱仪,我们可以获得分子的谱图,从而确定分子中各个原子的类型、数量和化学环境。这对于合成新的药物、开发新的材料以及研究生物分子的结构和功能都非常重要。[/size][/font][font=微软雅黑][size=16px]其次,核磁共振波谱仪在医学领域中也有着重要的应用。核磁共振成像(MRI)是一种非侵入性的成像技术,可以用来观察人体内部的结构和功能。通过核磁共振波谱仪,医生们可以获得人体各个部位的详细图像,从而帮助他们诊断疾病、制定治疗方案。与传统的X射线成像相比,MRI没有辐射,对人体无害,因此被广泛应用于临床诊断和研究。[/size][/font][font=微软雅黑][size=16px]此外,核磁共振波谱仪还在材料科学、环境科学、食品科学等领域中发挥着重要作用。在材料科学中,核磁共振波谱仪可以用来研究材料的结构和性质,帮助科学家们设计新的材料。在环境科学中,核磁共振波谱仪可以用来分析土壤、水体和大气中的污染物,帮助我们了解环境污染的来源和影响。在食品科学中,核磁共振波谱仪可以用来检测食品中的成分和质量,确保食品的安全和质量。[/size][/font][font=微软雅黑][size=16px]总的来说,核磁共振波谱仪在各个领域中都有着广泛的应用。它可以帮助科学家们研究分子的结构和性质,帮助医生们诊断疾病,帮助工程师们设计新的材料,帮助环境科学家们了解环境污染的情况,帮助食品科学家们确保食品的安全和质量。核磁共振波谱仪的应用优势不仅在于其高分辨率和灵敏度,还在于其非侵入性和无辐射的特点。相信随着科学技术的不断发展,核磁共振波谱仪的应用前景将会更加广阔。[/size][/font]

  • 波谱分析和能谱分析的对比

    波谱分析和能谱分析都是用于功能型电子显微镜的元素分析。波谱分析和能谱分析均能进行微区分析,波谱分析发展较早,但进展不大;近年来能谱分析成为微区分析的主要手段。两种方法比较如下:1.通常的能谱仪对入射X射线的吸收无法探测到超轻元素的特征X射线,但近年老出现的单窗口轻元素探测器,可同波谱仪探测器一样探测范围从B(5)到U(92),甚至还可探测Be。2.能谱仪接受信号范围宽,需时短。3.波谱仪的几何收集效率和量子效率均低于能谱仪。4.能谱仪造价比波谱仪低,且操作简便。5.能谱仪检测器的分辨率较低,谱峰重叠严重,信噪比较差。6.能谱中存在失真,是分析误差的来源;波谱中失真较少。7.由于能谱仪的一些问题引起分析误差,导致数据处理的复杂性;波谱仪的数据处理相对比较简单。8.波谱仪和能谱仪的空间分辨率基本相同。9.波谱可精确的计算成份比例。价格相对能谱贵些。10能谱速度快,操作简单,可以很快的判断元素的成份。

  • 【求助】求助,关于EBSD、高分辨、喷碳仪、波谱仪等

    各位坛友我单位欲采购电镜相关设备所以想咨询大家一下,哪家的EBSD好点,大概价位多少喷碳仪哪家的好点,价位大概多少?能谱和波谱仪哪家的好点,价位大概多少?高分辨哪家的好点希望能得到大家的帮助,最好大家能说说使用上的体会!谢谢了先

  • 介绍两本波谱解析的书,(PDF)可下载

    farrowcy:给您您问,有没有什么好的解谱的书,给你介绍如下:1.王剑波等译: 北京大学出版社,是第五版的中译本.共285页,30元/本.ISBN:ISBN 7-301-04865-3/O502 内容简介:作为有机光谱鉴定的教材,本书全面深入地介绍了紫外光谱、红外光谱、核磁共振和质谱的基本原理及其最新进展。本书第1版自1966年面世以来,先后连续修订,目前已出至第5版,可见其生命力的旺盛及受读者欢迎的程度。注重于应用光谱方法解决结构问题的实用性是本书的最大特点。作者仅以浅显的理论说明了这几种谱学在有机化合物的鉴定和构型、构象确定上的应用,但书中却配了大量的图表和数据,这样不仅以便于说明问题,也为读者查找使用提供了方便。特别是在第5章中,作者给出了相当数量的例子,旨在帮助读者提高用谱学方法解决实际问题的能力,其中还涉及了最新发展的各种谱学方法。本书对于应用光谱学课程的高年级本科生和研究生来说是一本极佳的参考书,也是从事有机化合物结构鉴定、谱学研究的教师和科研工作者案头必备的工具。 章节目录: 目录 1.紫外和可见光谱 2.红外光谱 3.核磁共振谱 4.质谱 5.结构鉴定练习 索引 该书的原作者Dudley H,著名的波谱和结构化学家,,该书是一本经典之作,国外许多著名大学把它作为相应的教材和参考书.论述简明,用很多实例说明波谱法在结构解析中的应用,还有一些练习题.书中的图谱都是实际图谱的复制,清楚.从基本原理,重要概念的论述(通过图谱),方法举例,图谱和练习就可以看出Dudley H教授是一位既有理论又有实际的结构化学家.书的篇幅并不大,但很精华.书中给出的基本概念和方法是很有实用价值的,就是说,日后工作中会经常遇到的.2.中译本 ,原作者Duddeck H.(H杜 德克 W笛特里克)黄量院士等翻译. Duddeck H 也是一位著名的波谱和结构化学家.当您有了一定的NMR基础时,可以有选择的读读这本书,本书的特点是作者教授学生和自己科研的例子,也包括一些文献例子. 该书基本上没有NMR基础,重点讨论用NMR阐明结构的方法学和大量的结构例子(很多是天然产物),图谱,解析方法,还有发表论文时NMR数据表达的规范格式. Duddeck H教授是一位资深而谦虚的化学家,曾来信索取过我的一篇NMR论文.非常客气. 该书的最大特色是NMR解析结构的战略和策略,方法学,对于没有和/或只有很少实际经验的人是不好写出这样的专著的. 供您和同学们参考.

  • 【讨论】核磁波谱解析方法

    本人是新手,总感觉核磁波谱解析过程中,萜类化合物比较棘手,有没有哪位大侠能给本人核磁波谱解析的学习提点建设性建议啊。谢谢了

  • 【原创】《现代有机波谱分析》教材和课件

    《现代有机波谱分析》教材:《现代有机波谱分析》(主编:张华,化学工业出版社)与《现代有机波谱分析》教材配套的辅助教材:《现代有机波谱分析学习指导与综合练习》(编者:张华,化学工业出版社)《现代有机波谱分析》课件:提供一个连接,该连接为该课程的教学网站,上面有新版课件,但只能浏览,不能下载.http://analcenter.dlut.edu.cn/analysis/该作者即将出版教材:《有机结构波谱鉴定》(编者:张华,大连理工大学出版社,2009年11月)教材特色:主要针对高年级本科生编写的教材,有机质谱一章中,EIMS的断裂规律归纳,NMR中复杂体系自旋系统解析,波谱组合鉴定

  • 【我们不一YOUNG】+核磁共振波谱仪应用场景及作用

    [font=微软雅黑][size=16px]核磁共振波谱仪是一种重要的科学仪器,普遍应用于化学、生物、医学等领域的研究和分析。它利用核磁共振现象,通过测量样品中原子核的共振信号,来获取关于样品结构和性质的信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪的基本原理是基于原子核的自旋和磁矩。当样品置于强磁场中时,样品中的原子核会产生一个自旋磁矩,这个磁矩会与外加的射频脉冲相互作用。通过改变射频脉冲的频率,可以使得特定核自旋发生共振,从而产生一个共振信号。这个共振信号可以通过探测器接收并转化为电信号,再经过处理和分析,得到核磁共振谱图。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪由多个主要部分组成,包括磁体、射频系统、探测器和数据处理系统。磁体是核磁共振波谱仪的部分,它产生强大的恒定磁场,用于定向样品中的原子核。射频系统则提供射频脉冲,用于激发和探测共振信号。探测器负责接收共振信号并将其转化为电信号。数据处理系统则对接收到的信号进行处理和分析,生成核磁共振谱图,并提供相关的结构和性质信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪在化学领域的应用非常普遍。它可以用于确定化合物的结构、确定分子的构象、研究分子间的相互作用等。通过核磁共振波谱仪,化学家们可以了解分子的空间结构、键合情况、官能团的存在等重要信息,从而推断出化合物的性质和反应机理。[/size][/font][font=微软雅黑][size=16px]在生物和医学领域,核磁共振波谱仪也发挥着重要的作用。它可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,研究代谢物在生物体内的分布和代谢途径,以及研究药物在体内的代谢和作用机制等。通过核磁共振波谱仪,科学家们可以深入了解生物体内的分子组成和相互作用,为疾病的诊断和提供重要的依据。[/size][/font][font=微软雅黑][size=16px]总之,核磁共振波谱仪是一种强大而多功能的科学仪器,它在化学、生物、医学等领域的研究和分析中发挥着重要的作用。通过测量样品中原子核的共振信号,核磁共振波谱仪可以提供关于样品结构和性质的宝贵信息,为科学研究和应用提供了强有力的工具。[/size][/font]

  • 核磁共振波谱--HMBC谱及其应用

    超导核磁共振波谱仪是重要的分析仪器,尤其在结构解析方面有着独特的优势。解析结构时,我们常应用氢谱、碳谱、COSY、HSQC、HMBC等二维谱图及各种杂核谱。本次课程,介绍了核磁共振波谱中的二维谱图HMBC谱,最常用的

  • 【分享】分析波谱解析软件[分析人员必备]

    【分享】分析波谱解析软件[分析人员必备]

    分析波谱解析软件[分析人员必备]波谱解析图片软件,由于软件太大,共分成11个压缩分卷,全部下载完毕后再解压使用。非常不错的分析波谱解析软件,分析人员,化工研发人员必备资料!极其详细的解析了各种波谱标准图谱及各化合物的特征指标.[img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909040955_169671_1645079_3.jpg[/img]核磁共振图谱解析示意有需要的请到资料中心下载,因为此软件太好了,第一时间上传推荐

  • 仪器分析:核磁共振波谱法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=26684]仪器分析:核磁共振波谱法[/url]

  • 【分享】波谱分析和能谱分析的比较

    在电子探针或扫描电子显微镜中进行微区分析可以采用两种方法:波谱分析或能谱分析。波谱分析发展较早,但近年来没有太大的进展;能谱分析虽然只有将近20 年的历史,但发展迅速,成为微区分析的主要手段。以下为两种方法的比较。  (a)通常的能谱仪探测器采用8μm 厚的铍窗口,由于它对入射X 射线的吸收无法探测到超轻元素的特征X 射线,元素探测范围为Na (11)到U(92)。而波谱仪的探测范围为B (5)到U(92)。  虽然能谱仪过去也曾采用过超薄窗口(UTW)或无窗探测器扩大元素探测范围,但由于种种原因实际上无法推广。近年来出现了一种单窗口轻元素探测器,可以探测B(5)到U(92)之间的元素,甚至还可探测Be。  (b)波谱仪的瞬间接收范围约为5eV ,即在同一瞬间只能接收某一极窄的波长范围内的X射线信号。因此采集一个全谱往往需要几十分钟。在此期间要求整个系统的工作条件(加速电压、束流等)有较高的稳定度。因此波谱分析不能用于束流不稳定的系统(如冷场发射电子枪的系统)中。  能谱仪在瞬间可以接收全部有效范围内的X 射线信号,亦即在一短时间内(例如1 秒)可接收成千上百个各种能量的X 射线光子。由于其随机性,所以对整个系统的稳定度无严格要求,而且采集一个谱通常只需1~2min 。  (c)波谱仪的几何收集效率(接收信号的立体角)较低(0.2%),而且随X 射线的波长变化。量子效率(进入谱仪和被计数的X射线之比)也较低( 30%)。为了增加接收到的信号强度,不得不加大束流,束斑也随之加大,因此当扫描电子显微镜观察高分辨图像时,或透射电镜中由于薄膜样品的X射线信号强度太低,均无法进行波谱分析。  能谱仪的几何收集效率( 2 %)高于波谱仪一个数量级,而且只要探测器的位置固定,几何效率即为常数。在2~16keV的能量范围内,量子效率接近于100%。因此当扫描电子显微镜观察高分辨率图像时,或在透射电子显微中都可进行能谱分析。  由于能谱仪的几何效率和量子效率在一定条件下是常数,所以可以进行无标样定量分析,这是波谱仪所无能为力的。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制