当前位置: 仪器信息网 > 行业主题 > >

快速蛋白法

仪器信息网快速蛋白法专题为您提供2024年最新快速蛋白法价格报价、厂家品牌的相关信息, 包括快速蛋白法参数、型号等,不管是国产,还是进口品牌的快速蛋白法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速蛋白法相关的耗材配件、试剂标物,还有快速蛋白法相关的最新资讯、资料,以及快速蛋白法相关的解决方案。

快速蛋白法相关的资讯

  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 于爱民:快速筛查和检测非蛋白氮/水解蛋白及地沟油技术、难点和展望(高德江博士代)
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告。  如下为吉林大学化学院于爱民教授报告(高德江博士代)的精彩内容:吉林大学化学院高德江博士报告题目:快速筛查和检测非蛋白氮/水解蛋白及地沟油技术、难点和展望  在报告中,高德江博士从乳制品质量安全标准讲起,介绍了蛋白质的一系列检测方法及其特点。国家标准的方法主要有凯氏定氮法、分光光度法、燃烧法等。此外还有行业标准及ISO标准、AOAO标准等。基于上述方法标准,各仪器厂商都相继开展了一系列仪器的研发:凯氏定氮仪、多功能近红外分析仪、全自动杜马斯燃烧法定氮仪、真蛋白质快速检测仪等。并介绍了蛋白质快速检测仪的应用和影响因素。  随后,高德江博士重点介绍了地沟油的相关检测手段和方法。高德江博士介绍到,地沟油可以分为狭义地沟油、新型地沟油和煎炸地沟油,暂无确切的定义,也就无相应的特性指标,更无准确的检测方法,最多也只是筛查方法。地沟油的相关筛查指标主要有酸价、电导率、胆固醇、多环芳烃、特定基因组成、脂肪酸分布、表面活性剂、挥发性成分、生物胺等,另外还有纳米增强拉曼光谱法、微量元素分析法、时域太赫兹波谱技术、核磁技术等检测方法。  相对而言,仪器法比快速法的识别率高,但是,快速法具有现场快速识别的优势,二者可以互为补充。不过,地沟油成分复杂、差异性大、给检测带来很大的不确定性。因此,这些检测方法还需要进一步验证和完善。  最后,高德江博士还介绍了国外对“地沟油”的处理方法,其中,日本要求餐饮行业的废弃食用油必须全部回收,并以较高价格卖给日本政府,而日本政府则将这些地沟油提炼后用作垃圾车的燃料。加拿大也通过成熟产业链让地沟油变废为宝。希望这些国家对于地沟油的举措能给我国以借鉴。
  • “夜光”蛋白能快速分析检测病毒
    尽管针对病毒感染的高度敏感诊断测试取得了很大进展,但其仍需要复杂的技术来准备样本或解释结果,这使得它们在医疗资源稀缺地区的推广变得不切实际。发表在15日《ACS中心科学》杂志上的一种灵敏的方法,可在短短20分钟内分析病毒核酸,且可使用“夜光”蛋白质一步完成。萤火虫的闪光,琵琶鱼发光的“诱饵”,浮游植物覆盖的海滩出现幽灵般的蓝色,都是由同一种被称为生物发光的科学现象驱动的。涉及萤光素酶蛋白的化学反应会产生发光的效果。这种萤光素酶蛋白已被整合到传感器中,当它们找到目标时,这些传感器会发出易于观察的光。这种简便操作性使这些类型的传感器成为现场即时诊断测试的理想选择,但到目前为止,它们还缺乏高灵敏度,而CRISPR基因编辑技术需要许多步骤和额外的专门设备来检测复杂、噪音样本中的低信号。荷兰埃因霍温理工大学研究小组使用CRISPR系统相关的蛋白质,将它们与一种生物发光技术结合起来,这种技术的信号只需一台数码相机就能检测到。为了确保有足够的RNA或DNA样本进行分析,研究人员进行了重组酶聚合酶扩增(RPA),这是一种在大约38℃的恒温下工作的简单方法。使用发光核酸传感器(LUNAS)的新技术,两个CRISPR/Cas9 蛋白对病毒基因组的不同相邻部分具有特异性,每个蛋白都有一个独特的萤光素酶片段附着在它们上面。如果研究人员正在测试的特定病毒基因组,这两个CRISPR/Cas9蛋白将与目标核酸序列结合并相互靠近,从而使完整的萤光素酶蛋白在化学底物存在的情况下形成并发出蓝光。当对从鼻拭子收集的临床样本进行测试时,RPA-LUNAS在20分钟内成功检测到新冠病毒RNA,即使在每微升200份拷贝的浓度下也是如此。
  • 上海市食品学会批准发布《蛋白肽粉类产品品质的多级红外光谱快速评价方法》团体标准
    各会员单位、有关单位:根据《上海市食品学会团体标准工作管理办法》相关规定,现批准发布《蛋白肽粉类产品品质的多级红外光谱快速评价方法》团体标准(T/SSFS0006-2023),2023年7月3日发布,2023年8月1日实施,现予公告,详见附件。附件一:关于批准发布《蛋白肽粉类产品品质的多级红外光谱快速评价方法》团体标准的公告 上海市食品学会2023年7月25日上海市食品学会关于批准发布《蛋白肽粉类产品品质的多级红外光谱快速评价方法》团体标准的公告.pdf
  • 赛默飞与西湖欧米携手推进临床蛋白组学快速发展
    近日,赛默飞与西湖欧米(杭州)生物科技有限公司(以下简称:西湖欧米)深化合作签约仪式在赛默飞客户体验中心举办。西湖欧米(杭州)生物科技有限公司于2020年7月创立,是一家专注于 AI 赋能的微观世界数据公司。西湖欧米致力于将蛋白质组大数据与人工智能相结合,基于生物质谱数字化技术,开发其他组学和蛋白质组学辅助临床诊断的新方法,助力精准医学和药物研发。 近年,随着蛋白组学的研究不断深入,越来越多的潜力标志物被不断发现,但是将潜在的标志物向临床转化时会碰到各种问题,比如稳定性,敏感度、特异性等,还需要通过大量的临床验证,建立合适的模型,临床案例积累,临床教育等工作,并且需要在严格的医学检测体系管理下的临床检测实验室进行高通量可靠的分析,从而真正给临床提供价值。此次合作,基于2021年西湖欧米和赛默飞“临床蛋白质组在转化医学中的应用领域”设立联合实验室并开展系列合作后,获得了一系列进展。此次合作将着重于合作转化,共同将临床真正受益的方案和产品推广到常规医学检测和治疗中。郭天南西湖欧米创始人“AI赋能的蛋白质组学可助力精准医学,为生命健康带来新的曙光。“工欲善其事,必先利其器”,在临床蛋白组学的发展道路上,精密的仪器设备、优秀的合作伙伴,以及创新、科学的思想,都是至关重要的。欧米和赛默飞的深入合作是强强联手,未来可期。”沈 严赛默飞色谱和质谱业务中国区商务副总裁“很高兴能和西湖欧米进一步深入合作,基于之前非常振奋人心的合作成果,此次合作将着眼于将成果进行转化,将科研,AI大数据与临床衔接,希望通过双方多个维度的合作能真正推出符合市场符合临床的产品,并给当代医疗提供实际的助力。”赛默飞代表在现场还表示,在国际上,我们已经看到不少研究机构和企业在临床蛋白组学转化的路上做出了一些创新和成绩,因此非常高兴能和国内的行业领导者西湖欧米进行深入合作,相信在不久的将来,通过合作能看到更多的蛋白组学应用于临床的成功案例,这将开启临床蛋白组学的一个新的篇章。 深化合作签约仪式后,双方进行了深度的讨论和交流。
  • “真蛋白快速检测仪”项目喜获2013年度国家重点新产品立项计划
    近日,国家科技部公布了&ldquo 科技部关于下达2013年度有关国家科技计划项目的通知&rdquo ,我公司申报的&ldquo 真蛋白快速检测仪&rdquo 项目喜获&ldquo 2013年度国家重点新产品计划立项项目&rdquo (项目编号:2013GRB10002),该项目是国家科技部2013年度国家星火计划、火炬计划、重点新产品计划和软科学研究计划立项计划之一,旨在加快科技成果转化应用,引导和支持企业研发新产品,强化企业技术创新能力,推动企业成为技术创新的主体。 未来,公司将继续努力,加大新品研发力度,研发出更多更好的产品推向市场,服务社会。
  • 权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制
    前 言*图片来源于湖北药检所官网人纤维蛋白原(human fibrinogen, Fg)是一种由肝脏合成的球蛋白,发挥止血和凝血功能。Fg可用于治疗先天性和获得性Fg缺乏症患者的凝血功能障碍。目前Fg制剂是由健康人血浆经分离、提纯并经病毒去除和灭活处理、冻干制成。Fg这类蛋白质药物具有大分子、多电荷、结构复杂等特点,其稳定性往往较差。而稳定性是保证药物发挥其作用的基础。2023年3月,湖北省药品监督检验研究院王文晞博士近期发表“多功能蛋白质稳定性分析仪在人纤维蛋白原制品质量控制中的应用”,借助NanoTemper公司的PR Panta对不同企业生产的Fg产品的质量进行快速分析质控。/ 实验步骤/NanoTemper多功能蛋白质稳定性分析仪PR Panta可用于快速测定蛋白质的热稳定性,通过热变性、粒径分布聚集倾向和粒径大小等参数对产品进行评估。使用毛细管吸取10uL 20mg/ml样品置于PR Panta上,首先在DLS模块上检测Fg的水力学半径(Rh),然后进行1℃/min的升温(25℃-95 ℃)。使用1份样品,同时且实时的检测获得Fg的样品热变性中点温度(Tm)、蛋白质初始去折叠温度(Tonset)、粒径开始变化温度(Tsize)和流体力学半径(Rh)等多种参数。/ 研究结果/nanoDSF检测模块结果显示21批次样品Tm 值为51.20~53.31 ℃(表1)。不同企业产品Tm值存在一定差异,最高相差 2.1 ℃, 表明各企业间产品稳定性存在较大差异。其中企业F产品Tm值最高(53.28℃),企业A产品Tm值最低(51.22℃),差别2.06℃。表1 不同企业Fg蛋白热变性中点温度Tm值测定结果21批次样品的Tonset值为47.29~49.32 ℃(表2),不同企业产品Tonset值存在一定差异。其中企业F的产品Tonset值最高,企业A Tonset值最低,总体与Tm值趋势一致。表2 不同企业Fg蛋白质初始去折叠温度Tonset值测定结果21批次样品Tsize值45.36~46.99 ℃,不同企业产品Tsize值差异较小。表3 不同企业Fg蛋白粒径开始变化温度Tsize值结果 21批次样品Rh值 19.03~30.75 nm,不同企业产品Rh值存在一定差异。表4 不同企业Fg蛋白流体力学半径 Rh 值结果综上可知企业F产品热稳定性最好,企业A产品热稳定最差。除稳定性外,纯度是反映Fg产品中可凝固蛋白与总蛋白的比值是产品有效性的重要指标。作者通过凯氏定氮仪进行样品检测后并依据下方公式计算纯度。结果显示21批次样品纯度80.3%~95.9%(表5),其中企业F产品纯度最高,平均94.6%。企业A产品纯度最低平均83.2%。表5 Fg纯度测定结果作者将纯度与在PR Panta检测得到的Tm值进行相关性分析,结果显示相关系数为0.729,P<0.05 。即产品纯度与Tm值呈显著相关, 热稳定性高的产品纯度较高。为了明确Fg的组分分布,作者采用HPSEC-MALLS测定纯度最高与最低产品的组分分布。企业F产品(稳定性&纯度最佳)由Fg单体和多聚物2个组分组成,企业A产品(稳定性&纯度最佳最差)由 Fg单体、多聚物和蛋白质降解产物3个组分组成。结合以上部分稳定性与纯度呈相关性的结果可以进一步分析得出,Fg热稳定性较差,在生产、存放、复溶后放置的过程中会形成可溶性寡聚体,导致产品纯度降低。因此可根据产品热稳定性测定结果初步分析不同企业产品纯度高低,进而能简单、快速 地对不同企业间产品质量进行初步评估,为企业工艺优化和制剂筛选提供更加快速、准确的依据。多功能蛋白质稳定性分析仪可以测定产品纯度与稳定性,为人纤维蛋白原产品保护剂的筛选和生产工艺优化提供相应数据参考,且能对不同企业产品的质量进行初步分析,仪器操作简便、检测时间短、检测效率高。——摘自本文文献对PR Panta的评价
  • 表面分子印迹聚合物电位型传感器构建成功 实现蛋白分子快速高灵敏电化学检测
    p  发展适合于现场快速检测海洋生物大分子及海洋细菌的生物传感器技术,对于及时快速地开展海洋环境监测和评价具有重要意义。目前,对生物大分子的检测,一般采用酶联免疫法、生物化学测试法、聚合酶链式反应法等技术 对全细胞的检测,则通常需要通过细胞培养实验来完成。然而,上述方法存在仪器复杂、设备昂贵、检测耗时长等缺点,仅适用于实验室分析。/pp  在海洋环境中,贻贝可通过其足丝分泌贻贝粘蛋白,该蛋白具有优越的粘滞性和良好的生物相容性。近期,中国科学院烟台海岸带研究所研究员秦伟课题组利用聚多巴胺类仿贻贝粘蛋白材料,成功构建了表面分子印迹聚合物电位型传感器,实现了对蛋白质分子及细胞体的高灵敏、高选择、快速电化学检测。他们采用基于仿贻贝粘蛋白的表面分子印迹技术,在电位型传感器表面原位构建了生物分子选择性识别印迹层 利用表面分子印迹层与待测生物分子之间的高选择性识别作用,实现了样品中生物分子在传感器表面的高选择性分离与富集 利用聚离子作为指示离子,指示富集前后传感器膜界面的电位变化,从而实现了对蛋白质分子及细胞体的免标记电化学检测(如下图)。该方法有效解决了电化学生物传感器难以实现免标记分析的难题,有望应用于海洋病毒及海洋致病菌的现场快速检测中。/pp  相关研究成果已于近日发表在化学期刊《德国应用化学》(Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin*. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. Angew. Chem. Int. Ed., 2017, 56, doi: 10.1002/anie.201701892)。此外,秦伟课题组也于近期在该期刊发表了关于电化学生物传感研究的其它成果(Angew. Chem. Int. Ed., 2016, 55, 13033–13037)。/pp style="text-align: center "img width="600" height="495" title="W020170526571669789953.jpg" style="width: 600px height: 495px " src="http://img1.17img.cn/17img/images/201705/insimg/dfa6e65f-ceeb-4ed3-8f15-be9f33a61853.jpg" border="0" vspace="0" hspace="0"/ p/pp 基于海洋贻贝粘蛋白的仿生电化学生物传感器检测原理/pp/pp/p/p
  • 沃特世发布糖蛋白表征分析新技术
    沃特世将通过新型UPLC和UPLC-MS分析工作流程为蛋白糖基分析带来革命性转变 新型RapiFluor-MS标记试剂和样品制备方案将极大提升对蛋白N-糖进行分析和表征的速度、灵敏度以及简便性 华盛顿特区,2015年1月27日 – 沃特世(Waters?)公司(纽约证券交易所代码:WAT)今日隆重发布用于糖蛋白表征分析的开创性新技术。此技术将在WCBP 2015大会上介绍给公众,其内容包括新型GlycoWorks?RapiFluor-MS N-糖分析试剂盒、Waters?ACQUITY UPLC?、ACQUITY? UPLC FLR检测器和ACQUITY QDa?检测器,它们将帮助科学家们准确分析游离N-糖,使分析速度、灵敏度和简便性提升到更高水平,为科学家们提供前所未有的详细结构信息。 此项新型技术系列能够实现快速糖基释放和标记,可将工作流程中的样品制备时间从一天缩短至一小时以内;使表征和研发分析中的质谱检测灵敏度提升至当前方法的100至1000倍;还可为常规实验室提供简便可靠的方案支持,即使没有MS专家,也能顺利完成分析。“我们今天推出的新型技术为蛋白糖基分析带来了开创性的分析方法,它的出现意味着科学家们将能够对游离N-糖进行前所未有的监测和表征分析,”沃特世消耗品业务部门副总裁Mike Yelle说道,“这些全新的工作流程承担了过去专业且复杂的操作,实现了流程一体化,使科学家们和实验室在成功的道路上更近一步。” 大部分的生物治疗性蛋白质都是糖蛋白,且这些蛋白质上的特异性多聚糖群体是关键的品质属性,可对其功能、稳定性和治疗安全性概况产生影响。提交至监管机构的新药申报材料中必须包含其所含糖基侧链的详细结构信息,以及能够证明这些糖蛋白能够在生产过程中保持糖型谱图一致的信息。 支持糖蛋白工艺开发、监测和批量放行 对于从事生物治疗药物工艺开发、监测或批量放行研究的科学家们而言,全新的RapiFluor-MS标记技术与沃特世ACQUITY UPLC H-Class系统和QDa检测器的完美结合将开创游离N-糖谱图监测的新时代。沃特世所提供的试剂和方案在速度和灵敏度方面都具有非常突出的优势,将为用户带来更加简便的常规MS分析,ACQUITY QDa检测器可生成前所未有的详细信息,分析人员通过这些质量数数据即可轻松确认糖型。科学家们无需再依靠质谱专家和高分辨率的LC-MS仪器,即可对糖型分析进行方法开发、转换和执行过程中频频出现的问题作出确切的解答。此套工作流程可帮助生物制药组织更轻松地诊断问题、加快决策制定,更快速地将实验室中的分子变成药物推向临床领域。 对使用荧光检测技术的分析人员而言,将此款新型试剂盒与ACQUITY UPLC和ACQUITY UPLC FLR检测器联用时,样品制备时间可从一天缩短至一小时以内,同时荧光灵敏度也将得到有效提高。 支持蛋白糖基表征分析 蛋白糖基表征包括对连接到糖蛋白的所有多聚糖(无论其浓度有多低)进行鉴别,以及对这些多聚糖的分子结构进行确证。要高效地完成这项工作,需要UPLC-MS-MS仪器能够应对分析中的各项难题。 沃特世UNIFI?蛋白糖基分析应用解决方案于2013年推出,是更广泛的沃特世UNIFI生物制药平台解决方案的一部分,它配有高分辨率的UPLC/QTof-MS系统,可对生物制药研发实验室中以及受高度监管的后期开发和QC组织中的蛋白糖基侧链进行定性和监测。 现在,凭借RapiFluor-MS标记提供的高灵敏度,研究人员将获得更大的光谱和质谱响应值,这将有力促进低含量峰的准确质量数确认,提高MS/MS多聚糖碎裂性能,实现确定性更高的糖型指认。 此外,我们还推出了RapiFluor-MS葡聚糖校准曲线标准品和多聚糖性能测试标准品(基于混合IgG),用以支持系统性能的基准测试和执行基于葡聚糖单元数(GU)的蛋白游离糖基分析研究。沃特世公司率先将基于GU的葡聚糖校准曲线标准品保留时间归一化方法实现了商业化,此方法最初由来自爱尔兰国家生物工艺研究培训所(NIBRT)的Pauline Rudd教授提出。这种基于GU的方法使多聚糖的分析更加稳定,可以更轻松地在仪器之间和实验室之间实现UPLC-MS检测分析的转换。沃特世正在与Rudd教授及其在NIBRT的团队合作,开发全新的GU数据库,期望能够促进GU和GU+准确质量数多聚糖分配,这项工作将作为联合海报的主题于本年度的WCBP会议上展示。 更多信息: 有关GlycoWorksRapiFluor-MS N-多聚糖试剂盒的更多信息,请访问www.waters.com/glycans。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、RapiFluor-MS、ACQUITY、ACQUITY UPLC、UNIFI、QDa和UPLC是沃特世公司的商标。
  • Life Tech 蛋白荧光融解曲线法
    一小时内筛选384种结晶缓冲液Protein Thermal Shift&trade 解决方案 利用384孔模块分析蛋白的热稳定性,只需30分钟可有效降低筛选最佳蛋白质缓冲液条件的成本利用功能强大、容易使用的分析软件可快速获得结果无需预先掌握有关结构方面的知识&mdash &mdash 只需将蛋白与染料混合,然后运行Protein Thermal Shift&trade 解决方案包括Protein Thermal Shift&trade 试剂和软件,为实时定量PCR系统带来了一项新应用:蛋白熔解图及热稳定性的分析。过去,通常需要几周才能筛选出能提高稳定性的条件,以改善蛋白的纯化或结晶。如今,您可在数分钟内完成。如欲了解更多,请访问www.appliedbiosystems.com/proteinmelt。如需更多信息,请联系:Life Technologies 销售代表 Life Technologies 中国区办事处销售服务信箱:sales-cn@lifetech.com技术服务信箱:cntechsupport@lifetech.com客户服务热线:800-820-8982400-820-8982www.lifetechnologies.com FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE.© 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes.View the Life Technologies privacy policy.Follow Life Technologies
  • 新型生物传感器可快速检测新冠病毒蛋白和抗体
    目前,大多数医学实验室主要仰仗逆转录PCR(RT-PCR)技术来诊断新冠病毒感染。PCR技术可以放大病毒的遗传物质,使其可被检测出来。但这项技术需要专门的人员和设备,供应链短缺导致很多国家和地区的检测能力严重不足。为了在不需要基因扩增的情况下直接检测出患者样本内的新冠病毒,华盛顿大学医学院蛋白质设计研究所所长大卫贝克教授领导的研究小组利用计算机,设计出了一款生物传感器,可识别病毒表面的特定分子并与之结合,然后通过生化反应发光。抗体测试可以揭示某人此前是否感染过新冠病毒,科学家们用此来追踪新冠肺炎的传播情况,但这种测试也需要复杂的实验室设备。鉴于此,该研究团队还发明了另一款生物传感器,当与新冠病毒抗体混合时,这款传感器也会发光。而且,这款传感器不会对血液中的其他抗体——包括针对其他病毒的抗体产生反应,这对于避免假阳性非常重要。贝克说:“我们已经在实验室证明,这些新传感器可以轻而易举地检测到模拟鼻腔液或血清样本中的病毒蛋白或抗体,接下来,我们将证明它们是否能可靠地用于诊断环境。”研究小组还表示,除用于检测新冠病毒外,这些生物传感器还可用于检测其他人类蛋白,如Her2(某些乳腺癌的生物标志物和治疗靶点)和Bcl-2(在淋巴瘤和其他一些癌症中具有临床意义),以及针对乙肝的细菌毒素和抗体病毒等。
  • 请查收!您的全自动高通量蛋白纯化方案已发布!
    在绿色生物制造和合成生物学等研究领域中,高质量的蛋白分离和纯化是研究目的蛋白结构和功能的重要步骤。传统的分离纯化方法通量低、耗时长、均一性差,全自动高通量蛋白纯化系统在生命科学研究和生物制药领域已开始广泛运用,从样本前处理工序,到不同类型的蛋白纯化流程,可实现多管线自动化平行实验,具有稳定的工艺流程,可极大提高实验效率,节约时间和人力成本;同时还可以进行数据交互,实现样本溯源和实验数据管理。今天小贝给大家整理了几种常见好用的蛋白纯化方案助力您的科学研究。磁珠捕获特异性标签蛋白,因其纯化步骤精简成熟被广泛应用,图1是磁珠纯化流程示意图。小贝为您量身定制蛋白纯化全流程自动化方案:使用Biomek i系列液体工作站,整合核酸/蛋白提取仪,实现高效高通量自动化蛋白纯化,极大节省实验时间和科研精力。图1 磁珠纯化流程图2 Biomek i系列液体处理工作站展示图Biomek i系列液体工作站配置96通道和灵活8通道加样器,适配各种商品化试剂盒和用户自配试剂,轻松实现试剂分装和高通量样本纯化。同时工作站支持多设备整合,可进行后期无限升级,添加离心机、酶标仪等设备助力全流程自动化实验。图3 磁珠纯化方法截图及纯化结果高通量磁珠法蛋白纯化模块可以通过结合核酸/蛋白提取仪实现极简快速蛋白纯化,也可以通过自动化液体工作站结合磁力架完成。使用该功能时仅需要通过软件的简易命令行即可完成,如图3所示,工作站机械抓手会根据纯化流程将Binding Buffer、Beads、Washing Buffer等试剂自动搬运到指定位置,使用磁套进行磁珠转运,单次可以完成96个样本纯化,浓度稳定在0.5-0.8mg/ml,96孔板纯化时间约60min,节省枪头成本,省时省力。图4 亲和层析柱蛋白纯化法实验流程RoboColumn是一种小型色谱柱,用于抗体、蛋白质、多肽等的全自动平行色谱分离,其纯化流程如图4所示。高通量的RoboColumn ALP 与Biomek i系列液体工作站相结合,配置Span8固定针,可实现多通道自动化的平行层析实验流程,显著缩短工艺开发时间;同时还可以进行数据追踪,实现样本溯源,减少重复工作。图5 RoboColumn ALP模块结构及Span8固定针示意图W1:废液槽;B1:收集板载架;C1:柱载架Biomek液体工作站可以实现台面整合RoboColumn ALP模块,通过软件流程式编辑方法,控制ALP板位自动位移,实现液体收集,轻松完成蛋白纯化,图6展示了软件控制ALP板位收集液体的方法以及RoboColumn纯化结果,实验中1.56mg蛋白上样,经0.1M Gly-HCl(pH2.7)洗脱回收得到蛋白含量1.31mg,纯化得率达到84%,8通道操作时间约为80min。图6 调用RoboColumn方法界面及纯化结果展示图7 PhyTip法自动化纯化关键流程PhyTip为枪头式分散固相亲和色谱柱,采用枪头式装置,纯化树脂被填充于枪头尖端,由自动化液体处理工作站加载PhyTip,可以实现单通道到96通道灵活样品数纯化,其纯化流程如图7所示,可对微克级到毫克级的蛋白进行纯化。图8 PhyTip实物图、PhyTip纯化方法及结果展示图Biomek液体工作站与枪头式纯化色谱柱相结合,利用工作站加载PhyTip让纯化流程变得如移液流程一样简单!如图8所示,加样器加载PhyTip,分别在平衡液、蛋白样品、洗杂液和洗脱液中混匀即可完成高通量蛋白纯化,单次可处理96个样品,收集10mL菌液使用PhyTip(40uL填料),纯化后经BCA蛋白定量测定蛋白含量稳定在400ug左右,优于手工对照实验340ug的结果,96孔板操作时间约为90min。小 结
  • AOAC通过了Sprint真蛋白质快速测定仪用于肉类产品的蛋白质快速测定方法
    CEM 公司&mdash &mdash 全球领先的实验室仪器设备供应商,近日宣布AOAC(美国官方分析化学师协会)已经通过了Sprint蛋白质快速测定方法为官方正式方法2011.04,该方法依据蛋白质标签技术适用于猪肉、牛肉和家禽的原料肉和加工肉以及肉制品的蛋白质含量的快速测定。 &ldquo 我们非常高兴AOAC①国际协会能够认可并通过这些方法&rdquo ,CEM公司总裁兼CEO Michael J. Collins说,&ldquo 这确实是一项革命性的技术,非常有价值,可以广泛地应用在食品领域,但一直缺少官方认可。现在,随着这个方法的被公众的普遍接受,未来将会有更多的公司享受到Sprint带来的省时、准确、高效和绿色环保。 在该方法的批准进程中,CEM 公司的Sprint蛋白质快速测定仪被作为该方法研究的指定仪器。方法有效性和准确性的验证过程建立在蛋白质含量在9%-40%之间的牛肉、猪肉及家禽肉和肉制品等具有广泛代表性产品蛋白含量数据之上。 Sprint 采用了iTAG这种专门的、无毒的蛋白质标签溶液,该溶液可以和原料肉、加工肉中蛋白质的赖氨酸、组氨酸和精氨酸及N末端结合并自动计算出蛋白质含量。一体化、操作简便的Sprint机器可以在2分钟内快速测出多种产品的蛋白质含量。该方法比传统的凯氏定氮法更加安全,无需高温以及强腐蚀性化学试剂。2009年,Sprint蛋白质快速测定仪基于它的绿色环保的反应条件,被美国国家环保局(US EPA)授予&ldquo 总统绿色化学挑战者奖&rdquo 。 目前,Sprint 蛋白质快速测定仪广泛应用于乳品、谷物蛋白含量的检测并作为标准方法得到AOAC和AACC认可: AOAC Method 967. 12 液态奶、花色奶、调味乳饮料、咖啡伴侣、黄油等; AOAC Method 930. 33 冰激凌、速冻甜食、雪糕等; AOAC Method 930. 29 全脂奶粉、脱脂奶粉、营养强化奶粉、婴幼儿配方奶粉等; AACC② Method 46-14B 适用于谷物、宠物食品、动物饲料等。 ①AOAC------Association of Analytical Communities(美国官方分析化学师协会)的缩写.是一个拥有127年历史的非营利性科学组织,在分析结果领域赢得了世界的信任,是美国食品生产领域的权威标准机构.经AOAC批准通过的方法,对于方法结果的准确性是一种认可,对采用AOAC方法的厂家生产产品的安全性和合理性提供了一定的信任。②AACC------American Association of Cereal Chemist(美国谷物化学师协会标准是由美国谷物化学师协会)的简称,负责制订的谷物分析与测试方法标准。AACC标准自1922年问世以来,一直是谷物科技领域的重要检验依据。此外用这些方法分析的结果还常常被用作诉讼或司法的依据。 参考 http://www.cem.com/{e_BASE}page74.html更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com网站:www.pynnco.com
  • BLT小课堂|水母发光蛋白检测法在细胞钙离子含量测定中的应用
    Ca2+作为普遍的第二信使在细胞信号转导过程中起着非常重要的作用,是单个细胞生存和死亡的信号。它参与了神经传导、血液凝固、肌肉收缩、心脏收缩、大脑功能、酶功能以及内分泌腺的激素分泌等各种生理机能。而人们对Ca2+在信号转导中作用的认识,则很大程度上取决于Ca2+测定技术。目前常用的Ca2+检测方法主要有:Ca2+选择性微电极测定法、同位素示踪法、核磁共振法和水母发光蛋白检测法等。01Ca2+选择性微电极测定法:Ca2+选择性微电极一种电化学敏感器。利用内充液和组织或细胞之间产生电位差,理想情况下,该电位差是Ca2+对数的线性函数,遵循Nernst方程。优点:直接、敏感地测定组织或细胞内的Ca2+,不需使用指示剂,不影响结合钙和游离钙的平衡。缺点:反应速度慢而无法测定Ca2+的快速变化,而且穿刺损伤细胞可引起渗漏,且不适用于太小的细胞。02同位素示踪法:用放射性核素45Ca2+对Ca2+进行示踪,可测量出通过细胞膜转运到细胞内Ca2+增加的速度及浓度的大小,揭示Ca2+泵的作用,目前主要用于测定跨膜Ca2+的流动。优点:测量方法简单易行,比普通化学分析法的灵敏度高。确定放射性示踪剂在组织器官内的定量分布,可以达到细胞、亚细胞乃至分子水平。缺点:静态效果差,需要特定的同位素测定仪,并且要注意示踪剂的同位素效应和放射效应问题。03核磁共振法:是一种新的、非光学技术的Ca2+检测方法。由于正常生物体内氟含量很少,为了得到足够的响应,在检测时需要使用含氟指示剂。该指示剂经过化学修饰后进入细胞,进而被水解成游离状态,然后与Ca2+结合,根据获得的波谱图计算出Ca2+的浓度。优点:具有非破坏性和无损伤性,能够在接近生物样本生理状态下连续动态地进行检测,准确反应Ca2+浓度。缺点:需要核磁共振仪,成本较高。04荧光探针法:目前常用的Ca2+荧光探针有Fluo-3、Fluo-4、Fluo-8等。这类探针本身无法进入细胞,但它的亲脂性衍生物却可以透过细胞膜进入细胞。一旦进入细胞,这类亲脂性衍生物的亲脂性封闭基团在细胞非特异性酯酶的作用下被分裂除去,在细胞内便会形成一种带负电荷的荧光染料。与胞内Ca2+结合时,其荧光强度显著增加。优点:指示剂易导入细胞,空间分辨率高,反应速度快,而且可同时检测多重离子。缺点:需要有荧光显微镜或激光共聚焦显微镜,成本较高。05水母发光蛋白检测法:最近十几年来,水母发光蛋白(Aequorin)很受人们的关注。水母发光蛋白由189个氨基酸组成,具有3个Ca2+结合的EFhand结构,所以水母发光蛋白可作为检测Ca2+的新型探针。优点:Ca2+/水母蛋白复合物能检测~0.1μm到>100μm范围内的钙离子浓度,且复合物不会从细胞内泄露出来,可检测几小时至数十天内Ca2+浓度的变化。比荧光探针法的背景低,样本本身不会发生自荧光。腔肠素的性质腔肠素(Coelenterazine)作为海洋动物体内贮存光能的分子,它广泛存在于海洋生物体内,比如海肾、海蜇、水螅等。腔肠素是天然荧光素中最普遍的,它可作为很多荧光素酶的底物。目前研究得最透彻的以腔肠素为底物的荧光素酶来源于海肾(Renilla),即海肾荧光素酶(Renilla reniformis,简称Rluc)。腔肠素的工作原理腔肠荧光素是一个分子量约400 Da 的疏水基团,它可以自由穿越细胞膜。在一个以荧光素/荧光素酶为基础的系统中,腔肠素作为以水母发光蛋白为代表的海洋发光蛋白的辅助因子,与水母发光蛋白进行稳定的结合,引起脱辅基水母发光蛋白和腔肠荧光素之间的共价键破裂,腔肠荧光素(Coelenterazine)被氧化脱羧,形成腔肠酰胺(Coelenteramide),释放出CO2,同时发出波长为469nm的蓝色生物荧光,该荧光可用博鹭腾高灵敏度管式/板式发光检测仪进行测定。图1.腔肠素/水母发光蛋白检测Ca2+机制水母发光蛋白一旦和Ca2+反应即丧失发光功能,因此当一部分水母发光蛋白与Ca2+反应时,被消耗水母发光蛋白的发光强度能反映出Ca2+浓度变化,而且被消耗的水母发光蛋白的发光强度与Ca2+浓度之间存在线形关系。如同萤火虫荧光素酶,海肾荧光素酶的活性也不需要翻译后修饰,一旦翻译完成即可行使遗传报告基因的功能。但是与萤火虫荧光素酶又有差异,即腔肠素/荧光素酶系统不需要三磷酸腺苷(ATP),因此更利于生物荧光的研究。技术小结由于Ca2+在生命活动的各种生理生化反应、疾病的发生和发展中都扮演着极其重要的角色,而游离的Ca2+浓度变化又与细胞的功能、信号转导乃至细胞的凋亡有密不可分的联系,因此,研究如何检测细胞内游离Ca2+浓度显得尤为重要。Ca2+选择性微电极测定法不需要使用指示剂,但是穿刺过程会损伤细胞,进而引起渗漏。同位素示踪法简单,但是静态效果差,还需要注意同位素效应和放射效应问题。核磁共振法和荧光探针法都需要特定的仪器,成本较高。水母发光蛋白检测法不需要激发光源,因而消除了细胞自发荧光的干扰,背景荧光远低于使用钙离子指示剂的荧光。另外腔肠素具有疏水性,易于通过细胞膜,适于全细胞的研究。 腔肠素/水母发光蛋白的生物荧光反应对Ca2+浓度的变化非常敏感,但是这种发光相对较弱,因此需要使用高灵敏度的发光检测仪进行检测。 图2.Lux-T020高灵敏度管式发光检测仪 图3.Lux-P110高灵敏度板式发光检测仪博鹭腾公司的管式/板式发光检测仪采用超高灵敏度的低噪音单光子PMT,同时通过计数电子记录和分化脉冲 的单脉冲输出的能力来定义高数量级,从而实现更宽的动力学范围。高灵敏度板式发光检测仪设计了2个独立的喷射式自动进样器,精度高于97%。两款产品都适用于以水母发光蛋白为载体的 Ca2+ 浓度测定,极其微小的浓度变化也可以轻松检测。除了检测上述Ca2+ 浓度以外,博鹭腾高灵敏度管式/板式发光检测仪还可以测定活细胞内报告基因、ATP、活性氧、半胱天冬酶等指标。
  • 靶向Aβ蛋白的近红外荧光小分子探针的发现和成像研究获进展
    阿尔兹海默病(Alzheimer’s Disease,AD)是一种严重的神经退行性疾病,其起病隐匿,病程长,病因复杂,严重影响患者的生活质量,给患者家庭和社会带来巨大的经济负担。AD的主要病理特征之一表现为患者脑部出现β-淀粉样蛋白(β-Amyloid proteins,Aβ蛋白)的沉积。开发能特异性靶向Aβ蛋白,特别是AD早期的Aβ蛋白单体和寡聚体的分子影像探针,对于AD的早发现和早治疗,以及抗AD药物治疗效果的早期评估都具有重要意义。  近日,中国科学院上海药物研究所研究员柳红课题组与南京大学化学化工学院教授叶德举课题组合作构建了靶向Aβ蛋白的近红外荧光小分子探针,并应用于转基因AD模型小鼠脑部Aβ蛋白的实时荧光成像与可视化。该成果以Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for in vivo imaging of amyloid-β species为题发表在Theranostics上。  近红外荧光成像由于具有灵敏度高、成像快捷、操作简便等优点,已被广泛应用于疾病标志物的检测中。近年来,研究人员也相继开发了Aβ蛋白响应的荧光探针用于Aβ蛋白的检测。但是,目前报道的荧光探针大多还存在荧光发射波长较短,与Aβ蛋白的结合动力学过程较慢、亲和力较低,以及仅能检测AD病程较晚期的Aβ蛋白斑块等不足。因此,发展具有近红外荧光发射波长,对Aβ蛋白单体、寡聚体和聚集体具有快速响应和高亲和力的近红外荧光探针用于活体内Aβ蛋白的高灵敏度和高特异性检测,对AD的早期诊断和疗效监测具有重要意义。  该工作基于Aβ单体、寡聚体和聚集体的蛋白结构与结合模式,通过理性设计和官能团替换,设计并合成得到9个具有Donor-Acceptor-Donor(D-A-D)结构的近红外荧光探针(1-9),可以与Aβ蛋白单体、寡聚体和聚集体高特异性结合并产生显著增强的近红外荧光信号。  该研究中发现的探针9具有较红的近红外荧光发射波长,较高的荧光量子产率,一方面可提高光对颅骨和头皮的穿透深度,从而提高探针活体上检测Aβ蛋白的灵敏度;另一方面可降低探针在活体应用时的给药剂量,从而减少了高剂量探针对神经系统的潜在毒性。此外,探针9因引入具有一定亲水性能的羟乙基官能团,改善了探针的理化性质,提高了探针的进脑量。同时,探针9表现出快速的结合动力学过程( 120 s)、较高的检测灵敏度和良好的选择性。该研究进一步利用正置荧光显微镜进行脑部微区实时动态荧光成像发现,探针9可快速穿透血脑屏障,进入脑实质,并与脑部的Aβ蛋白结合,产生“激活的”近红外荧光信号,以此有效区分转基因AD模型小鼠与对照野生型小鼠。  探针9可高灵敏度、高特异性地检测Aβ蛋白单体、寡聚体和聚集体,并在活体上有效区分6月龄的早期AD模型小鼠与对照野生型小鼠,可用于AD的精确诊断,进而对AD进行早期发现和干预治疗。探针9有望作为一种检测Aβ蛋白的有效工具,并应用于实时评估抗AD药物的治疗效果。  相关研究工作得到国家自然科学基金、江苏省自然科学基金以及南京大学优秀研究项目的资助。  论文链接探针与Aβ蛋白响应机理示意图
  • 格物致和完成近亿元A轮融资,用于蛋白组学技术平台研发
    近日,格物致和生物科技(北京)有限公司(以下简称“格物致和”)宣布完成近亿元A轮融资,由元禾原点与杏泽资本联合领投,取势资本担任独家财务顾问。本轮融资所募资金将主要用于公司在蛋白组学和空间组学方向系列自主创新技术平台的持续研发,并加速自主研发的新一代超敏单分子蛋白检测系统及相关神经退行性疾病标志物检测试剂盒的开发和注册申报。格物致和成立于2019年11月,围绕脑科学及肿瘤等领域,以科研和临床应用为导向,依托团队自主研发和资源整合的核心优势,已策略性地布局超敏蛋白检测、高通量转录组、空间蛋白组等技术平台的开发,并将围绕神经疾病的早筛早诊及伴随检测,陆续推出系列可广泛适用于临床检测的创新产品,以填补国内该领域的空白。公司聚集了一批在精准医学领域拥有丰富经验且具备全球化视野的管理和研发人才,具有强大的研发、运营和商业化落地能力。创始人许俊泉曾在博奥生物集团任职多年,历任博奥生物生命科学事业部总经理、首席运营官、首席财务官、博奥晶典首席执行官,和深圳微芯生物科技股份有限公司董事长。许俊泉拥有20余年科研和临床诊断从业经验,曾带领团队取得II、 III类IVD证书超过30项;本人荣获国内外授权专利50项(美国授权专利25项);发表高水平SCI学术论文10余篇。格物致和在研数字ELISA检测平台具有fg级别的检测灵敏度,整个平台系统包括数字ELISA微流控芯片、检测仪器和配套软件以及相关检测试剂盒。整个平台系统的研发涉及多个交叉学科,包括微流控技术、自动控制、显微成像、计算图形学、表面化学、抗体开发及蛋白标记检测等相关技术。格物致和在微流控芯片设计、加工以及检测仪器平台的开发方面具备深厚的理论知识和产业经验,核心成员曾成功研发并产业化数款微流控和微液滴芯片平台系统。格物致和进一步从清华大学授权转化了具有自主知识产权的高通量转录组检测技术,该技术是一种基于高通量测序和特征基因表达谱的全景式高通量分子功能筛选和研究方法,具有通量高、全自动操作、速度快等优点。未来格物致和将结合公司微流控设计、光学检测/系统集成、高通量转录组检测、蛋白超敏检测等全面的技术能力,推动下一代基于转录组和蛋白组检测的空间组学技术进入科研、诊断和新药研发领域,为科研及临床,尤其是神经科学领域,提供全球领先的技术和产品。对于本轮融资,格物致和创始人兼CEO许俊泉先生表示:非常荣幸能够获得本轮投资人的认可,充足的资金支持使得我们能够引进更多的人才,加大研发投入并加速产品的产业化步伐。未来20年,中国体外诊断行业将是创新驱动的市场。秉承原创驱动的核心竞争力,格物致和将持续推动完善底层技术和检测体系,加速蛋白组学和空间组学等多组学技术的研发和产业化,为脑科学研究提供更多创新性的技术和产品。元禾原点合伙人胡晓方博士表示: 生物体内,蛋白是功能的最终执行者,随着全球蛋白组学的快速发展,微量蛋白标志物的筛选工具已然成熟,我们认为超高灵敏度的蛋白检测将成为未来的重要发展方向。格物致和团队兼具海外创新技术视野和国内产业化开发落地能力,快速构建完备的超敏蛋白检测技术平台。我们期待与格物致和合作,帮助公司加速成长并将产品快速商业化。杏泽资本管理合伙人强静博士表示:杏泽资本致力于促进中国生命科学企业创新与成长,以推动社会产业进步与发展为己任,体外诊断是杏泽重点关注的技术领域,其中蛋白组学/空间组学是具有发展前景的一个方向。许俊泉先生和团队拥有极其丰富的生命科学领域专业知识背景和产业经验。我们很高兴此次能和格物致和携手合作,与元禾原点一起支持公司完成近亿元的A轮融资。杏泽资本将凭借其团队丰富的行业经验和全球资源网络,助力格物致和为人类健康带来更大价值。我们期待公司在未来将迎来更远大的发展,相信公司在创始团队的带领下,成为世界领先的蛋白组学和空间组学方向的自主创新技术平台型公司。
  • 新品首发|大豆蛋白仪自带自检测模块【恒美科技】
    大豆蛋白仪是一种用于快速测定大豆中蛋白质含量的设备,对于大豆种植、加工和饲料行业等方面具有重要意义。下面将详细介绍大豆蛋白仪检测大豆蛋白含量的作用。 一、提高生产效率 大豆蛋白仪能够快速准确地测定大豆中的蛋白质含量,避免了传统化学分析方法的繁琐操作和长时间等待结果,大大节省了生产时间。在大豆加工和饲料生产中,快速得知蛋白质含量对于生产计划的安排和工艺流程的优化具有重要作用,提高生产效率。 产品链接https://www.instrument.com.cn/netshow/SH104275/C308477.htm二、优化产品品质 大豆蛋白仪的测定结果可以为大豆种植和加工企业提供关于产品品质的重要信息。通过实时监测蛋白质含量,可以更好地控制生产过程,调整工艺参数,确保产品品质的稳定和提升。同时,对于饲料企业而言,准确的蛋白质含量数据可以帮助他们更好地配比饲料,满足不同养殖需求。 三、降低生产成本 大豆蛋白仪的使用可以减少样品运输和检测费用。传统化学分析方法需要将样品送至专业实验室进行检测,而大豆蛋白仪可以在现场进行测定,大大减少了运输成本和时间。此外,快速得到数据也可以帮助企业及时调整生产计划,减少库存积压和浪费,从而降低生产成本。 四、加强质量控制 大豆蛋白仪可以提供实时、准确的蛋白质含量数据,为大豆种植和加工企业建立完善的质量控制体系提供支持。通过定期检测和记录蛋白质含量,可以更好地追踪产品质量问题,及时采取措施予以解决,确保产品质量符合要求。 总之,大豆蛋白仪作为一种快速、准确的蛋白质含量测定设备,在提高生产效率、优化产品品质、降低生产成本、加强质量控制及保障食品安全等方面具有重要作用。
  • 靶点蛋白研发公司恺佧生物完成近2亿元B轮融资
    近日,恺佧生物完成近两亿元人民币的B轮融资交易,本轮融资由联新资本领投,临港蓝湾资本、国方资本和某著名跨国生命科学产业集团跟投。  恺佧生物科技(上海)有限公司(Kactus Biosystems)成立于2018年3月,是一家以研发为驱动的创新型靶点蛋白和GMP原料酶高科技公司,主要专注于抗体药发现和细胞基因治疗市场。恺佧生物专属的高活性蛋白酶类研发生产平台SAMS,提供基于结构设计的功能靶点蛋白和用于细胞和基因治疗以及mRNA疫苗需要的GMP蛋白酶原料。  恺佧生物创始人兼CEO王刚先生表示:“我们深感荣幸,恺佧生物能在这个行业调整期得到知名基金的参与和认可,帮助我们加速建立在全球生物药上游产业链的核心竞争力。自从2018年成立以来,恺佧生物一直致力于打造产品的差异化和核心竞争力,解决日新月异的生物药上游产业未被满足的需求。在本轮融资的资源加持下,我们将再接再励保持战略耐性,聚焦在蛋白酶赛道,在深度洞察客户需求的基础上加大研发投入和生产质量体系升级,穿越产业周期,把恺佧打造成世界级的生命科学产品品牌。”  联新资本合伙人蔡磊先生表示:作为国内重组蛋白与CGT酶的引领品牌,恺佧生物团队拥有行业内领先的研发技术实力与生产能力,充分理解行业所需,搭建了丰富的产品阵列,成立仅仅四年多来就已经在高难重组蛋白与CGT酶领域建立起卓越的口碑,积累了一大批知名的下游客户群体。我们期待恺佧生物以国内生命科学上游原料头部供应商的身份,在未来持续打造下游亟需的优质产品,突破部分上游原料领域的“卡脖子”垄断,为中国生物医药产业的蓬勃发展保驾护航。  临港蓝湾资本总经理曲霞女士表示:恺佧生物具备创新的重组蛋白酶研发能力以及快速反馈、快速迭代的客户服务能力,种类丰富的蛋白酶产品解决了生物医药产业供应链本土化的关键问题,同时恺佧生物积极拓展海外市场,打造具有国际影响力的生命科学产品品牌。恺佧生物在临港新片区生命蓝湾建立了符合GMP要求和完善的数字化质量管理生产体系。临港蓝湾资本专注于包括生物技术与制药、医疗器械、医疗服务、生物医药人工智能(AI)等细分领域,将为恺佧生物进一步提供全方位支持和服务。  国方资本管理合伙人孙忞先生表示:生物医药行业发展催动对上游蛋白原料的需求,尤其近年来随着CGT、核酸药物行业的发展,对上游蛋白原料品类、质控的要求不断增加,监管审核的门槛也在提高。技术能力扎实,能不断开发新产品、好产品的公司会脱颖而出。恺佧生物团队技术实力强,围绕创新生物科技领域进行前瞻布局,团队执行力突出。我们相信恺佧生物是一家能源源不断开发出好蛋白产品的公司,国方资本希望能陪伴企业一路成长,做大做强。  恺佧生物是一家靶点蛋白研发平台,专注于免疫治疗和诊断技术市场的蛋白工具,独有创新型功能重组蛋白和抗体研发生产平台Structure Aided design and Multiplex Screening SAMSTM,聚焦于全球创新药研发企业客户,提供基于结构设计的功能靶点蛋白特别是膜蛋白类CRO服务和目录产品。近日恺佧生物宣布完成近2亿元的B轮融资交易,本轮融资由联新资本领投,临港蓝湾资本、国方资本和某著名跨国生命科学产业集团跟投。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • BLT小课堂 | 蛋白芯片技术原理及应用
    概念蛋白质芯片技术是在DNA芯片技术基础上发展的一项蛋白质组学技术。其原理是将大量不同的蛋白质分子(如酶、抗原、抗体、受体、配体、细胞因子等)通过微阵列的形式有序排列在固相载体表面,利用蛋白质与蛋白质或者蛋白质与其他分子之间的特异性结合,获得与之特异性结合的待测蛋白(如血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等)的相关信息,便于我们分析未知蛋白的组分、序列,体内表达水平、生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等。蛋白质芯片技术的出现,为我们提供了一种比传统的凝胶电泳、Western blot和Elisa更为方便和快速研究蛋白质的方法。该方法具有高通量,微型化和快速平行分析等优点,不仅对基础分子生物学的研究产生重要影响,也在临床诊断、疗效分析、药物筛选及新药研发等领域有着广泛应用。特点①蛋白芯片具有高特异性、重复性、准确性。这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的。②蛋白芯片具有高通量和操作自动化的特点,在一次实验中可对上千种目标蛋白同时进行检测,效率极高。③可发现低丰度、小分子量蛋白质,并能测定疏水蛋白质,特别是膜蛋白质。④蛋白芯片具有高灵敏性,只需0.5-5μL样品,或2000个细胞即可检测。蛋白芯片技术在分子生物学及生物化学基础研究中的应用01 在蛋白质水平上检测基因的表达由于基因转录产物mRNA数量并不能准确反映基因的翻译产物蛋白质的质与量,因此在蛋白质水平上检测基因的表达对于了解基因的功能非常重要。蛋白质芯片技术产生前,蛋白质双向电泳技术是蛋白质组规模上进行蛋白质表达研究的唯一方法,但这种技术操作繁琐而且难以快速检测样品中成百上千种蛋白质的表达变化。蛋白质芯片的特异性、灵敏性和高通量等特点,在检测基因表达终产物蛋白质谱的构成及变化中发挥着不可替代的作用。02 高通量筛选抗原/抗体相互作用目前蛋白质芯片检测利用最广泛的生物分子相互作用是抗原抗体的特异性识别和结合,单克隆抗体是蛋白质芯片检测中使用最广泛的生物分子。运用蛋白质芯片可以研究不同抗原/抗体的特异性作用,而且对于检测样品中极微量的抗原/抗体分子作用非常有利。03 蛋白质/蛋白质相互作用分析酵母双杂交系统是近年来基因组规模上研究蛋白质相互作用的主要方法,但存在体内操作、假阳性、假阴性和外源蛋白质折叠、修饰等局限。蛋白质芯片技术不依靠任何生物有机体而在体外直接检测目标蛋白质,实验条件可随意控制,同时实验步骤自动化程度高,一次分析的蛋白质数量巨大,因而成为目前除酵母双杂交系统外进行大规模研究蛋白质相互作用的主要方法。04 酶/底物作用分析耶鲁大学的Snyder小组用蛋白芯片对酵母基因组编码的119种蛋白激酶的底物专一性进行了研究。实验中将蛋白激酶表达为谷胱甘肽转移酶(GST)融合蛋白,针对17种不同的底物,平行测定了119种GST2蛋白激酶融合蛋白的底物专一性,发现了许多新的酶活性,大量蛋白激酶可以对酪氨酸进行磷酸化,而这些激酶在催化区域附近有共同的氨基酸残基。也证明了蛋白质芯片可作为高通量筛选酶-底物作用的良好平台。蛋白芯片的检测目前蛋白芯片的检测主要有两种方式。一种是以质谱技术为基础的直接检测法,采用表面增强激光解析离子化-飞行时间质谱技术,用激光解析电离的方法将保留在芯片上的蛋白质解离出来。具体过程为:芯片经室温干燥后,加能量吸附因子如芥子酸,使其与蛋白质结合成混合晶体,以促进蛋白质在飞行时间质谱检测中的解析和离子化,利用激光脉冲辐射使芯池中的分析物解析成荷电粒子,根据不同质荷比离子在仪器场中的飞行时间长短不一,通过飞行时间质谱来精确地测定出蛋白质的质量,并由此绘制出一张质谱来,以分析蛋白质的分子量和相对含量。另一种为蛋白质标记法,样品中的蛋白质预先用荧光染料或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CCD照相技术及荧光扫描系统等对激发的荧光信号进行检测。与飞行时间质谱相比,该方法定量更加准确,操作也更加简便。与DNA芯片一样,蛋白质芯片同样蕴含着丰富的信息量,必须利用专门的计算机软件进行图像分析、结果定量和解释。其中应用最广的是荧光染料标记法,原理较为简单、使用安全、灵敏度高,且有很好的分辨率。可直接用广州博鹭腾 GelView 6000Plus进行拍摄。图1.GelView 6000Plus智能图像工作站GelView 6000Plus 配备600万像素科学级制冷CCD相机,制冷温度为环境温度下 55℃,极低的暗电流,很大程度降低背景干扰。而且独有的红外感应开关,自动控制样品台的开启与关闭,同时也减少了实验时对仪器的污染。
  • 《乳与乳制品中蛋白质的快速测定方法》进行审查
    12月17日,河北省质量技术监督局组织有关专家对衡水市承担的省地方标准《乳与乳制品中蛋白质(非氮元素)的快速测定方法》进行了审查。  与会专家对标准文本和编制说明进行了逐字逐句的审定。专家们一致认为:该标准的编写规则符合国家有关方针、政策、法律和法规,与国家有关标准协调一致;该标准创新设置了适合现场和实验室快速定量的甲醛值法和紫外分光光度法相结合测定蛋白质快速新方法,具有很高的实用性,简便、快速,在防止乳与乳制品掺假实际工作中有很大的作用。现场和实验室原料乳及液态奶(非氮元素)的快速定量,可有效防止原料乳及液态奶蛋白质掺假,对促进乳品行业健康发展具有很大的社会效益和经济效益。  同时,专家认为该标准应在适用范围上做进一步调整,建议调整为原料乳及液态奶;标准内容应增加甘氨酸、水解动植物蛋白液的掺假定性试验;提供其他实验室对检验方法的验证试验数据。
  • 赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展
    赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展赛默飞色谱与质谱中国 // 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携手中国科学院上海高等研究院国家蛋白质科学研究(上海)设施(以下简称:蛋白设施)在上海举办蛋白质动态分析联合实验室签约仪式。双方在蛋白质动态分析研究领域,及通过蛋白设施联合上海临床研究中心开展的临床应用等领域,基于良好的合作意向,同意共建实验室及建立战略合作伙伴关系,并在2024年上海市产业技术创新大会得到会议举办方及与会代表众多领导、专家和学者的见证。本次战略合作基于赛默飞全球领先的高分辨质谱、电镜等平台及蛋白组学解决方案基础上,结合了蛋白设施在蛋白组学领域领先的科研能力、研发成果和强大的技术团队。双方围绕蛋白组学解决方案合作、技术培训交流、人才培养等方面达成了共识,旨在整合双方优势资源,共同提升蛋白组学研究、临床样本队列研究和生物医药领域产业的发展,共创技术新生态,为科研的新质生产力注入活力。高分辨质谱+冷冻电镜打造蛋白质科学创新平台赛默飞高级副总裁、亚太和拉美地区总裁Mark Smedley先生,赛默飞分析仪器事业部中国区商务副总裁周晓斌先生,蛋白设施主任吴家睿教授等出席了本次签约座谈仪式。双方领导共同讨论了高分辨质谱结合冷冻电镜技术,电镜技术结合AI,以及高分辨质谱、电镜技术与Olink方案的整合在蛋白组学领域的创新应用,并探讨了未来共同建立临床质谱标准数据库的落地化方案。滑动查看更多强强携手 加深合作全面推动蛋白质科学创新发展在报告环节,吴家睿主任介绍了蛋白设施成立的背景、技术系统、平台设备、重点方向以及近年来取得的成果。赛默飞材料与分析业务生命科学市场销售发展总监陈昉和色谱与质谱业务科学研究市场高级商务总监周昕分别对之前的技术及培训合作进行了回顾,并对未来计划进行了展望。蛋白组学领域自问世以来,取得了令人瞩目的进展。基于质谱和电镜平台,已经诞生了许多重要的发现。这些发现不仅深化了我们对蛋白质结构、功能和相互作用的理解,还为疾病诊断、药物研发和个体化治疗等提供了重要的指导。 此次合作,将共同推动Orbitrap质谱技术和Cryo-EM冷冻电镜在蛋白组学领域的应用,为蛋白质科学研究和生物医药相关领域产业的发展贡献更多华丽的成果。在未来的合作中,双方将共同努力,充分发挥赛默飞的全球领先技术和蛋白设施的科研实力,为蛋白质科学的创新突破和应用推广开辟更加辉煌的前景。关于中国科学院上海高等研究院国家蛋白质科学研究(上海)设施 蛋白质设施是国家“十一五”规划建设的国家重大科技基础设施项目,是全球生命科学领域首个综合性的大科学装置。蛋白质设施主体位于上海市张江科学城,于2008年经国家发改委批复,2014年建成并开放试运行,2015年通过国家验收正式开放运行。蛋白质设施的目标是建设国际一流的蛋白质科学研究体系和成为我国蛋白质科学及技术发展的重要创新基地。主要任务包括:开展蛋白质科学相关研究;研究蛋白质的多尺度时空结构;分析蛋白质修饰和相互作用;阐释蛋白质与化学小分子之间的相互作用;研究蛋白质相关的计算生物学与系统生物学;发展蛋白质研究的新方法和新技术学;结合创新药物的发展,研究蛋白质药物靶标的功能活动的结构特征等。蛋白质设施将聚焦世界科技前沿领域,在不断创新中实现跨越和发展,充分发挥大科学设施平台效能,全面支撑我国蛋白质科学研究和生物医药相关领域产业的发展。如需合作转载本文,请文末留言。
  • 重磅!《复合蛋白饮料》行业标准发布!
    近年来我国消费者对食品安全的关注度持续提升,国务院及有关部门陆续颁布了一系列涉及食品、乳品的法律法规及标准,形成了完善的法规标准体系,对于规范蛋白饮料企业生产经营、保障产品质量安全、维护消费者利益发挥着重要作用。日前,国家工业和信息化部发布2023第38号公告,由中国饮料工业协会牵头起草的《复合蛋白饮料》(QB/T 4222-2023)行业标准获得批准,将于2024年7月1日正式实施。复合蛋白饮料是指以乳或乳制品,和不同的植物蛋白为主要原料,经加工或发酵制成的饮料。行业标准《复合蛋白饮料》(QB/T 4222-2023)由中国饮料工业协会组织国内多家复合蛋白饮料生产企业修订完成。在该标准修订过程中,进行了深入的行业调研、专家审定等相关工作。该标准规定了复合蛋白饮料的原辅料、感官、理化、食品安全等要求,描述了相应的试验方法,规定了检验规则、标签、包装、运输和贮存的内容,在修订时充分考虑了目前蛋白饮料产品在原辅料等方面的创新需求,兼顾了产品质量分级的市场需求。与2011版相比,该标准对复合蛋白饮料的定义、蛋白质贡献率进行了修改完善,提高了蛋白质含量,并且根据产品质量分级,新增了浓型复合蛋白饮料、特浓型复合蛋白饮料,为复合蛋白饮料产品质量升级奠定了基础,满足了消费者对不同蛋白质含量的消费选择。同时对复合蛋白饮料产品的标签标示进行了完善,更有利于向消费者明示产品信息。复合蛋白饮料是我国蛋白饮料的主要品类之一,近年来,随着人们健康意识的不断加强,复合蛋白饮料迎来新的发展机遇。根据行业对主要生产企业的统计,复合蛋白饮料年产量达到60万吨以上。行业标准《复合蛋白饮料》(QB/T 4222-2023)的实施将在饮料健康产品的丰富度方面起到促进作用。2021年国家“十四五”规划和2035年远景规划中明确“碳达峰、碳中和”为国家整体规划布局的重要组成部分,鼓励“绿色、健康、可持续发展”,《国民营养计划》明确“植物蛋白”为主要的营养基料,植物基产品发展前景广阔。
  • 快讯!MP 新冠病毒单抗系列又添新成员,并发布重组蛋白
    继今年 2 月初,MP Biomedicals 发布两款潜在 SARS-CoV-2 Spike 蛋白单克隆抗体后,近日再次传来好消息,MP 单克隆抗体系列又添新成员--Anti-coronavirus (SARS-CoV-2) (B) Spike S2,其有别于 Anti-coronavirus (SARS-CoV-2) Spike S2,可识别 Spike 蛋白 S2 亚基的不同位点。单克隆抗体可适用于多种应用场景,包括 Western blot、免疫沉淀、ELISA 实验、快速测试和流式细胞分析等。SARS-CoV-2 (2019-nCoV) 的基本结构,相信大家已经不再陌生。其基因组编码四种结构蛋白,即 Spike (S 蛋白), Envelope (E 蛋白), Membrane (M 蛋白) 及 Nucleocapsid (N 蛋白)。Spike 蛋白是宿主中和抗体的重要作用位点,是疫苗设计的关键靶点。Spike 蛋白含有两个亚基,S1 和 S2。其中 S1 定义了宿主范围和病毒的特异性,从而识别并与受体宿主细胞的受体结合;S2 则含有膜融合过程所需的基本原件。图 1 新冠病毒 SARS-CoV-2 基本结构实验数据表明,在 65 ng 至 4.0625 ng 的系列稀释分析中,MP 公司针对 SARS-CoV-2 Spike 蛋白的单克隆抗体表现出高灵敏度和高亲和力。图 2 SARS-CoV-2 spike 蛋白(S1 + S2)与两种抗 SARS-CoV-2 抗体之间相互作用的 Slot-Blot 分析【单克隆抗体】【重组蛋白】自新冠疫情爆发后,MP 公司迅速做出反应并与时间赛跑,新加坡研发团队凭借长达 16 年对冠状病毒的研究经验,截止目前,除可提供上述三种对 SARS-CoV-2 Spike 蛋白有高度识别能力的鼠源单抗外,还可为广大科研工作者提供五种大肠杆菌和 HEK293 细胞表达的 SARS-CoV-2 重组蛋白。
  • 近红外大豆蛋白分析仪在不同场景的应用
    近红外大豆蛋白分析仪是一种专用于大豆及其制品的快速、无损、多指标定量检测的分析设备。其主要应用于大豆产业链的各个环节,包括收购、储存、加工等,为大豆品质鉴定提供了有效的检测手段。了解更多近红外大豆蛋白分析仪产品信息→https://www.instrument.com.cn/netshow/SH116147/C541874.htm收购场景快速决策支持:在大豆的收购过程中,仪器可在短时间内对大豆蛋白含量等关键指标进行检测。这使得收购人员可以迅速做出决策,确保所购大豆符合质量标准。仓储场景质量监控:在大豆仓储环节,近红外大豆蛋白分析仪可用于定期对储存的大豆样品进行检测,实时监控大豆的蛋白质等指标,确保仓储期间质量的稳定性。加工场景工艺调控:在大豆加工过程中,仪器可用于监测原料大豆的蛋白含量,为生产过程提供数据支持,帮助调整加工工艺,确保最终产品的品质。室内检测实验室应用:作为室内检测设备,仪器可放置在实验室环境中,用于进行更为精细和深入的大豆蛋白质分析,为科研和产品研发提供支持。车载检测移动式检测:设备的车载设计使其能够方便地在不同地点进行移动和应用。这对于需要在野外或不同仓储点进行检测的场景非常有用,提供了便携式的解决方案。综合而言,近红外大豆蛋白分析仪在不同场景的应用为大豆产业链的各个环节提供了灵活、有效的检测手段,有助于确保大豆及其制品的质量和生产过程的可控性。
  • 全球首发!景杰生物全息空间蛋白质组学“透视”微观蛋白世界
    在世界经济论坛发布的《2023年十大新兴技术报告》中,空间组学被评选为未来最有潜力对世界产生积极影响的十大新兴技术之一。这标志着空间组学不仅在科研领域取得了显著成果,更有望为医学、农业等多个领域带来革命性的突破。在这一技术浪潮中,景杰生物以其卓越的科研实力和前瞻性的战略布局,成为空间蛋白质组学领域的佼佼者。自2021年6月首次推出空间蛋白质组以来,景杰生物不断对技术与体系进行全面优化,一次次刷新着空间蛋白质组学的研究边界。如今,景杰生物再次重磅推出“全息空间蛋白质组学”,为空间蛋白质组学研究提供了更为强大的工具。全息空间蛋白质组学依托于景杰生物创新的10X Proteomics平台,该技术能够支持组织微环境的全覆盖高深度蛋白质组空间检测。在实验中,景杰生物研发团队选择了癌症石蜡样本,运用全流程的先进仪器设施,如徕卡冷冻切片机、数字玻片扫描系统和蔡司激光捕获显微切割仪,进行一站式操作。经过烤片、脱蜡、复水、HE染色等一系列步骤后,成像技术精准定位目标区域,并进行无间隔地切割取样。酶解后使用Orbitrap Astral / timsTOF 最新款高性能质谱平台进行蛋白质组学检测,从而得到与组织微环境图像匹配的全覆盖空间蛋白质组学数据。通过对目标区域进行全覆盖检测,得到了带有空间位置信息的100份蛋白质组学数据,每份数据对应精细组织,无间隔地构成了“全息”的空间蛋白质组学数据集。这些数据集共检测到5500多个蛋白,平均每个样本可检测到4100多个蛋白,是目前最大最全面的全息空间蛋白质组学数据集之一。对于全息空间蛋白质组学得到的庞大数据集而言,如何有效地利用生信分析手段进行挖掘和展示是大家的重要关注点。为此,景杰生物生信和人工智能团队借鉴空间转录组的分析经验,针对全息空间蛋白质组学开发了一系列工具,帮助我们“看得见、挖得深、画得漂亮、画得清晰”。通过以上数据分析方案,可实现与空间转录组学类似的:全息空间样本点无监督聚类分析、类间差异分析/差异蛋白功能注释、单个差异蛋白空间可视化、基于清晰的组织病理特征注释和指定病理分组差异分析、基于反卷积等算法注释细胞类型得分/比例等等个性化分析。相信这样一套分析的组合拳,一方面可以将蛋白信息清晰还原到组织空间微环境中,另一方面也可以与临床病理信息精准结合,定会成为空间蛋白质组学研究的标杆,加速精准医学和基础研究。随着本次全息空间蛋白质组学发布,景杰生物已搭建成全球首个结合空间蛋白质组学、空间磷酸化修饰组学以及全息空间蛋白质组学的一站式空间组学平台。包含了既可以满足个性化选取不规则点位进行蛋白质组精准检测的空间蛋白质组学,又可以进行个性化选取不规则形状点位进行磷酸化修饰精准检测的空间磷酸化修饰组学,本次又实现对组织微环境进行高分辨率全覆盖式蛋白质组精准检测的全息空间蛋白质组学,满足蛋白质组研究的多项需求,为空间蛋白质组学研究提供更多选择。展望未来,全息空间蛋白质组学将在癌症研究、神经科学、免疫学等多个领域发挥重要作用。而景杰生物作为空间蛋白质组学的先驱和引领者,将不遗余力全面推进空间蛋白质组学的技术进步,为前沿研究保驾护航!
  • nanoDSF技术助力蛋白结晶的研究
    01研究背景稳定的、高纯度、单分散的生物样品显示出更高的结晶倾向[1]。早期阶段识别那些更有可能产生晶体的结构或变体能够节省大量的人力和时间成本。目前的很多方法,如凝胶过滤、DSF等技术可以帮助识别最优性质的样品,但是存在样品消耗量大或者外源染料与溶剂不兼容等问题。NanoTemper开发的nanoDSF差示扫描荧光技术,基于蛋白的内源荧光检测Tm值,通过Tm值的绝对数值和变化来确定优先结晶的缓冲条件或者蛋白变体等。接下来,我们通过两篇文献来了解nanoDSF如何助力结晶条件的筛选。02案例解读https://doi.org/10.1038/s41467-023-35915-4IF: 16.6 Q1非特异性磷脂酶C (NPC) 是植物特有的一类磷脂酶。尽管对NPCs的研究揭示了其在植物生长发育中的基本作用,但相比于其它磷脂酶(A1/A2/D/PI-PLC)水解底物的分子机制研究,NPCs是迄今为止唯一一类尚未被阐明的磷脂酶。湖北洪山实验室、作物遗传改良全国重点实验室蛋白质科学研究团队联合油菜团队的研究成果解析研究了NPC4的晶体结构和工作机制,为真核生物磷脂水解酶家族的分子机制提供了新见解。 研究中获得了NPC41-415和NPC41-496 两组结晶,对比结晶结果,发现NPC41-415没有磷酸化,且CTD结构域没有观察到电子密度。SDS-PAGE结果显示,蛋白在结晶过程中被部分降解,可能导致晶体中缺少CTD结构域。对比结晶条件发现NPC41-415的结晶中不存在KH2PO4,同时KH2PO4不影响NPC4活性。因此,作者推测KH2PO4可能会增强NPC4的稳定性。NPC4为膜蛋白,一般膜蛋白的表达和纯化得率均比较低,因此需要使用蛋白消耗量少的热稳定分析技术以最大程度的节约膜蛋白样品。nanoDSF技术样品检测浓度可低至5ug/ml,10μl,大大节约蛋白样品。研究人员利用nanoDSF技术检测了KH2PO4对NPC蛋白热稳定性的影响,每个条件仅需5.6ug NPC4蛋白样品。加入KH2PO4后,Tm值从51.1℃提高到55.3℃,表明NPC4在KH2PO4存在下更稳定,也解释了缺少KH2PO4时蛋白降解的原因。图示:KH2PO4提高NPC41-496 稳定性:nanoDSF结果显示,NPC41-496 Tm为51.1℃;在有50mM KH2PO4 存在下提高到55.3℃03案例解读https://doi.org/10.1038/s41598-023-41616-1IF: 4.6 Q2水通道蛋白2(APQ2)调控水的重吸收进而调控机体的水代谢平衡。AQP2基因的点突变可能导致肾性尿崩症(NDI)。为了进一步了解AQP2突变导致NDI的分子机制,作者通过对三种AQP2突变体(T125M、T126M和A147T)进行结晶,以了解突变AQP2的结构和功能关系,为NDI背后的机制提供了分子见解。为了提前了解突变对AQP2蛋白稳定性以及其对后续结晶的影响,研究人员使用nanoDSF技术比较了三种突变体的热稳定性差异。需要注意的是AQP2同样为膜蛋白,其储存溶液中含有去垢剂OGNG等成分,而nanoDSF技术是基于蛋白的内源荧光进行Tm检测,对去垢剂等兼容,无需优化检测条件,可快速获得重复性高的Tm结果。nanoDSF结果显示所有的热变性曲线显示出相似的形状。然而,Tm和Tonset在不同突变体之间存在差异。野生型AQP2的稳定性最高,其次为T126M和T125M, A147T的热稳定性最低。 图示:nanoDSF检测WT AQP2以及其突变体的热稳定性接下来,作者对AQP2以及其突变体进行结晶。在与野生型AQP2相同的条件下,只有T125M和T126M产生了足以用于结构测定质量的晶体,与野生型AQP2的结构高度相似。T126M晶体的衍射分辨率最高,为(~ 3-3.3 &angst ),其次是T125M (~ 3.7-4 &angst )。A147T晶体质量最低,衍射x射线约为5-7 &angst 。结晶结果与三种蛋白质结构的热稳定性非常一致,即蛋白质的热稳定性降低可能会降低其成功结晶的能力[2][3]。03案例小结&技术优势在上述两篇文献中,作者使用nanoDSF技术检测了膜蛋白在不同缓冲条件或者突变体的热稳定性,并且均可与后续的结晶结果对应。nanoDSF对缓冲溶液兼容,如去垢剂,无需额外优化条件,仅需非常少量的样品,即可快速完成Tm检测。明星产品PR Panta更是整合了4大检测模块(DLS、SLS、Backreflection和nanoDSF),仅需一份样品即可获得多种参数,更清楚了解结晶前样品情况,挑选最佳条件蛋白或条件进行结晶。PR Panta蛋白稳定性分析仪[1] Zulauf M, D'Arcy A (1992) J Cryst Growth 122:102–106[2] Dupeux, F (2011) Acta. Crystallogr. D Biol. Crystallogr. 67, 915–919.[3] Deller, M. C. (2016).Acta. Crystallogr. F Struct. Biol. Commun. 72, 72–95.
  • 科学家发现端粒酶新蛋白成分
    美国科学家近日发现了一种功能极似端粒酶的蛋白质,它能四处运送至关重要的蛋白质块来修复在正常复制中被丢失的染色体末端。如果没有这样的日常维护,干细胞将很快停止分裂,胚胎也将无法发育。  这是10年来首次发现端粒酶的新蛋白组分,这也许将成为抗癌疗法的一个有价值靶标。该项研究成果刊登在1月30日出版的《科学》杂志上。  端粒酶可在成体干细胞、免疫细胞和正在发育的胚胎细胞中正常表达。在这些细胞中,端粒酶附着在新复制的染色体末端,从而使细胞的分裂不受约束。如果没有端粒酶,细胞将停止分裂,或在有限数目的分裂后死亡。不幸的是,这种酶在许多癌细胞中也很活跃。研究人员发现,阻止这种称为TCAB1蛋白的不恰当表达,也许能限制端粒酶到达其DNA靶标(端粒),并限制细胞的寿命。  研究人员表示,目前还没有有效的端粒酶抑制剂。多年来,端粒酶一直是研究热点,但科学家们困扰于其大尺寸和极其少量。成人体内的少数细胞可制作出这种巨型蛋白复合物,但制作量非常之少,因此只有端粒酶的部分成分已被确定。研究人员称,要找出端粒酶的所有蛋白成分是一项难以置信的巨大挑战,端粒酶中的未知成分甚至被称为“暗物质”。  美国斯坦福大学医学院的研究人员使用高灵敏的蛋白鉴别技术(质谱),找到了端粒酶中TCAB1的存在。去年年初,研究人员曾利用相同的技术首次确定了另两种蛋白pontin和reptin,这两种蛋白对端粒酶这种巨型复合物的形成非常重要。此次,研究人员则确定了TCAB1蛋白具有以前未知的功能。  与pontin和reptin不同的是,TCAB1是端粒酶的一个真正组成部分。但它对酶的活性来说并不是必需的,它只是给称为卡哈尔体(Cajalbodies)的细胞核中的处理和保持区域补充端粒酶复合物。卡哈尔体将对各种使用RNA小分子来引领其活性的蛋白进行修饰,譬如,端粒酶使用RNA分子作为嵌在染色体末端的DNA链的模板。在适当的时候,TCAB1将端粒酶复合物运送到新复制染色体的等待端。  研究人员表示,TCAB1对端粒酶完成从卡哈尔体到端粒的跳跃是绝对必需的。一旦抑制其在人类癌细胞中的活性,端粒就会变短,这也意味着癌细胞会更快地死亡。研究人员认为,TCAB1蛋白可能是一种负责将各种分子运往其目的地的普通生物运输器。下一步,研究人员将继续对TCAB1进行研究,并寻找端粒酶的其他组成部分。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 岛津发布独特柱后衍生技术测定乳品中“皮革水解蛋白”
    &ldquo 三聚氰胺毒奶&rdquo 的阴影尚未从消费者的心中散去,&ldquo 皮革毒奶&rdquo 又开始威胁消费者的生命安全。在三聚氰胺成为严打对象后,又有不法企业为提高乳制品中的蛋白质含量,在乳制品中混入皮革水解蛋白,制造出&ldquo 皮革毒奶&rdquo 。 皮革水解蛋白就是利用已经废弃的皮革制品或动物毛发,水解之后制成粉状,因其氨基酸或者说蛋白含量较高,故人们称之为&ldquo 皮革水解蛋白粉&rdquo 。 &ldquo 皮革水解蛋白粉&rdquo 中含有的有毒物质被人体吸收、积累,可导致中毒,使关节疏松肿大,甚至造成儿童死亡。 为此,中国农业部2月12日下发2011年度生鲜乳制品质量安全监测计划,其中除要检测三聚氰胺外,还要检测&ldquo 皮革水解蛋白&rdquo 和碱类物质。据称,皮革水解蛋白的检测难度比三聚氰胺更大,因为它本来就是一种蛋白质。当前,国内多数参考1978年版《ISO:3496-1978肉与肉制品L(-) - 羟脯氨酸含量测定》使用分光光度法测定乳品。主要检测方法是检查牛奶中是否含有羟脯氨酸,这是动物胶原蛋白中的特有成分,在乳酪蛋白中则没有,所以一旦验出,则可认为含有皮革水解蛋白。 已经在消费者心中树立起&ldquo 食品安全卫士&rdquo 形象的岛津公司,长期关注中国的乳制品安全问题,为中国用户提供了一系列的乳制品检测解决方案。其中,岛津上海分析中心结合岛津独特的氨基酸分析系统和欧洲药典收录的氨基酸分析方法,率先开发出柱后衍生液相色谱分析乳制品中L(-) - 羟脯氨酸的检测方法。 该方法使用岛津氨基酸柱后衍生系统锂型分析柱建立了牛奶制品中24种氨基酸的高效液相色谱柱后衍生分析方法,柱后衍生及样品测定为全自动完成,消除了柱前衍生不同操作人员引入的人为误差,大大简化了样品前处理步骤,节约了时间,是一种可靠快速的检测方法。本方法可以直接用于检测牛奶中24种氨基酸。 岛津公司今后将一如既往地关注中国乳制品安全问题,继续实践&ldquo 为了人类和地球的健康&rdquo 这一公司经营理念。 有关岛津&ldquo 高效液相色谱柱后衍生方法测定乳制品中皮革水解蛋白&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_161189.htm。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制