当前位置: 仪器信息网 > 行业主题 > >

振动探测器

仪器信息网振动探测器专题为您提供2024年最新振动探测器价格报价、厂家品牌的相关信息, 包括振动探测器参数、型号等,不管是国产,还是进口品牌的振动探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合振动探测器相关的耗材配件、试剂标物,还有振动探测器相关的最新资讯、资料,以及振动探测器相关的解决方案。

振动探测器相关的资讯

  • 意大利引力波探测器因故障推迟重启
    不久以后,物理学家将继续对天体物理学“怪物”——黑洞和中子星碰撞产生的引力波进行探测。但是,3个探测器之一、位于意大利的室女座探测器(Virgo)目前却遇到了技术问题,将延迟其重新启动的时间。3年前,所有探测设施为了维护和升级而关闭。而在接下来的几个月里,将只有美国路易斯安那州和华盛顿州激光干涉引力波天文台 (LIGO)的两个探测器接受数据,这使得在太空中精确定位信号源变得更加困难。意大利国家核物理研究所(INFN)物理学家、Virgo的调试协调员Fiodor Sorrentino说,问题似乎不是来自于升级,而是产生噪声的旧部件,这些噪声会淹没许多信号。2015年,LIGO首次探测到两个巨大的黑洞相互旋转合并时产生的涟漪。两年后,LIGO和Virgo在附近发现了两颗中子星的合并。迄今为止,这3个探测器已经记录了90多次黑洞合并和两次中子星合并。每个探测器都是一个巨大的L形光学装置,称为干涉仪。镜子悬挂于干涉仪每条臂的两端,激光在镜子之间反射。整个装置处于真空室中,一个精心设计的悬挂系统支撑着每面镜子。Virgo的问题似乎出现在悬挂系统和镜子上。每面重达40公斤的镜子挂在一对薄玻璃纤维上。2022年11月,支撑一面镜子的纤维断裂。Sorrentino说,虽然镜子下降的距离很小,但震动似乎使附着在镜子上用于固定它的4块磁铁中的一块松动了。磁铁的运动使玻璃产生了振动。此外,另一条臂上的一面镜子在2017年遭遇了类似的情况,现在看来,其内部似乎有一个小裂缝。INFN的物理学家Gianluca Gemme说,这些问题直到最近才变得明显起来。研究人员要打开真空室,从一面镜子上取下松动的磁铁,并更换另一面镜子。 Gemme说,这项工作应该会在7月之前完成。“如果一切顺利,没有额外的隐藏噪声源,Virgo应该能够在秋天加入LIGO。”Gemme说。威斯康星大学密尔沃基分校天体物理学家Patrick Brady说,两个LIGO探测器运行良好,应该为5月24日的重启做好了准备。但Virgo的暂时缺席将限制科学研究的开展。3个探测器可以精确定位天空中的信号源,误差在几十平方度以内。如果是两个,定位会变得不精准。但Brady说,即使只有LIGO,长达18个月的运行也应该产生大量的科学成果。LIGO探测器的灵敏度已经比以前提高了30%,每2至3天就能发现一次黑洞合并。在这样的情况下,科学家应该能确定黑洞质量的分布,并有可能揭示不寻常的合并,比如向不同方向旋转的黑洞之间的合并。这些信息有助于揭示黑洞对是如何形成的。
  • 更多宇宙的声音可以被新探测器听见
    欧洲爱因斯坦望远镜艺术图 图片来源:ET概念设计团队 5年前,当物理学家首次探测到引力波时,他们为宇宙打开了一扇新的窗户。引力波是大质量黑洞或中子星碰撞时产生的涟漪。现在,研究人员已经在计划更大、更灵敏的探测器。而且,美欧之间的竞争已经初露端倪,美国科学家提出建造更大的探测器,而欧洲研究人员则在追求更激进的设计。  “目前,我们只捕捉到最罕见、最响亮的事件,但在宇宙中还有更多的声音。”美国加州州立大学天体物理学家Jocelyn Read说。加州理工学院物理学家David Reitze也表示,物理学家希望新的探测器能在21世纪30年代运行,这意味着他们必须现在就开始计划。“引力波的发现已经吸引了全世界的目光,所以现在是思考接下来会发生什么的好时机。”  目前的探测器都是L形的仪器,叫做干涉仪。激光在悬挂在每条臂的两端的镜子之间反射,有些光线会漏出来,在L形臂的弯处会合。在那里,光的干涉方式取决于臂的相对长度。通过监测这种干扰,物理学家可以发现通过的引力波,这种引力波会使臂的相关数值产生不同程度的变化。  因此,为了探测空间的微小拉伸,干涉仪的臂必须很长。发现了第一个引力波的位于路易斯安那州和华盛顿州的激光干涉仪引力波天文台(LIGO),臂长达4公里。位于意大利的Virgo探测器有3公里长的臂。  现在,研究人员现在想要一种灵敏度比现有设备高10倍的探测器。它能发现可观测宇宙中所有的黑洞合并,甚至可以追溯到第一批恒星出现之前,从而寻找大爆炸中形成的原始黑洞。它还应该能发现数百个“千新星”,揭示中子星超密度物质的本质。  美国科学家对新探测器的愿景很简单。“我们只想把它做得非常非常大。”Read说。Read正在帮助设计“宇宙探索者”—— 一个臂长40公里的干涉仪,本质上是一个放大了10倍的LIGO。  指导了LIGO建设的加州理工学院物理学家Barry Barish说,这种批量设计可能使美国能够负担得起多个分离的探测器,这将有助于新设备像现在的LIGO和Virgo一样精确定位天空中的事件源。  但安置这样巨大仪器可能很棘手。40公里的臂必须是直的,但地球是圆的。如果L形的弯道位于地面上,那么干涉仪的末端可能必须放在30米高的护堤上。因此,美国研究人员希望找到一个碗状区域,以便容纳这种结构。  相比之下,欧洲物理学家设想了一个地下引力波天文台,称为爱因斯坦望远镜(ET)。意大利国家核物理研究所物理学家、ET指导委员会联合主席Michele Punturo说:“我们想要实现一个能够在50年内承载(探测器)所有进化的基础设施。”  ET将由多个V形干涉仪组成,臂长10公里,排列在一个深埋地下的等边三角形中,以帮助屏蔽振动。借助指向三个方向的干涉仪,ET可以确定引力波的偏振度,帮助科学家在天空中定位引力波的来源,并探测引力波的基本性质。  Punturo表示,ET预计耗资17亿欧元,包括用于隧道和基础设施的9亿欧元。研究人员正在考虑两个地点,一个靠近比利时、德国和荷兰的交汇处,另一个在撒丁岛。相关计划正在等待审议。  美国的提议则不那么成熟。研究人员希望美国国家科学基金会提供6500万美元用于设计工作,这样就可以在本世纪20年代中期对这台价值10亿美元的机器做出决定。但物理学家们都希望这两台新设备能在2030年代中期启动。
  • 超快高敏光电探测器问世 用于安检及生化武器探测
    据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然纳米技术》杂志上。  科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。  而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。  通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。  研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。  新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。  虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • 研究人员在二维材料光电探测器研究方面取得新进展
    光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。   为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。   具有宽带探测能力的光电探测器在我们日常生活的许多领域中发挥着重要作用,并已广泛应用于成像、光纤通信、夜视等领域。迄今为止,基于传统材料的光电探测器如:GaN 、Si 和 InGaAs占据着从紫外到近红外区域的光电探测器市场。   然而,相关材料复杂的生长过程和高昂的制造成本阻碍了这些探测器的进一步发展。为了应对这些挑战,人们一直在努力开发具有可调带隙、强光-物质相互作用且易于集成的二维材料光电探测器。   如今,许多二维材料如石墨烯、黑磷和碲等已经表现出优异的宽带光探测能力。尽管如此,目前基于二维材料的高性能宽带光电探测器数量仍然有限,特别是许多基于二维材料的光电探测器虽然表现出较高的光响应度和探测率,但响应速度较慢,这可能归因于其较长的载流子寿命,这种较低的响应速度限制了二维光电探测器的实际应用。   最近,石墨烯、黑磷和部分过渡金属二硫属化物(TMDs)范德华异质结器件已经展现出二维材料在高速宽带光电探测领域的潜力。然而,石墨烯是一种零带隙材料,黑磷在环境条件下并不稳定,TMDs异质结的制造工艺相对复杂,这些问题同样限制了这些材料在光电探测领域的应用。   鉴于此,中科院合肥研究院固体所纳米材料与器件技术研究部李广海研究员课题组李亮研究员与香港理工大学应用物理系严锋教授合作,开发了一种基于层状三元碲化物InSiTe3的光电探测器,合成出高质量的InSiTe3晶体,并通过拉曼光谱分析了其拉曼振动模式。InSiTe3的间接带隙可以从1.30 eV(单层)调节到0.78 eV(体块)。   此外,基于InSiTe3的光电探测器表现出从紫外到近红外光通信区域(365-1310 nm)的超快光响应(545-576 ns),最高探测率达到7.59×109 Jones。这些出色的性能价值凸显了基于层状InSiTe3的光电探测器在高速宽带光电探测中的潜力。   论文第一作者为纳米材料与器件技术研究部博士生陈家旺。该工作得到了国家自然科学基金、安徽省领军人才团队项目、安徽省自然科学基金、安徽省先进激光技术实验室开放基金和香港理工大学基金的支持。
  • 国产X射线线阵探测器生产商奥龙中科正式成立
    2014年11月10日,丹东奥龙射线仪器集团有限公司旗下第五个子公司&mdash &mdash 丹东奥龙中科传感技术有限公司正式成立。  来自政府、中科院、奥龙集团的嘉宾出席了丹东奥龙中科传感技术有限公司(以下简称&ldquo 奥龙中科&rdquo )成立庆典,共同见证了这一重要时刻!丹东市邱继岩市长、中科院陈和生院士、中科院马创新等人以及奥龙集团董事长李义彬先生出席本次成立仪式,并由陈院士和邱市长为奥龙中科揭牌。  奥龙中科由奥龙集团和中国科学院高能物理所联合成立,这是继与中科院建立&ldquo 丹东奥龙射线技术及装备院士专家工作站&rdquo 之后的又一次合作。  奥龙中科主要从事:X射线数字线阵探测器系列产品的研发与应用。该产品系列化的研发与生产将成为继美国、德国、芬兰之后的第四个独立生产X射线数字线阵探测器产品的国家,中国第一台X射线线阵探测器将在奥龙中科诞生,它将提升我国X射线无损检测设备的生产制造与国际竞争力。
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 美国SOC为NASA洞察号火星探测器项目提供热控涂层
    SOC为美国航空航天局计划于2018年5月发射的“洞察”号火星探测器提供热控涂层。该探测器的任务是在火星表面放置一个固定的有地震仪和传热探头的装置,用于研究火星的早期地质演变。 地震仪设备是“洞察”号探测器上装载的主要科学仪器,由SOC涂层实验室为其提供热控涂层。 SOC的项目经理Maria Zimmerman指出关键技术:在三米大小的实验室里将蒸汽沉积物经加工处理后覆盖在地震仪设备组件的金制表面上,在这个实验室里让一束光照射该经过加工处理后的沉积物时光束会全部吸收,以此就可以制成横贯三个空间结构的多层均衡涂层。 SOC多年来一直承接美国航空航天局的任务,其中最为显著的是提供了太空飞行器上的开普勒望远镜、核分光望远镜阵列和钱拉德太空望远镜的涂层。
  • “阿尔法磁谱仪探测器升级和物理研究”项目启动会在京召开
    4月25日下午,国家重点研发计划“大科学装置前沿研究”重点专项“阿尔法磁谱仪探测器升级和物理研究”项目启动会在中国科学院高能物理研究所召开。中科院前沿科学与教育局、中科院高能物理研究所、清华大学、北京大学、中国科学院大学、山东大学、浙江大学、山东高等技术研究院、西北工业大学等单位的领导、专家及项目参研人员代表40余人,通过现场与视频相结合的方式参加了启动会。会议由项目专家组组长陈和生院士主持,中科院前沿科学与教育局物理与化学处,高能所科研业务处、粒子天体物理中心和粒子天体物理重点实验室的相关负责人分别致辞。   中科院高能所是项目牵头单位,山东大学、浙江大学、山东高等技术研究院、西北工业大学为参与单位。项目负责人李祖豪研究员汇报了AMS探测器升级和物理分析项目的总体实施方案,课题负责人高能所董静高级工程师、唐志成副研究员和山东大学许伟伟教授分别汇报了课题的组织管理和课题任务实施计划。课题一阿尔法磁谱仪升级,通过承担显示度高的硅探测器模块研制并参与探测器的集成和测试,全面掌握空间大型硅探测器的研制技术,将为我国未来自主开展的HERD等空间实验提供技术积累。课题二和课题三侧重物理分析工作,涵盖了AMS实验的重要物理研究方向,包括暗物质和反物质寻找及宇宙线原子核能谱的精确测量。通过项目的实施,可以进一步提升项目组在AMS国际合作组的显示度,进而提升我国在相关领域的国际显示度。   与会专家对项目实施方案进行了讨论,认为研究内容和预期指标满足任务书的要求,实施方案目标明确,技术路线合理,计划可行;并针对硬件升级课题进一步加强与国内相关单位的合作提升国内对大规模空间硅探测器的研发能力,以及物理分析课题进一步加强与理论结合,组织召开国际国内相关物理议题研讨会等事宜进行了深入讨论。
  • 集成有亚波长光栅的台面型InGaAs基短波红外偏振探测器
    红外辐射(760nm-30μm)作为电磁波的一种,蕴含着物体丰富的信息。红外光电探测器在吸收物体的红外辐射后,通过光电转换、电信号处理等手段将携带物体辐射特征的红外信号可视化。其具有全天候观测、抗干扰能力强、穿透烟尘雾霾能力强、高分辨能力的特点,在国防、天文、民用领域扮演着重要的角色,是当今信息化时代发展的核心驱动力之一,是信息领域战略性高技术必争的制高点。众所周知,波长、强度、相位和偏振是构成光的四大基本元素。其中,光的偏振维度可以丰富目标的散射信息,如表面形貌和粗糙度等,使成像更加生动、更接近人眼接收到的图像。因此偏振成像在目标-背景对比度增强、水下成像、恶劣天气下探测、材料分类、表面重建等领域有着重要应用。在短波红外领域,InGaAs/InP材料体系由于其带隙优势,低暗电流,和室温下的高可靠性已经得到了广泛的应用。目前,一些关于短波偏振探测技术的研究已经在平面型InGaAs/InP PIN探测器上开展。然而,平面结构中所必须的扩散工艺导致的电学串扰使得器件难以向更小尺寸发展。同时,平面结构中由对准偏差导致的偏振相关的像差效应也不可避免。与平面结构相比,深台面结构在物理隔离方面具有优势,具有克服上述不足的潜力。中国科学院物理研究所/北京凝聚态物理国家研究中心E03组长期从事化合物半导体材料外延生长与器件制备的研究。E03组很早就开始了对近红外及短波红外探测器材料与器件的研究,曾研制出超低暗电流的硅基肖特基结红外探测器【Photonics Research, 8, 1662(2020)】,研究过短波红外面阵探测器小像元之间的暗电流抑制及串扰问题【Results in Optics, 5, 100181 (2021)】等。最近,E03组研究团队的张珺玚博士生在陈弘研究员,王文新研究员,邓震副研究员地指导下,针对光的偏振成像,并结合亚波长光栅制备技术,片上集成了一种台面型InGaAs/InP基PIN短波红外偏振探测器原型器件。该原型器件具有的深台面结构可以有效地防止电串扰,使其潜在地实现更小尺寸短波红外偏振探测器的制备。图1是利用湿法腐蚀和电子束曝光等微纳加工技术制备红外探测器及亚波长光栅的工艺流程。图2和图3分别是制备完成后的红外探测器光学显微镜图片和不同取向的亚波长光栅结构SEM图片。图1. 集成有亚波长Al光栅的台面型InGaAs PIN基偏振探测器的工艺流程示意图。图2. 两种台面尺寸原型器件的光学显微镜图片 (a) 403 μm×683 μm (P1), (b) 500 μm×780 μm (P0)。图3. 四种角度 (a) 0°, (b) 45°, (c) 90°, (d) 135° Al光栅形貌。图4是不同台面尺寸的P1和P0器件(无光栅)在不同条件下的J-V特性曲线和响应光谱。在1550 nm光激发,-0.1 V偏压下,P1和P0器件的外量子效率分别为 63.2% and 64.8%,比探测率D* 分别达到 6.28×1011 cm?Hz1/2/W 和6.88×1011 cm?Hz1/2/W,表明了原型器件的高性能。图4. InGaAs PIN原型探测器(无光栅)的J-V特性曲线和响应光谱。(a) 无光照下,P1和P0的暗电流密度Jd-V特性曲线;不同入射光功率下,(b) P1和(c) P0的光电流密度Jph-V特性曲线,插图是-0.1V下光电流密度与入射光功率之间的关系曲线; (d) P1和P0的响应光谱曲线。图5表明器件的偏振特性。从图5可以看出,透射率随偏振角度周期性变化,相邻方向间的相位差在π/4附近,服从马吕斯定律。此外, 0°, 45°, 90°和135°亚波长光栅器件的消光比分别为18:1、18:1、18:1和20:1,TM波透过率均超过90%,表明该偏振红外探测器件具有良好的偏振性能。图5. (a) 1550 nm下,无光栅器件和0°, 45°, 90°和135°亚波长光栅器件的电学信号随入射光极化角度的变化关系;(b) 光栅器件透射谱。综上所述,研究团队制备的台面结构InGaAs PIN探测器,其响应范围为900 nm -1700 nm,在1550 nm和-0.1 V (300K) 下的探测率为6.28×1011 cmHz1/2/W。此外,0°,45°,90°和135°光栅的器件均表现出明显的偏振特性,消光比可达18:1,TM波的透射率超过90%。上述的原型器件作为一种具有良好偏振特性的台面结构短波红外偏振探测器,有望在偏振红外探测领域具有潜在的广泛应用前景。近日,相关研究成果以题“Opto-electrical and polarization performance of mesa-structured InGaAs PIN detector integrated with subwavelength aluminum gratings”发表在Optics Letters【47,6173(2022)】上,上述研究工作得到了基金委重大、基金委青年基金、中国科学院青年创新促进会、中国科学院战略性先导科技专项、怀柔研究部的资助。另外,感谢微加工实验室杨海方老师在电子束曝光等方面的细心指导和帮助。物理所E03组博士研究生张珺玚为第一作者。
  • “完美的探测器设计” :探索正反物质差异有了灵敏探针
    北京正负电子对撞机上的北京谱仪III(BESIII)实验实现了一种全新方法,为研究物质和反物质之间的差异提供了极其灵敏的探针。6月2日,相关研究成果刊发于《自然》杂志。  论文所有匿名评审都对这一成果大加赞赏:“创新的测量方法”“很重要”“很新颖”“吸引人”“非常有前景”… … 到底是什么成果,竟让匿名评审们如此兴奋?  不好好“组CP”的反物质  “正反物质不对称性”是困扰科学界半个多世纪的问题,也是粒子物理学家一直在寻找的现象。他们常会提到一个词——“CP破坏”。  “CP破坏”里的“CP”,和我们平时常说的“组CP”里的“CP”(情侣档)并不是一码事。  130亿年前,宇宙在发生大爆炸之后迅速膨胀、冷却,大量正反粒子彼此结合、湮没。然而,就像闹了别扭的情侣一样,正反粒子在结合湮没的过程中,行为出现了一些不同。每十亿个正反粒子湮没的过程中,就有一个正物质粒子被留了下来,并最终组成了当今宇宙中所有的物质。  科学家将正粒子和反粒子衰变过程不一样的现象,称为“CP破坏”。  “CP破坏”的名字与李政道、杨振宁密切相关。他们提出并获得诺贝尔物理学奖的“宇称不守恒定律”认为,粒子的弱相互作用中存在“镜像”空间反射不对称性。  在此基础上,科学家总结出了“CP破坏”。“CP破坏现象可以用来解释为什么我们的世界中只有正物质,没有反物质。”中国科学院高能物理研究所所长、中国科学院院士王贻芳告诉《中国科学报》。  宇宙原初反物质为何消失?  超子CP破坏有望解谜  自上个世纪60年代以来,国外科学家已经相继在介子系统中发现了CP破坏。可是,正反物质的不对称性并没有因此得到完美解释。  “在构成世界的主要粒子中,介子数量很少,介子衰变时多出来的正物质并不足以形成现在的世界。”王贻芳说。  与数量稀少的介子不同,重子是构成世界的主要粒子。“如果能在重子中找到CP破坏,我们就能够更好地理解宇宙原初反物质消失之谜。”王贻芳说。  遗憾的是,科学家从未在重子衰变中发现过CP破坏,原因在于“弱衰变信号有时会被强相互作用掩盖”。“所以要想看到重子的CP破坏,就需要有足够高灵敏度和创新性的实验方法,把弱相互作用与强相互作用的信号区分开来。”王贻芳说。  超子是重子中的一种,类似于质子,但寿命很短,因此不像质子那样可以存在于我们身边。在超子中,有一个名叫“科西超子”的成员,由两个奇异夸克和一个轻夸克组成,当奇异夸克发生弱衰变时,它便消失了。  超子衰变被科学家视为“寻找CP破坏的一个很有希望的狩猎场”,因为测量CP破坏时需要的一些信息可以通过超子的衰变直接测量。  发现了高精度测量方法  从2009年起,BESIII实验从正负电子对撞出的“碎片”中,收集到了约100亿J/psi粒子。这种名叫“J/psi”的粒子会衰变产生正—反科西超子,之后,正—反科西超子还会继续衰变、消失。  BESIII实验组的科研人员用了100亿粒子事例中的13亿,分析出了正—反科西超子的诞生过程,重建出7万多个正—反科西超子对。如此一来,BESIII就成了一个干净、小巧的科西超子“工厂”。  “干净”是因为本底污染率小于千分之一水平。“小”是因为BESIII实验中,超子产额并不算多。“巧”是因为BESIII实验的敏感度足够高。  “我们的超子产额只有美国费米实验室一个叫HyperCP实验产额的千分之一,但单事例的敏感度是HyperCP单事例的一千倍。”BES III实验发言人、中科院高能物理研究所研究员李海波说。  在分析数据时,BESIII实验组的科研人员发现了一种高精度测量超子CP破坏的方法。  早先,他们发现,刚衰变出来的正科西超子和反科西超子之间存在一种特殊的现象——“量子纠缠”。于是,利用这种独特的量子纠缠效应,再结合科西超子其他数据信息,实验人员不仅从海量数据中同时找出了正科西超子、反科西超子的衰变信号,还以前所未有的精度测量出正—反科西超子的不对称参数。  “新方法解决了30年来不能同时高效地对超子和其反粒子测量的困境,也给出了更丰富的CP破坏测量结果。”李海波说。  “这一成果已经引起国际同行的关注,相关研究人员被2021年国际轻子光子大会邀请作大会专题报告,成为这一领域的新星。”王贻芳说。  暂未发现新物理现象,将分析更多数据  遗憾的是,BESIII实验组此次的测量结果并没有显示出超子的CP破坏迹象。即便如此,新方法的发现依然得到了国际匿名评审的认可。  一位匿名评审点评说:“即使尚未发现CP破坏的新迹象,但研究方法上仍然很有趣。”另一位匿名评审认为:“新方法为将来的实验指明了方向,铺平了道路。”  “这一创新方法为我们未来确认或排除超出标准模型的CP破坏来源带来了希望。”王贻芳说。  抱着这样的希望,实验组正在向更高的测量精度发起挑战。“我们希望在不远的将来,能够用这种测量方法发现超子CP破坏的实验证据。”王贻芳表示,BESIII实验组正在分析100亿粒子衰变数据,测量精度有望再提高3倍左右。  目前,这支由我国主要开展研究的实验团队面临着激烈的国际竞争。  “欧洲核子中心的大型强子对撞机底夸克探测器(LHC-b)也正在大量制造超子。不过,他们的本底污染率比我们高。”李海波告诉《中国科学报》,BESIII实验组在测量上的优势在于BESIII实验“完美的探测器设计”。  BESIII是我国历史上最早的粒子物理大科学装置——北京正负电子对撞机上的探测器。它关注两个科学问题:夸克如何组成物质粒子和宇宙物质—反物质不对称的起源。  王贻芳介绍,从2009年至今,BESIII实验已经发表了400余篇研究成果。该探测器计划运行到2030年。  作为我国自主研发的大型高能实验装置,BESIII实验吸引了来自17个国家80家科研机构的约500个科研人员,是目前国内正在运行的最大国际合作组。此次发表的新成果由中国科学家和国外合作者共同完成。
  • 线阵CCD探测器 激光粒度仪降本增效的新希望
    p style="text-indent: 2em "CCD兴起于20世纪70年代,是由一组规则排列的金属-氧化物-半导体( MOS)电容器阵列和输入、输出电路组成。它能够利用时钟脉冲电压来产生和控制半导体势阱的变化,完成对光的探测。不同于普通固态电子器件,CCD器件中信息的存在和表达方式为电荷,而不是电流或电压,因此对信息的表达具有更高的灵敏度。按照感光单元的排列方式来划分,CCD器件可以分为线阵CCD和面阵CCD。/pp style="text-indent: 2em "传统激光粒度仪采用环形光电二极管阵列作为探测器,但一般探测器只有 32 环,较低的空间分辨率限制了其在颗粒测量中的应用。并且由于应用量少,导致其成本非常高。近些年来,以面阵 CCD 为探测器的激光粒度仪得到了一定的发展,但在室温条件下,面阵 CCD 容易受到暗电流的影响,动态范围一般只有 20~30dB,且面阵CCD 存在价格高,尺寸小,采集电路设计复杂等缺陷。相比于面阵 CCD 探测器,线阵 CCD 具有分辨率高,动态响应范围宽等特点,并且可以对像素点进行直接操作,具有更大的灵活性,因此能够满足不同环境条件下的颗粒粒度测量要求。目前,在不同工业领域,线阵 CCD 已经得到广泛应用,如高性能文件打印、光谱扫描、光学字符识别等。由于应用范围广,使得线阵 CCD 成本较低。所以采用线阵 CCD 探测器替代传统探测器可以有效降低激光粒度仪的制造成本。/pp style="text-indent: 2em "目前,激光粒度仪的光学结构主要有前置式傅里叶透镜光学结构和后置式傅里叶透镜光学结构两种,目前,依然采用前置式傅里叶透镜光学结构的激光粒度仪制造商有丹东百特、辽宁仪表研究所、成都精新以及国外的 Shimadzu、Sympatec 等公司。并且由于干法测量要求的特殊性,一般干法激光粒度仪也采用前置式傅里叶透镜光学结构。因此,本文主要对前置式傅里叶透镜光学结构进行探讨。线阵 CCD 具有 7450 个像素点,单位像素点的尺寸为 4.7× 4.7μm,采用精度为8bit,采样数据率为 30MHz。基于线阵 CCD 的前置式傅里叶光学结构的激光粒度仪系统结构如下图所示。/pp style="text-indent: 0em "img src="http://img1.17img.cn/17img/images/201807/insimg/ff47e6ea-83ad-496d-bcc6-49c8703f9433.jpg" title="基于线阵 CCD 的前置式激光粒度仪系统结构示意图.png"//pp style="text-indent: 0em text-align: center "span style="text-indent: 2em "(基于线阵 CCD 的前置式激光粒度仪系统结构示意图)/span/pp style="text-indent: 2em "随着工业生产实践的不断进步,针对小粒径颗粒、不规则形状颗粒和特殊材料颗粒的研究越来越深入。基于线阵 CCD 探测器的激光粒度仪测量性能需要从颗粒的散射光学模型、仪器的光学结构和采集数据的反演算法三个方面来进一步提高。/pp style="text-indent: 2em "不管是 Mie 氏光散射理论还是夫琅禾费衍射理论,其前提条件都是假设被测样品为球形颗粒。而在实际社会生产过程中,颗粒的形状往往是不规则的,采用传统光散射理论描述颗粒的散射光强分布是不合适宜的,容易造成反演粒度分布偏离真实粒度分布。因此,建立更普适性的颗粒散射光学模型是提高激光粒度测量准确性的关键。使用近似非负约束 Chin-Shifrin 算法是一种获得准确性更高的颗粒粒度分布的方法。/pp style="text-indent: 2em "为了提高颗粒测量粒度范围,扩大线阵 CCD 的可测量散射角,建议采用渐变滤光片系统对中心艾里斑光强进行滤光处理,获取颗粒小角度散射光强信息,同时为了扩大有效测量散射角,设计组合线阵 CCD 探测器,对大角度散射光进行有效采集。另外,为了满足不同社会生产需求,例如在线颗粒测量、超细颗粒粒度测量等。引入更高效的数据反演算法也迫在眉睫。/p
  • 硅单光子探测器取得重要进展
    p style="text-align: justify text-indent: 2em " 由无锡中微晶园电子有限公司牵头承担的国家重点研发计划“重大科学仪器设备开发”重点专项“高灵敏硅基雪崩探测器研发及其产业化技术研究”项目经过近两年的努力,突破了低抖动、大光敏面硅单光子探测芯片设计、界面电场调控的离子注入和氧化层制备、低噪声芯片封装等关键技术,开发出硅单光子探测器样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "硅单光子探测器具有超高灵敏度,是300-1100nm波段超高灵敏探测不可替代的关键芯片,且器件性能稳定可靠、易形成面阵,是实现远距离精密测量、激光雷达等重大科学仪器的关键核心部件之一。目前国内硅单光子探测芯片主要依赖进口,且阵列芯片禁运。开展硅单光子探测器的自主化研究,对独立自主研制精密测量、激光雷达等装备具有重要意义。项目提出了雪崩过程随机性电场抑制方法,基于国产硅片和研发平台,研制出大光敏面、低时间抖动的硅雪崩探测器芯片,开发了一系列可工程化应用的制备关键技术,并在“北斗系统”开展了激光测距示范应用;同时还面向智能交通的市场需求,研制出线性模式硅雪崩探测器。/pp style="text-align: justify text-indent: 2em "该项目下一步将加快产品化开发,提高产品技术成熟度,加快产品应用示范及推广。 /p
  • 预计2015年红外探测器市场将达2.4亿美元
    根据Yole Developpement的最新调查报告显示,智能建筑、智能照明与智能手机的温度感测等应用将持续带动红外线(IR)传感器市场快速成长。2014年全球IR探测器市场出货量为2.47亿套,销售额达到2.09亿美元,预计这一市场规模在2015年将成长至2.4亿美元。  Yole Developpement预计,在2015年至2020年之间,全球红外线探测器市场销售额将以17%的复合年成长率(CAGR)成长,在出货量方面也将以14%的CAGR成长。这将使每单元平均销售价格(ASP)持续提高的情况较预期的时间更久。Yole表示,这种不寻常的情况可用应用组合发生变化来解释。  Yole指出,在IR探测器的九大应用中,共有五项应用将快速推动这一段时间的营收成长:移动设备的红外线温度计、动作侦测、智能建筑、HVAC与人数统计等应用。  受惠于智能照明、智能建筑物以及移动设备中的IR感测设计订单等驱动力道带动,全球IR探测器器市场预计将在2020年达到5亿美元的市场规模。  随着越来越多的智能手机新增IR传感器设计以及作为智能照明的加值功能,小型的探测器器应用将在2020年以前持续两位数的速度成长。接着,一系列从 4x4与16x16像素的中型探测器到甚至高达32x32像素的大型探测器数组也陆续加进这一市场后,预计将带动相关传感器应用市场在2015至2020 年之间实现超过26%的CAGR成长。
  • “活字印刷式”光电探测器阵列,实现多通道超构红外成像
    受神经形态计算并行处理能力的启发,多通道超构成像(meta-imaging)在成像系统的分辨率增强和边缘识别方面取得了相当大的进步,甚至扩展到中远红外光谱。目前典型的多通道红外成像系统由分离的光栅或合并的多个相机构成,这需要复杂的电路设计和巨大的功耗,阻碍了先进的类人眼成像器的实现。近期,由成都大学郭俊雄特聘研究员、清华大学Yu Liu、电子科技大学黄文教授和北京师范大学张金星教授领导的科研团队开发了一种由铁电超畴(superdomain)驱动的可打印石墨烯等离子体光电探测器阵列,用于具有增强边缘识别能力的多通道超构红外成像。通过直接重新调整铁电超畴而不是重建分离光栅,所制造的光电探测器在零偏压下表现出多光谱响应。与单通道探测器相比,研究人员所开发的多通道红外成像技术表现出更强和更快的形状分类(98.1%)和边缘检测(98.2%)。研究人员开发的概念验证光电探测器阵列简化了多通道红外成像系统,并为人脑型机器视觉中的高效边缘检测提供了潜在的解决方案。相关研究成果以“Type-printable photodetector arrays for multichannel meta-infrared imaging”为题发表在Nature Communications期刊上。基于“活字印刷式”多通道光电探测器阵列的红外成像使用铁电超畴打印的光电探测器的多通道超构红外成像技术方案如上图所示。与多个相机的合并不同,所提出的超构成像的像素点被设计为使用通过“活字印刷式”探测器实施的单个孔径实现并行多通道。通过将单层石墨烯和具有纳米级宽度条纹超畴的BiFeO₃ (BFO)薄膜集成,研究人员开发了一种简单的双端零偏压多通道阵列(MCA)探测器,用于超构红外成像。基于拉曼信号的载流子密度空间监测表明,通过重新调整铁电超畴可以实现石墨烯导电性的非均匀图案化。当工作在零偏压和室温下时,所开发的器件阵列在中红外区域表现出可调谐的透射光谱和选择性响应。“活字印刷式”等离子体光电探测器的制造和架构为了验证这种可打印架构的性能,研究人员通过重新调整铁电畴宽度(对应于活字印刷技术的排版过程)在同一BFO薄膜上制作了一个器件阵列。研究人员重点研究了石墨烯/ BFO超畴(不同宽度)混合结构的光谱响应。所开发的光电探测器实现了约30 mA W⁻ ¹ 的增强响应度和10⁹ Jones数量级的比探测率(D*)。“活字印刷式”光电探测器阵列的表征重要的是,研究人员展示了MCA光电探测器在红外成像应用中的集成,与单通道阵列(SCA)探测器相比,显示出对整体目标形状和边缘检测的更高识别精度,以及更快的训练和识别速度。“活字印刷式”探测器在手势红外成像和识别中的应用总而言之,通过将单层石墨烯和具有纳米级宽条纹超畴的BFO薄膜集成,研究人员开发了一种可打印的光电探测器阵列,证明了这种类型的器件阵列是为多通道超构红外成像应用而设计的,并实现了增强的边缘检测。所开发的可打印光电探测器在零偏压下工作,在室温下表现出约30 mA W⁻ ¹ 的高响应度。这可以归因于石墨烯等离子体与入射光的共振耦合。此外,器件阵列在中红外区域表现出选择性响应,这是通过在环境条件下直接重新调整BFO超畴宽度实现的。这项研究证明,通过在纳米尺度上改变铁电畴可精确控制石墨烯载流子密度。与依赖复杂纳米制造技术的传统器件相比,石墨烯片与不同衬底的兼容性提供了多种优势。此外,该研究还证明了MCA探测器可以增强红外成像中的形状和边缘检测。这些特性使得未来具有简单的电路设计和低功耗的集成光电子平台成为可能。论文链接:https://www.nature.com/articles/s41467-024-49592-4
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 美宇航局筹划更先进的望远镜——X射线成像偏振探测器
    美国宇航局预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元  据腾讯太空(罗辑/编译):在地球轨道上,美国宇航局所管辖的空间望远镜是全球最多的,性能也最为先进,几乎覆盖了所有的观测波段。2018年,美国宇航局将发射迄今最先进的空间望远镜,詹姆斯-韦伯望远镜,这是一具红外线天文台。不过,美国宇航局又在筹划一种更先进的望远镜,主要工作波段为X射线,被命名为X射线成像偏振探测器,目前已经入围了三个方案,预计在2020年底会发射升空,将作为X射线天文学观测上的主力。  目前入围的三个方案都是目前X射线观测上的顶尖水平,比如来自加利福尼亚技术研究所的SPHEREX望远镜,美国宇航局马歇尔太空飞行中心提出的IXPE计划,以及美国宇航局戈达德太空飞行中心的PRAXyS方案。每个科学小组会获得100万美元的资金支持,美国宇航局也会进行为期11个月的任务概念研究。预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元,并安排了5000万美元的发射费用。  IXPE和PRAXyS这两个方案主要目标是个宇宙中高能事件,比如恒星工厂和恒星死亡后的情景,这些过程可产生强大的X射线信号。此外,科学家还希望收集黑洞周围的X射线信号,超致密的中子星、恒星爆炸、遥远星系中央内核的X射线信号等。IXPE采用X射线偏振技术,可以对中子星、脉冲星星云、恒星、黑洞等主要宇宙天体进行研究,符合美国宇航局的任务要求。  PRAXyS方案则使用了一种不同的方法来研究X射线天文学,PRAXyS任务的首席研究员基思认为PRAXyS方案类似于GEMS引力与极端磁场研究项目,后者在2012年被美国宇航局取消。SPHEREX任务概念将对天空进行全面扫描,时间至少持续两年,还可以观测宇宙中的引力波。此外,SPHEREX任务还可以对一些恒星系统演化的早期阶段进行研究,比如冰是否存在于恒星周围。
  • 美国研发出可同时操控光线和振动的晶体
    光线传播和机械振动是两种不同的物理现象,而美国研究人员新研发出的晶体可以在一个小空间中同时操控这两者。这种光学机械晶体将有助于量子计算机等领域的科研工作。  英国《自然》杂志网站日前刊登研究报告说,美国加州理工学院的研究人员在一条只有10微米长的硅晶片上刻了许多凹槽,然后再利用具有特定共振频率的激光照射该晶体,光线在凹槽中多次反射并互相干涉,最后只有部分光线透出,这说明另一部分光线被截留在了晶体中间。与此同时,研究人员探测到晶体中间的小格子在进行前后的机械振动。  研究人员说,这种光学机械晶体可用于未来的计算机电路中,尤其是在当前的量子计算机研究中。量子计算处理器的基础各有不同,如原子、光子或超导体等,需要使用不同频率的光,难以结合到一起,而新晶体可以将一种量子处理器的光转化为振动,再将这种振动转化为另一种频率的光。这样,新晶体可以成为混合型量子计算机的理想“连接器”。  由于这种晶体对光频率的变化非常敏感,它还可以用作医疗探测器,检查DNA(脱氧核糖核酸)序列和病原体等。此外,它还可以帮助研发出能够检测单个气体分子的探测仪器,这将超出当前任何一种探测仪器的精度。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520 nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 用于柔性成像的宽带 pbs 量子点石墨烯光电探测器阵列的研制
    胶体量子点(QD)/石墨烯纳米杂化异质结构为量子传感器提供了一种有前途的方案,因为它们利用了量子点中的强量子限制,具有增强的光-物质相互作用、光谱可调性、抑制的声子散射和室温下石墨烯中非凡的电荷迁移率。在这里,我们报告了一个灵活的,九通道的 PbS 量子点/石墨烯纳米混合成像阵列在聚对苯二甲酸乙二酯上的开发,使用了一个简单的工艺,用于器件制造,信号采集和处理。PbS 量子点/石墨烯成像阵列具有高度均匀的光响应特性。在1.0 V 偏置下,400-1000nm 入射光[紫外-可见-近红外(UV-vis-NIR)]的最高响应度为9.56 × 103-3.24 × 103A/W,功率为900pW。此外,该阵列具有一致的光谱响应,弯曲到几毫米的曲率半径。在紫外-可见-近红外(UV-vis-NIR)范围内的宽波长成像表明,量子点/石墨烯纳米杂化体为柔性光探测器和成像器提供了一种可行的方法。图1.(a-c)九通道 PbS 量子点/石墨烯传感器阵列的器件制作方法。(b)石墨烯通道上的 PbS QD 涂层 以及(c) MPA 配体交换。(d,e)是分别在刚性硅和柔性 PET 衬底上制作的9通道 PbS 量子点/石墨烯传感器阵列的示意图。(f)用短链导电 MPA 配体封装 PbS 量子点以促进从量子点到石墨烯的电荷转移的替换长链绝缘 OLA 和 OA 配体的示意图。(g)九通道 PbS 量子点/石墨烯传感器阵列中像素的结构示意图和 PbS 量子点/石墨烯界面上的内置电场。(h)使用 Arduino 读出器在九通道 PbS 量子点/石墨烯光电探测器阵列上进行传输成像的光学设置。图2。(a)在量子点沉积之前,在九通道 PbS 量子点/石墨烯传感器阵列上的石墨烯或“ Gr”通道的光学图像。(b)石墨烯/Si 和 Si 之间边界处的 G 峰(左上)和2D 峰(右上)的拉曼图,以及石墨烯上随机选择的点的拉曼光谱。单层石墨烯的 I2D/IG 2。(c)在1200nm 附近显示吸收峰的 PbS 量子密度吸收光谱。插图显示了 PbS 量子点的 TEM 图像,表明了 PbS 量子点的大小和均匀性。(d) PbS 量子点直径大小的分布。(e) PbS 量子点的高分辨透射电镜图像。条纹间距约为0.3 nm,相当于 PbS 的(200)晶格面。图3。(a)在硅衬底上的九通道 PbS 量子点/石墨烯传感器阵列上的选定像素在制作后的少数选定次数上的动态光响应。入射光功率为230nW,波长为500nm。整个像素的偏置电压为1.0 V (b)三个光开/关周期,显示重现性以及上升和下降时间定义。(c)相同的九通道 PbS 量子点/石墨烯传感器阵列对400-1000nm 范围内几个选定波长的入射光功率的光响应性。(d)相同的九通道 PbS QD/石墨烯传感器阵列对入射光功率为900pW 和偏置电压为1.0 V 的波长的检测率显示相同的九通道 PbSQD/石墨烯传感器阵列对入射光功率为900pW 和波长为500nm 的偏置电压的归一化响应性。数据在6783A/W 的1V 响应下进行了归一化处理。图4。(a)硅基板上的九通道 PbS QD/石墨烯传感器阵列对2.5 μW 的入射光功率和1V 的偏置电压的波长和通道(像素)的响应度(b)在500nm 的波长下9个像素的归一化响应度。(c)在黑暗中使用带有“ X”的阴影掩模显示五个中心通道和四个角通道的透射成像示意图。(d)使用(b)中的归一化方法对9个像素进行归一化响应,显示“ X”阴影掩模成像的结果。图5。(a)显示阴影掩模位置的图像扫描系统,透过线性致动器水平和垂直扫描,以取得安装在“样本”位置的九通道 PbSQD/石墨烯传感器阵列上的传输图像。(b)透过光束扫描以在阵列上产生传输图像的阴影掩模的光学图像。(c-e)通过在(c)400,(d)500和(e)1000nm 的波长的衬底上的九通道 PbS QD/石墨烯传感器阵列获得的图像。图6。(a)在 PET 基板上安装在弯曲虎钳上的九通道 PbS QD/石墨烯传感器阵列。转动图中所示的螺丝,将虎钳的两边连接在一起产生弯曲。(b) PET 阵列对几个选定波长的入射光功率的归一化响应率和1V 的偏置电压(c)柔性 PET 阵列的响应率作为入射光波长的函数以及刚性 Si 阵列,两者都在400nm 处归一化以进行比较。在这种情况下,入射光功率约为120nW,偏置电压为1 V (d)对于具有500nm 照明的 PET 阵列,响应率与曲率半径之比。这种情况下的光功率为2.5 μW,偏置电压为1 V。插图展示了在弯曲条件下的阵列,并用500nm 光照明。图7.在 PET 上分别以(a)400,(b)500和(c)1000nm 的波长用9通道 PbS QD/石墨烯混合传感器阵列拍摄的图像。图8.在 PET 上用9通道 PbS QD/石墨烯混合传感器阵列拍摄的图像,阵列(a)平坦,(b)弯曲半径为5厘米。相关科研成果由堪萨斯大学Andrew Shultz、Bo Liu和Judy Z. Wu等人于2022年发表在ACS Applied Nano Materials上。
  • 英国多家机构联合开发新一代探测器:将促进冷冻电镜技术变革
    仪器信息网讯 近日,英国科研与创新署(UKRI)消息,英国科研与创新署(UKRI)、科技设施理事会(STFC)、罗莎琳德富兰克林研究所(Rosalind Franklin Institute)、医学研究理事会分子生物学实验室(MRC LMB)合作开发出新型探测器,将为冷冻电镜技术领域带来新的变革。新型探测器由 Quantum Detectors公司推向市场。该技术基于 UKRI开发的技术,由STFC、罗莎琳德富兰克林研究所、MRC LMB 合作开发。冷冻电子显微镜(cryoEM),使用精确的高能电子束而不是可见光来研究低温下生物样品的结构,以实现原子水平的成像。STFC全新的探测器技术最终将促成非专业实验室使用冷冻电镜技术,从而专业实验室可以承担更加复杂的工作,这将全面提高研究标准。低能量冷冻电镜目前,领先的行业标准冷冻电镜系统都需要大量电能, 标准系统使用300keV电子源运行,是复杂的专用科学仪器,并且只能在专业电镜中心使用。最近,罗莎琳德富兰克林研究所科学家证明,新开发的创新探测器技术可用100keV的低能量实现类似的成像分辨率(冷冻电镜单颗粒成像),而不是200或300keV。这种能量的减少降低了设备成本,降低了电镜的环境要求,这将促成非专业实验室使用冷冻电镜技术,从而专业实验室可以承担更加复杂的工作,这将全面提高研究标准。由 STFC 仪器中心计划支持的 STFC 原型探测器,针对 100keV 的电子高速成像进行了优化(图自STFC) STFC探测器和电子部主管Marcus French,罗莎琳德富兰克林研究所创新和翻译经理Hazel Housden,以及Quantum Detectors首席执行官Roger Goldsbrough(照片自STFC)与 Quantum Detectors 合作的新商业项目旨在提供一种有助于从根本上简化显微镜设计的检测器。这将促使该技术在科研和工业领域中更容易应用并广泛推广。科学与工业之间的合作STFC 校园发展和集群总监、罗莎琳德富兰克林董事会成员 Barbara Ghinelli 博士表示:“这是一个很好的例子,展现了科研机构和工业界(商业化仪器公司)如何联合起来开发并商业化世界领先的技术,造福社会。”STFC 的技术部门与冷冻电镜先驱、诺贝尔奖获得者 Richard Henderson 博士和 MRC LMB 小组负责人 Chris Russo 博士协商开发了该探测器。罗莎琳德富兰克林研究所的创新与翻译经理 Hazel Housden 博士说:“这是cryoEM 技术大众化进程中令人振奋的一步。它将促使常规实验室也可以使用这项技术,使更多的研究人员能够在自己实验室获得自己生物样本的高分辨率图像,并腾出专业实验室进行更复杂的研究和开发工作。我们期待看到这场革命的到来。”更好的成像途径Quantum C100 探测器基于 STFC 的创新工作,针对 100 keV 进行了优化,并已开发为一个关键组件,以促进全球新兴成像领域的更具性价比的准入。Quantum Detectors 首席执行官 Roger Goldsbrough 表示:“近 15 年来,我们一直提供先进的探测器解决方案,Quantum C100 的推出将产品创新提升到更高的层次。我们非常高兴被选中与罗莎琳德富兰克林研究所和 STFC 合作,帮助将 CryoEM 技术带入更广泛的科学界,以全新的仪器为科学家提供所需的更高质量的数据。”信息拓延Quantum Detectors 公司Quantum Detectors (QD) 是用于透射电子显微镜 (TEM) 的先进直接电子探测器 (DED) 的市场领先供应商。QD 最初只专注于 X 射线领域,后来扩展到为显微镜领域。其目前掌握 4D 扫描透射电子显微镜分析的前沿技术,拥有最大DED计数安装基础,支持所有主要 TEM 品牌,包括:日立、日本电子、赛默飞世尔科技。罗莎琳德富兰克林研究所罗莎琳德富兰克林研究所是一家致力于通过跨学科研究和技术开发来改变生命科学的国家研究所。该研究所汇集了生命、物理科学和工程领域的研究人员,以开发旨在应对健康和生命科学领域重大挑战的颠覆性新技术。该研究所最初专注于五个主要研究主题,旨在对成像、诊断、药物开发和更多领域产生重大影响。该研究所由英国工程与物理科学研究委员会的研究与创新基金资助。该研究所是由英国研究与创新中心、十所英国大学和 Diamond Light Source 创立的独立组织,是一家在英格兰和威尔士注册的担保有限公司,其中心设在哈维尔科学与创新园区。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 从台湾花莲地震看国内生命探测技术研究现状与发展
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/50383bd3-9631-4c36-8e97-f788418efd04.jpg" title="1.jpg" style="width: 600px height: 450px " width="600" vspace="0" hspace="0" height="450" border="0"//pp style="text-align: center "strong日本搜救队带生命探测仪器进入花莲/strong/pp  近日,各大媒体纷纷头版头条报道了台湾花莲地震的受灾和救援情况,台湾当局婉拒大陆却接受日本援助,刺痛人心的理由竟是因为日本有“高阶探测仪”,并且日本在应对地震灾害救援这方面是最专业的!台媒称,经确认,日本救援队这次带到花莲的是Lifesensor公司生产的电磁波人命探查装置(LS-RR03)。其实大陆也有采购这台仪器,并且经历过汶川地震、玉树地震、雅安地震,我国的地震救援水平不论是在人员的组织管理还是生命探测技术的研发方面都取得了很大的进步。/pp  生命探测器探测幸存者是将心跳、脉搏、呼吸等能够代表生命信息的信号转换为其它能量形式进行显示,如声波、电波、红外辐射等。本文分别对声波振动、雷达、红外和气体几种生命探测器的探测原理及其现状进行了分析。其中声波振动生命探测器、雷达生命探测器和红外生命探测器是目前技术成熟、应用广泛的几种生命探测器,而气体生命探测器的技术还不成熟,仍处于研发阶段。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/bf4be9e9-d1eb-4935-928e-e78494f6f9a8.jpg" title="2.jpg" style="width: 600px height: 108px " width="600" vspace="0" hspace="0" height="108" border="0"//pp style="text-align: center "strong生命探测仪原理框图br//strong/ppstrong1.声波振动生命探测器/strongbr//pp  声波振动生命探测器探测生命信息主要是通过探测被困幸存者的呼救、心跳等声音信号对幸存者进行定位。在探测时声音传感器将声音信号转换为电信号,电信号经过前放、陷波、滤波处理后将信号放大送入监视耳机,然后通过营救人员监听被困者发出的各种声音。营救人员通过监听到的被困者发出的声音对被困者进行定位,进而采取相应的营救措施对其进行营救。声波振动生命探测器起源于法国的一种振动耳机,这种耳机是利用测声定位技术生产,后来英国救援人员在1985 年墨西哥地震中应用这种生命探测器进行探测救援,取得了很好的效果。声波振动生命探测器在国内研究起步较晚。在“十五”期间,成都理工大学相关的研究人员成功研制了声波振动生命探测仪,并将其应用在抗震救灾中,并取得了较好的表现。在2005 年成都市发生的“8.12”楼房垮塌事故中,由于救援人员采用了声波振动生命探测仪,为被压埋人员的搜索定位提供了宝贵的时间,从而及时抢救了许多人的生命。br/  声波振动生命探测器能有效地探测出震后废墟中幸存者的位置,为救援工作提供更多的时间。多道动态显示,实时地监测异常振动信号是声波振动生命探测器的主要特点。声波振动生命探测仪探测幸存者信息可实现快速搜索,而且这种生命探测轻便、价格低廉。/ppstrong2.雷达生命探测仪/strongbr/  雷达生命探测仪是基于多普勒效应的原理制成的。雷达生命探测器探测生命信息时是通过一个发送/接收天线发射电磁信号,信号穿过废墟碎片传播到幸存者所处的位置,将幸存者肢体动作的信息通过相位调制的方式加载在电磁信号上,然后穿透废墟返回地面被天线接收。在天线接收到的信号中包含有被困幸存者当时的信息,营救人员通过对其进行分析判断进而得出幸存者的状态,并采取相应的措施对其进行营救。美国的Georsia 技术研究所在雷达式生命探测技术研究方面有较大成果,该研究所首次提出了雷达生命信号监测( radar vital signal monitoring,RVSM) 的概念,这对于雷达式生命探测技术的发展具有重要的意义。Georsia 研究所前后相继制作出了用于军用的调频雷达和抛物面式天线结构雷达式的生命特征监视仪,前者在1992 年就已经作为RVSM 装备在战场上使用,用于判定一个受伤军人在陆军医护兵冒生命危险抢救之前是否还是活着的,而后者则在1996 年亚特兰大奥运会上被用于研究射击和射箭运动员的呼吸与心跳对射击准确度的影响,这也是RVSM 首次引起公众注意。而作为比较,我国在雷达生命探测技术方面的研究起步较晚。/pp  在国家重点培养和大力支持下,我国第一部非接触雷达式穿墙生命探测仪在2004 年诞生于第四军医大学。在非接触雷达式生命探测技术方面做了相应的研究并取得了不错的成果,还有武警工程学院和西安电子科技大学。在非接触式生命探测技术进行研究并制做出相应的产品的青岛电气有限公司和西安必肯科技发展有限公司为我国在这方面的发展和进步作出了巨大的贡献。2010 年4 月,由湖南华诺星空电子技术有限公司研发出的警用超宽带雷达式生命探测仪顺利通过国家地震局的测验,并在之后发生的玉树地震中起到了重要作用。br/  雷达生命探测器的特点: 可以穿透数米甚至数十米的石块或混凝土障碍物对废墟下的幸存者进行探测 对于废墟下的幸存者,只要还有呼吸、心跳等能够代表生命信息的生理特征,就可以被探测器探测到,无论幸存者是处于运动状态还是静止状态。但是,外界环境和操作者操作仪器时所带来的背景噪声对检测效果具有一定的影响。/ppstrong3.红外生命探测器/strongbr/  任何物体温度在绝对零度以上时都会产生辐射,人也不例外。经研究表明: 正常情况下( 人体体温在37℃时) ,人体红外辐射能量较集中的中心波长为9.4μm 人体皮肤的红外辐射范围为3~50 μm,其中,8~14 μm 占全部人体辐射能量的46%,这个波段是设计人体红外探测仪的一个重要技术参数。红外生命探测仪探器探测人的基本原理就是通过探测人体发出的热辐射,并将探测到的热辐射信息以图像的形式显示在屏幕上,为工作者提供被埋在废墟下的幸存者的信息。通过使用这种仪器,使救援人员对被困生命体的精确位置和周围情况一目了然,可在地震发生后的黑暗环境中探测被埋在废墟中的生命,但同时在应用这种仪器探测生命信息时容易受到周围温度的影响。br/  红外生命探测技术的研究比较早。美国德克萨兰仪器公司在第二次世界大战过后,经过近一年的探索,首次研发出了应用于军事领域的红外成像装置—红外寻视系统( FLIR) 。20 世纪60 年代早期,瑞典AGA 公司研制成功第二代红外成像装置,该装置在红外寻视系统的基础上增加了测温的功能,称之为红外热像仪 几经改进, 1988 年推出的全功能热像仪,将温度的测量、修改、分析、图像采集、存储合于一体,仪器的功能、精度和可靠性都得到了显著的提高 2004 年,俄罗斯莫斯科同立大学研究成功了一种亚毫米波热成像仪。目前应用较多的红外生命探测仪是美国名为M271328 的红外生命探测仪,这种红外生命探测器方便轻巧实用。红外生命探测器不仅可以用来探测震后废墟下幸存者的状况,还可以应用在煤矿的开采方面。在煤矿开采方面可以进行温度的测量煤层在不同温度下的分布情况。br/  红外生命探测器的主要特点是能够在黑暗的环境中对废墟下的幸存者进行生命探测,而且由于红外生命探测器探测生命采用的是红外成像的方式,能够将被困者的状况进行清晰地显示,这对于生命救援工作具有重大的意义。此外,红外生命探测仪探测生命信息的方式是非接触测量,探测范围最高可达几十米,价格较低,是一种较为理想的地震救援设备。/ppstrong4.气体生命探测器/strongbr/  气体生命探测器是将气体探测技术应用在生命探测方面。地震灾害发生后,被掩埋在废墟下的幸存者所处的空间非常狭小,而且与外界空气之间的流动交换比较慢,造成在该空间内人体新陈代谢释放出来的气体不易散发出去,造成气体在空间内的富集,影响空间内气体浓度的比例。空间内气体浓度的变化与人体的新陈代谢密切相关,因而,通过探测该空间内气体的浓度信息就可以从中推断出在该空间内幸存者的信息。这种生命探测器探测生命信息时是探测气体的浓度信息,并对探测到的信息进行分析判断,就可以得出废墟下幸存者的状况。br/  气体生命探测器集合了气体传感技术和光纤传感技术,是光纤技术在气体探测方面的重要应用。这种生命探测器测量灵敏度高、气体鉴别能力强、响应快,而且对温度、湿度等环境干扰的抵抗能力强。这种生命探测器曾经在汶川地震中的日本救援队中出现过一次,还未广泛应用于震后现场救援工作中。/pp  随着科学技术的发展,每种生命探测器都有了一定的进展,现在生命探测器的发展方向主要体现在探测精度和探测速度的提高以及探测设备的可操作性和便携性这几方面,而对于不同种类的生命探测器也是各不相同的。/pp  到目前为止,声波振动生命探测器和雷达生命探测器以及红外生命探测器的发展已经比较成熟,而且已经广泛应用在灾后现场的救援之中。声波振动生命探测器缺点主要体现在信号经由废墟传播到地面上的时候会有很大的衰减,严重影响探测的灵敏度,而且救援现场中大量噪声信号的干扰也会对探测的准确性造成很大的影响。因此,声波振动生命探测器的发展方向主要体现在不断提高探测的灵敏性和准确性这两方面。/pp  雷达生命探测器的发展方向也是体现在两方面: 一方面在硬件方面,即要不断缩小探测仪器的体积以提高设备的便携性 另一方面,要对探测方法不断进行改进,从而能够对幸存者进行更准确的定位并识别出在废墟下幸存者的具体人数,为救援工作提供帮助。红外生命探测器的技术比较成熟,其缺点主要体现在应用设备进行探测时需要探测人员佩戴笨重的探测设备,身上负重大,不利于行动,因此,研发一种适用于红外生命探测器的机器人对于红外生命探测器的发展具有很大的帮助。/pp  气体生命探测器可以说是一种新型的生命探测器,到目前为止气体生命探测器的成品还不是很多。虽然这种生命探测器发展的比较缓慢,但是,这种生命探测器具有很好的发展前景。气体生命探测器的发展主要依赖于气体探测技术的发展,但是,它的发展又比气体探测的发展更广阔。气体探测器的探测精度与光源的选取密切相关,除了探测仪器的可靠性、实用性和便携性以外,光源是气体生命探测器发展突破的重要因素。br/  随着科学研究水平的不断提高,将会有更先进的生命探测技术问世,现有的生命探测技术也将日臻完善,在更多的领域得到应用和发展。/p
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 国内首个室温太赫兹自混频探测器问世
    记者日前从中科院苏州纳米所获悉,该所成功研制出在室温下工作的太赫兹自混频探测器,从而填补了该类探测器的国内空白。  据了解,作为人类尚未大规模使用的一段电磁频谱资源,太赫兹波有着极为丰富的电磁波与物质间的相互作用效应,不仅在基础研究领域,而且在安检成像、雷达、通信、天文、大气观测和生物医学等众多技术领域有着广阔的应用前景。目前,室温微型的固态太赫兹光源和检测器技术尚未成熟,众多太赫兹发射&mdash 探测应用还处于原理演示和研究阶段。室温、高速、高灵敏度的固态太赫兹探测器技术是太赫兹核心器件研究的重要方向之一。  自2009年起,苏州纳米所秦华、张宝顺、吴东岷课题组就致力于太赫兹波&mdash 低维等离子体波相互作用及其调控研究。该团队在2009年年底取得突破性进展,在GaN/AlGaN高电子迁移率晶体管的基础上研制成室温工作的高灵敏度高速太赫兹探测器,首次实现了对1000GHz的太赫兹波的灵敏检测。  经过3年多的技术攻关,研究团队进一步突破了太赫兹天线、场效应混频和器件模型等关键技术,掌握了完整的场效应自混频太赫兹探测器技术。  目前,苏州纳米所研制的太赫兹探测器探测频率达到800~1100GHz,电流响应度大于70mA/W,电压响应度大于3.6kV/W,等效噪声功率小于40pW/Hz0.5,综合指标达到国际上商业化的肖特基二极管检测器指标,并成功演示了太赫兹扫描透视成像和对快速调制太赫兹波的检测。  据介绍,该项技术可进一步发展成大规模的太赫兹焦平面成像阵列和超高灵敏度的外差式太赫兹接收机技术,为发展我国的太赫兹成像、通信等应用技术提供核心器件与部件。
  • 深圳先进院葛永帅团队提出新型探测器数据采集方法助力高时空分辨锥束CT成像
    锥束CT因其独特的成像优势和开放的系统结构设计,可以在血管介入治疗、牙科检查、骨科手术、乳腺癌筛查等众多临床诊疗场景中为医生提供实时的三维诊断信息,近年来受到越来越多的关注。然而,传统平板探测器受数据采集方式的制约,导致锥束CT成像系统存在空间分辨与时间分辨无法兼得的内在矛盾(图1)。换句话说,为了追求更高的成像空间分辨率,需要大幅降低锥束CT的成像速度;反之,如果追求更快的成像时间分辨率,则需要损失锥束CT的空间分辨率。长期以来,这一突出矛盾导致锥束CT无法满足临床诊断的发展需求,亟需变革。 图1 基于平板探测器的锥束CT系统空间分辨率与时间分辨率之间存在竞争关系针对上述锥束CT成像面临的共性关键挑战,中国科学院深圳先进技术研究院医工所CT成像物理与系统实验室的葛永帅研究员及其团队提出了一种基于双层平板探测器亚像素位移的新型锥束能谱CT成像方案(图2)。该方案通过上层和下层探测器像素单元错位读出的方式将空间信息采样率提升一倍,有效克服了探测器像素合并(快速扫描)引起的空间分辨率降低问题。物理实验结果证明(图3),该新型锥束能谱CT成像方案可以在相同成像速率下,将锥束CT图像的空间分辨率提升至少30%。该研究成果为加快推动高时空分辨锥束能谱CT成像技术与系统变革提供了崭新的解决方案。相信在不久的将来,这一技术将为血管介入治疗、牙科检查、乳腺癌筛查等众多临床场景提供全新的高时空分辨锥束CT成像解决方案,大幅改善锥束CT图像质量。 图2 基于亚像素位移的双层探测器锥束能谱CT数据采集方案示意图相比常规对齐式数据采样方案,新发展的亚像素位移型数据采集方案利用上层和下层探测器单元错位提高成像的空间采样率,实现高时空分辨锥束能谱CT成像。图3 (a)-(d)为猪腿实验数据成像结果;(e)-(h)为Catphan CT体模实验数据成像结果 (i)-(j)为测量的CT图像的MTF曲线。可以看出,本工作提出的suRi方法在1x2像素合并下的成像性能与1x1像素合并的成像性能相当。 相关研究成果以Super resolution dual-energy cone-beam CT imaging with dual-layer flat-panel detector为题发表在医学成像领域顶刊IEEE Transactions on Medical Imaging(IF=10.6)上。中国科学院深圳先进技术研究院医工所医学人工智能研究中心苏婷助理研究员为文章的第一作者,南方医科大学马建华教授、中国科学院深圳先进技术研究院医工所梁栋研究员、葛永帅研究员为本文的共同通讯作者。该研究获得了国家自然科学基金委员会、广东省科技厅、深圳市科创委等单位的资助。
  • Timepix3 |易于集成的多功能直接探测电子探测器
    混合像素探测器技术最初是为了满足欧洲核子中心-CERN大型强子对撞机LHC的粒子跟踪需求而开发的。来自欧洲核子中心-CERN 和一些外部合作小组的研究人员看到了将混合像素探测器技术转移到高能物理领域以外的应用的机会。于是Medipix1 Collaboration 诞生了。Medipix系列是由Medipix Collaborations 开发的一系列用于粒子成像和检测的像素探测器读出芯片。Timepix系列是从 Medipix系列开发演变而来的。其中Timepix芯片更针对于单个粒子的探测以获得时间、轨迹、能量等信息。 目前基于Timepix和Timepix3的探测器,由于其单电子灵敏、高动态范围及独特的事件驱动模式被广泛地应用于电子背散射(EBSD),4维电子显微(4D SEM)等领域。捷克Advacam公司是一家涵盖传感器制造、微电子封装、混合像素探测器(Timepix,Medipix)及解决方案的全产业链公司,致力于为工业和学术需求开发成像解决方案。ADVAPIX TPX3F与 MINIPIX TPX3F系列是基于Timepix3芯片的多功能探测器,其探测器与读出采用软排线连接,整个设计非常小巧,性价比高,非常适用于电子显微镜厂家将其二次开发并集成到现有系统中,以提升系统性能。▲ MINIPIX TPX3F探测器实物展示▲ ADVAPIX TPX3F探测器实物展示▲ 使用MINIPIX TPX3F探测器鉴别电子、质子,Alpha粒子及μ介子ADVAPIX TPX3F与MINIPIX TPX3F主要规格参数MINIPIX TPX3FADVAPIX TPX3F芯片类型Timepix3像素尺寸55 x 55 μm分辨率256 x 256 pixels传感器100µm,300µm,500µm硅,1mm CdTe 暗噪声无暗噪声接口高速USB 2.0超高速USB 3.0事件驱动模式最大读出速度*2.35 x 10^6 hits/s40 x 10^6 hits / s帧模式速率16fps30fps事件时间分辨能力1.6ns1.6ns*受限于Flex软排线实际长度测量模式类型模式范围描述帧读出模式(曝光后读出所有像素信息)Event+iToT10 bit + 14 bit每次曝光输出两帧数据:1. Events:每个像素中的事件数量2. iToT:每个像素中所有事件的过阈总时间iToT14 bit输出一帧:每个像素中所有事件的过阈总时间ToA18 bit输出一帧:ToA+FToA3 =第一个到达像素事件的到达时间像素/事件驱动模式(在曝光过程中,连续读出被击中像素信息)ToT+ToA10 bit + 18 bit每个像素的每个事件可同时获得: Position, ToT, ToA and FToAToA18 bit每个像素的每个事件可同时获得: Position, ToA and FToA.Only ToT10 bit每个像素的每个事件可同时获得: Position and ToTADVAPIX TPX3F与MINIPIX TPX3F像素/事件驱动模式最大读出速率测试:主要特点单电子灵敏零噪声耐辐射高动态范围无读出死时间主要应用(4D)STEM in SEM/TEMµED(microelectron diffraction)EBSDEELSPtychography应用案例ThermoScientific' s™ Helios™ 5 UX DualBeam采用了Advacam的探测技术新一代 Thermo Scientific Helios 5 DualBeam 具有 Helios DualBeam 产品系列领先业界的高性能成像和分析性能。经过精心设计,它可满足材料科学研究人员和工程师对各种聚焦离子束扫描电子显微镜 (FIB-SEM) 的需求—即使是最具挑战性的样品。 Helios 5 DualBeam 重新定义了高分辨率成像的标准:高材料对比度、快速、简单和精确的高质量样品制备(用于 S/TEM 成像和原子探针断层扫描 (APT))以及高质量的亚表面和3D 表征。新一代 Helios 5 DualBeam 在 Helios DualBeam 系列成熟功能的基础上改进优化,旨在确保系统于手动或自动工作流程下的最佳运行状态。参考发表文章Jannis, Daen, et al. "Event driven 4D STEM acquisition with a Timepix3 detector: microsecond dwell time and faster scans for high precision and low dose applications." Ultramicroscopy 233 (2022): 113423.Foden, Alex, Alessandro Previero, and Thomas Benjamin Britton. "Advances in electron backscatter diffraction." arXiv preprint arXiv:1908.04860 (2019).Gohl, S., and F. Němec. "A New Method for Separation of Electrons and Protons in a Space Radiation Field Developed for a Timepix3 Based Radiation Monitor."Mingard, K. P., et al. "Practical application of direct electron detectors to EBSD mapping in 2D and 3D." Ultramicroscopy 184 (2018): 242-251.ADVACAMAdvacam S.R.O.源自捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。同时我们也在国内有数台Minipix样机,Widepix 1*5 CdTe的样机可免费借用,我们也非常期待对我们探测器感兴趣或基于探测器应用有新的idea的老师联系我们,我们可以一起尝试做更多的事情。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制