当前位置: 仪器信息网 > 行业主题 > >

便携导航仪

仪器信息网便携导航仪专题为您提供2024年最新便携导航仪价格报价、厂家品牌的相关信息, 包括便携导航仪参数、型号等,不管是国产,还是进口品牌的便携导航仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携导航仪相关的耗材配件、试剂标物,还有便携导航仪相关的最新资讯、资料,以及便携导航仪相关的解决方案。

便携导航仪相关的资讯

  • 导航产品亦需警惕辐射超标
    汽车导航仪也要小心辐射问题。(图文无关)  国家质检总局发布汽车GPS导航产品检测结果 12企业产品不合格  汽车导航仪常会出现地图错误、死机、搜不到卫星信号等问题,但人们可能不知道还有辐射问题。日前,国家质检总局发布了对国内81批次汽车GPS导航产品的检测结果,12家企业被检出的不合格导航产品中,有11家企业的产品出现辐射超标情况,而不合格产品全部出自广东厂家。记者走访市场发现,被检出的不合格导航产品中,有的在佛山市场销量还不错。  重磅:导航产品不合格,主要因辐射超标  国家质检总局日前抽查了北京、上海、浙江、福建、湖南、广东等6个省、直辖市81家企业生产的81批次汽车GPS导航产品,根据相关要求对汽车GPS导航产品的系统定位精度、位置更新率、捕获、效率、车辆定位及地图匹配功能、地图显示功能、目标检索功能、路线计算功能、路线引导功能、地图数据库、数据通信接口、高温工作、高温贮存、低温工作、低温贮存、振动、安全性、电源端子骚扰电压/电源端子干扰电压、辐射骚扰/辐射干扰场强等19个项目进行了检验。抽查的合格率约为85%,抽查发现有12批次产品不符合标准规定,涉及到辐射骚扰/辐射干扰场强、电源端子骚扰电压/电源端子干扰电压项目(具体抽查结果见附表)。记者看到,12批次被检不合格产品全部出自广东。并且,12批次产品中,11家企业的产品为辐射超标。  车主:导航仪辐射超标,闻所未闻  有专业人士说,“辐射骚扰不合格的导航产品会影响车载电子产品的正常使用,也会干扰其它电子设备,尤其影响一些病人的生命维持电子设备,像心脏病人安装的起搏器等。GPS导航的辐射与手机类似,其辐射强度相当于一部通话中的手机。” 不过,很多车主在受访时表示,对导航辐射超标的问题闻所未闻。南海一位此前经历过某美系车型“辐射门”事件的车主告诉记者,如果不是原车导航,他选导航仪的话首先看导航效果,然后看价格合不合适,“具体有没有辐射看不到,也说不清。”  还有车主提到,其汽车导航开启时,经常短时间会出现手机信号不稳的情况,但不知道是否与导航仪的辐射有关,“从没往那方面想,以后还是要注意,特别是家里有孕妇的时候。”  提醒:导航仪还存在不少问题  据了解,导航仪突出问题集中表现在三大方面。其中,GPS的质量问题主要表现在定位精度低,灵敏度差,信号经常丢失,无法导航。同时,各品牌导航仪所装载的运行软件不同,也经常出现各种问题。  相关认证机构的调查还显示,有的导航软件编制不合理,经常令司机绕道行驶 另外,有的导航软件缺少路径重算功能,致使一旦偏离预定路线,导航仪就只会不停重复“请调头”,而不会进行路径重算,并最终导致死机。  市场:部分品牌佛山常见,有的还销售不错  记者随机走访了禅城、南海部分汽车用品店和专门销售车载导航的网点。在12家被检出不合格产品的导航品牌中,不少在佛山市场有售,有的品牌还被作为主打导航品牌。有商家告知,好像不合格的主要都是一些中小品牌的导航产品,比较出名的像欧华,据其所知卖得还不错。  据其介绍,导航仪生产技术并不高端,生产厂家中小规模的居多,质量参差不齐,价格相差巨大。而且现在外置导航设备很多人已开始在网上购买了。  另外,有的不合格产品型号看起来像专为部分车型配置。记者为此询问了相关车型品牌的部分4S店。有4S店认为,即使是某些车型专用导航仪出现问题,也不一定和汽车生产厂家有关。一是不少导航品牌都设计有专车专用导航设备,但非汽车厂家原装导航 二是有的车型导航设备非出厂时所带,不少为4S店自行联系提供,消费者选配。
  • 广州计量院深入南方卫星导航仪器公司调研交流
    近日,广州计量院(GIMT)工程师一行参加了南方测绘仪器公司调研活动,调研内容主要包括企业在相关产业领域进行的前沿技术研究及其计量测试技术研究、对《广州市关于贯彻落实计量发展规划(2021-2035年)的实施意见》中相关内容的补充或者建议等内容。 调研会上,南方测绘李耀忠经理介绍了南方测绘仪器公司作为国产测绘仪器的领头羊的发展历程,并提出了目前在计量数字化、信息化等方面的需求。广州计量院(GIMT)的工程师对企业提出的需求和问题进行了认真细致的解答和讨论,并探讨了在新型测绘仪器标准制修订方面和测量仪器检测场地方面进行合作的可能性。
  • 国内首个矿用导航技术实验室正式建成
    10月3日,国内首个矿用导航技术实验室在中国煤科太原研究院正式建成。作为煤矿采掘机械装备国家工程实验室的子实验室,该实验室加快了行业高端导航技术与装备的研发与应用。煤矿采掘工艺复杂,工作面环境多变,少人化、无人化采掘工作面的建立一直是矿山智能化转型的重要方向,其中自动导航定位技术是制约采掘装备智能化发展的主要“卡脖子”环节。十多年来,中国煤科太原研究院潜心研究矿用导航定位方法,积极参与国际高水平大学、科研机构间的学术交流,与澳大利亚研究机构同时在两个同类工作面同步完成掘进工作面基于惯性导航系统的采掘装备全工况对比定位试验,试验结果取得预期效果。同时,加速开展自主研发工作,持续不断进行科研攻关和工业性试验,成功突破了导航定位关键技术的工程化应用难题,实现掘锚机规划截割,助力快掘系统实现月进尺3088米的世界纪录。基于导航定位技术,操作人员可以远离巷道迎头,在高效掘进的同时确保作业安全和职业健康。目前,经多轮迭代形成的系列矿用导航产品,达到了国际同类产品技术水平。矿用导航技术实验室的建成,拓宽了国家工程实验室的科研创新领域,增强了矿用导航技术在系统级和核心部件级动静态特性测试能力,提高了矿用导航产品在工程应用中的可靠性。
  • 高光谱成像等技术纳入“地球观测与导航”重大专项申报指南
    2月19日,科技部发布“地球观测与导航”等10项重点专项2016年度项目申报指南通知。“地球观测与导航”重点专项围绕新机理新体制先进遥感探测技术、空间辐射测量基准与传递定标技术、高性能空天一体化组网监测系统技术、地球系统科学与区域监测遥感应用技术、导航定位新机理与新方法、导航与位置服务核心技术、全球位置框架与位置服务网技术体系、城市群经济区域与城镇化建设空间信息应用服务示范、重点区域与应急响应空间信息应用服务示范等9个方向,共部署45个重点任务。按照分步实施、重点突出原则,2016年启动7个方向15个重点任务的部署,专项实施周期为5年。 本项目涉及技术包含“关键技术攻关类”、“关键技术攻关类与应用示范类”、“基础前沿类”、“重大共性关键技术类”等几大类,列入关键技术攻关类的有:静止轨道高分辨率轻型成像相机系统技术、静止轨道全谱段高光谱探测技术、大气辐射超光谱探测技术、超敏捷动中成像集成验证技术、基于分布式可重构航天遥感技术、面向遥感应用的微纳卫星平台载荷一体化技术。全文如下: “地球观测与导航”重点专项2016年度项目申报指南 依据《国家中长期科学和技术发展规划纲要(2006—2020年)》,按照《国务院关于改进加强中央财政科研项目和资金管理的若干意见》及《国务院印发关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》精神,科技部会同有关部门,组织编制了国家重点研发计划“地球观测与导航”重点专项的实施方案,在此基础上启动该专项2016年度项目部署,并发布本指南。本专项围绕新机理新体制先进遥感探测技术、空间辐射测量基准与传递定标技术、高性能空天一体化组网监测系统技术、地球系统科学与区域监测遥感应用技术、导航定位新机理与新方法、导航与位置服务核心技术、全球位置框架与位置服务网技术体系、城市群经济区域与城镇化建设空间信息应用服务示范、重点区域与应急响应空间信息应用服务示范等9个方向,共部署45个重点任务。按照分步实施、重点突出原则,2016年启动7个方向15个重点任务的部署,专项实施周期为5年。针对重点任务中的研究内容,以项目为单位进行申报。项目下设课题数原则上不超过5个,每个课题承担单位原则上不超过5个。本专项2016年部署项目的申报指南如下:1.“新机理新体制先进遥感探测技术”方向1.1静止轨道高分辨率轻型成像相机系统技术(关键技术攻关类)研究内容:面向同时兼顾高空间分辨率、高时效观测能力的各类区域性监测任务要求,开展不低于2.5m分辨率的静止轨道光学相机系统技术研究,包括基于天地一体化的静止轨道空间轻型相机系统总体技术、相机自适应光学检测与控制技术、静止轨道高分辨率相机稳像技术等研究;完成全尺寸地面原理样机的研制,对关键技术进行地面试验验证,为发展静止轨道高分辨率光学卫星提供技术支撑,服务于我国高分辨率海陆安全监测、突发灾害探测等重大应用需求。考核指标:实现静止轨道不低于2.5m空间分辨率的全色对地成像和不低于5m分辨率的多光谱对地成像,实现单帧幅宽不小于100km×100km,成像质量MTF×SNR优于5(太阳高度角20° 、地面反射率0.05)。实施年限:5年拟支持项目数:2项1.2 静止轨道全谱段高光谱探测技术(关键技术攻关类)研究内容:针对防灾减灾、环境、农业、林业、海洋、气象和资源等领域高光谱遥感的应用需求,开展静止轨道高光谱成像技术研究,突破全谱段高光谱高灵敏探测、大口径低温光学集成装调、超大规模高灵敏度面阵红外探测器组件、高精度定标与反演等关键技术,形成波段范围覆盖紫外至长波红外的全谱段高光谱成像原理样机系统,为静止轨道高光谱探测技术及应用的跨越式发展奠定基础。考核指标:研制空间分辨率不低于25m(紫外至近红外波段)、50m(短波红外至中波红外波段)、100m(长波红外波段),波段范围0.3μ m~12.5μ m,光谱分辨率不低于0.01λ 、波段可编程,单帧幅宽不小于400km的高光谱成像原理样机系统。实施年限:5年拟支持项目数:3项1.3 大气辐射超光谱探测技术(关键技术攻关类)研究内容:针对大气痕量气体的临边和天底超光谱探测需求,开展大气辐射超光谱探测仪总体技术研究,进行指标体系和总体方案设计;开展高效率干涉成像技术研究,实现高性能干涉仪的设计和装调,突破高精度高稳定性机构控制技术、激光计量技术;开展低温光学和系统制冷技术研究;开展红外傅里叶变换光谱仪高精度定标技术研究;研制大气辐射超光谱探测仪工程样机;突破数据预处理和气体反演技术,开发数据处理软件系统。考核指标:谱段:3.2μ m~15.4μ m;光谱分辨率不低于1.25px-1(天底)、0.375px-1(临边);空间分辨率(@705km)不低于0.5km×5km(天底)、2.3km×23km(临边);幅宽不低于5.3km×8.5km(天底)、37km×23km(临边);辐射测量精度:0.3K;光谱定标精度:0.2px-1;信噪比不低于30:1。实施年限:5年拟支持项目数:2项1.4 超敏捷动中成像集成验证技术(关键技术攻关类)研究内容:面向高分辨率、高效率、高价值对地观测卫星发展需求,开展超敏捷、动中成像技术攻关。完成动中成像模式的总体设计;完成高分辨率相机成像质量保证技术攻关,确保实现图像的高辐射质量和高几何质量;完成姿态快速机动并稳定控制技术攻关、动中成像高平稳姿态控制技术攻关,开发相关的核心控制部件并完成系统闭环验证;构建动中成像集成验证系统,模拟在轨动中成像过程,进行姿态机动与相机成像集成试验验证。考核指标:相机角分辨率:优于0.5μ rad;姿态机动速度:绕任意轴机动25° 并稳定时间不超过10s;最大角速度不低于6° /s;最大角加速度:不低于1.5° /s2;动中成像过程姿态稳定度优于5×10—4 ° /s(三轴,3σ );系统在轨传函:≥ 0.1(Nyquist频率);图像目标定位精度:常规推扫优于5m,动中成像优于30m(星下点,无控制点)。实施年限:3年拟支持项目数:1—2项2.“高性能空天一体化组网监测系统技术”方向2.1 基于分布式可重构航天遥感技术(关键技术攻关类)研究内容:面向应急遥感等迫切任务需求,开展基于分布式可重构航天器的智能遥感技术与方法研究;开展航天器空间分布方式、可重构方法与遥感技术的关联性研究。开展凝视、推扫、视频与多星组网的多种成像模式相结合研究;研究空间多航天器空间遥感探测系统的分布式测量方法、通信组网与数据共享机制;研究快速自动合成与高精度定位以及分布式航天器组网系统技术。开展具有实时姿态、位置、时间和自标定等综合信息能力的智能化载荷系统标准研究;形成标准化的分布式姿态测量与控制模块,网络化通信与数据共享模块,高精度遥感模块三大核心能力。考核指标:完成6~8颗分布式可重构卫星试验样机,实现分布式可重构卫星集群姿态测量、通信、测控和成像功能验证,完成分布式可重构遥感卫星网络演示系统;姿态测量与控制模块,总重量小于1kg,实现三轴姿态测量精度优于10″ ,角速度测量精度优于0.001° /s,角度控制精度优于0.02° 。数据通信与共享模块重量小于1kg,功耗小于1W,其包括星间通信数率大于30Kbps,距离大于20km,星地数据通信包括测控与数传,其中测控数据率上下行均大于30Kpbs,数传大于10Mpbs。高精度载荷模块重量小于5kg,对地分辨率优于4m,幅宽大于8km;系统具有自主成像的能力,无控制点图像定位精度优于100m,通过半物理仿真演示验证在全球任意地点达到在2小时内实现快速重访。实施年限:5年拟支持项目数:3项2.2 面向遥感应用的微纳卫星平台载荷一体化技术(关键技术攻关类)研究内容:面向多尺度实时敏捷全球覆盖的需求,开展20kg量级卫星的平台载荷一体化总体技术研究;构建标准化的微纳型遥感载荷单元与微纳型姿态测量控制单元,能源流单元和信息流单元。开展面向微纳型遥感卫星在轨遥感参数自标定和互标定技术研究,并通过地面演示验证;研究部署地球空间环境探测传感器微型化与集成设计技术,如空间大气、粒子辐射、电磁场、微重力等探测。突破探测微传感器关键技术,及其与微纳星微平台一体化设计和集成技术。建立低成本货架式微纳型遥感卫星技术体制;开展基于商业器件的批量化微纳卫星遥感系统的建造技术、标准化模块、载荷的集成、测试方法研究;完善微纳型遥感卫星的建造规范,为未来实现百颗量级微纳卫星遥感编队奠定技术基础。考核指标:完成20kg量级一体化微纳型遥感卫星系统以及相应的演示验证。完成微纳型遥感卫星的姿态标准化单元,完成微纳型遥感卫星的能源系统标准化单元,实现整星功耗大于20W的能源有效分配和电源系统的可靠性;对信息流标准化单元,基于商业器件实现遥感信息、测控信息、数据传输等的信息流统一处理。通过地面演示验证微纳型遥感卫星在轨载荷单元与姿态参数的互标定精度优于2,载荷系统的内部自标定精度优于0.2。实施年限:5年拟支持项目数:2项3.“地球系统科学与区域监测遥感应用技术”方向3.1 基于国产遥感卫星的典型要素提取技术(重大共性关键技术与应用示范类)研究内容:研究并建立全球多尺度典型要素标准体系和全球典型要素信息提取技术规范;研究国产低—中—高分辨率卫星遥感影像无场几何定标与验证技术、大规模境外多源遥感数据高精度协同处理技术;研究全球典型要素自动识别、快速提取与定量遥感技术,研究全球典型要素的增量更新技术;研究毫米级全球历元地球参考框架(ETRF)构建关键技术;形成典型要素协同生产技术体系,开展地表特征、资源、环境、矿产、生态、减灾典型要素信息提取示范应用。考核指标:标准体系覆盖全球多尺度数字正射影像(DOM)、数字高程模型(DEM)、数字地表模型(DSM)、地形核心要素、水体、湿地、人造地表、耕地、冰川和永久积雪、森林、草地、灌木地、裸地、矿产开发地、碳酸盐岩区、盐碱地、石漠及荒漠化地等典型要素,满足10m~20m地表覆盖分类要求;信息提取技术能够支持我国主要自主卫星数据产品的快速处理,典型要素提取自动化程度达到80%以上,精度达到像元和亚像元级;全球尺度DOM数据产品分辨率优于2.5m、DEM数据产品分辨率优于10m、无控平面和高程精度优于5m、地形核心要素矢量数据产品精度不低于1:5万;境外重点区域DOM数据产品分辨率优于1m、DEM数据产品分辨率优于5m、无控平面精度优于3m、无控高程精度优于2m、地形核心要素矢量数据产品精度不低于1:1万;水体、湿地、人造地表、耕地、冰川和永久积雪、森林、草地、灌木地、裸地、矿产开发地、碳酸盐岩区、盐碱地、石漠及荒漠化地等要素数据产品分辨率达到10m~20m、要素信息提取准确率不低于85%;建立毫米级全球历元地球参考框架技术体系。生产全球3~5个典型区域的要素信息产品。实施年限:5年拟支持项目数:1—2项有关说明:鼓励产学研结合3.2 地球资源环境动态监测技术(重大共性关键技术类)研究内容:研究全球典型区域资源、能源、生态环境、自然灾害的监测指标体系,研究任务驱动的多源国产卫星协同立体监测、预警、应急调查技术,研究面向环境要素应急与监测耦合遥感观测技术,研究天地联合多时空尺度监测数据在线融合处理及协同分析技术,研究基于多源多时相卫星影像的全球尺度及典型区域地表覆盖、自然灾害、资源能源开采环境、生态环境等标志性特征的高可信变化检测、分析评价、模拟预测技术;研究天地联合多时空尺度近地空间环境监测关键技术;形成地球资源环境动态监测技术体系,开展相关领域的应用示范。考核指标:监测指标体系覆盖全球典型区域资源、能源、生态与健康环境、自然灾害动态变化要素与特征,满足资源环境动态监测要求;高价值时敏目标监测精度优于90%、虚警率小于5%;实现至少15类遥感载荷的多源数据融合与协同处理;对重大基础设施的形变监测精度优于3mm/年,形变时间序列监测精度优于4mm;具备资源与环境要素的年度监测能力,全球尺度产品空间分辨率不低于30m、重点区域产品空间分辨率不低于10m;全球典型区域自然灾害、资源能源开采地、湿地和森林等生态环境敏感因子的变化检测准确度大于85%;动态观测数据驱动的典型自然灾害实时模拟精度达到85%、时效性高于亚小时;天地联合监测区域尺度200km~1000km,获取空间环境信息要素不少于4类,数据处理周期不超过2小时。选择3~5个领域开展应用示范。实施年限:5年拟支持项目数:1—2项有关说明 :鼓励产学研结合4.“导航定位新机理与新方法”方向4.1 高精度原子自旋陀螺仪技术(基础前沿类)研究内容:针对海洋资源勘探对水下探测器长航时高精度导航技术需求,开展高精度原子自旋陀螺的理论与方法研究及关键技术攻关,研制原理样机;同时,探索面向便携式自主导航的金刚石色心原子陀螺的理论与方法,研制原理验证样机。考核指标:探索导航定位新机理与新方法,并研制两类高性能原子自旋陀螺样机:(1)高精度原子自旋陀螺原理样机,实现漂移优于0.0001° /h;(2)金刚石色心原子陀螺原理验证样机,实现漂移优于10° /h。实施年限:5年拟支持项目数:1—2项4.2 海洋大地测量基准与海洋导航新技术(基础前沿类)研究内容:面向海洋资源环境探测、水下导航定位的应用需求,研究海底大地测量基准建立和陆海基准的无缝连接技术,构建陆海(含海底)一致的、连续动态的海洋区域高精度大地测量基准和位置服务系统,包括高程基准(大地水准面);研究水下参考框架点建设与维护和陆海大地水准面无缝连接等技术方法;完成水下方舱设计、标校和测试方案论证与试验;研究海洋(水面、水下)融合导航技术和重力匹配导航技术,研制海底信标、重力和惯性定位相融合的水下综合导航设备。考核指标:海底大地控制点坐标精度优于± 0.5m;1×1海洋重力异常图精度优于± 3~5mGal;大地水准面精度优于125px。最大工作水深不小于3000m。水下定位精度优于± 10m;实时重力测量处理精度优于± 3mGal。实施年限:5年拟支持项目数:1—2项5.“导航与位置服务核心技术”方向5.1 协同精密定位技术(基础前沿与关键技术攻关类)研究内容:面向大众用户对室内外无缝定位服务的需求,研究高可靠性、高可扩展性的协同精密定位服务平台架构;联合通信与卫星导航技术,建立协同定位平台和A—GNSS服务技术体系;以云计算、云存储技术为基础,突破海量基准站实时观测数据安全管理及精密定位增强信息分布式处理技术;开展基于通信、卫星导航等多源协同定位关键技术研究;突破面向大众应用的高性能、低成本协同精密终端关键技术;开展云平台精密定位信息安全及基于性能分级服务关键技术研究;联合多卫星系统、全球覆盖地面基准站网及地面通信网络,研制面向大众用户的协同精密定位关键器件和自主可控的协同精密定位服务平台,开展应用示范。考核指标:能够实时处理联合全球和我国的GNSS基准站数据,处理能力不少于2000个站;实现秒级更新的卫星轨道、钟差及相关参数联合处理,满足亚纳秒至毫秒级精度的授时服务,以及毫米级至亚米级的定位服务;大众用户室外定位精度优于0.5m,授时精度优于1ns;形成相关技术标准规范建议,平台服务用户能力不少于1千万,每日定位处理能力不少于100亿次。实施年限:5年拟支持项目数:1—2项5.2 室内混合智能定位与室内GIS技术(关键技术攻关类)研究内容:围绕室内复杂环境智能定位与多体系位置自适应和应用服务等关键科学问题,面向大型复杂公共场所的安全监控与预警和应急救援与管理等重大应用需求,研究开发基于地面基站的无线定位或室内特征匹配等混合智能室内定位技术,通过导航电文的精确坐标定位数据、室内多种无线通讯信号、室内特征的位置信息等,构建大范围高精度室内混合定位示范系统,开发新型的核心芯片,研制室内GIS软件。重点研究以下关键技术:无线定位信号载波频率及导航电文播发协议,室内特征获取与计算;地面基站及无线广播发射机关键技术;接收机核心芯片(射频前端及接收机基带信号SoC芯片)关键技术;接收机基带信号处理及定位、室内特征匹配与定位算法;室内定位接收机开发,室内GIS研制,室内位置服务应用系统构建。考核指标:室内定位精度优于1m;室内图像匹配精度达到亚像素;建立室内定位示范系统,定位区域可以覆盖大型城市,复杂建筑群广场面积达到50万平米以上,超大型机场日客流量超过20万;完成室内定位系统基准站研发和室内定位接收机核心芯片及算法的开发、室内特征匹配与室内GIS研制;形成室内无线定位技术国家标准建议,核心理论方法论文不少于3篇,自主核心专利不少于10项。实施年限:5年拟支持项目数:3项有关说明:鼓励产学研结合,鼓励配套支持经费 5.3 全空间信息系统与智能设施管理(基础前沿类)研究内容:围绕人机物混合的三元世界的全测度空间信息获取、处理、分析的关键科学与技术问题,探索多元空间协同表达与时空基准、全尺度空间数据模型、设施信息标准化模型等理论方法,攻克多尺度多模态大数据归一化、多元空间数据分析模型与态模型耦合、全空间信息符号化表达与可视化等前沿核心技术,研制具有原始创新、世界领先的全空间信息系统原型,构建城市基础设施管理示范应用系统,促进我国地理信息系统创新发展。考核指标:理论上原始创新,核心理论方法的标志性论文不少于50篇,自主核心专利不少于20项;新型空间数据处理与分析算法不少于100种,实时动态可视化三角面片超过100万量级,GB级空间数据可视化速度优于秒级;研制适用国内大城市公用设施管理的示范系统,示范验证系统可管理物件超过百万件。实施年限:5年拟支持项目数:1—2项有关说明:鼓励产学研结合6. 全球位置框架与位置服务网技术体系6.1 广域航空安全监控技术及应用(关键技术攻关类)研究内容:面向应对运输航空突发安全事件和管控通用航空安全风险的需求,研究基于自主PNT资源和通信资源的广域航空安全监测网技术架构、航空器飞行动态信息一致性/完好性/安全性保障与风险评估技术;研究星基自动相关监视和多照射源低空监视等全空域航空器高精度定位技术;研究高风险航迹追踪识别与风险预警技术;研究北斗机载设备检测与适航评估技术;研制构建功能性验证系统,针对运输航空和通用航空开展验证性应用示范工作;为建立广域航空安全监控网、提升国家空域安全监控能力进行技术探索与储备。考核指标:建立具备全球覆盖能力的全空域航空安全监视及风险预警实验平台、具备模拟北斗最低性能及高精度增强模拟等能力的实验平台,搭建广域航空安全监控网功能验证系统,形成广域航空安全监视网技术架构和技术规范。航空器运行风险识别符合ICAO DOC4444要求,告警位置信息不低于1次/min;北斗机载设备安全评估符合SAE ARP4761和CAR25.1309要求;监视航空器数量大于1000架,监视数据更新时间小于10s,三维位置精度优于2m、三维速度精度优于0.1m/s、时间精度优于20ns(95%置信度);3000m及以下非合作目标监视范围不小于120 km×120 km,水平定位精度优于50m,矢量速度精度优于1m/s,数据更新率不低于1次/s。实施年限:4年拟支持项目数:1—2项7. 重点区域与应急响应空间信息应用服务示范7.1 区域协同遥感监测与应急服务技术体系(关键技术攻关与应用示范类)研究内容:研究区域应急响应空天地组网遥感监测应急服务体制机制,研究应用机理并确立应用需求和技术指标体系;研究基于卫星普查观测、浮空器定点观测、长航时无人机巡航观测、轻小型无人机重点观测、地面移动终端信息实时采集的空天地一体化协同观测和应用系统总体技术;突破区域空间应急信息链构建、突发事件空间信息聚合分析、应急决策支持等共性关键技术,研建区域应急响应空间信息服务规范标准,构建“一带一路”、边境口岸等重点敏感区域的突发事件应急服务系统,以重点区域和典型突发事件为案例,开展规范、技术体系与系统集成方案的应用示范。考核指标:形成完整的空天地组网遥感监测应急服务运行标准体系和技术规范,支撑重点区域观测信息获取实现优于小时量级的覆盖频度、突发事件响应时间优于2小时能力,协同观测至少包括亚米级高分卫星遥感、低空遥感与地面移动终端等3类监测手段,实现分米级移动信息采集;完成应急服务演示系统研制,系统应具备满足应用部门功能与性能需求的应急响应指挥、信息获取、资源规划部署、调度、应急信息获取与管理、综合分析与信息产品生成、应急决策等能力;应用示范应包括“一带一路”沿线相关边境口岸、敏感地区城镇以及境外重点区域,构建至少1个区域空间信息服务与应急指挥示范平台。实施年限:3年拟支持项目数:2项有关说明:鼓励产学研结合
  • 国内首家通信导航设备质检中心揭牌
    12月16日上午,国家通信导航设备质量监督检验中心及中电科第54所认证中心在石家庄高新区创业园区正式揭牌。  这是国内首家开展卫星导航产品的认证机构,将对保障国家地理信息安全,提高卫星导航领域产品、服务质量和管理水平产生积极影响,并进一步提升高新区及全市电子信息产业的整体实力。  国家通信导航设备质量监督检验中心于1990年在中电科技集团第54研究所成立,主要从事通信、导航、广播电视等产品的检验与试验,所出具的检验报告被四十多个国家和地区所认可。去年,54所被国家认监委授权,成为唯一开展卫星导航产品认证业务的机构。今后,中心的认证将向家电、通信、广播电视等产品领域拓展。  中心的导航认证,简称为“N”认证。认证标志是由指北三角形图标、象征地球卫星轨道的外圈蓝带、象征卫星的两个圆点、英文字母C、H、N以及证书编号组成,这将成为今后消费者选购优质导航产品的认证标识。近期内,54所将在官方网站发布第一批获得认证产品的目录。  石家庄副市长、高新区工委书记刘晓军出席揭牌仪式。
  • 量子导航领域又一突破:原子自旋陀螺仪原理样机研制成功
    全空域、全时域的无缝定位导航是未来定位导航产业的技术制高点。随着量子精密测量技术的快速发展,基于量子精密测量的陀螺及惯性导航系统具有高精度、小体积、低成本等优势,将对无缝定位导航领域提供颠覆性新技术。  “十二五”863计划地球观测与导航技术领域主题项目“基于磁共振的微小型原子自旋陀螺仪关键技术”由北京自动化控制设备研究所承担,项目研究开展一年半取得突破性进展。项目组攻克了核自旋-电子自旋耦合极化与检测等精密量子操控技术,完成了小型化磁共振气室、高效磁屏蔽等元件的精密设计与制造,并研制成功我国首个基于磁共振的原子自旋陀螺仪原理样机。样机零偏稳定性优于2° /h,成为世界上第二个掌握该技术的国家,与美国技术差距从10年缩小到7年。  项目所取得的研究成果为进一步提高基于磁共振的微小型原子自旋陀螺仪的精度与集成度,为支撑我国量子导航领域的发展打下了坚实的技术基础。原子陀螺仪的技术突破使现有应用于高端装备的无缝定位导航系统的体积、质量、功耗、成本等下降约两个数量级,将应用于大众定位导航市场,可在微小体积、低成本条件下实现米级定位精度,提供不依赖卫星的全空域、全时域无缝定位导航新能力。
  • 近红外荧光成像导航手术研究领域取得新进展
    p style="text-align: justify " 近日,复旦大学化学系张凡教授课题组与复旦大学附属妇产科医院徐丛剑教授团队合作,利用近红外探针实现近红外二区荧光成像导航卵巢癌实体瘤和转移灶的精准切除,此方法有望在临床上用于腹腔恶性转移肿瘤的精准手术导航。7月24日,相关研究论文以《活体内自组装的近红外二区纳米探针用作增强卵巢癌转移灶的手术导航》(“NIR-II Nanoprobes in-vivo Assembly to Improve Image-guided Surgery for Metastatic Ovarian Cancer”)为题在线发表于《自然· 通讯》(Nature Communications, 2018, 9, 2898)。复旦大学化学系博士生王培园为论文第一作者。/pp style="text-align: justify " 手术切除通常是恶性肿瘤最常见和最有效的治疗方法之一。然而外科医生触诊和目视检查并不足以确保区分恶性和正常的组织类型,因此可能导致不完全切除或健康组织不必要切除。相比于术前影像学检查及手术中视觉检查及触诊,活体荧光成像技术由于其即时性、高分辨率、高特异性等检测优势,为精准手术导航技术领域提供了较好的应用前景。传统的可见光区(400 - 750 nm)和近红外一区(NIR-I, 750 - 900 nm)荧光,由于其组织穿透深度较浅和严重的自体荧光干扰,极大地限制了荧光成像技术在腹腔以及淋巴结转移病灶在手术导航中的应用。此外,手术切除过程中需要荧光探针具有长效的肿瘤内滞留时间和光稳定性。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b8e54b7f-2dec-4f1c-a053-3576dfab39d8.jpg" title="20180725复旦.jpg"/ /pp style="text-align: left "图1. 表面分别修饰配对DNA(L1/L2)和修饰靶向蛋白的近红外探针。对于这两种配对DNA修饰的探针采用两针注入法,通过肝脏、肾脏的快速代谢,体内正常组织的荧光信号可以降到最低;肿瘤内的探针自组装可以对肿瘤实现长达6小时的稳定标记,确保精准的手术导航。/pp style="text-align: justify " 针对上述两个问题,张凡课题组与徐丛剑团队合作,利用近红外二区荧光探针(NIR-II, 1000 - 1700 nm)的深组织穿透和低自体荧光优势,结合化学自组装设计实现了探针在肿瘤内的长期稳定标记,极大地提高了光学成像的信噪比。初步实现了卵巢癌腹膜转移以及淋巴结转移肿瘤在荧光成像指导下精准切除(图1),为该技术的临床转化应用提供了可能。/pp 该工作得到了复旦大学化学系、聚合物工程国家重点实验室、复旦大学先进材料实验室、复旦大学附属妇产科医院、复旦大学上海医学院妇产科学系、国家重点研发项目、国家杰出青年学者科学基金、上海市科委重点基础研究项目、上海科学技术规划委员会的大力支持。/ppbr//p
  • 近红外荧光成像技术为肿瘤手术“导航”
    2013年,美国哈佛医学院教授John V Frangioni提出,近红外荧光成像技术可以为临床医生提供有效帮助,未来十年将在肿瘤术中极具应用前景。在中国,MI从实验室走进手术室,已然让这一设想成为现实。  近一百年来,人类获取癌症信息的方法不断创新:从上个世纪初的X射线到70年代的CT,再到本世纪初的核磁共振(MRI),借助这些设备,人们对癌细胞不仅看得到还看得清,更能看得准。  创新无止境。中科院自动化研究所(以下简称自动化所)研发的光学分子影像手术导航系统(MI),让我们不仅对癌细胞&ldquo 看得早&rdquo ,而且与以上三种手段不同的是,MI能在手术中从分子层面精准定位癌细胞,为医生&ldquo 导航&rdquo 。  &ldquo 其貌不扬&rdquo 的MI  &ldquo 这是第一代光学分子影像手术导航系统,那是现在最新的产品化样机。&rdquo 在中国科学院自动化研究所,助理研究员王坤向《中国科学报》记者介绍了新老几代MI设备。MI看上去&ldquo 其貌不扬&rdquo :普通的液晶显示屏、支架、镜头、可以移动的箱体,外观&ldquo 温和谦逊&rdquo ,不如核磁共振等医疗设备看着威风。  其实,MI极具内涵和实力。&ldquo 最新的MI设备已在中国人民解放军总医院(301医院)等国内多家医院开展临床应用。&rdquo 王坤说。无论是术中肝癌微小肿瘤灶的检测,还是乳腺癌、胃癌、前哨淋巴结精确定位手术,MI都大显身手。  目前手术仍是治疗癌症的最有效方法之一。对于肿瘤边界的精确定位却一直困扰着临床医生及科研人员。通常,医生凭借经验对肿瘤组织进行切除,如果少切可能会造成复发,而多切又会对患者造成伤害。&ldquo 所以,一种术中提供客观肿瘤边界的方法具有重要的临床应用价值。&rdquo 王坤说。  MI是国内成功研制的首台肿瘤术中早期精准定位的临床检测设备。问世不到3年时间,它已成功诊治百余例肿瘤患者,并实现了光学分子影像技术在临床应用的重大突破。  手术室来了&ldquo 新伙伴&rdquo   2008年诺贝尔化学奖获得者钱永健教授在2009年世界分子影像大会上的报告中提到:术中客观的肿瘤边界信息获取为手术治疗提供了重要的价值。这也是对分子影像导航技术广泛应用的进一步肯定。  分子影像导航技术是如何在人体内实现的?自动化所助理研究员迟崇巍解释说,当人体病灶发生病变之后,肿瘤细胞外部会产生某些蛋白靶或酶分子的靶标。人们通过注射一种带有荧光或者核素标记的分子探针,通过配体、受体的特异性结合实现探针在体内的自动寻靶,这样便可通过影像学设备实现在体成像,从而反映出体内肿瘤变化情况。  2012年,迟崇巍跟随该所研究员田捷开始研究分子影像。那时,他们带着第一台光学分子影像手术导航系统走出中科院分子影像重点实验室,来到汕头大学肿瘤医院。第一台不怎么&ldquo 漂亮&rdquo 的MI设备成了手术室里的新家伙。  根据《新英格兰》杂志的报道,对于乳腺癌I期和II期的病人来说,如果早期发现并实施治疗,其5年期生存率可以达到80%以上。临床操作规范指南明确指出,乳腺癌早期(I期或者II期)腋窝淋巴结阴性的病人必须实施前哨淋巴结活检手术。&ldquo 我们研发的MI设备,能够在术中客观显示肿瘤及其他病灶的边界信息,这为临床医生手术治疗提供了有效帮助。&rdquo 迟崇巍说,他们对22例乳腺癌早期患者前哨淋巴结进行精确手术导航切除实验。这组实验数据与组织病理金标准进行验证,检出率为100%,同时病人也未出现任何不良反应。  随着技术进一步发展,通过光学分子影像手术导航方法一方面可以在术中对乳腺癌肿瘤及微小转移灶进行应用,同时可以实现对乳腺癌不同亚型进行术中分子分型,达到术中实时病理的目的 另一方面该方法不仅可以应用在乳腺癌上,同时还可以在肝癌、肺癌、胃癌等多种癌症上进行应用,实现不同肿瘤的分子影像技术应用突破。  走出实验室练就&ldquo 铁骨&rdquo   创新不是拍脑袋想出来的,需要一个团队长时间积累与探索,MI正是如此。它不仅集光学、物理学、计算机等学科知识于一体,走出实验室后,还要有一副经得起临床测试的&ldquo 铮铮铁骨&rdquo 。  最初到汕大医院手术室,MI开始有点&ldquo 水土不服&rdquo 。&ldquo 能否将无影灯关闭一会?能否给手术室配上遮光窗帘?&rdquo 迟崇巍的要求让手术室里的医护人员感到有些为难。  这是因为MI需要采集荧光,而荧光的光强只有自然光的千分之一。在伸手不见五指的铅房实验室里,科研人员可以非常方便地采集荧光,但在手术室中受各种光源影响,采集起来却不容易。  之后,田捷团队与医生、护士不断沟通,终于得到了他们的理解与支持。更重要的是,科研人员精进技术手段,克服了这一难题。  另一个研发难题是算法。通过对光学分子影像手术导航系统理论及方法的基础研究,自动化所科研人员研发出基于生物组织特异性的高阶近似数学模型和快速动态成像算法,并建立较为完整的、系统的光学分子影像手术导航数据融合方法。前期研发的系统样机已获得国家药监局中国食品药品检定研究院的合格检测报告,验证了系统的安全性及有效性。  此外,MI还选用了更先进的荧光染料。他们结合新的分子荧光染料&mdash &mdash 吲哚菁绿(ICG)的特性,在手术过程中提供实时的荧光图像和彩色图像。在实际临床试验过程中,注射ICG3分钟左右,医生便可以看到前哨淋巴结的位置。这样,医生根据MI的引导进行精确定位,准确切除前哨淋巴结组织。切除后,医生还可以根据荧光反馈判断是否有荧光残余、是否达到准确切除的目的。  不断精进的MI现在是多家医院手术室里的利器:301医院的大夫可以利用MI进行分子影像术中肝门部胆管癌的精确检测 在东方肝胆外科医院,医生可以利用该设备进行肝癌门静脉癌栓方面的检测 珠江医院的医生借助MI开展术中肝硬化微小肿瘤灶检测 西京医院的医生使用这种设备进行胃癌术中前哨淋巴结活检精确定位手术。
  • 中国2015年前建起北斗导航检测认证体系
    新华网北京8月3日电 解放军总参谋部与国家认证认可监督管理委员会3日在北京举行战略合作协议签约仪式。中国将用3年时间建立起一个“法规配套、标准统一、布局合理、军民结合”的“北斗”导航检测认证体系,以期全面提升“北斗”导航定位产品的核心竞争力,确保“北斗”导航系统运行安全。  “北斗”导航定位系统是中国完全自主知识产权的卫星导航定位系统,始建于上世纪80年代,并计划在2012年年底正式开通服务。截至目前,“北斗”导航定位系统已经有11颗卫星在轨运行,拥有12万军民用户。到2020年前,“北斗”导航定位系统卫星数量将达到30颗以上,导航定位范围也将由区域拓展到全球,其设计性能将与美国第三代GPS导航定位系统相当。  据总参测绘导航局介绍,随着“北斗”导航定位系统的建设发展,“北斗”导航应用即将迎来“规模化、社会化、产业化、国际化”的重大历史机遇,也对“北斗”产品的检测认证提出了新的要求。按照军地双方签署的协议,中国将在2015年前完成“北斗”导航产品标准、民用服务资质等法规体系建设,形成权威、统一的标准体系。同时在北京建设1个国家级检测中心,在全国按区域建设7个区域级授权检测中心,加快推动“北斗”导航检测认证进入国家认证认可体系,相关检测标准进入国家标准系列。  相关负责人称,尽快建立起“北斗”导航检测认证体系,既是“北斗”系统坚持军民融合式发展的具体举措,也对创建“北斗”品牌,加速推进“北斗”产品的产业化、标准化起到重要作用。
  • 国家级北斗卫星导航产品检测机构成立
    国家通信导航与北斗卫星应用产品质量监督检验中心6日在石家庄市挂牌,该中心由中国国家认证认可监督管理委员会批准中国电子科技集团公司第五十四研究所成立。与此同时,中国人民解放军总参测绘导航局和中国卫星导航定位应用管理中心批准该研究所成立&ldquo 北斗卫星导航产品质量检测中心&rdquo 。这标志着我国首个国家级北斗卫星导航产品检测机构成立。  据了解,两个中心的主要任务是:在国家认监委和总参测绘导航局指导下,制定北斗卫星导航及卫星应用标准 研究北斗卫星导航设备检测方法和测试技术 开展北斗卫星导航产品检测认证 提升北斗卫星导航产品质量,推动北斗卫星导航产业发展 向行业主管部门、政府有关部门及广大消费者提供产品质量信息。  两个中心的成立将有利于北斗导航应用普及,尽早发挥国家重要基础设施的使用效能 帮助提升北斗导航产品质量,增强北斗导航核心竞争力 有利于加强行业管理、规范市场秩序,推动北斗导航的应用与国际接轨。
  • 中国将在天津建北斗天津导航系统国际海事监测中心
    p  天津11月24日,在交通运输部北海航海保障中心召开的新闻发布会上获悉,中国将在该中心建设北斗卫星导航系统国际海事监测中心,具体负责开展北斗系统海事监测工作。/pp  自2012年底中国北斗卫星导航系统(BDS)正式提供公开服务以来,经过多年的努力,北斗海事应用国际化工作取得了突破性进展。/pp  2014年,国际海事组织(IMO)正式认可BDS并将其纳入全球无线电导航系统,北斗卫星导航系统也成为继美国GPS和俄罗斯GLONASS之后向国际海事界提供导航服务的第三个卫星导航系统。/pp  北海航海保障中心海事测绘处副处长黄永军介绍说,按照国际海事组织的要求,中国海事局作为代表全球北斗海事用户的政府主管机关,需要履行政府承诺,开展北斗系统海事监测工作。/pp  根据中国海事局的总体部署,北海航海保障中心开展了北斗卫星导航系统的海事监测中心建设筹备工作。/pp  “现已完成技术论证、建设方案编制和运行机制制定等工作,为下一步正式开展建设奠定了坚实的基础。”黄永军说。/pp  北海航海保障中心副主任柴进柱告诉记者,监测中心建成后,将履行中国政府对IMO作出的承诺,开展北斗卫星导航系统海事监测工作,对系统的精度、运行状态、空间信号质量、服务性能等进行监测评估,及时向海事用户公告系统运行状况信息,确保全球海上用户能获得高可靠的北斗卫星导航服务。/pp  2012年12月20日,交通运输部北海航海保障中心在天津挂牌运转,负责中国北海海区的航海保障服务,辖区范围覆盖山东、河北、辽宁、黑龙江、天津四省一市。/p
  • 北斗导航检测中心启动建设
    9月11日,上海北斗导航及位置服务产品检测中心(筹)正式启动建设。国家质检总局副局长、国家认监委主任孙大伟,上海市常务副市长杨雄为中心揭牌。同时北斗(上海)位置综合服务平台和上海北斗卫星导航平台有限公司也正式揭牌成立。
  • “地球观测与导航”重点专项拟立项的2018年度项目公示
    p  根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于印发 国家重点研发计划管理暂行办法 的通知》(国科发资[2017]152号)等文件要求,现将“高性能计算”等8个重点专项的2018年度拟立项项目信息进行公示(详见附件1-8)。/pp  公示时间为2018年5月7日至2018年5月11日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下:/pp  “地球观测与导航”重点专项/pp  联系人:徐泓/pp  联系电话:010-68104417/pp  传真:010-68338012/pp  电子邮件:xuhong@htrdc.com/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong国家重点研发计划“地球观测与导航”重点专项拟立项的2018年度项目公示清单/strong/span/pp style="text-align: center "img title="2018-05-13_182840.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/0a609fd7-be4e-4e6c-94b6-8e5e1a6924c3.jpg"//pp  附件:a style="color: rgb(0, 176, 240) text-decoration: underline " href="http://img1.17img.cn/17img/files/201805/ueattachment/1da40778-5f3b-4ec4-9dd5-b5154017aeff.pdf"span style="color: rgb(0, 176, 240) "国家重点研发计划“地球观测与导航”重点专项拟立项的2018年度项目公示清单.pdf/span/a/pp/p
  • “地球观测与导航”重点专项拟立项的2017年度项目公示
    p  根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现对“先进轨道交通”等9个重点专项2017年度拟立项的项目信息进行公示(详见附件)。/pp  公示时间为2017年6月5日至2017年6月9日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下:/pp  strong“地球观测与导航”重点专项/strong/pp  联系人:徐泓/pp  联系电话:010-68104417/pp  传真:010-68338012/pp  电子邮件:xuhong@htrdc.com/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong国家重点研发计划“地球观测与导航”重点专项拟立项的2017年度项目公示清单/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/a42fbf54-a8aa-46d5-b13c-8fb36d794380.jpg" style="" title="1.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/ba4ac629-7f6e-4ec9-b699-36fc68b7d6ad.jpg" style="" title="2.jpg"//pp  附件:span style="line-height: 16px color: rgb(0, 176, 240) text-decoration: underline "a href="http://img1.17img.cn/17img/files/201706/ueattachment/2d446fb9-dda1-47ac-8e65-8b13bb17c58b.pdf" style="line-height: 16px color: rgb(0, 176, 240) text-decoration: underline "国家重点研发计划“地球观测与导航”重点专项拟立项的2017年度项目公示清单.pdf/a/span/p
  • 一文了解我国科学家主导发起的人体蛋白质组导航国际大科学计划
    近日,由我国科学家主导、发起,并得到国内外科学界广泛响应和支持的国际大科学计划(Proteomic navigator of the human body,又称π-HuB)的执行总部在广东智慧医学国际研究院正式揭牌。这是继2001年人类基因组草图完成发表后,破解人体构造“天书”的另一个国际科学计划,中国科学院院士贺福初为该计划首席科学家。该计划旨在绘制人类全生命周期、全球性重大疾病及代表性膳食模式、生存环境的蛋白质组图谱,解析人类蛋白质组构成原理和演变的规律,探索生物医学大数据从信息知识到智慧的路径,实现人体蛋白质组定位系统的精确空间定位、准确状态定性和人体从非健康状态到健康状态的精准导航。  什么是人体蛋白质组导航国际大科学计划?  提起蛋白质,大家并不陌生。不过“蛋白质组”一词却鲜有人了解。其实,蝴蝶由卵变虫、成蛹、再破茧成蝶,幕后“操盘者”并非基因组,而是蛋白质组。  过去人们认为,只要绘制出了人类基因组序列图,就能了解疾病的根源,但是却发现基因组并不如预期那样能够揭示人类生、老、病、死的全部秘密,如何解读这本“天书”成为一大难题。  “生,源于基因组 命,却一定由蛋白质组决定。只有蛋白质组才能根本阐释生命。”中国科学院院士贺福初认为。基因组序列只是提供了一维遗传信息,而更复杂的多维信息发生在蛋白质组层面,因此想要解密基因组,必须先系统认识蛋白质组。π-HuB计划就是这样一个旨在绘制人类全生命周期、全球性重大疾病及代表性膳食模式、生存环境的蛋白质组图谱的计划。  那么,何谓“导航”?π-HuB计划将致力于解析人类蛋白质组构成原理和演变的规律,探索生物医学大数据从信息知识到智慧的路径,实现人体蛋白质组定位系统的精确空间定位、准确状态定性和人体从非健康状态到健康状态的精准导航。这项大科学研究将为人类健康管理、科学养生以及疾病精准防控诊治提供全新理论、技术和方法。该计划将为人类带来什么?贺福初院士主要从事蛋白质组学、精准医学和系统生物学研究。早在2002年,他的团队在国际上率先提出了蛋白质组学研究“两谱”“两图”“三库”的科学目标和行动策略,领衔完成了国际首个人类器官(肝脏)蛋白质组计划,建成了该领域领先国际水平的国家重大科学基础设施,并联合国内数十家基础研究和临床团队协作完成了中国人体蛋白质组研究等大型科学项目。2020年经国家科技部遴选评审立项,π-HuB计划成为首个生物医药领域国家大科学计划培育项目。  根据广州会议上公开的人体蛋白质组导航计划白皮书2.0,在未来30年,π-HuB计划将投入数十亿元人民币,以实现三大目标:  1、绘制人体蛋白质组结构空间参比图谱,按照人体构成层次,绘制从单分子到蛋白质复合体,细胞到组织到器官的各层级蛋白质组构成图谱   2、阐明人体蛋白质组状态空间参比图谱,追踪人体从受精卵发育成胎儿,直到衰老的生命全周期过程中,不同膳食模式、不同环境因素、体内不同微生物类型和不同疾病状态下的蛋白质组图谱的动态变化。  3、建立人体蛋白质组导航系统,整合蛋白质组学数据和其他人类组学数据构建元人体数字模型,利用人体蛋白质组在状态空间中定位,对健康状态进行判定,进而实现对疾病风险的预判和早期疾病诊断,和制定最佳治疗干预措施。早在2002年,中国科学院院士贺福初团队在国际上率先提出了蛋白质组学研究“两谱”“两图”“三库”的科学目标和行动策略,领衔完成了国际首个人类器官(肝脏)蛋白质组计划。在国家“863”、“973”和重点研发专项的共同支持下,贺福初团队联合国内数十家基础研究和临床团队协作完成了中国人体蛋白质组研究等大型科学项目,并提出蛋白质组学驱动的精准医学理念。贺福初院士在接受媒体采访时,围绕中国学者发起的国际大科学计划——“人体蛋白质组导航计划”,对其未来的发展目标,以及对我们解读生命密码的帮助等进行解读。至于为何要发起这样一个国际大科学计划,贺福初表示,大科学计划是强国的重要引擎,“当一个国家成为全球科学中心时,它将迅速成长为世界顶级强国”。问:贺院士,我国学者发起的“人体蛋白质组导航计划”是一项大科学计划,为什么您要积极推进我国的大科学计划呢?贺福初:在2016年的全国科技创新大会上,我国明确提出了在2050年要建成全球科学中心,这是作为全球科技强国非常重要的标志。对科学发展史的研判可以得出如下结论:当一个国家成为全球科学中心时,它将迅速成长为世界顶级强国。比如,17世纪的英国、18世纪的法国、19世纪初期到20世纪初期的德国。判断现代大国的强盛与否,首先要看它能否成为全球科学中心,能否发动技术革命。20世纪初,在欧洲大陆爆发世界大战时,美国吸引了全球大量的顶级科学家赴美研究,迅速成长为全球科学中心,发展出一系列突破性技术。而在崛起的过程中,美国相继发动了多个大科学计划,包括大家耳熟能详的曼哈顿计划、阿波罗计划,以及人类基因组计划。这些大科学计划是美国发展为世界第一强国的重要引擎,也在科学史上开启了真正的大科学计划时代,开创了人类文明的新篇章。问:我们知道蛋白质组学比基因组更为复杂,您和很多中国学者很早就在这一领域布局研究,如今也取得了很好的成绩,具体的情况请您介绍一下。贺福初:大科学计划需要调动全国甚至全球的科技力量,通过协作式的联合科学攻关,达成计划的既定科学目标,这种模式可以带来国家科技力量的迅速腾飞。医务工作者最熟悉的大科学计划或许就是人类基因组计划了,它全面推动了遗传学研究、疾病机制研究和药物靶标发现,为精准医学计划奠定了雄厚基础,带来了巨大的社会效益和经济效益。人类基因组计划绘制了一部人类生命密码的“天书”,但如何解读这本“天书”,成为当时科学家更加关注的问题。最终在人类基因组图谱完成之际,一批基因组学学者不约而同地向蛋白质组学发出呼唤:“用蛋白质组学解读基因组这部‘天书’。”于是,“人类蛋白质组计划(HPP)”应运而生。的确,与人类基因组计划相比,蛋白质组计划会更为复杂。因为同一个体不同器官、同一器官不同细胞的基因组是相同的,蛋白质组却可以千差万别。因此,尽管大家都知道要向蛋白质组寻找答案,但对于人类蛋白质组计划如何推进,各国学者莫衷一是。在2002年,由我国领衔、全球11个国家参与的“人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)”正式启动。该计划是国际“人类蛋白质组计划”启动的第一个人体组织器官的蛋白质组计划,也是中国科学家倡导和领衔的第一个国际大型合作计划。最终,我们鉴定了超过1万种人类肝脏蛋白质,并利用这些数据对肝脏生理功能进行了系统解读,为人类蛋白质组计划的全面展开发挥了示范作用。2014年,在“人类肝脏蛋白质组计划”取得成功经验的基础上,科技部启动了“中国人蛋白质组计划(CNHPP)”重点专项。如今,在人体蛋白质组学研究领域,我国的科研水平已领先世界。问:贺院士,您提出的“π-HuB”计划是下一个新的目标吗?您对它有什么期许吗?贺福初:随着这种数据驱动而非假设驱动研究的积累,多维动态而非一维静态数据的丰富,人体细胞与内外环境间信息的集成,将在更高层次获得对人类个体、人与自然环境、人与社会的全新认知,推动智慧医学的到来。基于这些,我们提出了“人体蛋白质组导航计划”。该计划的愿景是在全球统一的技术标准与数据共享模式下,全人类共同探索人类未知前沿,揭示宇宙中最复杂物质系统——“人体”的蛋白质组谱系及其构成原理与演变规律,系统阐释人类发育、衰老及重大疾病发生发展机制,并依此制订覆盖人类生命全周期的精准防控、诊治、康养策略,开创智慧医学新范式,为推动构建人类卫生健康共同体提供中国方案。
  • 泉州市传感智能制造和化合物半导体产业专利导航成果发布
    为贯彻落实《知识产权强国建设纲要(2021—2035年)》和《“十四五”国家知识产权保护和运用规划》,更好地推广专利导航服务,宣传知识产权科普知识,推动创新主体有效利用知识产权信息培育竞争优势,6月21日,泉州市知识产权保护中心组织开展传感智能制造和化合物半导体产业专利导航成果发布推介系列活动,成果发布会设立泉州主会场和晋江、南安、安溪分会场,来自泉州市各县市区的企业、高校、科研院所和有关行业协会代表共800余人参会。  活动介绍了泉州市重点产业专利导航数据库及可视化监测系统,邀请了2位资深中级知识产权师,进行泉州市传感智能制造产业和泉州市化合物半导体产业专利导航成果发布,对传感智能制造和化合物半导体产业专利导航报告、《专利导航指南》系列国家标准进行解读,并进行问卷调查及现场交流,积极对接企业需求,为参会人员进行专业辅导和耐心答疑,帮助强化提升专利质量意识和能力,进一步掌握了重点产业发展现状,明晰了产业专利导航研究目标,梳理了产业创新发展面临的问题,论证了重点企业专利导航技术分解需求和专利导航成果应用需求,为推动专利导航项目顺利实施,发挥项目示范带动作用打下良好基础。  下一步,保护中心将继续完善专利导航项目,提供更加精准和实用的专利信息,进一步支持创新创业者,提供全方位的知识产权保护和支持,推动创新成果的转化和价值的最大化,促进科技进步和经济繁荣。
  • 量子导航新突破!全新3D量子传感器将精度提升50倍
    在最近发布在arXiv上的一篇预印本论文中[1],法国国家科学研究中心的一个团队描述了一个量子加速度计,它使用激光和超冷铷原子;相较经典器件,可以以50倍的精度优越性测量三维运动。这项工作将量子加速计扩展到了第三维度,可以在没有GPS的情况下带来精确的导航。013D模式的原子干涉仪,测量物质的波状属性我们已经每天都在依赖加速度计。拿起一部手机,显示屏就会亮起来;把它转过来,正在阅读的页面就会转换方向。一个微小(基本上是一个连接在类似弹簧的机制上的质量)的机械加速度计与其他传感器,如陀螺仪一起使这些动作成为可能。每当手机在空间中移动时,它的加速计就会跟踪这一运动:甚至包括GPS掉线时的短暂时间,如在隧道或手机信号死角。尽管它们很有用,但机械加速度计往往会漂移失调。意思是,放置足够长的时间,它们就会积累成千米级的误差。这对与GPS短暂失联的手机来说并不重要,但当设备长期在GPS范围之外旅行时,这就成为了一个问题。对于工业和军事应用来说,精确的位置跟踪在潜艇上是非常有用的,因为潜艇在水下无法使用GPS;或者,在船舶失去GPS时作为备用导航。研究人员长期以来一直在开发量子加速度计,以提高位置跟踪的准确性:量子加速度计不是测量压缩弹簧的质量,而是测量物质的波状属性。这些设备使用激光来减缓和冷却原子云;在这种状态下,原子的行为就像光波一样,在它们移动时产生干扰模式。更多的激光器诱导并测量这些模式如何变化,以跟踪设备在空间中的位置。早期,这些被称为原子干涉仪的设备,是由遍布实验室长椅的电线和仪器组成的一团“乱麻”,只能测量一个维度。但随着激光和专业技术的进步,它们变得更小、更坚固:现在它们已经变成了3D模式。02首个3D量子加速度计:精度提升50倍由法国团队开发的新的三维量子加速度计,看起来像一个金属盒子,长度与一台笔记本电脑差不多。它使用激光沿着所有三个空间轴来操纵和测量被困在一个小玻璃盒中的铷原子云,并将其冷却到绝对零度。像早期的量子加速度计一样,这些激光器在原子云中引起涟漪,并通过解释由此产生的干扰模式来测量运动。这是首个量子加速度计三元组(Quantum Accelerometer Triad, QuAT),它沿三个互为正交的方向测量加速度。(a)量子加速度计三元组(QuAT)的设计概念和几何形状。加速度分量是沿垂直于波段kx、ky和kz的波段测量的。(b)安装在旋转平台上的传感器头的三维模型。为了提高稳定性和带宽,以适应在实验室外使用的要求,新设备在一个利用两种技术优势的反馈回路中结合了经典和量子加速度计的读数。由于该团队可以极其精确地控制原子,他们可以进行类似的精确测量。为了测试加速度计,他们将其连接到一个摇晃和旋转的桌子上,并发现该系统比经典的导航级传感器要精确50倍。在几个小时的时间里,由经典加速度计测量的设备的位置偏离了一公里;而量子加速度计将误差“钉”在了20米以内。量子和经典加速度计之间的混合方案。左边的开环方案描述了过滤后的经典加速度计如何用于修正量子加速度计的振动。静态时,量子加速度计提供了由于重力引起的投影g的离散测量。右边的闭环方案显示了经典加速度计是如何通过比较其输出和量子加速度计的输出而定期进行偏置校正的。这里,混合加速度计的输出是连续的,在静态和动态情况下都能发挥作用:提供重力和运动引起的加速度a的投影之和。033D传感器是工程化的进步尽管取得了重大成果,加速计仍然比较大、重,不会很快步入实用。但如果做得更小、更坚固,该团队说它可以被安装在船舶或潜艇上,用于精确导航;或者,它可以通过测量重力的细微变化,进入寻找矿藏的野外地质学家的手中。更多的量子传感器,如陀螺仪,可能会加入这个行列。尽管它们在离开实验室之前还需要进行几轮的收缩和加固。就目前而言,3D化是一个进步。澳大利亚国立大学的John Close对这一成果这样评价[2]:“三维测量是一件大事,是实现量子加速度计任何实际用途的一个必要和出色的工程步骤。”参考链接:[1] Tracking the Vector Acceleration with a Hybrid Quantum Accelerometer Triad[2] New 3D Quantum Accelerometer Is 50 Times More Accurate Than Classical Sensors
  • 用磁场做导航 纳米机器人精准搏杀肿瘤细胞
    团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  上映于1966年的科幻电影《神奇旅程》,讲了这么一个故事:为给一名科学家实行高难度血管手术,5名医生被缩小成头发丝大小,置于针筒中,注射进他体内。5人驾驶着“潜艇”,躲过了免疫细胞的攻击,一路乘风破浪,成功完成任务。  50多年过去,当初的幻想,已经部分成为了现实。微纳米医疗机器人,就被认为是一种颇具前途的智能给药平台,目前被广泛用于肿瘤的靶向治疗。  近日,北京航空航天大学机械工程及自动化学院“卓越百人”副教授、博士生导师冯林课题组,研究出了一种新的更为智能的肿瘤靶向机器人。它有了伪装,还有了导航,能够在磁场的驱动下,精准抵达战场,投掷杀伤肿瘤的弹药。  让巨噬细胞吞下纳米药物,变身微纳米机器人  让纳米机器人装载药物,到达指定地点,定向治疗炎症或清除肿瘤,这是医学纳米技术的终极目标之一。但传统微纳米机器人在人体内的运动,其实靠的是分子之间的结合力,这是一种“被动靶向”,难免脱靶。“就好比我们知道,人群中具有某种特质的两类人可能会碰上。但茫茫人海中你最后碰上的是不是想要的人,其实要打一个问号。”冯林说。  而且,也如当初那部电影里所展示的,被注射进人体内的纳米机器人,稍有不慎,就会遭到兢兢业业工作的免疫细胞的攻击。  能不能让这类医疗机器人更为安全且精准地到达要去的地方?  2016年从日本回国后,冯林就一直思考这个问题。在北航机器人所的支持下,冯林和陈华伟老师合作申请获批了国家重点研发计划—机器人重大项目“靶向给药微纳米机器人”。在一次讨论中,陈华伟问可不可以让活细胞作为载体。这句看似很随意的提问提醒了冯林:直接让活的细胞吞进载药纳米颗粒变身微纳米机器人行不行?  他们想到了巨噬细胞——这是一种喜欢吞食并处理异物的细胞。  合适的载体和“伪装”找到了,接下来,就是设计机器人的“导航系统”。  磁性纳米颗粒可以由磁场来控制,药物释放可以利用红外或者超声波。几乎是从零开始,冯林团队自行设计了复合磁控系统。他们从电子线圈开始设计,一点点调整、摸索技术参数。磁性纳米颗粒进入小鼠体内后,通过这套系统,他们可以在体外对其行走路径进行高精度控制。  再接下来,就是让磁性纳米颗粒装载药物,并让它在合适地点,通过合适方式,释放药物。  这款机器人其实设计有许多层。在阿霉素外层,是聚乙二醇,一种具有良好水溶性的高分子化合物;再外一层,是吲哚菁绿,它是药物研究中常用的荧光标记物,帮助科研人员判断机器人所在的位置。最后他们还包裹了一层脂质体,它具有非常高的生物相容性。  团队还为机器人设计了一个开关——近场红外光。近红外光穿透表层皮肤,磁性纳米颗粒吸收光线,产生热量,会释放出阿霉素。  如此一来,纳米机器人基本实现“指哪打哪”的效果。  “接收指令,执行指令,完成任务,在我们做机械的人眼中,具备这些能力的,才是智能的机器人。”冯林说。  团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  9月,纳米科学领域权威期刊《小》(Small)以封面文章的形式报道了课题组的研究成果。  在机械学院,他们建立生物医学实验室  冯林的团队中,有好几个医学生物专业出身的博士。在他的机械实验室里,还有一块专门区域,用来做生物医学实验。  所以,你能看到这样一个略显奇特的景象——实验室里,有各类机械模型,有专业级的显微镜,以及小白鼠。  去采访时,由于已经结束了上一轮的实验,小白鼠所剩不多,正在笼子里踱来踱去,安度余生。  冯林是“80后”,本科学的电子信息工程,硕士专业是生物机器人,博士留学日本名古屋大学,跟着导师新井史人教授一头扎进了更为微观的世界——微纳米机器人。  回国后,冯林来到北航,获得北航“卓越百人”,加入了机械学院张德远老师领导的仿生与微纳系统研究所,之后又得到北京市“科技新星”资助。北航提倡“医工结合”,冯林也被聘入了北京市生物医学工程高精尖中心,更深入地进入到医疗机器人领域。  “不能只是炒概念,说纳米机器人未来能如何如何。”冯林一直存着这个念头,就是要真正把纳米机器人打入体内,真正杀死体内的肿瘤细胞。  就在不久前,冯林指导的学生团队凭借Medcreate磁悬浮胶囊机器人在第七届中国国际大学生“互联网+”创新创业大赛中获得本科生创意组全国第五名。  它用到的技术,也是“复合场磁控”。  这是一款主动可控高速图像传输型胶囊机器人,能对胃部等大体积消化道器官进行全方位无死角视频探查。胶囊机器人可以悬浮运动,无需改变患者体位,就能完成整个胃部的覆盖式检查。  冯林为学生取得的成绩高兴,但他也知道,要完善各类治疗型的微纳米机器人,还“路漫漫其修远兮”。  从小鼠到人体,从试验到临床,还需要一步步完善和摸索,这并非坦途。“你要舍得花一辈子的时间。”冯林说。
  • 质检总局2010年第四批产品质量抽查结果公布
    国家质量监督检验检疫总局《关于公布2010年第4批产品质量国家监督抽查结果的公告》(总局2010年第168号公告)  根据《中华人民共和国产品质量法》和《产品质量国家监督抽查管理办法》的规定,国家质检总局组织开展了2010年第4批产品质量国家监督抽查,现将抽查结果予以公布。  本次对食品、日用消费品、建筑和装饰装修材料、工业生产资料等29类产品质量进行了国家监督抽查。其中,食品共抽查了5类,包括小麦粉、食用植物油、肉制品、灭菌乳、食品添加剂(碳酸钠、碳酸氢钠) 日用消费品共抽查了9类,包括羽绒服装、羊绒衫、针织内衣、纸巾纸(含湿巾)、轮椅车、插座、汽车用GPS导航仪、汽车用制动器衬片、轻型载重汽车轮胎 建筑和装饰装修材料共抽查了5类,包括合成树脂乳液内墙涂料、纤维板、采暖用散热器、陶瓷坐便器、通用水泥 工业生产资料共抽查了10类,包括数控系统和数显装置、阀门、高速旋转式压片机/旋转式压片机、永磁直流电动机、不锈钢焊条及碱性碳钢焊条、镁碳砖、危险化学品包装物(塑料编织袋、复合塑料编织袋)、便携式载体催化甲烷检测报警仪、一般压力表、出租汽车计价器。  国家质检总局已将本次产品质量国家监督抽查情况通报了地方政府和有关部门,并已责成相关省(自治区、直辖市)质量技术监督部门按照有关法律法规,对本次抽查中不合格的产品及其生产企业依法进行处理。  特此公告。  附件: 1. 小麦粉产品质量国家监督抽查结果  2. 食用植物油产品质量国家监督抽查结果  3. 肉制品产品质量国家监督抽查结果  4. 灭菌乳产品质量国家监督抽查结果  5. 食品添加剂(碳酸钠、碳酸氢钠)产品质量国家监督抽查结果  6. 羽绒服装产品质量国家监督抽查结果  7. 羊绒衫产品质量国家监督抽查结果  8. 针织内衣产品质量国家监督抽查结果  9. 纸巾纸(含湿巾)产品质量国家监督抽查结果  10. 轮椅车产品质量国家监督抽查结果  11. 插座产品质量国家监督抽查结果  12. 汽车用GPS导航仪产品质量国家监督抽查结果  13. 汽车用制动器衬片产品质量国家监督抽查结果  14. 轻型载重汽车轮胎产品质量国家监督抽查结果  15. 合成树脂乳液内墙涂料产品质量国家监督抽查结果  16. 纤维板产品质量国家监督抽查结果  17. 采暖用散热器产品质量国家监督抽查结果  18. 陶瓷坐便器产品质量国家监督抽查结果  19. 通用水泥产品质量国家监督抽查结果  20. 数控系统和数显装置产品质量国家监督抽查结果  21. 阀门产品质量国家监督抽查结果  22. 高速旋转式压片机/旋转式压片机产品质量国家监督抽查结果  23. 永磁直流电动机产品质量国家监督抽查结果  24. 不锈钢焊条及碱性碳钢焊条产品质量国家监督抽查结果  25. 镁碳砖产品质量国家监督抽查结果  26. 危险化学品包装物(塑料编织袋、复合塑料编织袋)产品质量国家监督抽查结果  27. 便携式载体催化甲烷检测报警仪产品质量国家监督抽查结果  28. 一般压力表产品质量国家监督抽查结果  29. 出租汽车计价器产品质量国家监督抽查结果  二〇一〇年十二月三十日附件:抽查结果.rar
  • 总投资超2亿元,购置大量仪器设备,“智能影像导航诊疗装备及零部件攻关”产业化项目动工
    千里马招标网显示,3月2日,智能影像导航诊疗装备及零部件攻关”产业化项目备案申报。3月7日,项目复核通过。据了解,本项目建筑面积25000平方米,占地面积12387.73平方米,总投资22149.5万元。项目位于东莞市松山湖东莞市松山湖东部地区A区二路与A区五路交叉口以东。项目起止日期为2022年03月01日 - 2022年12月01日。拟新建25000平方米的厂房,计划2021年3月动工,2022年12月竣工。新建X射线及核磁屏蔽室、实验室、生产及装备车间、仓库等配套设施室,购置逻辑分析仪、碳纤床板模具、膜体(头膜、体膜)、头托模具、静电计、精密电压源、LCR测试仪、碳纤床板工装、光学平台、HP工作站、示波器、计算机、软件及工具、碳纤床板模具等其他生产设备。
  • MGD磁导向钻井技术,通过多种测量仪器实现地下“厘米级”导航
    太空对接不易,入地连通更难。工程技术研究院具有完全自主知识产权的MGD磁导向钻井技术,利用井下探管实时检测人工磁场或井下落鱼的磁场分布特征,将测量的微弱磁信号采集、处理,利用定位算法模型及工程解释软件,给出钻头与目标靶点的相对距离、相对方位和相对井斜。在明确相对位置关系后,调整井眼轨迹走向,最终实现井眼空间位置的“厘米级”高精度导航。定向井技术是当今世界石油勘探开发领域最先进的钻井技术之一。它是应用特殊井下工具、测量仪器和工艺技术有效控制地下井眼轨迹,使钻头沿着特定方向钻达预定目标的常规钻井工艺技术。随着全球油气田开发的深入推进,通过复杂井型建立油气通道,已成为提高单井产量、提高采收率、降低综合成本的重要技术手段之一,尤其是在煤炭地下气化、超稠油开采、中低熟页岩油原位开发等需要精确定位邻井位置的情况下,最终以U型井、平行井、小井距水平井簇、立体井网等复杂井型完钻,解决其高精度“测、定、导”一体化关键技术难题。该技术起源于美国,最初是为了实现对井喷失控井进行压井作业而开发的一项技术,后又衍生出有源和无源两大类型多种型号的精确磁导向技术与配套工具。近年来,MGD磁导向钻井技术被规模化应用,源于该技术具备以下几个方面优势。精准对接是建设U型“地下锅炉”的基础。U型井是由一口水平井与直井连通构成的井组,在煤层气开采中可实现水平井排水和直井采气;在煤炭地下气化中可实现可控后退式点火;在地热开发中可实现取热不取水。与压裂、射孔相比,井眼对接是最直接、有效的连通方式。精密平行是搭建水平井“地下炼厂”的关键。平行井是由2口以上相互平行的水平井构成的井组,在超稠油SAGD开发中,可降黏提采50%以上;在低熟页岩油原位转化中,有希望动用潜力巨大的页岩油资源;与常规水平井相比,水平段间距的精密度提高了99.7%(千米水平段井间误差由10米左右降至0.3米以内)。精确导钻是敷设非开挖“地下管网”的前提。非开挖是在入土和出土小面积开挖情况下,敷设、更换和修复各种地下管线的施工新技术,不会破坏绿地、植被、建筑物,不会影响居民的正常生活和工作秩序。与传统开挖施工相比,施工速度可提高60%,综合成本可降低40%,入土和出土点偏差±1米。老井精细处置是保障“地下粮仓”密封完整的核心。救援井是在发生井下复杂、通道丢失时通过伴行跟踪实现目标井重入的一种技术,尤其适用于解决精细处置储气库疑难老井封堵、老油田涌水冒油、井喷失控等问题,筑牢油气安全环保第二道防线。MGD磁导向钻井技术已在储气库、地热、稠油等六大领域实现了规模化工业应用,累计推广了近500口井,创造直接和间接经济效益数十亿元。该技术解决了储气库复杂老井“封天窗”技术难题,使老井封堵作业成本下降90%,并为国内首座海上储气库冀东油田南堡1号储气库、辽河储气库群等重大工程提供了支撑利器。2023年,该技术支撑了中国石油深层U型地热井、国防管道铺设、重大塌陷救援等10余个重点项目,创造了2810米最深储层千米对接、2520米非开挖穿越等13项国内纪录。“十四五”期间,该技术有望在中低熟页岩油原位开发、煤炭地下气化、老油田提高采收率、干热岩开发等多个领域实现推广应用,助力构建“地下炼厂”“地下锅炉”等新能源开发新模式。面向未来,MGD磁导向钻井技术将接续研发,实现提档升级,推动磁导向技术与工具向着谱系化、自动化、信息化方向发展,具备万米深井井喷救援能力,并积极开拓丛式井网防碰、疑难复杂老井一体化处置、大埋深定向钻等新领域新业务,为超深层油气资源勘探开发、干热岩采热储能耦合开采等国家战略性新兴产业及未来产业提供关键核心技术支撑。(本文作者系工程技术研究院非常规油气工程研究所副所长、正高级工程师)
  • “人体蛋白质组导航国际大科学计划”白皮书1.0全球发布会召开
    2023年5月8日-10日,第11届亚太人类蛋白质组组织(AOHUPO)大会暨第七届亚太农业蛋白质组学组织(AOAPO)会议将在新加坡举行。此次AOHUPO-AOAPO联合大会为期3天。会上,受邀演讲者将在5场全体会议和27场分会上进行演讲,分享内容涵盖蛋白质组学和质谱技术,以及它们在健康/生物医学研究、农业/水产养殖、食品和环境科学中的应用。此外,大会还将举办青年科学家论坛(Young Scientist Forum,YSF)作为会前活动。  本次大会上,中国代表团队还举行了 “人体蛋白质组导航国际大科学计划(Proteomic NavIgater of the Human Body,π-HuB)” 白皮书1.0全球发布会,并同与会者介绍和分享π-HuB计划的最新动态。人体蛋白质组导航计划(Proteomic NavIgator of the Human Body,简称π-HuB计划)白皮书摘要:  在人类基因组计划之后的时代,人类蛋白质组的研究成为了生命科学和医学中最激动人心、最具挑战性的前沿之一。高端质谱和其他转化性蛋白质组学技术现在提供了一个机会,以前所未有的分辨率和规模来审查人体和人类生命。在这里,我们介绍一个国际大科学项目,名为 π-HuB(人体蛋白质组导航国际大科学计划)。π-HuB项目将是一个30年的任务,投资数十亿,建立在四个关键支柱上,包括人类样本、技术创新、大科学基础设施和开放资源。该项目有三个中心目标:1)将人体分解成一个数字化的蛋白质组参考空间的层次结构,从器官/组织到单个细胞 2)拍摄个体一生中的蛋白质组快照,研究人群对主要暴露健康结果的蛋白质组适应性 3)构建一个智能计算模型,称为π-HuB导航器,将蛋白质组和其他分子/表型数据集成起来,促进我们对人类生物学的理解,促进疾病诊断和治疗。在启动和发展阶段(2023-2032),π-HuB项目将组建一个国际联合体,实现以下里程碑,包括细胞类型解析蛋白质组图谱、以生命为导向的干扰蛋白质组图谱和“蛋白质组导航计划”模型的初始版本。我们期望这些努力将为整个π-HuB项目提供巨大的推动力,引领一个以蛋白质组学为驱动的精准医学时代。展望未来,π-HuB项目将进一步涉及全球合作和讨论,整合来自多学科科学家的全球性输出。总的来说,我们预计π-HuB项目可能在未来数十年对生物医学研究做出重大贡献。  与此前国际上发起的蛋白组计划相比,π-HuB计划有何不同?  01 人体蛋白质组导航(π-HuB)计划是什么?  π-HuB项目是中国科学家主导发起的一项重大科学计划,旨在解码人类蛋白质组,寻找新的蛋白质型,探索全新的理论,从而利用蛋白质组学技术、大数据分析、互联网云计算、数据挖掘、机器学习和人工智能,建立“人类生命健康共同体”。  众所周知,蛋白质是生命的物质基础,与各种各样的疾病息息相关,系统全面地了解人体蛋白质,不仅能帮助我们人类理解生命,还可以攻克许多疾病。  自人类基因组计划2001年完成后,2003年就启动了蛋白组计划,足可见当时科学家就已经意识到蛋白质研究的重要性。如今,以我国科学家为主导、众多国际学者参与的人体蛋白质组计划也即将启动。  02 π-HuB计划正逢其时,得到国内外学者的广泛支持  2022年12月30日,科技部副部长张广军,广东省委常委、副省长王曦,以及钟南山、贺福初、王辰、徐涛、张玉奎、陈香美、鄂维南、高福、乔杰、樊嘉、宋尔卫、李明等15位院士及相关专家出席了此次会议。  此次会议的召开意味着π-HuB计划将在不久的将来将正式启动。目前,π-HuB计划得到了国内外科学界积极响应和支持,该计划已获得了100多位顶尖专家的支持,其中包括来自20个不同国家的多位诺贝尔奖获得者,数十个机构、大学签署了谅解备忘录,有意愿参与这一大科学计划。  π-HuB计划将是我国科学家积极牵头组织的国际大科学计划之一。2018年,国务院印发了《积极牵头组织国际大科学计划和大科学工程方案》,该方案指出,要聚焦国际科技界普遍关注、对人类社会发展和科技进步影响深远的研究领域,集聚国内外优势力量,积极牵头组织国际大科学计划和大科学工程,着力提升战略前沿领域创新能力和国际影响力。  因此,π-HuB计划的出现可谓是正逢其时。张广军部长在启动会上表示,要把人体蛋白质组导航国际大科学计划建成开拓生命科学知识前沿、揭示生命本质、探索未知生命世界和解决全球性重大健康问题的有力工具。  那么,π-HuB大科学计划具体将怎样实施?2022年12月4日,贺福初院士在第21届国际蛋白质组学大会上以“人体蛋白质组导航计划”为题,系统地介绍和推介。  贺福初院士在第21届国际蛋白质组学大会上发言  贺福初院士表示,π-HuB计划期为30年(2023年-2052年),项目将分三个阶段,每10年为一个阶段:  1.平台建设与数据积累(2023-2032)  2.知识发现与理论整合(2033-2042)  3.范式建立与应用推广(2043-2052)  根据贺福初院士介绍,π-HuB计划设定了四大目标:  1.将人体解剖成蛋白质组数字参考空间的层次结构(从组织/器官到单个细胞)   2.追踪以蛋白质为中心的谱系轨迹,包括发育、健康老龄化、复杂疾病进展、共生体适应、营养和环境   3.建立一个计算模拟元智人的框架,这是一个虚拟的状态空间,由虚拟增强的生理表型和细胞、体液、组织和器官上的数字现实融合而成   4.研究癌症、神经退行性疾病等重大疾病在进展和发展过程中的蛋白质组学变化,作为“参考空间”导航,引导人体远离疾病/亚健康,保持健康状态。  由此可见,π-HuB将是一个宏伟的大科学计划,为了有效地推进和落实π-HuB的各项工作,目前已成立了战略指导委员会、管理委员会、科学委员会、执行委员会、国际计划实施总部。  在很多专家看来,π-HuB计划如同人体蛋白质组“宇宙”的“北斗”导航系统,创造人体全生命周期的精准防控诊治策略,为推动构建人类卫生健康共同体提供中国方案。  03 为什么要实施人体蛋白质组计划,它到底有多重要?  对蛋白质组学的系统研究缘起于上世纪90年代初期,当时研究人员已经意识到,虽然人类基因组计划即将完成,但基因组相对来说比较稳定,而蛋白质组在与基因组相互作用过程中会不断发生改变,生命体在其机体的不同部分以及生命周期的不同阶段,蛋白表达可能存在巨大的差异,因而能更好地反应一个人的健康或疾病状态。  由此,那时候科学家就意识到,对蛋白质结构和功能的大规模研究能够帮助我们更进一步了解生命。2003年,在人类基因组计划正式完成之际,国际人类蛋白质组计划(HPP)也随之启动,该计划旨在对蛋白质组进行系统深入的研究,和基因组计划研究成果协同合作,真正实现疾病的精准诊断和治疗。
  • 无人机 RGB-NIR 导航和 ISR 相机标定的多光谱积分球均匀光源
    图1 无人机RGB CMOS 摄像头无人机 (UAV) 使用 RGB CMOS 摄像头为其驾驶员提供视野,并为其人工智能 (AI) 计算机导航系统提供导航。在大多数情况下,这些摄像头必须“足够好”,驾驶员才能在合理的距离内看到并识别现实生活中的物体。在战术应用和越来越多的自主应用中,RGB 摄像头的连续数据流不仅用于导航,还用作任务期间周围活动的时间记录。这些时间序列视频对于识别场景中的活动非常有用,这些活动为关键决策提供背景和历史记录。图2 UAV(无人机)例如,无人机可以长时间(数小时)观察一个特定区域,并随着时间的推移“看到”人类正在重复进行的活动,这些活动可能意味着监视、行为模式或潜在危险的战术情况。摄像机可以在其分辨率范围内提供很好的缺席或存在记录,但现在,在许多情况下,观察到的场景的颜色和真实渲染成为了主要细节。汽车的真实颜色是什么?衬衫的真实颜色是什么?可能会影响是否找到正确目标的关键细节。持续长时间(8 小时以上)飞行意味着摄像机观察所处的光照条件不是恒定的,因为日光光谱会发生变化,天气条件也可能会改变光照条件。目前,这些RGB相机使用基本的方法(IQPC #)进行测试,该方法是为手机使用设计的,在实际使用条件下,无法呈现真实颜色。为此需要一种更好的方法来测试和验证这些摄像机的显色性,以提高任务视频的保真度并促进更好的决策能力。图3 摄像机商业挑战客户目前正在使用由氙灯照射的 Macbeth ColorChecker 进行辐射颜色校准,如下所示。图4 标准色卡这大致模拟了“日光”照明条件 - 或 D65 (6500K)。该方案无法将较低或较高的色温(黎明、黄昏、阴天)或人造照明条件(路灯、前灯、建筑照明)考虑在内。 较好的解决方案是使用光谱可调积分球光源在实际光谱下照亮这些标准色卡,以验证真实环境条件下的相机性能。具体来说,客户想要在所有相关条件下对这些标准图卡的反射颜色进行光谱测量,然后对相机模拟每一种测量到的颜色。阴天、万里无云的天空、一天中的时间(黎明、黄昏)演变以及各种人为光源,只是测量标准图卡颜色时积分球均匀光源模拟的一部分。图5 标准色卡不同颜色光谱反射率对于客户来说,关键的颜色是Macbeth的颜色红色,绿色,蓝色,青色,黄色,品红,紫色,橙色。我们需要一种具有通用性的仪器来“学习”任何颜色,并快速复制这些光谱,并以绝对校准的x,y色度坐标球作为完整测试的连接点。这位顾客一直认为积分球实际上只能用来做一件事。Labsphere (蓝菲光学)的解决方案图6 蓝菲光学Labsphere积分球均匀光源通过直接控制单个表面的光谱和强度,Labsphere(蓝菲光学) 的 CCS 积分球均匀光源(现升级为Spctra-FT 光谱可调积分球均匀光源)具有许多优势。图7 蓝菲光学积分球均匀光源界面图标准积分球光源系统采用16通道, 光谱“拟合”的改进或光谱范围的增加,可以通过具有更多通道的光引擎来实现。 定制系统采用 24 通道光引擎,并通过选择光源优化所需光谱。 客户只需提供在相关照明下测得的反射光谱。CCS 提供了一个mathematical solver,可以将系统光谱通道拟合为与测量的色谱最接近的光谱和幅度匹配。 解决后,可以非常准确地保存和访问新的测试光谱。 光谱可以在不到一秒的时间内切换,从而能够在宽范围颜色和条件下进行快速测试。优点用于战术和制导摄像机的真实颜色、真实光谱、真实条件验证模拟光谱的准确 x、y、渲染值光谱引擎变化可涵盖可见光谱、400-900nm 或以上光谱solver可在几分钟内导入和创建光谱。热稳定和直流电流稳定的 LED 技术,可提供数千小时的绝对校准操作紧凑外形,便于生产或研发易于对系统进行编程以直接或远程控制光谱之间切换速度快,稳定性1 秒
  • 7家仪器耗材公司荣获中国驰名商标
    11月29日,国家工商总局商标局向社会公布了新认定的2011年中国驰名商标名单,其中7家仪器耗材公司品牌榜上有名。商标注册人/使用人类别:使用的商品/服务Enox江苏强盛化工有限公司第1类:化学试剂红相、HX及图厦门红相电力设备股份有限公司第9类:电度表、成套电器校验装置、电测量仪器红山HS及图天水红山试验机有限公司第9类:材料检验仪器和机器、测力计、测量仪器川仪重庆川仪自动化股份有限公司第9类:空气分析仪器、锅炉控制仪器、测压仪器、温度指示计、电动调节设备、配电箱(电)、电动自动化装置合众思壮北京合众思壮科技股份有限公司第9类:导航仪器、卫星导航仪器梅安森科技MAS重庆梅安森科技股份有限公司第9类:计算机软件、气体检测仪、传感器第3123497号图形沈阳兴大通仪器仪表有限公司第7类:石油开采、石油精炼工业用机器设备  中国驰名商标是指在中国乃至全球市场具有很高知名度、良好的声誉、消费者号召力以及强劲的市场竞争力的商标。驰名商标具有一般商标的特性,须经权威机构认定。中国驰名商标是中国企业品牌保护的最高荣誉,是企业形象的重要载体,也是企业商品在质量与信誉上的象征。根据国际惯例和我国商标法,“中国驰名商标”是我国在全球范围内唯一受国际法律保护的品牌标志。
  • 教育部将评估信息与电子工程领域4个仪器类工程研究中心
    教育部工程研究中心是高等学校科技创新体系的重要组成部分。为加强工程中心规范化运行管理,大力提升关键核心技术攻关和供给能力,着力服务国家重大战略和重大工程,根据《教育部工程研究中心建设与运行管理办法》规定,教育部科学技术与信息化司拟组织开展2021年工程中心评估。本次评估各项数据采集周期为2016年1月1日至2020年12月31日。本年度评估领域为信息与电子工程,参评工程中心74个,分为5个评审组。评估程序分为答辩评审、现场考察和综合评议三个阶段,具体工作委托第三方机构承担。评估工作拟于9月底前完成,视疫情情况进行调整。按照评估规则,评估结果中未通过和限期整改的比例不低于10%。评估结果为“未通过”的,不再纳入管理序列;评估结果为“限期整改”的,整改期不超过2年,整改期满未通过检查的不再纳入管理序列;评估结果为“优秀”的,优先推荐申报国家级科研平台。本次涉及的仪器相关教育部工程研究中心共4家,分别是哈尔滨工程大学导航仪器工程研究中心,电子科技大学电子测试技术与仪器工程研究中心,哈尔滨工业大学自动测试及仪器技术工程研究中心,以及上海理工大学光学仪器与系统工程研究中心。全部74个教育部工程研究中心参评名单及分组情况如下:2021年教育部工程研究中心参评名单及分组情况第一组序号工程中心名称依托单位1射频集成电路与系统东南大学2场致发射显示技术福州大学3薄膜光电子技术南开大学4多媒体通信宁波大学5天线西安电子科技大学6移动通信重庆邮电大学7微纳光电子材料与器件厦门大学8数码激光成像与显示苏州大学9光电器件与通信技术天津理工大学10固体器件与集成技术清华大学11专用通信系统哈尔滨工业大学12新型微波探测技术电子科技大学13近距离无线通信与网络华南理工大学14宽带无线通信技术南京邮电大学15大功率半导体照明应用系统天津工业大学16电力电子节能技术与装备山东大学17半导体功率器件可靠性贵州大学第二组序号工程中心名称依托单位1先进计算机应用技术北京航空航天大学2计算机网络技术清华大学3信息网络北京邮电大学4超算工程软件中山大学5微处理器及系统北京大学6网络信息安全审计与监控复旦大学7数据存储系统与技术华中科技大学8网络信息安全管理与服务上海交通大学9计算机辅助产品创新设计浙江大学10国产基础软件国防科技大学11开源软件与实时系统兰州大学12网络技术及应用软件吉林大学13复杂网络系统安全保障技术东北大学14软硬件协同设计技术与应用华东师范大学15传感器网络技术东南大学第三组序号工程中心名称依托单位1数字家庭中山大学2数字图书馆浙江大学3数据库与商务智能中国人民大学4藏文信息技术西藏大学5代表性建筑与古建筑数据库北京建筑大学6数字媒体技术山东大学7数字社区北京工业大学8数字学习与教育公共服务北京师范大学9数字化学习技术集成与应用国家开放大学10数字化学习支撑技术东北师范大学11教育信息技术华中师范大学12数字影视动画创作北京电影学院13广播电视数字化中国传媒大学第四组序号工程中心名称依托单位1地理信息系统软件及其应用中国地质大学(武汉)2空间信息技术首都师范大学3高速铁路网络管理北京交通大学4数字化纺织服装技术东华大学5海洋信息技术中国海洋大学6虚拟现实应用北京师范大学7西部资源环境地理信息技术云南师范大学8数字医学上海交通大学9矿山数字化中国矿业大学10时空数据智能获取技术与应用武汉大学11智能决策与信息系统技术合肥工业大学12现代交通管理系统四川大学13智能交通运输系统东南大学14企业数字化技术同济大学第五组序号工程中心名称依托单位1自主卫星导航定位技术国防科技大学2导航仪器哈尔滨工程大学3汽车电子驱动控制与系统集成哈尔滨理工大学4汽车电子与控制技术湖南大学5嵌入式系统集成西北工业大学6嵌入式系统浙江大学7电子测试技术与仪器电子科技大学8地球观测与导航北京大学9导航、制导与控制技术北京理工大学10先进航空导航与空管技术北京航空航天大学11自动测试及仪器技术哈尔滨工业大学12飞行器自主控制技术南京航空航天大学13光学仪器与系统上海理工大学14工业装备监测与控制大连理工大学15物联网技术应用江南大学
  • 我国深部探测关键仪器研发获重大突破
    记者从2月15日在京召开的“深部探测技术与实验研究专项”2011年度成果汇报交流会上获悉,我国深部探测关键仪器装备自主研发取得了重大突破。  该专项首席科学家、中国地质科学院副院长董树文介绍,我国自主研发的地震勘探系统和电磁探测系统实现了关键技术的重大突破,掌握了磁芯材料和低频微弱信号检测等磁传感器的关键技术,研制了感应式宽频带磁传感器原理样机,性能指标与国外同类产品相当。  由专项自主研发的无人机航磁探测系统,在低磁无人机制作、高可靠性自驾导航仪研制、氦光泵航空磁力仪与超导航空磁力仪配套的数据预处理系统开发方面均取得了重大阶段性成果。  该专项与企业合作研制生产的我国第一台万米大陆科学钻探钻机处于国际先进水平。本月底,该钻机将运抵大庆油田,联合国际大陆科学钻探计划(ICDP),实施中国地质调查局和国家深部探测技术与实验研究专项联合资助的松辽盆地科学钻探2井,计划钻进6600米。  专项还建成以三维地质目标模型为中心的综合研究一体化集成分析平台,通过“红蓝军”(引进和自主研发平台)两条路线同时推进,加速了跟进国外软件发展的步伐。  据记者了解,专项投入近3亿元用于深部探测关键仪器设备的自主研发,以期打破国外长期对高端设备的垄断格局,旨在为后续国家地壳探测工程的立项申报和全面实施提供支撑。
  • “仪器科学与技术”学科,仅有1所高校入选“双一流”
    2月14日,教育部、财政部、国家发展改革委“官宣”了第二轮“双一流”建设高校及建设学科名单(全名单链接)。公布的名单共有建设高校147所。建设学科中数学、物理、化学、生物学等基础学科布局59个、工程类学科180个、哲学社会科学学科92个。北京大学、清华大学自主建设的学科自行公布。其中,“仪器科学与技术”学科仅有1所高校入选,即:北京航空航天大学北京航空航天大学“仪器科学与技术”学科,于北京航空航天大学仪器科学与光电工程学院下设立,2007年被评为首批国家一级重点学科,2012年被评为工信部重点学科,并在2012年教育部一级学科评估中名列全国第一。“仪器科学与技术”也被认为是北京航空航天大学的王牌学科之一。北京航空航天大学仪器科学与光电工程学院设有四系两所一中心,即测控与信息技术系、惯性技术与导航仪器系、光电工程系、遥感科学与技术系、光电技术研究所、精密仪器与量子传感技术研究所和教学实验中心。拥有“惯性技术”国防科技重点实验室、“精密光机电一体化”教育部重点实验室、“新型惯性仪表与导航系统技术”国防重点学科实验室、“量子传感技术”工业和信息化部重点实验室、国防科工局“中英(NLAA-RAL)空间科学与技术”联合实验室、“中英(NLAA-RAL)空间科学与技术”教育部国际合作联合实验室、北京市高速磁悬浮电机技术及应用工程技术研究中心、“中英量子传感术”北京市国际科技合作基地等国家级、省部级重点实验室和基地。现有教职工166人,专任教师146人。在先进惯性器件与系统、精密光机电测试、航天器姿态测量与控制、先进传感技术等方向上取得了一批重大成果。
  • 核磁共振仪发明者的一个想法诠释“跨界思维”的重要性
    p  2018年底,北斗三号基本系统完成建设,正式向“一带一路”及全球提供基本导航服务,这标志着北斗系统服务范围由区域扩展为全球,北斗系统正式迈入全球时代。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/55eef82c-1e14-4549-8dec-f95300b1eb2a.jpg" title="CD3359E49D01DFFBF4121C246E6B541C66BC8554_size26_w1080_h422.jpeg" alt="CD3359E49D01DFFBF4121C246E6B541C66BC8554_size26_w1080_h422.jpeg"//pp  “北斗”卫星导航系统是我国自主研发、独立运行的全球卫星导航系统,该项目全面启动是在1994年(恰好是在“银河号”事件之后)。作为导航卫星的心脏,高性能的星载原子钟对导航精度具有决定性作用。/pp  卫星导航系统的定位原理是通过近似于三角测量的方法实现的。接收机——比如手机、汽车导航仪器等等,它接收多个导航卫星发射的无线电信号,而我们知道这些导航卫星的信号是以光速传播的,那么,只需要测量这些信号从卫星发出到自己接受到,各自花了多少时间,通过这个时间,接收机就能计算出它相对于多颗卫星的远近关系。所以时间测量越是精密,你的位置解算也就越是精密。而要实现对时间的精密测量,就需要原子钟。/pp  现有卫星导航系统所使用的原子钟类型分为氢原子钟、铷原子钟、铯原子钟三种。原子钟的概念最早是在1944年,由美国科学家、诺贝尔奖获得者伊西多· 艾萨克· 拉比(这位老兄也是核磁共振仪的发明者)提出,他发现原子的自然共振频率本身极为精确,因此依靠这一原理,就可以制造出数千万年才会误差1秒钟的超高精度计时系统。(题外话:从这位诺贝尔奖获得者的身上,我们可以发现一个道理,成功的科学家,单有一方面的知识可能还不够,还需要以原有知识作为树根,然后将各个领域的相关知识融合进来让思维的大树开枝展叶。按当下时髦的话讲,这叫作“跨界思维”。)/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/993b3643-ad1c-4995-856a-08a78cf030d0.jpg" title="timg_meitu_1.jpg" alt="timg_meitu_1.jpg"//pp style="text-align: center "strong伊西多· 艾萨克· 拉比/strong/pp  有关资料显示,在北斗系统研制的初期,我国并不具备自主生产原子钟的能力,只能高价从欧美购买,但有些国家对我国实施了严密的技术封锁,有些国家则乘机漫天要价狮子大开口(笔者在写这篇文章时,专门在仪器信息网上查了一下,某型欧洲产商用原子钟,价格在50万~100万),最后不得不逼着中国人走自主研发的道路。/pp  卧薪尝胆,中国隐忍了十余年后,2007年我国首批国产铷原子钟上天服役,实现了国产星载原子钟零的突破。2015年我国又再次成功发射搭载国产氢原子钟的北斗二号卫星。2017年发射的北斗三号卫星已经实现了国产的铷原子钟和氢原子钟全面替代进口产品。去年,中国航天科工集团公司二院203所又已启动汞离子微波钟立项研制。相关专家介绍,作为我国的新一代超级原子钟,它在未来深空探测和卫星导航领域将有很大的优势,有望应用于下一代北斗导航卫星。/p
  • 商机!广西地质矿产勘查开发局拟2146.5万采购多台仪器设备
    日前,中国政府采购网消息,广西壮族自治区地质矿产勘查开发局就专用设备采购项目进行公开招标。项目预算金额为2146.5万,涉及仪器设备包括可见光分光光度计、水准仪、大气采样器、伽马射线检测仪、海水声速仪、浅层地震仪、多参数水质分析仪、气相色谱仪、元素分析仪、显微分光光度计荧光仪等。其中,部分仪器设备只允许国内产品参与投标,无疑对国内厂家是一大利好。部分招标信息如下:项目名称:专用设备采购项目编号:GXZC2018-G1-18559-GXJX项目联系人:宁辉晖、陈芳芳联系电话:18100762003、0771-5558342采购单位联系方式:采购单位:广西壮族自治区地质矿产勘查开发局联系人:朱军联系电话:0771-3195317地址:广西南宁市园湖北路21号开标时间:2018年9月3日上午10时00分采购清单:序号仪器名称单位数量备注简要规格描述或项目基本概况介绍1可见光分光光度计台1只允许国内产品参与投标,不允许进口产品参与投标如需进一步了解详细内容,详见招标文件。2绘图仪台1只允许国内产品参与投标,不允许进口产品参与投标3电热鼓风干燥箱台1只允许国内产品参与投标,不允许进口产品参与投标4盘磨机台1只允许国内产品参与投标,不允许进口产品参与投标5三维激光扫描仪台1同时允许进口或国内产品参与投标6工作站组台1只允许国内产品参与投标,不允许进口产品参与投标73D扫描仪点云数据处理软件台1只允许国内产品参与投标,不允许进口产品参与投标8GPS台50只允许国内产品参与投标,不允许进口产品参与投标9平板GPS台3只允许国内产品参与投标,不允许进口产品参与投标10全站仪台1只允许国内产品参与投标,不允许进口产品参与投标11水准仪台2只允许国内产品参与投标,不允许进口产品参与投标12地下管线测深仪套1只允许国内产品参与投标,不允许进口产品参与投标13手持测距仪套5只允许国内产品参与投标,不允许进口产品参与投标14全数字摄影测量系统套1只允许国内产品参与投标,不允许进口产品参与投标15GNSS接收机套7只允许国内产品参与投标,不允许进口产品参与投标16超级电台套1只允许国内产品参与投标,不允许进口产品参与投标17计算机成图系统套1只允许国内产品参与投标,不允许进口产品参与投标18平板GPS台3只允许国内产品参与投标,不允许进口产品参与投标19移动采样管理系统台1只允许国内产品参与投标,不允许进口产品参与投标20大气采样器台1只允许国内产品参与投标,不允许进口产品参与投标21个人辐射防护服套6只允许国内产品参与投标,不允许进口产品参与投标22个人辐射防护服套2同时允许进口或国内产品参与投标23个人剂量监测仪台8同时允许进口或国内产品参与投标24X-γ剂量率仪台2同时允许进口或国内产品参与投标25便携式X/γ剂量率仪台1同时允许进口或国内产品参与投标26高纯锗γ谱仪台1同时允许进口或国内产品参与投标27低本底αβ测量仪台1同时允许进口或国内产品参与投标28手持GPS台40只允许国内产品参与投标,不允许进口产品参与投标29智能化X、γ辐射仪台15只允许国内产品参与投标,不允许进口产品参与投标30数字γ辐射仪台2只允许国内产品参与投标,不允许进口产品参与投标31RaA测氡仪台6只允许国内产品参与投标,不允许进口产品参与投标32定向γ辐射仪台3只允许国内产品参与投标,不允许进口产品参与投标33便携式γ能谱仪台1只允许国内产品参与投标,不允许进口产品参与投标34手持移动智能终端台3只允许国内产品参与投标,不允许进口产品参与投标35P5户外全彩显示屏台1只允许国内产品参与投标,不允许进口产品参与投标36颚式破碎机台1只允许国内产品参与投标,不允许进口产品参与投标37GPS台12只允许国内产品参与投标,不允许进口产品参与投标38伽马射线检测仪台1只允许国内产品参与投标,不允许进口产品参与投标39水准仪台2只允许国内产品参与投标,不允许进口产品参与投标40全球定位系统导航仪(RTK)台1只允许国内产品参与投标,不允许进口产品参与投标41激光测距仪台1只允许国内产品参与投标,不允许进口产品参与投标42全站仪台1只允许国内产品参与投标,不允许进口产品参与投标43全站仪台1只允许国内产品参与投标,不允许进口产品参与投标44地学信息处理研究应用系统软件套1只允许国内产品参与投标,不允许进口产品参与投标45导航定位系统台1只允许国内产品参与投标,不允许进口产品参与投标如需进一步了解详细内容,详见招标文件。46单波束测深仪台2只允许国内产品参与投标,不允许进口产品参与投标47单点海流计台1同时允许进口或国内产品参与投标48多普勒水流剖面仪ADCP台2同时允许进口或国内产品参与投标49海水声速仪台1同时允许进口或国内产品参与投标50验潮仪台1同时允许进口或国内产品参与投标51浅层地震仪台1同时允许进口或国内产品参与投标52浅层地震仪台1同时允许进口或国内产品参与投标53气垫船台1只允许国内产品参与投标,不允许进口产品参与投标54台式工作站台1只允许国内产品参与投标,不允许进口产品参与投标55高频振动钻机台1同时允许进口或国内产品参与投标56原子吸收分光光度计台1只允许国内产品参与投标,不允许进口产品参与投标57紫外分光光度计台1只允许国内产品参与投标,不允许进口产品参与投标58电子天平台1同时允许进口或国内产品参与投标59多参数水质分析仪台1同时允许进口或国内产品参与投标60球磨仪台1只允许国内产品参与投标,不允许进口产品参与投标61化学需氧量COD测定仪台1同时允许进口或国内产品参与投标62生化培养箱台1只允许国内产品参与投标,不允许进口产品参与投标63火焰原子吸收光谱仪套1同时允许进口或国内产品参与投标64碳硫分析仪套1同时允许进口或国内产品参与投标65气相色谱仪套1同时允许进口或国内产品参与投标66超高效液相色谱串联三重四极杆质谱联用仪台1同时允许进口或国内产品参与投标67荧光分光光度计套1同时允许进口或国内产品参与投标68元素分析仪套1同时允许进口或国内产品参与投标69气相色谱仪套1同时允许进口或国内产品参与投标70气相色谱仪套1同时允许进口或国内产品参与投标71气相色谱-质谱联用仪套1同时允许进口或国内产品参与投标72自动磨片系统套1同时允许进口或国内产品参与投标73生物显微镜套1同时允许进口或国内产品参与投标74相差显微镜套1同时允许进口或国内产品参与投标75显微分光光度计荧光仪套1同时允许进口或国内产品参与投标76高热解温度岩石热解分析仪套1只允许国内产品参与投标,不允许进口产品参与投标77全自动多功能抽取仪套1只允许国内产品参与投标,不允许进口产品参与投标78棒状薄层色谱仪套1只允许国内产品参与投标,不允许进口产品参与投标79GPS台6只允许国内产品参与投标,不允许进口产品参与投标80GPS台4只允许国内产品参与投标,不允许进口产品参与投标81蓝牙打印机2.0台60只允许国内产品参与投标,不允许进口产品参与投标82GPS台6只允许国内产品参与投标,不允许进口产品参与投标83数据采集仪台4只允许国内产品参与投标,不允许进口产品参与投标84连续电导率成像系统套2同时允许进口或国内产品参与投标85便携式地质取样刻槽机台2只允许国内产品参与投标,不允许进口产品参与投标附:采购需求.pdf
  • 09年我国部分仪器产品出口退税率提高
    财政部、国家税务总局发布《关于提高部分机电产品出口退税率的通知》  【发布单位】中华人民共和国财政部、国家税务总局  【发布文号】财税[2008]177号  【发布日期】2008-12-29  【实施日期】2009-01-01各省、自治区、直辖市、计划单列市财政厅(局)、国家税务局,新疆生产建设兵团财务局:  经国务院批准,从2009年1月1日起,提高部分技术含量和附加值高的机电产品出口退税率。具体规定如下:  一、将航空惯性导航仪、陀螺仪、离子射线检测仪、核反应堆、工业机器人等产品的出口退税率由13%、14%提高到17%。  二、将摩托车、缝纫机、电导体等产品的出口退税率由11%、13%提高到14%。  除以上产品外,提高出口退税率的产品还包括部分仪器设备,具体产品清单见附件。  三、具体执行时间,以 “出口货物报关单(出口退税专用)”海关注明的出口日期为准。  特此通知。  附件:提高出口退税率的产品清单   中华人民共和国财政部中华人民共和国国家税务总局二〇〇八年十二月二十九日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制