织物观察镜

仪器信息网织物观察镜专题为您提供2024年最新织物观察镜价格报价、厂家品牌的相关信息, 包括织物观察镜参数、型号等,不管是国产,还是进口品牌的织物观察镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合织物观察镜相关的耗材配件、试剂标物,还有织物观察镜相关的最新资讯、资料,以及织物观察镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

织物观察镜相关的厂商

  • 上海隽撷科学仪器有限公司,坐落于人工智能创新示范区的上海市闵行区马桥镇,毗邻上海交通大学、华东师范大学和中国航天科技集团公司第八研究院,专业从事激光与光电子产品的代理和销售。团队成员具有十余年丰富从业经验,秉承专业、专心、专注理念,致力于为光电行业提供先进的仪器和设备。主要产品:Excelitas(原AXSUN)高速扫频激光器,AlazarTech高速数据采集卡,SLD/SLED宽带光源、半导体激光器、固体激光器、光纤激光器、光纤放大器、空间光调制器、波前传感器、激光功率/能量计、光电探测器、激光观察镜、光学斩波器、光无源器件等等。
    留言咨询
  • 公司成立于2010年01月,地处经济发达的沿海城市广州,是一家专门从事特种玻璃的研发、生产、加工,销售为一体的企业。公司拥有国际标准现代化的设备及生产厂房,优秀的专业型管理人才,技术人才。 公司所生产的产品品质优良可靠、品种齐全,其中有单向玻璃、防红线玻璃、防紫外玻璃、防爆玻璃、锅炉玻璃、壁炉玻璃、透紫外玻璃、管道玻璃、仪表玻璃、耐高温玻璃、耐高压玻璃、耐酸碱玻璃、耐热玻璃、UV玻璃、波峰焊玻璃、灯具玻璃、钴兰玻璃、液位计玻璃、光学玻璃、火焰观察镜玻璃、石英玻璃、硼硅玻璃、强化玻璃、陶瓷玻璃、微晶玻璃、夹丝防暴玻璃、高纯度耐高温玻璃(最大耐热1700℃)、耐高温密封胶(可从350℃-1280℃)等。 公司产品所涉及领域广泛,主要有国内外大型PTA工厂、石化、化工、造纸、电力电站、冶金钢铁、壁炉钣金铸造厂、波峰焊回流焊、灯具灯饰、管道附件制造厂、印染整设备制造、军工设备制造等领域。优质的产品和良好的服务赢得了客户的高度赞扬和信赖。目前,我们合作的客户有深圳市富士康科技有限公司,大连大化石油化工有限公司,莱芜钢铁集团机械制造有限公司,龙工(福建)铸造有限公司等等… 本着“一流企业、一流服务、一流产品”的宗旨,诚信、共赢的理念,我们诚挚期盼与各界朋友合作,赢得共同更大的发展空间!销售经理:李华13512798082 QQ:1308454232电话:020-37246610 传真:020-37246612 E-mail:baixiboli @163.com 网址:http://www.baixiboli.com
    留言咨询
  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询

织物观察镜相关的仪器

  • 红外观察镜 400-860-5168转1545
    红 外 观 察 镜Abris-M 系列 1 引言Abris-M 系列红外观察镜是高性能的图像转换观察镜,它可以用于观察、记录以及将观测图像进行数字化。主要用于观察辐射波长在270~2000 nm的红外或紫外波段的光源。Abris-M 系列红外观察镜在激光准直、激光观测、光纤准直、光纤通讯、光学加工;植物学、生物物理学、医学、法医学;艺术品复原、文献检查、记录、雕刻、绘画;红外显微镜、由紫外激励的红外发光、荧光等领域都有广泛的应用。 2 工作原理红外观察镜是通过将被观察物体所反射或发射的光聚焦到摄像管里而进行观察物体的。根据入射光谱强度和光电阴极材料的S-1光谱灵敏性会产生相应的电子图像。该仪器通过持续按住其上的按钮来提供所需电源。一旦加上电源,内置的3 V电池将产生16-18 KV的高压,足以加速电子图像到输出屏处。输出的绿色的荧光(波长550 nm)可以通过调整目镜看到。ABRIS-M 2000 典型光谱灵敏度在1米内的红外激光光束能被观测到所需要的功率密度最小近似值: 功率密度(最小值)波长20μW/cm21.06 μm500 μW/ cm21.3 μm3 mW/cm21.5 μm50 mW/cm1.7 μm180mW/cm21.8 μm2W/cm22.0 μm紫外/红外ABRIS-M典型光谱灵敏度 在1米内的红外激光光束能被观测到所需要的功率密度最小近似值: 功率密度(最小值)波长300 mW/cm20.27 μm20 μW/cm21.0 μm500 μW/cm21.3 μm10 mW/cm21.5 μm100mW/cm21.7 μm3 技术指标型号Abris-M version 1Abris-M version 2 UV/IR Abris-M光谱特性Abris-M 1300 350-1300 nm Abris-M 1700 350-1700 nmAbris-M 2000 350-2000 nm270…1700 nm分辨率(中心波长)60 Lp/mm60 Lp/mm30 Lp/mm观察范围40 degrees18 degrees20 degrees放大倍数1X2X1X物镜F1.4/26 mm无可变光阑F2/50 mm含可变光阑F1.6/26 mm石英无可变光阑聚焦距离0.15-无穷0.25-无穷0.15-无穷透镜工作距离12.5 (+/-0.2) mm电池1.5V “AAA” size屏幕不均匀性20%响应不均匀性15%图像失真度18%电池使用寿命35 hours重量0.38kg0.55kg0.38kg体积140x78x52 mm205x78x52 mm140x78x52 mm使用温度范围-10oC-40oС三角架或手柄连接器R1/4"标准工具箱包括:红外观察镜、红外滤波片、手柄、电池和工具箱。对于Abris-M.系列,1X (F1.4/26mm) 和2.0X (F2/58mm) 的镜头可以互换使用。该类观察镜加上相机适配器可方便与CCD/CMOS相机配合使用,1X镜头加上显微镜适配器可方便与显微镜配合使用。 根据要求可提供的配件: 1.面罩(可戴在头上,无需手柄) 2.红外照明光源(波长800nm、900nm) 3.中性滤光片(透过率:2-5%,波长:1064nm) 4.CCD相机适配器 5.显微镜适配器 6.1X镜头可变光阑 7.视频适配器 VA-1 4 操作说明在使用中千万不要将光束直接照射到镜器中进行观察。如果入射到物镜上光的强度超过10mW/cm2时,会损伤其中高灵敏的光阴极材料。将观察镜长时间用于超过域值的高强度光下,会使屏幕饱和,以致降低观察镜的分辨率、光电阴极响应度下降且不可恢复。1.旋松装电池盒的外壳(1),装一节3V电池。安装时注意正负极。如果要长时间使用可以用AC/DC 110-220V/3V变压器和一个插座(2)直接供电。2.将手柄(7)用螺丝刀旋入三角架螺纹中? inches(8)。3.旋松盖(9),把观察镜接上电源,按住按钮(3)。注意:关掉电源后,观察镜由于存有剩余能量还会继续工作几分钟。4.通过依次调焦接物镜(4)和目镜(5),得到物体的更清晰图像。Abris-M红外观察镜不仅可以用于观察连续激光,也可以用于观察皮秒或微秒量级的脉冲激光,但不能同步观察。5.当在近红外波段观察时,用分离点滤光片(6),它可以透过从700nm到更长波段的光波。当从他处观察反射的辐射光,可用一个金属板反射,此时不能用白纸板反射,因为它对光的吸收很强。6.你也可以将红外观察镜固定在“燕尾”式面罩上,这样可以方便您的操作。5 维护与保养1.使用红外观察镜时不会有触电危险。2.当把红外观察镜从一个比较冷的环境拿到比较暖的环境,其中的光学元件上也许会有水雾。3.谨防观察镜受到机械损伤或将其放置在潮湿的环境中。4.谨防观察镜上有污垢。如需要,用软布擦拭镜头;也可以棉絮蘸少量酒精或丙酮去除油污。 5.如需要,拧开镜头,清洁光电阴极板。因为其上的灰尘可以透过镜头盖上的小孔看到。屏幕上的黑点屏幕上的黑点是图像转换器上的污点,它不会影响红外观察镜的性能。一些大小不同的点甚至是在生产它时就会有的。感光灵敏度红外观察镜可以观察到的最弱信号取决于: 功率密度; 入射辐射波长(nm); 物镜的有效孔径; 观察点和观察镜之间的距离; 信号的持续时间(脉冲或连续); 漫反射表面的反射率; 人眼的灵敏度或用于观察红外观察镜输出信号镜器的灵敏度。在1米内的红外激光光束能被观测到所需要的功率密度最小近似值: 20 μW/cm2 波长: 1.06 μm 500 μW/cm2 波长: 1.3 μm红外观察镜的响应范围在350-2000 nm。其中的S-1型光电阴极材料含氧的浓度较高,这增加了材料的灵敏度。在最小功率密度为2 W/cm2的条件下,它可以用来观察波长在2.0 μm的激光束。当在1500-2000 nm 波段使用时,红外观察镜光谱响应灵敏度比较低,所以只有在以下条件满足的情况下才能使用: 1. 在较暗的使用环境中用一个分离点滤光片或相干滤光片来消除外界背景光。2. 用金属表面反射所需要观察的光,因为白纸片对光的吸收率太高,不适和这种情况下使用。红外观察镜与CCD某些型号的CCD可以用来观察近红外辐射,波长大约能达到1.1 um。但是这些CCD照相机只是在可见波段才具有最佳性能,所以在近红外波段的性能非常一般。它们往往成像不清晰、响应度不高且对比度差。 半空中的红外激光清晰可见如果说红外观察镜可以用来观察半空中的红外激光,这是一种错误的说法。但是,就像是手电筒发出的光,如果此时在光路中有灰尘粒子,则这束光将清晰可见。一般来讲,红外观察镜可以用来观察由白纸板或金属表面慢反射的红外激光。 6 维修服务如果您购买的产品有材料或工艺上的缺陷,我们承诺在购买一年内我们将负责保修。任何返回保修的物品必须是由于正常损坏所引起的。因为误操作、或故意损坏的产品将不在保修范围之内。 如果您的产品符合保修条件,并且具有合法的购买凭证,厂方将无条件为您维修或更换其中元件。如果其中的元件或产品本身被更换、组装、误操作、损坏或未经允许擅自维修,那么该维修凭证将无效。ABRIS-M 系列产品自购买之日起保修时间为一年。
    留言咨询
  • Abris-M系列红外观察镜是高性能的图像转换观察镜,它可以用于观察、记录以及将观测图像进行数字化。主要用于观察辐射波长在270~2000nm的红外或紫外波段的光源。Abris-M系列红外观察镜在激光准直、激光观测、光纤准直、光纤通讯、光学加工;植物学、生物物理学、医学、法医学;艺术品复原、文献检查、记录、雕刻、绘画;红外显微镜、由紫外激励的红外发光、荧光等领域都有广泛的应用。工作原理:红外观察镜是通过将被观察物体所反射或发射的光聚焦到摄像管里而进行观察物体的。根据入射光谱强度和光电阴极材料的S-1光谱灵敏性会产生相应的电子图像。该仪器通过持续按住其上的按钮来提供所需电源。一旦加上电源,内置的3V电池将产生16-18KV的高压,足以加速电子图像到输出屏处。输出的绿色的荧光(波长550nm)可以通过调整目镜看到。技术指标:型号Abris-Mversion1Abris-Mversion2UV/IRAbris-M光谱特性Abris-M1300350-1300nmAbris-M1700350-1700nmAbris-M2000350-2000nm270… 1700nm分辨率60Lp/mm60Lp/mm30Lp/mm观察40degrees18degrees20degrees放大倍数1X
    留言咨询
  • 红外激光观察镜RSRIS-M 400-860-5168转4585
    RSRIS-M 系列是高性能的红外观察镜,光谱响应范围为270nm-2000nm。它重量轻、体积小、结构紧凑,手持式方便自由操作,顶端内螺纹规格为1/4-20。内置一节1.5V的“AAA”型号电池,也可外接3V的电源技术参数技术参数型号1型号2光谱灵敏度RSRIS-M1300350-1300nmRSRIS-M1300350-1300nmRSRIS-M1700350-1700nmRSRIS-M1700350-1700nmRSRIS-M2000350-2000nmRSRIS-M2000350-2000nm分辨率(中心)60lp/mm60lp/mm视场角40degrees18degrees放大倍率1X2.5X物镜F1.4/26mmF2/58nmWithoutirisWithiris焦距0.15mtoinf0.25toinf电池1.5V“AAA”type1.5V“AAA”type电池使用寿命35 hours35 hours外接电源输入电压DC 3V,20 mA maxDC 3V,20 mA max重量0.38kg0.58kg尺寸155 *78 * 55 mm220 * 78 * 55 mm工作温度范围-10°C ~ +40“°C-10°C ~ +40“°C紫色-紫外/红外激光观察镜 RSris-M 红色-红外激光观察 RSris-M 2000 绿色-红外激光观察 SM-3R 2000 黄色-红外激光观察 RSris-M 1700,hybird-intensified camera CONTOUR 黑色-红外激光观察 SM-3R 1700 蓝色-红外激光观察 RSris-M 1300激光观察镜的主要应用 红外观察镜是将观测物体所反射或发射的光聚焦到摄像管里而进行观测的。电子摄像管是根据光谱发射强度和阴极材料的S-I 光谱灵敏性而选制的。它通过持续按住仪器上的按钮来提供所需电源。一旦加上电压,内置的3V电池产生16-18kv的高压,足以加速电子摄像管中的电子至观测屏。输出的绿色的荧光(波长550nm)可以通过调整目镜看到。用途:激光准直和激光实验 红外观察镜是用于准直红外激光输出光束和调整光学元件的理想工具。法医鉴定和艺术品复原 与可见光相比,当在近红外光照射下观测物体时,会发现物体有不同的透过率和反射率。所以这些近红外观察镜可以用来鉴定文件,历史档案,雕刻品,油画等,看到肉眼看不到的特点。(但这时必须要用红外光源和红外滤光片)紫外应用 准分子激光/紫外激光器方面的应用;紫外光谱方面的应用;紫外平板印刷纹路的检测和分析;液晶显示器。 什么是紫外辐射?当电磁辐射的波段在10到400nm的范围时我们称之为紫外辐射。辐射波长小于180nm的波段成为真空紫外。而在180nm到400nm之间的区域可以再细分。光生物学家所用的UV -C是对于波长在290nm,UV-B是对于波长在290-320nm,UV-A是对于波长在320-400nm范围内。在半导体影音石板技术中辐射波长低于320nm的又成为《深紫外》。半导体检测 当和显微镜配套使时,红外观察可以用来观测的硅和砷化镓晶片的表面。 光学处理 红外观察镜是摄影术中检测和加工感光材料的必不可少的工具。热成像 红外观察镜可以用于辐射温度高于600°C的物体(例如:烧砖的窑,熔炉,焊接罐等)成像。在这个温度范围内(或高于这个温度)的物体发射的波长都在0.8-1.7um范围内,这可以用红外观察镜探测到。其他用途 与红外滤光片和红外光源一起使用时,红外观察镜可以用于在植物学,生物物理学,医学等方面的观测和研究。 红外显微镜 红外发光(由紫外光激励的)荧光 光纤通讯能够进行光束剖面红外转换
    留言咨询

织物观察镜相关的资讯

  • 光学显微镜的主要观察方法之荧光观察
    应用专家 易海英 荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性精准测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比激发光波长更长。这是由于荧光物质被激发之后、释放光子之前,电子经过弛豫过程会损耗一部分能量。具有较大Stokes位移的荧光物质更易于在荧光显微镜下进行观察。图2:Stokes位移荧光显微镜及荧光滤块荧光显微镜是利用荧光特性进行观察、成像的光学显微镜,广泛应用于细胞生物学、神经生物学、植物学、微生物学、病理学、遗传学等各领域。荧光成像具有高灵敏度和高特异性的优点,非常适合进行特定蛋白、细胞器等在组织及细胞中的分布的观察,共定位和相互作用的研究,离子浓度变化等生命动态过程的追踪等等。细胞中大部分分子不发荧光,想要观察它们,必须进行荧光标记。荧光标记的方法非常多,可以直接标记(比如使用DAPI标记DNA),或利用抗体抗原结合特性进行免疫染色,也可以用荧光蛋白(如GFP,绿色荧光蛋白)标记目标蛋白,还可以用可逆结合的合成染料(如Fura-2)等。图3:Leica DMi8倒置荧光显微镜及滤片转轮目前荧光显微镜已成为各个实验室及成像平台的标配成像设备,是我们日常实验的好帮手。荧光显微镜主要分为三大类:正置荧光显微镜(适合切片)、倒置荧光显微镜(适合活细胞,兼顾切片)、荧光体视镜(适合较大标本,如植物、斑马鱼(成体/胚胎)、青鳉、小鼠/大鼠器官等)。荧光滤块是显微镜荧光成像的核心部件,由激发滤片、发射滤片和二向分光镜三部分组成,安装在滤片转轮里,如Leica DMi8配有6位滤片转轮(图3)。不同的显微镜转轮位数会有区别,也有些显微镜使用滤块滑板。滤块在荧光成像中起着重要作用:激发滤片选择激发光来激发样品,阻挡其他波长的光;通过激发滤片的光经过二向分光镜(其作用是反射激发光和透射荧光),反射后通过物镜聚焦,照射到样品,激发出对应的荧光即发射光,发射光被物镜收集,透过二向分光镜,到达发射滤片。如图4中:激发波长为450-490nm,二向分光镜反射短于510nm的光、透过长于510nm的光,发射光接收范围为520-560nm。图4:荧光显微镜光路图荧光显微镜常用荧光滤块可分为长通(long pass,简称LP)和带通(band pass,简称BP)两种类型。带通通常由中心波长和区间宽度确定,如480/40表示可通过460-500nm的光。长通滤色片如515 LP,表示可以通过波长长于515nm的光(图5)。图5:FITC光谱曲线及滤片荧光物质具有其特征性激发(吸收)曲线和发射曲线,激发峰为最佳激发波长(激发效率最高,从而可以降低激发光能量,保护细胞和染料),发射曲线为发射荧光波长范围。因此,在实验中,我们会尽可能选择与激发峰最接近的波长进行激发,而接收范围需包括发射峰。如Alexa Fluor 488的激发峰为500nm,在荧光显微镜中可以选择480/40的激发滤片。图6:Alexa Fluor 488光谱曲线滤块的详细信息可以在显微镜成像软件里看到。了解染料并找到最匹配样品的滤块对于荧光成像有着至关重要的作用。荧光染料和荧光蛋白的光谱信息一般在说明书中会注明,也可在网上查阅(如https://www.leica-microsystems.com/science-lab/fluorescent-dyes/、https://www.leica-microsystems.com/science-lab/fluorescent-proteins-introduction-and-photo-spectral-characteristics/)。滤块的选择除考虑荧光探针的激发、发射波长,对于多色标记样品还需考虑是否有非特异激发、是否串色。此外还需考虑所使用的荧光光源,目前常用的荧光光源有汞灯、金属卤素灯,以及近年来飞速发展的LED光源。荧光光源的光谱有连续的和非连续的,在不同波段能量也会不同。LED光源因为其相对较窄的光谱带、更稳定的能量输出、超长的寿命、更安全环保等诸多优点,正逐步成为荧光显微镜的主要光源。除了显微镜内置的滤块,还有外置快速转轮(图7),徕卡的外置快速转轮相邻位置滤片转换速度为27ms,可实现高速多色实验,如FRET及Fura2比例钙成像(图8)等。图7:徕卡外置快速转轮EFW图8:钙成像,Fura2, Cultured hippocampal astrocytes from 18-day-old embryos of Sprague-Dawley rats. Courtesy of: Drs. Kazunori Kanemaru and Masamitsu Iino, Department of Pharmacology, Graduate School of Medicine, The University of Tokyo 丰富多样的荧光显微成像技术为了满足不同的荧光成像需求,除荧光显微镜外,还发展出了各种荧光显微成像解决方案:? 宽场高清成像系统,如Leica THUNDER Imager,采用Leica创新的Clearing专利技术,在成像时高效去除非焦平面干扰信号,呈现清晰图像,同时兼有高速成像的优点;? 共聚焦激光扫描显微镜,利用针孔排除非焦平面干扰,实现光学切片,得到高清图像及三维立体图像;? 突破衍射极限的超高分辨率显微镜及纳米显微镜,可对小于200nm的精细结构进行观察;? 利用多光子激发原理进行厚组织及活体深层成像的多光子成像系统;? 具有高时空分辨率的光片成像技术,成像速度快、分辨率高、光毒性低,特别适合进行发育、活体动态观察等研究;? 荧光寿命成像(FLIM),不受荧光物质浓度、光漂白、激发光强度等因素的影响,能更加深入地进行功能性精准测量;? 荧光相关光谱(FCS)及荧光互相关光谱(FCCS),测量荧光分子的分子数、扩散系数,从而分析分子浓度、分子大小、粘性、分子运动、分子结合/解离、分子的光学特性等;? 全内反射荧光显微镜(TIRF),极高的z轴分辨率,非常适合细胞膜表面的分子结构和动力学研究。 荧光显微成像技术应用广泛,种类丰富,而且新技术还在不断涌现,大家可以选择最适合的技术去完成自己的研究。
  • 最新技术!5分钟处理直接对生物材料进行电镜观察
    p  电镜,是进行材料表征时用到一种重要工具,帮助观察材料的微观形貌。然而,在观察软/湿生物材料时(离体组织,带细胞材料等),涉及到观察样品的固定、脱水、干燥、金属溅射等步骤,处理复杂,耗时较长。/pp  韩国科学技术院的Seonki Hong教授研究团队提出了一种生物湿/软样品制备方法,用于SEM形貌分析,并在《Materials Horizons》上发表题为“A nature-inspired protective coating on soft/wet biomaterials for SEM by aerobic oxidation of polyphenols”的论文。/pp  该方法是直接用连苯三酚(pyrogallol,PG)/聚乙烯亚胺[poly(ethylenimine),PEI]对生物样品进行表面处理,涂覆后发生氧化交联反应,在样品表面形成一层酚-醌/胺膜,锁住内部水分,以防止成像过程中,样品在高真空条件下脱水导致结构坍塌和变形。以下为基于此种方法的一系列生物材料的SEM图像,包括植物叶片、猪脂肪、猪肾和猪肝等。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 590px " src="https://img1.17img.cn/17img/images/202002/uepic/25c4a75b-7dfa-4df0-9ea0-ab958e57b675.jpg" title="生物材料的SEM图像.jpg" alt="生物材料的SEM图像.jpg" width="500" height="590" border="0" vspace="0"//pp  整个处理过程耗时约在5分钟以内,样品可直接进行电子显微镜拍照,大大缩短实验时间。与此同时,涂覆的保护膜还具有保温,提供力学支撑的能力。/ppbr//p
  • 日立应用|燃料电池的电镜观察
    燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。燃料电池的能量利用效率高,环境污染小,是最有发展前途的发电技术之一。燃料电池按照电解质的种类不同,可分为碱性燃料电池(AFC),磷酸燃料电池(PAFC),熔融碳酸盐燃料电池(MCFC),质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。按照燃料的类型可分为氢燃料电池,甲烷燃料电池,甲醇燃料电池,乙醇燃料电池。目前各类燃料电池电动车主要使用的是质子交换膜燃料电池(PEMFC)。质子交换膜燃料电池的结构和化学反应上图是PEMFC的结构和化学反应。PEMFC由膜电极(membrane-electrode assembly,MEA)和带气体流动通道的双极板组成。其核心部件膜电极是采用一片聚合物电解质膜和位于其两侧的两片电极热压而成,中间的固体电解质膜起到了离子传递和分割燃料和氧化剂的双重作用,而两侧的电极是燃料和氧化剂进行电化学反应的场所。PEMFC通常以全氟磺酸型质子交换膜为电解质,Pt/C或PtRu/C为电催化剂,氢或净化重整气为燃料,空气和纯氧为氧化剂,带有气体流动通道的石墨或表面改性金属板为双极板。膜电极(MEA)的截面SEM图片Sample: Courtesy of Prof. Takeo Yamaguchi, Tokyo Institute of Technology膜电极(Membrane Electrode Assembly ,MEA)是燃料电池的主要部分,它每层的结合情况以及颗粒的聚集状态会影响发电性能。MEA截面的结构观测非常重要。上图显示了一个聚合物膜样品在冷却时的横截面离子研磨后的结果,为减少离子束的热损伤使用了-100 ℃的条件进行加工。MEA横截面的整个图像显示各层接触时没有分层。在高倍放大时的阳极图像可以观察到纳米尺寸的铂粒子,碳粒子和其中的空隙。阴极层是纳米胶囊催化剂与铂铁纳米颗粒结合,从它的横截面可以看到,催化剂胶囊被紧密地包装在中空空间中。因此,离子研磨法可以在没有应力的情况下进行加工,能够通过冷却功能加工截面样品来减少热损伤,产生具有减少热损伤的横截面样品,进而可以有效的理解MEA的整体结构和分析催化剂颗粒的纳米结构。燃料电池催化电极材料高倍图像和三维重构结构from Prof. Chihiro Kaito, Ritsumeikan University上图左图是使用日立HT7830得到的燃料电池催化电极材料高倍图像,加速电压使用120kV,高分辨模式(HR mode),放大倍数为×50,000。C基底上的Pt颗粒的分散状态可以很清晰的看到。上图右图是同样的样品从+60°~-60°每2°拍照一次得到一系列图片后做三维重构后的结果,可以清楚的看到三维结构的Pt颗粒的分散情况。CNT和PTFE复合膜的SEM图像Sample:courtesy of Prof. Yoshinori SHOW Department of Electrical and Electronic Engineering,School of Engineering, Tokai University由于导电性和耐腐蚀性好,碳纳米管(CNT)和聚四氟乙烯(PTFE)复合膜有时会作为 MEA 的保护膜使用。CNT 在PTFE 中分散的均匀性非常重要,因为膜的导电性会受此影响。上图中,左图为0.2eV时观察CNT和PTFE的表面形貌,由于电压非常低,所以样品没有被电子束损伤。 右图为0.2eV时观察CNT和PTFE的电位衬度,CNT的亮度比PTFE明显要高,这是因为CNT的导电性更好。利用电位衬度就可以非常清晰的区分成分衬度相差不大的CNT和PTFE。燃料电池气体扩散层的电镜观察气体扩散层(Gas diffusion Layer,GDL)作为连接催化层和流动区域的桥梁,一般具有多孔性,导电性,疏水性,化学稳定性和可靠性。常用的支撑材料有碳纤维和聚四氟乙烯/碳膜组成的微孔层(MPL),目前碳纤维布附着MPL可以达到气体扩散层的要求。上图就是碳纤维布及附着MPL的SEM图片,可以观察到二者之间的紧密接触,各自空隙及厚度。高分辨观察自组装Fe3O4纳米颗粒Sample:courtesy of Electrical Computer Engineering department, National University of Singapore过渡金属基材料比如自组装Fe3O4纳米颗粒现在被作为储氢材料,这对氢能的利用来说是非常关键的。上图是高分辨观察自组装Fe3O4纳米颗粒,所用的着陆电压为1.5 kV,使用了电子束减速功能。纳米颗粒非常有规则的组装在一起,每个颗粒的直径约为12nm。利用电镜观察燃料电池各部分的形貌和结构,有助于高性能燃料电池的研发。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。

织物观察镜相关的方案

  • 硅藻化石内部结构电镜观察
    本文介绍了对单细胞植物硅藻的内部结构进行电镜观察和元素分析的方法。硅藻是一类具有色素体的单细胞植物,常由几个或很多单细胞组成各种各样的形态...
  • TESCAN扫描电镜应用之孢子观察
    使用扫描电子显微镜,可观察不同植物孢子的表面结构特征。而使用高亮度肖特基晶体为电子源的场发射扫描电子显微镜,在高分辨率和低图像噪声方面的突出特点使之特别适合应用于植物孢子的细节观察与研究。本文中,采用TESCAN公司高分辨肖特基灯丝的MIRA3型场发射扫描电子显微镜(FE-SEM)对四种金鱼藻的孢子形貌进行了观察表征。
  • 生物样品下的飞纳电镜直接观察技术
    众所周知,一般生物样品的表面,含水份较多,样品容易变形。扫描电子显微镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。扫描电镜观察前,须对样品进行一系列标本处理和表面喷镀金、铂、碳等。传统的扫描电镜都是高真空的系统,利用扫描电镜采集的植物的花、叶、茎、花粉粒等干湿状样品进行了观察,植物组织含水份比较多,在干燥过程中由于表面张力的作用其表面微细结构很容易发生歪曲变形,因此经过固定、脱水、干燥及喷镀以后,往往会使样品受到不同程度的损伤和变形,从而产生电镜图象的假象,造成分析研究的困难。

织物观察镜相关的资料

织物观察镜相关的论坛

  • 平移式双目、三目观察镜筒的调节

    瞳距调节:通过显微镜目镜观察时,双手左右拉动双目镜筒座的移动板,直到左右视场完全吻合。此时中间的刻度指示表示您眼睛的瞳间距。(记下您的瞳距以便再用) 屈光度调节:把左右两目镜管的调节环对到与上操作的瞳距刻值相一致;以右目镜为基准,观察并旋转粗/微调焦钮,对样品标本调焦,获得清晰的图像;稍旋转左目镜管调节环,使左目镜视场中图像同样清晰一致。 三目镜筒的垂直镜筒像面调节:上述双目观察镜筒调整好后,把右目镜拔出,插入到垂直镜筒中; 松开直筒上的锁紧环,旋转直筒镜管,使目镜中观察到清晰的图像,然后旋紧锁紧环。此时双目观察的成像面和直筒镜管中的成像面一致,同步清晰。(垂直镜筒便于以后选择配置外接摄影仪、视频适配镜装置等记录)

  • 【求助】扫描电镜观察植物叶片的断面,应当怎么操作?

    扫描电镜能否观察植物细胞器尊敬的老师们,大家好!我做了植物叶片的断面,看了其中的细胞器,发现细胞里面全都是大小不一得圆颗粒,但是分不清是什么细胞器,请问扫描电镜能否观察细胞器,由于细胞经过干燥处理后,里面的细胞器自然就分散开来,细胞仪破碎后,细胞器全部掉出,请问大家有没有什么好办法可以看见细胞里面的细胞器呢?补充一下:如果想用扫描电镜观察植物叶片的断面,应当怎么操作?在固定之前就用刀切断,还是干燥完了之后切呢?我在干燥之后掰断的叶片,发现细胞都是破的,而且很不整齐。

织物观察镜相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制