当前位置: 仪器信息网 > 行业主题 > >

微波化学反应器

仪器信息网微波化学反应器专题为您提供2024年最新微波化学反应器价格报价、厂家品牌的相关信息, 包括微波化学反应器参数、型号等,不管是国产,还是进口品牌的微波化学反应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微波化学反应器相关的耗材配件、试剂标物,还有微波化学反应器相关的最新资讯、资料,以及微波化学反应器相关的解决方案。

微波化学反应器相关的方案

  • 快速、高效、可靠:微波自动进样器在有机化学优化中的应用
    在化学转化的新发现之后,随之而来的是反应优化这一既费时又繁琐的过程。CEM Discover® 2.0 微波反应器联合开发的 Autosampler 12 和 48 为研究人员提供了一种更加高效的方式来优化和筛选化学反应。
  • IKA实验室反应器在医药行业的应用
    IKA LR1000是一种模块化,可扩展的实验室反应系统,旨在优化各种化学反应过程以及多种实验应用,可以在反应器内实现搅拌,加热,冷却以及进行温度控制,并根据客户需求,实现在真空条件下进行搅拌、均质,监测样品扭矩变化趋势及PH值,并且可以直接在反应器上实现称重功能,此外,釜盖上的标准接口可以轻松连接如冷凝管类的玻璃件。
  • 矿物中的化学反应分析
    对于寄生在岩石中的细菌以及古生菌类单细胞微生物来说,氢气就是它们的能量来源,它们能够将氢与二氧化碳结合起来, 终转化为自身所需要的能量。通俗的来说,这些细菌及单细胞生物是以气体为食。当我们发现岩石的矿物中发生过这些化学反应,就意味着微生物很有可能存在过。“拉曼光谱能够告诉我们矿物中的化学成分和结构变化,并了解它们之间的相互关系,从而判断岩石中发生的化学反应,以及这一反应环境是否适合微生物的生存。”科罗拉多大学波尔得分校--显微拉曼光谱实验室的管理员和应用埃里克· 埃里森如是表示。
  • UPLC/QTof MS结合在线PB光化学反应快速检测复杂体系中脂质成分准确鉴定脂肪酸侧链的C=C双键位置
    本文介绍了基于Waters UPLC/QTof 质谱系统利用PURSPEC Ω Analyzer 光化学反应器快速分析复杂生物样品中脂质成分包括准确鉴定C=C双键位置的工作流程与实验结果。
  • 化学反应的实时监测
    本文介绍了DPiMS-2020实时分析肽保护基的去保护反应的结果,其中肽保护基在样品板上生成。探针电喷雾电离(PESI)是一种直接电离技术,该技术以恒定频率采集样品,并向探针尖端施加高电压,利用探针电离采集到的目标成分。这种电离技术无需色谱仪即可快速监测样品变化。DPiMS-2020(图1)结合PESI和质谱仪,对要分析的成分实时监测分子量信息的变化,以此准确了解化学反应的进程。
  • 高压恒流输液泵在微反应器技术中的应用
    高压恒流输液泵在微反应器技术中的应用 江苏汉邦科技有限公司摘要:本文以液相微反应过程为重点, 系统介绍和分析了微反应器中微尺度流体的流体动力学,着重介绍了用于微流体输送的高压恒流输液泵。
  • 理想的化学反应釜温度控制系统
    药品研发和化学实验中的温度控制,以及小规模试验生产和工业生产过程中的温度控制,都需要高动态的温度控制系统。对反应釜进行控温时,须对化学反应中的吸放热进行快速补偿。在选择合适的温度控制系统时,需要综合考虑各种条件和影响因素。本文旨在提供壹定的标准和建议,以便用户在应用中选择好的温度控制方案。
  • 工业园区污水及经生物反应器处理后的污水氨氮、有机氮及化学需氧量(COD)的测定
    工业园区污水同步脱氮除碳一体化固定膜活性污泥(IFAS)系统的开发与建模Development and modeling of an integrated fixed-film activated sludge (IFAS) system for simultaneous nitrogen and carbon removal from an industrial estate wastewater每天从生物反应器的进(废)水和出水(处理后废水)中采集样本化学需氧量检测使用回流消解法氨氮和有机氮的检测依据常量凯氏定氮法,使用格哈特凯氏定氮仪Vapodest 10进行
  • 德国耶拿:微波场中脂肪酸的衍生
    在微波场的作用下,可以在短时间内进行比较困难的化学反应.本文利用multiwave微波系统进行酸催化制造脂肪酸甲脂.
  • 培安公司:微波合成的发展趋势
    本文由CEM公司首席科学家 Michael J Collins Jr 撰写,主要介绍了目前微波在有机化学的应用,以及微波技术的发展进程。同时也讨论了微波技术在未来的发展趋势,这其中包括:化学家们对微波能量的理解,当前主流的使用方法,现有的硬件以及微波技术在材料合成、生命科学、放大以及流动化学中的应用等等。 微波在合成化学中的起源 什么是微波 微波合成的接受度 微波合成的发展方向 微波合成的潜在应用领域 微波合成是一种安全且高效快速的有机合成方法。微波能量可迅速加热反应物,使化学反应更快捷进行的同时也减少副反应的产生。微波技术在实验室中已被普遍接受。微波合成的继续增长必须克服微波操作困难的错觉。随着微波合成进入越来越多的本科实验课程中,很多化学家在很早时候就接触到了微波仪器。微波能量势必在材料合成和生物化学中得到更多的应用,此技术是在放大和和流动化学中取得更好的应用。
  • 生物反应器的安全说明
    生物反应器是指利用自然存在的微生物或具有特殊降解能力的微生物接种至液相或固相的反应系统,利用酶或生物体所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机
  • 微波消解硅铝催化剂
    在化学反应里能改变反应物化学反应速率(提高或降低)而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(固体催化剂也叫触媒)。催化剂在现代化学工业中占有极其重要的地位,例如,合成氨生产采用铁催化剂,硫酸生产采用钒催化剂,乙烯的聚合以及用丁二烯制橡胶等三大合成材料的生产中,都采用不同的催化剂。我们选取一种固体硅铝催化剂进行实验,为了检测金属元素含量,我们通过微波消解的方法来对其进行前处理,有利于后续检测设备对多种痕量金属元素的检测。
  • 微波消解硅铝催化剂
    在化学反应里能改变反应物化学反应速率(提高或降低)而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(固体催化剂也叫触媒)。催化剂在现代化学工业中占有极其重要的地位,例如,合成氨生产采用铁催化剂,硫酸生产采用钒催化剂,乙烯的聚合以及用丁二烯制橡胶等三大合成材料的生产中,都采用不同的催化剂。我们选取一种固体硅铝催化剂进行实验,为了检测金属元素含量,我们通过微波消解的方法来对其进行前处理,有利于后续检测设备对多种痕量金属元素的检测。
  • 微波消解电解镍粉
    电解镍粉是以镍为主要成分金属粉料,有良好的导电性,粉末颜色通常为黑灰色。主要用于原子能工业、碱性蓄电池、电工合金、高温高强度合金,也可以做化学反应的加氢催化剂。本文通过微波消解方法镍粉进行前处理,有利于后期快速准确测定其中的元素含量。
  • 微波消解电解镍粉
    电解镍粉是以镍为主要成分金属粉料,有良好的导电性,粉末颜色通常为黑灰色。主要用于原子能工业、碱性蓄电池、电工合金、高温高强度合金,也可以做化学反应的加氢催化剂。本文通过微波消解方法镍粉进行前处理,有利于后期快速准确测定其中的元素含量。
  • 【康宁案例】硝化、加氢、重氮化、水解多步反应连续合成
    康宁反应器既耐压又透明、可视的玻璃模块极大地提升了连续流工艺开发和优化的效率。康宁反应器模块化设计,可快速、灵活地组装成满足数千种不同化学反应需求的反应器。
  • 通过可控制的微波加热进行快速固相多肽合成
    本文描述一种快速有效的微波辅助固相合成方法,用以合成序列为WDTVRISFK的短肽,使用传统的Fmoc(9-芴氧羰基)/tBu(叔丁基)保护基策略。该合成方法是基于反应中的周期性脉冲微波辐射和间歇性冷却技术,在Fmoc保护基的脱除及偶联反应中均应用此技术。在应用微反应器技术后得到了高纯度和高收率的目标多肽。该反应在一个CEM单模微波反应器中进行,并且使用光纤进行连续测温。
  • 使用 DLP 和挤出生物打印机打印生物反应器
    摘要标准化细胞移植物、人工器官替代物和生化产品的组织和生物制造需要可控且可重复的离体组织生长培养物,以准确模拟体内环境。生物反应器可以创建这些生理相关环境,并且可以针对特定微生物(例如细胞类型或细菌)进行定制,以优化3D微生物和组织培养。但直到现在,寻找一种时间和成本效益高的生物反应器生产方案仍然是一个挑战。本技术说明提出了使用由 Volumetric和BIO X6™ 提供支持的Lumen X+™ 设计和制造生物反应器的工作流程解决方案。首先,本技术说明详细介绍了如何在数字光处理 (DLP) Lumen X+ 生物打印机上制造封闭式生物反应器。该技术说明还演示了BIO X6如何在生物反应器内创建精确的共细胞和多细胞培养物以完成工作流程。
  • 枣核总黄酮的微波辅助提取工艺优化
    用户多,发表论文多。XH-100B型祥鹄电脑微波催化合成/萃取仪,是应用先进的微波技术作为物理催化手段的新型化学反应装置。主要由微波催化仪主机、微电脑智能控制系统、高精度温度传感器、回流冷凝系统等组成。仪器使用先进的温度传感器,对反应温度进行实时精确监测;采用独创的电脑自学习技术,自动调节微波功率,智能控温保温,控温精度达±1℃。大容量不锈钢腔体,耐腐蚀,耐高温。反应容积微波泄漏符合国家标准。仪器操作简单,界面友好,您可轻松制订各种实验方案,并对实验过程进行全程监控。
  • 实验室反应器在化妆品行业的应用
    在实验室级别开发化妆品,很多实验室都是手动操作并一步步模拟生产的过程,而且在小容量反应器中进行化妆品生产过程的重现显得更为便利简单。所以,一个完整的反应器系统,将使控制反应过程、开发新产品并为生产提供解决方案的过程变得更为高效。
  • 拉曼光谱和微波合成联用: 追踪肉桂酸合成
    化学合成对创造新分子、新材料来说很重要。从一些小分子或者前驱体可以合成一些具有特殊功能和特性的复杂分子。为了优化材料性能,提高产出率可以改变合成参数(如温度,pH)。微波加热样品是一种改变化学反应的方法。这个方法是很高效的合成方法,反应速度快。一些需要几个小时的反应可以在几分钟甚至几秒钟内完成。另外,与传统加热方式相比,微波加热的温度分布均匀且反应温度更加准确可控,因此,微波合成可以改善物质产出。大部分的微波合成反应是在封闭的、加压的容器里面进行,这无疑给监控反应进程增加了难度,通常只能对最终合成产品进行详细的检测分析。因此,过程优化(如温度,时间)可能很耗时而且通常需要进行多次试错。
  • 连续流动化学新趋势:高温化学反应
    很多化学问题的解决方案取决于在连续流动中的许多变量,比如传热和传质混合效率,反应条件的精准可控等。在连续流动化学中,这些变量的微小变化都可能对反应结果产生影响。在过去的几年里,连续流动化学取得了长足的进步,也让我们发现了在连续流动化学中运行反应的许多额外优点。美国Discovery Chemistry and Technology, AbbVie, Inc.公司Andrew R. Bogdan等,于2019年2月23日在Journal of Medicinal Chemistry发表了一篇综述,概述了过去8年流动化学在医药行业的许多进展和广泛应用。尽管还远远不够全面,但您会从中发现许多间歇流动反应案例,都可以转化为连续流动化学来实施。
  • 微波合成在药物研发中的应用
    如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 如今虽然有着大量的药物可用,但是仍很多人承受病痛 的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高的折磨甚至死亡威胁。这是因为新 药缺乏很显然,提高药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 药的发展速度迫在眉睫。而微波合成则可以显著缩短反应时 间, 而专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。 专业的反应器可以加速新药发展过程。
  • 流式反应器的精密压力控制解决方案
    针对目前连续流反应器或微反应器压力控制中存在手动背压阀控制不准确、电动或气动背压阀响应速度太慢、无法适应不同压力控制范围和控制精度要求、以及耐腐蚀和耐摩擦性能较差等诸多问题,本文提出了相应的解决方案。解决方案的核心是分别采用了低压和高压压力精密控制装置,低压控制采用电动针阀可实现0.7MPa以下压力控制,高压控制采用先导阀和气动背压阀可实现20MPa以下压力控制。
  • 微波消解陶瓷粉
    所谓陶瓷粉体就是制备陶瓷时所有原料经充分混合均匀后焙烧后的粉末状物质。陶瓷的原料之间的化学反应不是在熔融的状态下进行的,而是在比熔点低的温度下,通过各原子(或离子)之间的扩散来完成的,也就是固相反应,所以经过焙烧得到的陶瓷粉体已经是纯相晶体物质。我们选取一种陶瓷粉样品,采用微波消解作为前处理方法,选择一种可将其完全溶解的方案,有利于后续对多种重金属含量的快速准确测定。
  • 使用台式核磁进行化学反应原料排查
    核磁共振是确认官能团转换的主要技术之一。核磁共振波谱还可以通过识别反应物和/或反应中其它产物的存在来帮助评估分离物质的纯度。芳香族体系非邻位取代情况下,Shoolery规则可用于预测环上1H和13C核的相对化学位移。这些值被列在表格中,对于芳香族体系和其他体系都很容易得到。因此,波谱学家可在得到波谱结果之前预测波谱将如何呈现。
  • 微波预处理强化高磷铁矿粉的气态还原
    利用气相还原动力学及微波预处理对其气相还原行为,对高磷矿石还原动力进行阐明,提高其金属化速率。采用热重法对气体还原动力学进行了研究,高温微波反应器对四功率级铁矿粉进行微波预处理。采用CO或H2作为还原剂,可使矿粉金属化率提高10% ~ 13%。
  • 微波提取-固相萃取净化-气相质谱法测定土壤和沉积物中的多氯联苯
    多氯联苯,通常简称PCBs,是12种优先控制的有机污染物之一,曾在世界范围内被广泛生产和使用。由于多氯联苯的物理、化学性质比较稳定,在使用过程中不易分解,因此大多数都被排放到环境中,环境中残留的多氯联苯通过挥发、扩散质流产生转移,污染大气、地表水体和地下水,并可通过生物富集和食物链使其在人体内富集,最终危害人体健康。因此,建立完善的土壤中多氯联苯监测分析方法,对了解和治理多氯联苯的污染现状具有重要的意义。微波萃取技术通过微波反应器发射微波能,使原料中的化学成分迅速溶出的技术。与传统提取方法相比,具有节省溶剂、快速、回收率高、绿色环保、批处理量大等明显优势。本实验参考标准方法HJ743-2015、HJ922-2017,使用ETHOS UP微波萃取仪提取土壤和沉积物中的多氯联苯,可在40min内完成44个土壤样品的提取,SPE1000八通道全自动固相萃取净化,并用气质联用仪进行检测。
  • PreeKem 建筑外墙涂料重金属及有害物质检测-微波消解法
    涂料是用有机或无机材料经过化学反应而生成的一种混合物,市场上以白色涂料为主,商家们为了吸引消费者常常为客户提供免费调色,随着涂料颜色的丰富多彩,人们对涂料中重金属的含量也格外担心。本文参照《GB 24408-2009 建筑用外墙涂料中有害物质限量》标准,摸索出适合TOPEX全能型微波化学工作平台的外墙涂料重金属及有害物质检测的微波消解方法。
  • 微波消解陶瓷粉
    所谓陶瓷粉体就是制备陶瓷时所有原料经充分混合均匀后焙烧后的粉末状物质。陶瓷的原料之间的化学反应不是在熔融的状态下进行的,而是在比熔点低的温度下,通过各原子(或离子)之间的扩散来完成的,也就是固相反应,所以经过焙烧得到的陶瓷粉体已经是纯相晶体物质。我们选取一种陶瓷粉样品,采用微波消解作为前处理方法,选择一种可将其完全溶解的方案,有利于后续对多种重金属含量的快速准确测定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制