当前位置: 仪器信息网 > 行业主题 > >

波谱传感器

仪器信息网波谱传感器专题为您提供2024年最新波谱传感器价格报价、厂家品牌的相关信息, 包括波谱传感器参数、型号等,不管是国产,还是进口品牌的波谱传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波谱传感器相关的耗材配件、试剂标物,还有波谱传感器相关的最新资讯、资料,以及波谱传感器相关的解决方案。

波谱传感器相关的资讯

  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 空前盛况,化学传感新高度-第十六届全国化学传感器学术会议圆满闭幕
    仪器信息网讯 2023年9月24日,由中国仪器仪表学会分析仪器分会化学传感器专业学组(专业委员会)主办的第十六届全国化学传感器学术会议(SCCS2023)于山东省济南市圆满闭幕。本次大会以“化学传感赋能新时代”为主题,本次参会人数超1200名,征集论文近500篇,共有12个大会特邀报告、42个主旨报告、101个邀请报告、153个口头报告和17个简单报告,邀请到国内外众多知名专家学者,共同探讨化学传感领域的最新研究成果和发展趋势,吸引了上千人注册参会。会议现场闭幕式开始之前,特别邀请了中国科学院院士、清华大学教授李景虹、中国科学院院士、中国科学院精密测量科学与技术创新研究院研究员刘买利、北京师范大学教授毛兰群、南京大学鞠熀先教授、上海仪电科学仪器股份有限公司(雷磁)许佰功作出精彩报告。中国科学院院士、清华大学教授 李景虹报告题目:《单分子生物电子学与生物分析》李景虹介绍到,对复杂生命过程的单分子表征可以深入生物分析化学的研究尺度,以核酸、蛋白质和大分子互作为基础的技术可以用于单分子表征过程中。此外,他还对近期主要研究作出汇报:单分子间元-元堆叠的偶极增强效愈、G-四链体的电子学研究和蛋白质相互作用的电子学。最后,他提出了所面临的研究挑战,并指出生命过程关键物理化学机制的微观解析、微观反应机制与宏观现象间的关联和生命过程中量子现象的观测是未来发展方向。中国科学院院士、中国科学院精密测量科学与技术创新研究院研究员 刘买利报告题目:《核磁共振波谱分析》刘买利以核磁共振波普的发展与影响、技术与方法、应用与趋势展开报告。他提到,核磁共振是科学交叉的典范,在多领域促进科学发展,其中核磁共振波普(NMR)和磁共振成像(MRI)是最活跃的两个领域,两种技术相结合可大幅提升检测灵敏度。此外,他还介绍了用于提高核磁共振灵敏度的多种超极化技术及在生物分子领域的应用,对细胞结构研究具有重要作用。北京师范大学教授 毛兰群报告题目:《脑化学活体传感》毛兰群教授首先介绍了脑的化学本质、化学信号研究的关键问题、脑化学测量的机遇与挑战。基于此,他通过解析信号、脑的电化学模拟等手段开展研究,发展了活体传感原理与方法的新构想,创建了原电池型氧化还原电位分析法,实现了化学信号向电信号转化的模拟,在该领域上取得创新性成果。南京大学教授 鞠熀先报告题目:《纳结构增强的电化学发光与光电生物传感》鞠熀先教授以解决癌症精准诊治中的个关键科学问题为目标,对生物分子检测及其介导的诊治应用展开研究,分别在用于生物传感的量子点ECL、用于生物传感的无机纳米粒子ECL、 用于生物传感的聚合物点ECL、Pdots的ECL生物成像五个方面展开报告,对提高癌症诊断治疗精确性及成像分辨率具有重要价值。上海仪电科学股份有限公司(雷磁) 许佰功报告题目:“雷磁”电化学传感器及仪器技术发展许佰功介绍道,“雷磁“是上海仪电科学仪器股份有限公司的自主品牌,创建于1940年,是中国pH计和玻璃电极的诞生地,也是国内分析仪器的重要发源地。 “雷磁”研发了丰富的科学仪器产品,涵盖电化学传感器、电化学分析仪器、滴定仪/水分仪、水质分析仪、在线水质监测仪器、化学试剂和系统集成等众多门类。雷磁作为国内自主研制高端专业型电化学传感器的企业,研制出众多功能、材料和结构的专业型电极,为用户带来了更多高性能智能化的产品体验大会特邀专家报告结束后,开始颁奖环节,奖项包括颁发优秀青年报告奖和优秀墙报奖,并由济南大学魏琴教授宣布获奖名单。济南大学魏琴教授宣布获奖名单优秀青年报告奖颁奖仪式优秀墙报奖颁奖仪式颁奖仪式后,由湖南大学吴海龙教授做大会总结发言。湖南大学吴海龙教授做大会总结发言吴海龙教授首先对济南大学和所有参会者表示由衷的感谢。他说道,大会自成立以来,在老一辈科研工作者的领导下,会议举办得蒸蒸日上,第十六届全国化学传感器学术会议是历届以来人数最多,规模最大的一次会议,大会以“化学传感赋能新时代”为主题,给众多专家、学者和年轻的科研工作者创造了一次宝贵的交流学习机会。最后,吴海龙教授邀请所有参会专家和济南大学的工作人员共同合影,并期待下一届会议再相聚。闭幕式合影
  • Nature子刊!国仪量子EPR助力纳米自旋传感器研究
    成果简报基于量子特性,电子自旋传感器具有高灵敏度,可以广泛应用于探测各种物理化学性质,如电场、磁场、分子或蛋白质动力学以及核或其他粒子等。这些独特的优势和潜在应用场景,使基于自旋的传感器成为当前热点的研究方向。Sc3C2@C80具有由碳笼保护的高度稳定的电子自旋,适用于多孔材料内的气体吸附检测。Py-COF是一种最近出现的具有独特吸附性能的多孔有机框架材料,它使用具有甲酰基和氨基的自缩合构建块制备,其理论孔径为1.38 nm。因此,一种金属富勒烯Sc3C2@C80单元(尺寸约0.8 nm)可以进入Py-COF的一个纳米孔。中国科学院化学研究所王太山研究员开发了一种基于金属富勒烯的纳米自旋传感器,用于探测多孔有机框架内的气体吸附情况。将顺磁性金属富勒烯,Sc3C2@C80嵌入基于芘基的共价有机框架(Py-COF)的纳米孔中。使用EPR技术(国仪量子EPR200-Plus)记录嵌入Sc3C2@C80自旋探针的Py-COF内吸附的N2、CO、CH4、CO2、C3H6和C3H8。研究表明,嵌入Sc3C2@C80的EPR信号有规律地随Py-COF的气体吸附性能有关。研究结果以“Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks”为题,发表在Nature Communications上。利用 Sc3C2@C80 的分子自旋探测 Py-COF 的气体吸附性能在研究中,作者使用一种具有顺磁性金属富勒烯,Sc3C2@C80(尺寸约0.8 nm)作为自旋探针嵌入到基于芘基的COF(Py-COF)的一个纳米孔,检测Py-COF内的气体吸附。然后,通过记录嵌入的Sc3C2@C80 EPR信号,研究了Py-COF对N2、CO、CH4、CO2、C3H6和C3H8气体的吸附性能。研究表明,Sc3C2@C80的EPR信号有规律地随Py-COF的气体吸附性能有关。并且与传统的吸附等温线测量不同,这种可植入的纳米自旋传感器可以通过原位实时监测来探测气体的吸附和解吸。所提出的纳米自旋传感器还用于探测金属-有机框架(MOF-177)的气体吸附性能,证明了其多功能性。气体吸附性能与EPR信号的关系气压对EPR信号的影响EPR信号线宽分析用Sc3C2@C80的分子自旋法探讨MOF-177的气体吸附过程摘要Nature Communications:嵌入式纳米自旋传感器用于原位探测多孔有机框架内气体吸附Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nature Communications (2023)自旋传感器因其高灵敏度而备受关注。在此,我们开发了一种基于金属富勒烯的纳米自旋传感器,用于探测多孔有机框架内的气体吸附情况。为此,我们选择了顺磁性金属富勒烯Sc3C2@C80,并将其嵌入芘基共价有机框架(Py-COF)的纳米孔中。使用电子顺磁共振波谱(EPR)技术检测了Sc3C2@C80在Py-COF中吸附N2、CO、CH4、CO2、C3H6和C3H8后的信号。结果表明,嵌入Sc3C2@C80后EPR信号有规律变化,这与Py-COF的气体吸附性能有关。与传统的吸附等温线测量方法不同,这种植入式纳米自旋传感器可以对气体的吸附和解吸进行原位实时监测。所提出的纳米自旋传感器还被用于探测金属有机框架(MOF-177)的气体吸附性能、证明了它的多功能性。因此,该纳米自旋传感器适用于量子传感和精密测量。国仪量子EPR用户奖励政策细则1.IF 5.0(影响因子取最近的影响因子)的SCI、EI期刊,每篇奖励200元现金红包;2.5.0≤IF<10的SCI期刊,每篇奖励500元现金红包;3.IF≥10的SCI期刊,每篇奖励1000元现金红包;4.如论文发表于Nature、Science或Cell期刊正刊,每篇奖励 5000元现金红包。提及国仪量子仪器型号的方法:要求在实验方法中提及仪器品牌型号:国仪量子EPR200-Plus,国仪量子EPR200M等,英文参考如下:Electron paramagnetic resonance spectroscopy spectra were measured on Chinainstru&Quantumtech (Hefei) EPR200-Plus with continues-wave X band frequency.奖励实施流程:1.用户申请:需为测试申请者及文章作者,直接联系CIQTEK应用中心应用专家、登录CIQTEK官方网址http://www.ciqtek.com、拨打CIQTEK官方服务热线400-0606-976;2.资格审核:身份审核、对相应文章发表情况、提及仪器情况及影响因子进行审核(提供相应证明:发表论文的接收函及论文原文,或已发表论文的网上版本链接);3.审核通过后由公司统一发放奖励,发放形式协商确定。奖励申请说明:1.奖励后我司内部备注,每篇文章原则上只奖励一次;2.作品获得奖励后,即默认为作者授权主办方可以使用作者名及成果名称进行宣传推广活动,包括但不限于媒体宣传、现场展示、网络推广等;3.本政策有效期自2023年6月30日至2023年12月31日(如有变化会另行通知);4.本奖励政策最终解释权归国仪量子(合肥)技术有限公司所有。国仪量子电子顺磁共振波谱仪近年来,国家大力支持国产高端科学仪器发展,推进高水平科技成果自立自强,国产高端科学仪器迎来了长足进步。国仪量子电子顺磁共振波谱仪为直接检测顺磁性物质提供了一种非破坏性的分析方法。可研究磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、自由基、金属蛋白等含有未成对电子物质的组成、结构以及动力学等信息,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。在物理、化学、生物、材料、工业等领域具有广泛的应用。国仪量子EPR系列
  • 国产波谱仪器还有多远的路要走?
    2021年度北京波谱年会在上周圆满闭幕,多位国内知名专家学者都表达了对国产波谱仪器的支持与信赖。但国内对国产波谱仪器的认知和接受度还不是很高,核磁共振波谱仪大量依靠进口。实际上国产波谱仪器近来发展迅猛,仪器配件、售后服务等也具有明显的本土优势。可是科学仪器毕竟是一个研发周期长、技术壁垒极高的行业,要想实现高端科研仪器国产化,还需要在多年的研发中不断地完善。为此,近年来国家专门设立了仪器研制与开发专项,为国产仪器研制与开发提供强大助力,科研人员也从未停止过对波谱仪器、配件与维修的研究脚步。国家政策支持导向明确本周,中国科学院核磁共振技术联盟发布了2021年申报仪器研制及功能开发项目的通知,对磁共振仪器设备相关的硬件研制、现有仪器的功能扩展与提高项目将给予经费支持,要求项目申请必须针对国产磁共振仪器设备研制的瓶颈及应用痛点,并鼓励科研单位与国产仪器厂商密切对接,尽快实施成果转化。该项目获得了中国科学院条件保障与财务局的大力支持!今年年初,科技部基础研究司发布“十四五”国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项2021年度项目申报指南(征求意见稿),其中就包含了核磁共振波谱仪方向,研究内容如下:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在化学化工、生命医学、食品制药和环境能源等领域的应用。另外在核心关键部件开发及应用方面,特别详细阐述了磁共振成像低温探头方向的研究内容。国家自然科学基金化学科学部组织的国家重大科研仪器研制项目也有核磁共振仪器相关的课题。如中国石油大学肖立志教授联合中国石油化工集团有限公司共同承担的“极端环境核磁共振科学仪器研制”项目曾在2019年12月顺利通过专家组的结题验收。该项目针对高温高压、变温变压、狭小空间、快速运动、复杂样品、不均匀不稳定静磁场和射频场以及超低信号强度和信噪比等极端恶劣环境的核磁共振原位分析测试技术和仪器装备开展原创性攻关研究,取得突破性进展。中国石油大学(北京)廖广志教授与课题组成功研发的基于多天线激励方式的三维核磁共振测井仪、新型井下多频多维核磁共振波谱仪等设备,为石油天然气勘探开发提供重要的技术支撑,并在2018年“朱良漪分析仪器创新奖”中荣获了“青年创新奖”。廖广志多年来坚守核磁共振测井仪器研究,一直围绕测井仪器装备的关键技术难题潜心攻关。在井下极端环境核磁共振仪器、多维核磁共振数据采集和处理方法方面取得重要创新成果,打破国外技术垄断,关键性能指标达到国际领先水平,取得显著经济效益和社会效益。国产波谱仪器1.高场核磁共振波谱仪2007年,中国科学院武汉物理与数学研究所开始承担国家重大科学仪器研制项目,先后获得6000多万元的资金支持,用于核磁共振主机研发及工程化,于2014年成功研制出完整的原型样机。依托该所技术成立了武汉中科牛津波谱技术有限公司,由公司进行产业化及市场应用的推广。据了解,截至2021年5月,核磁共振波谱仪在国内成功卖出了100多台,在国外也卖出了一些。公司CEO魏嘉在之前的采访中说,“是一些核磁界的老前辈敢于做‘第一个吃螃蟹的人’,在使用过程中,他们发现我们的仪器也不差,而且售后维修更方便,于是开始帮我们不断地推荐,慢慢口碑就有了。现在很多国内用户开始了解我们,产品有了一定的知名度。“该公司相关人员称将在今年推出核磁共振波谱仪相关新技术与新应用,值得期待!中科牛津 WNMR-I 400-600MHz核磁共振波谱仪2.顺磁共振波谱仪源于中国科学院微观磁共振重点实验室的国仪量子(合肥)技术有限公司,是国内第一家以量子精密测量为核心技术的国家高新技术企业,拥有多项独家技术:高保真量子态调控技术、高灵敏度磁探测技术、微波收发技术、EPR探头技术、高精度扫描钻石探针技术,目前已有多款仪器在多项关键性能指标上实现了与世界先进水平并跑或领跑,实现了量子精密测量技术的产业化落地。据悉,国仪量子公司的仪器除了个别高端芯片、传感器是进口的,其余部件均为国产化研制。在北京波谱年会上,国仪量子磁共振事业部总经理许克标博士介绍了顺磁共振谱仪研究的最新进展,产品具有更高的g值分辨率,能克服大的零场分裂能和更高的探测灵敏度。国仪量子台式电子顺磁共振波谱仪EPR200M3.低场核磁共振波谱仪低场及小型便携化核磁共振技术因低成本、易维护的特点,也逐渐普及。苏州纽迈分析仪器股份有限公司,它多年来一直致力于低场核磁共振科学仪器国产化事业发展。实际上,纽迈科技的技术源于华东师范大学核磁共振波谱重点实验室积累了几十年开发出来一套研究生教学实验用核磁共振仪器,该仪器曾获得全国实验仪器一等奖。公司在2013年承担了国家重大科学仪器专项“高性能核磁共振弛豫分析仪的开发和应用”,在项目的推进过程中,一边不断技术开发,一遍推进成果转化,向市场输出了多款工业核磁新产品。就在前不久,上海理工大学和子公司上海纽迈联合研发的具有完全自主知识产权的高性能核磁共振弛豫分析仪,荣获了2020年度高等学校科学研究优秀成果技术发明二等奖,该仪器测试时间只需1-2分钟,成本也仅是进口仪器的1/4,秀出了“中国制造”!核磁共振变温分析仪4.磁共振成像分析仪“初生牛犊不怕虎”,用这个词语形容北京青檬艾柯科技有限公司一点也不为过。别看2016年才成立,就拥有已授权的自主研发发明专利四项,自主搭建了磁体系统,电路谱仪系统拥有专业背景团队进行研发,具备独立的精加工工艺可保证设备的稳定性,公司专注于磁共振仪器研发与生产的同时,还能提供高品质磁共振技术服务和培训业务。公司研发了智能集成化磁共振成像分析仪、高性能磁共振微观分析仪以及高性能大口径磁共振成像系统,都是波谱仪器国产化路上不可或缺的部分!公司相关负责人提到,“近年来,国产仪器的市场占有率相较于国外仪器有了明显的提升,尤其是在低场核磁共振与顺磁仪器上体现的非常明显,得益于国家对于国产仪器的研发支持力度以及一大批拥有专业知识背景仪器人的专注与创新。然而与国外进口仪器相比,国产仪器的精度与稳定度仍然在某些方面有一定的差距,如何平衡仪器质量与售后服务二者的权重,同样是我们做仪器生产厂商需要注重的问题,市场占有率与仪器质量并不能完全画一个等号。”LIME-iMRI 智能集成化磁共振成像分析仪上海寰彤科教设备有限公司首创了国内50MHz、60MHz核磁共振化学分析谱仪,自主研发的60MHz高分辨率核磁共振化学分析仪器使用广泛,填补了国内自主研发高场永磁体核磁谱仪和高场永磁体的空白。自主研制的高分辨三维核磁共振成像教学仪器主要性能指标与同规格进口产品相差无几。研发的90M核磁共振谱仪,永磁体可以实现2.1T磁场强度,可以完成H、C谱的分析测试工作,研发的仪器大都实现了批量生产。谢寰彤总经理还提出,国产波谱仪器备受质疑的根本原因是没有相关标准可以证明国产仪器的技术指标可以达到使用需求。1.5T(35mm)动物核磁共振成像系统波谱分析对仪器设备的依赖程度比较高,不断地技术革新使国产波谱仪器公司拥有巨大的发展空间,可谓是机遇与挑战并存!争取让更多领域的专家了解到国产波谱仪器。国产波谱仪器还有多远的路要走?其实不管还有多远,在国家的大力扶持和众多科研工作者的不懈努力之下,解决每一个技术难题,这条路,应该不会太远… … 写在最后:有些读者可能认为小编是在为仪器厂商背书,但小编的本心只是想让更多的人关注到国产仪器研发,每个人的力量都是微小的,希望这篇文章能够被更多的科研工作者们看到,坚信自己此时此刻正在做的事情,可能需要一年、两年、十年,或是更久,但是高端仪器国产化的日子,一定会到来!
  • 世界最小超声波传感器问世
    英国研究人员16日说,他们制造出了世界上最小的超声波传感器。它是如此微小,以至于可以在一根头发丝上排成队列。这一成果可广泛用于探索细胞内部等微观环境。  英国诺丁汉大学当天发布公报说,该校应用光学研究小组制造出了这种微型超声波传感器。它比现有的超声波传感器要小许多,500个这种传感器排在一起才会达到一根头发丝的宽度。它同时具有超声波特性和光学特性,在感知到超声波时会微微变形,这种变形可以被照射它们的激光所探测到,从而获得超声波的信息 反过来,如果对它发出一个激光脉冲,它也可以受激向外发出超声波,探测目标对象。  研究人员马特克拉克说,纳米技术的兴起带来了对微型超声波探测器的需求,他们开发的新设备将超声波探测技术推广到了纳米尺度上。目前人们比较熟悉的超声波应用是医疗检查,这种新型设备就可以用来对一个细胞的内部进行超声波检查,提供过去难以获得的生理信息。  此外,这种超声波传感器的分辨率也很高,它所用的声波频率超出了可见光的频率,因此在理论上它可以获得比最好的光学显微镜还要清晰的图像。
  • 核磁共振波谱仪出海 高端科研仪器国产化值得期待
    p  要想成为科研强国,必须首先成为仪器强国br//pp  日前,人类历史上首张黑洞“正面照”发布,在全世界引起广泛关注。这张“照片”是由来自全球30多个研究所的科学家们通过分布在全球不同地区的8个射电望远镜阵列组成的一个虚拟望远镜网络拍摄到的。/pp  黑洞“照片”的成功拍摄,离不开射电望远镜的使用。现代科技发展实践表明,重大科学研究成果的取得,往往是以科学仪器和技术手段上的突破为先导 科学仪器的进展一定程度上代表着科学前沿的方向,也是推动科技创新的重要支撑。/pp  据不完全统计,诺贝尔自然科学类奖项中,68.4%的物理学奖、74.6%的化学奖和90%的生理学或医学奖成果借助各种先进的科学仪器完成,或直接与新仪器方法或功能的发展相关。/pp  中国科学院电工研究所研究员肖立业告诉记者:“随着人类对自然的认识向更加微观的时空尺度、更大的宇宙时空尺度和更加极端的物理条件方向发展,传统的科研手段已经不能完全胜任。特别是在偏实验性的研究领域,没有高端科研仪器,要想做出重大原始创新科研成果很困难。”/pp  高端科研仪器的研发也提升了科技创新的效率。中国科学院科技战略咨询研究院副院长张凤举例说:“在人类基因组计划开始之初,曾预计完成测序至少需要15年。随着大规模测序手段特别是毛细管电泳测序仪的发展,使得时间缩短了2—3年。”/pp  此外,高端科研仪器的创新、制造和应用水平,也是一个国家科技实力和工业实力的重要标志,对于支撑创新活动乃至经济社会发展都有较大的作用。/pp  虽然我国的仪器技术研究与产品开发工作已取得较大进展,然而在高端科研仪器领域,除核磁共振波谱仪外,常用的高分辨质谱仪等大型分析仪器、大部分的生命科学仪器如磁共振成像仪、超分辨荧光成像仪、冷冻透射电镜等还大量依靠进口。/pp  在国际上,全球科研仪器市场也基本由少数几个国家的大型企业主导。美国化学会旗下《化学与工程新闻》杂志公布的2018年度全球仪器公司TOP20排位榜中,有8家是美国公司,7家来自欧洲,5家公司位于日本。/pp  中国电子科技集团第41研究所首席科学家年夫顺说:“高端科研仪器依赖进口已成为制约我国自主创新能力提升的一个重要因素。”/pp  中国科学院院士、中国科学院大连化学物理研究所研究员杨学明认为:“如果仪器研发硬实力上不去,我们就无法发展自己的高端科研仪器,不仅要花费大量的资金购买,而且容易受制于人。”/pp  “要想成为科研强国,必须首先成为仪器强国。大力发展具有自主知识产权的高端科研仪器,是我国科技发展的重要一环。”张凤认为。/pp  我国仪器技术研究与产品开发已初见成效/pp  高端科研仪器依赖进口的问题已得到有关部门的高度重视。早在1998年,国家自然科学基金委就设立了科学仪器基础研究专项。2011年,“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”设立,分别由国家自然科学基金委和科技部管理,一个负责原创性的仪器研究,一个负责工程化和产业化。据了解,2011至2018年,国家自然科学基金委资助来自中央有关部门推荐、经费体量在1000万元以上的重大科研仪器项目53项,批准资助金额38.14亿元 资助全国科研工作者自由申请、经费体量在1000万元以下的重大科研仪器项目466项,批准资助金额32.03亿元 两类项目合计资助经费超过70亿元。/pp  在这些科研计划的支持下,我国仪器技术研究与产品开发已初见成效。以科技部“重大科学仪器设备开发重点专项”为例,“十二五”科学仪器专项共安排项目208个,目前已全面进入验收阶段,有些成果已具备批量生产能力,得到了推广应用。“十三五”期间,科学仪器专项共安排项目142个,目前正处于关键技术攻关和工程化样机研制阶段。/pp  年夫顺告诉记者,预计未来几年,我国科学仪器成果将进入重要的推广应用阶段,将缓解我国对国外高端科研仪器的依赖。/pp  依托中国科学院武汉物理与数学研究所技术成立的武汉中科牛津波谱技术有限公司,所研制生产的核磁共振波谱仪系统整机已成功推向市场。公司CEO魏嘉说:“我们在国内已经成功卖出了70多台核磁共振波谱仪,在国外也卖出了一些。”/pp  “在国内核磁共振波谱仪市场长期被国外企业主导的背景下,70多台已经算是相当不错的销售成绩”,魏嘉说,“这一方面得益于中科院武汉物理与数学研究所长期在核磁共振波谱仪领域里的技术积累,另一方面则受惠于国家科学仪器研制计划的大力支持。”/pp  2007年,中国科学院武汉物理与数学研究所开始承担国家重大科学仪器研制项目,先后获得6000多万元的资金支持,用于核磁共振主机研发及工程化。经过多年攻关,该所于2014年成功研制出完整的原型样机。之后,该所又成立了公司,将技术转移,由公司进行产业化及市场应用的推广。/pp  “最重要的是一些核磁界的老前辈敢于做‘第一个吃螃蟹的人’”,魏嘉说,“在使用过程中,他们发现我们的仪器也不差,而且售后维修更方便,于是开始帮我们不断地推荐,慢慢口碑就有了。现在很多国内用户开始了解我们,产品有了一定的知名度。”/pp  不过也应看到,像中科牛津那样的企业还不够多。中国科学院化学研究所研究员徐坚说,在多数高端科研仪器领域,由于基础薄弱,依赖进口的局面仍没有得到改善,研发和生产与国际先进水平相比还有一定差距。/pp  国产高端科研仪器研发还需跨越障碍/pp  究竟是什么卡住了高端科研仪器国产化的脖子?/pp  受访者指出,高端科研仪器的开发往往要依托基础研究上的进步,而前期基础研究不足,是阻碍国产高端科研仪器研发的重要因素。比如,获得诺贝尔奖的PCR技术(一种用于放大扩增特定的DNA片段的分子生物学技术)就推动了PCR仪的开发,显著提升了研究效率。/pp  同国外相比,我国对高端科研仪器的整体投资强度还不够高。从创意、关键部件开发到搭建第一台样机,再到最终批量生产,高端科研仪器不仅需要巨额投资,还需要很长的时间周期。“由于高端科研仪器研制周期长、难度大、投入人力物力多、投资风险高,科研人员往往更愿意购买国外的先进仪器,研发仪器的积极性不高。” 张凤说,“从事仪器研制的中小企业往往很难获得风险投资基金的青睐。”/pp  徐坚说,高端科研仪器市场被国外大企业主导,留给国内企业的份额本身就已很小,投入大收益小,一些中小企业自然不愿意做这生意。中科院大连化学物理研究所研究员傅强对此深有体会:“我们曾经发展出一项技术,还与一家仪器企业合作,实现了工程化,生产出四五套,也投入使用了。但是后来这家企业发现市场不大,就不愿意投入很大的力量继续做下去。”/pp  已经研制成功的国产仪器,也多少存在着“空心化”问题。年夫顺说:“关键部件作为仪器设备的‘心脏’,直接决定了仪器的技术含量。目前我国大多数仪器产品所用关键核心器部件,如CPU、光电倍增管、各种探测器和传感器等,还需要依靠进口。”/pp  受访者认为,关键部件和基础软件国产能力不足,导致仪器整机厂家的利润空间被压缩,使国产仪器整机技术水平受限,市场认可度不高,影响了行业的发展壮大 这种情况反过来又压减了关键器部件的采购数量,难以形成产业链上的良性发展。/pp  从需求侧来看,国产高端科研仪器在实际推广和应用时,往往较难获得用户的信任。一方面,与国外成熟仪器相比,一些国产仪器在性能指标和稳定性、可靠性上存在差距 另一方面,一些科研人员受到研究习惯影响,如出于保持与已有文献一致的实验数据等考虑,往往会选择国外品牌型号的仪器。/pp  张凤说:“国产高端科研仪器需要被给予更多‘容错’‘试错’的机会,如果国产仪器研发生产的单位得不到反馈,很难继续改进和完善。”/pp  就像科学研究需要长期积累一样,高端科研仪器的国产化也需要一个过程,不可能“一口吃成胖子”。“国外的高端科研仪器也是在多年的应用中不断成熟和完善起来的。”受访者认为,只要国家继续加大支持力度,有关各方携手攻坚、持续努力,高端科研仪器国产化值得期待。/ppbr//p
  • 快讯!MOTUS波浪传感器成功整合到大型浮标平台
    背景在恶劣环境中的设施将大大增加对气象海洋学参数信息的需求。处于这些环境中的操作员们希望能减少安装的传感器平台数量以提升效率。欧洲大型传感器平台的一家主要制造商选择与我们合作,结合利用 Aanderaa MOTUS 波浪传感器与 Aanderaa 多普勒流速剖面仪,以监控海浪和洋流。通过联合激光雷达与其他传感器,我们致力于为最终用户提供完整的解决方案以实现高质量的气象海洋学监控。MOTUS 波浪传感器MOTUS 波向传感器的产品经理 Stig B. Øen 为我们介绍了更多有关 MOTUS 传感器的最新动态:针对来自 MOTUS 传感器用户和 MOTUS 浮标用户的反馈,我们始终用心倾听并积极响应,为此我们专门对传感器进行了升级:添加了一些基于竖向时间序列位移的波浪参数,并新增了 NMEA AIS 模式。MOTUS 传感器中的新增参数包括:平均波周期 T1/3;有效波高 H1/10;平均波周期 T1/10波;高 H1/1;平均波周期 T1/1;参考东向和北向水平时间序列,可配置为 2Hz 或 4Hz 采样。有关 MOTUS 波浪传感器的参数,请查阅数据表。MOTUS 适用于不同尺寸的浮标为了测量海浪特征,在理想情况下,传感器平台应完美地跟随水面运动。如果未应用补偿,则 MOTUS 传感器会根据安装位置的竖向平台位移计算波高。波向则基于水平浮标位移的方向。为了在众多不同类型的浮标中脱颖而出,MOTUS 传感器提供以下补偿功能。偏心补偿:在不同形状的大型浮标的旋转原点处安装传感器通常难度较大。通过向传感器提供其安装位置相对于旋转原点的信息并激活传感器偏心补偿功能,可以补偿误差。浮标响应/传递函数:如果浮标无法满足在所有频率下均理想地跟随水面,则可以通过激活和修改浮标传递函数来补偿限制。Anderaa 开发了一款简单工具,以帮助您了解不同尺寸形状浮标的期望阻尼因子。磁性:如果传感器受到电磁干扰,则可以将外部罗盘直接连接到 MOTUS 传感器。MOTUS 适用于海上风力/海上设施结合使用 Aanderaa 提供的海浪和洋流传感器与其他传感器(例如环境传感器和激光雷达),可为您提供完整的预研究平台和全面投产的海上风电场。MOTUS 传感器可在其内部完成对波浪参数的所有处理,通过实时/近实时输出基于频率和时间的参数,提供风浪和涌浪的全波频谱。对于海上风电场的运营来说,监控该区域的海浪将有助于确定是否将船只或技术人员派往现场、缩短停运时间,以及对健康、安全和环境保持高度关注。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 基于SERS技术的新型可穿戴超薄传感器
    目前的可穿戴传感器,已经可以实现在日常条件下跟踪佩戴者的运动和生命体征,例如步数、血压、血氧和心率,并且也已逐渐发展出以非侵入性方式对佩戴者的生物流体(如汗液、唾液、眼泪和尿液)进行原位化学传感(in situ chemical sensing)的技术。但是,传统的可穿戴传感器通常无法在一次测量中同时区分不同的化学物质。如果想要设计成可用于测量多种化学物质,则需要更大的尺寸和非常昂贵的成本。能够检测多种化学分子和生物标志物对及时、准确和全面了解佩戴者复杂的生理和病理状况至关重要。为此,东京大学的研究团队开发出一种基于表面增强拉曼光谱(SERS,Surface-Enhanced Raman Spectroscopy)技术的新型可穿戴超薄传感器。该研究成果发表在6月22日的Advanced Optical Materials杂志,题为“高度可扩展、可穿戴的表面增强拉曼光谱”(Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy)。拉曼技术对可穿戴生物监测具有重要意义,因为它们拥有无需分子标记即可进行灵敏和多路化学分析的能力。困难在于,生物系统的固有的拉曼信号较为微弱,需要将目标分子结合到合适的底物上,以放大拉曼响应。研究团队选择了黄金作为基底。金是一种已知可有效用作SERS基底的材料,多个研究项目已经研究了在实际SERS平台中使用金属的不同方法。研究团队的灵感来自于制造镀金聚乙烯醇 (PVA) 纳米纤维的最新进展,该纳米纤维用于可长时间佩戴在人体皮肤上的电子传感器。团队成员 Limei Liu 解释,“这些 PVA 装置由涂有金的超细线纺制而成,因此可以毫无问题地附着在皮肤上,因为金不会以任何方式与皮肤发生反应或刺激皮肤。”这种可穿戴传感器由纳米网格状的PVA纤维制成,在纤维上覆盖150纳米的金层,将涂覆的纤维纳米网附着到目标表面(例如人体皮肤),然后用水将 PVA 溶解掉,只留下完整的金纳米网在目标表面。纳米线的尖锐边缘作为局部SERS效应的“热点”(hot spot),研究人员通过减小纳米线的直径来优化单位体积中的热点数量,同时保持足够的机械强度以实现耐磨性。在概念验证试验中,志愿者佩戴该贴片,并暴露在不同的化学物质中,然后用商用785纳米拉曼光谱仪进行检测。实验证明,该系统能够检测尿素和抗坏血酸等生物分子,并识别水中的微塑料污染。还可以检测到常见的滥用药物,以及应用于执法。该系统目前需要外部光源和光谱仪配合使用,但研究人员未来将把半导体纳米激光器和纳米光谱仪通过直接键合的方式,集成到可穿戴式SERS传感器中。助理教授Tinghui Xiao表示:“目前,我们的传感器需要进行微调以检测特定物质,我们希望在未来进一步提高灵敏度和特异性。有了这个,我们认为像血糖监测这样的应用是可能的,非常适合糖尿病患者,甚至可以用于病毒检测。”
  • 安徽:推动色谱仪、质谱仪、扫描电子显微镜、磁共振波谱仪等通用仪器逐步替代进口
    5月20日,安徽省人民政府印发《安徽省实施计量发展规划(2021—2035年)工作方案》(以下简称《方案》)。《方案》明确主要目标,到2025年,全省现代先进测量体系初步建立,计量科技创新和服务经济社会发展能力进入全国先进行列。计量科学技术水平明显提升,攻克超导、高温、低温、大电流等一批关键计量测试技术,培养造就一批计量科学人才队伍。到2035年,计量科技创新水平大幅提升,以量子测量为核心的计量技术在全国领先。《方案》要求深化计量科技创新,包括加强计量基础和前沿技术研究,开展计量数字化转型研究,推进新型测试和量值传递溯源技术研究,聚焦关键共性计量技术研究和构建良好计量科技创新生态。其中明确提出,推动“量子度量衡”计划,开展量子计量及计量标准装置技术研究;推动光钟、量子陀螺仪、量子重力仪、量子磁力仪等关键计量测试设备研制。《方案》还强调要强化计量应用服务,其中明确提出要支撑高端仪器产业质量提升。具体来看,鼓励开展仪器设备核心技术、核心算法攻关,推动色谱仪、质谱仪、扫描电子显微镜、磁共振波谱仪、比表面及孔径分析仪、跨尺度微纳形貌测量仪等通用仪器质量提升,逐步替代进口。重点推动量子芯片技术在计量仪器设备中的应用。加快小型化矢量原子磁力仪、量子微波场强仪等量子传感器和太赫兹传感器、高端图像传感器、高速光电传感器等研制与应用。开展仪器设备质量提升工程。支持合肥、滁州、蚌埠市建设仪器仪表产业发展集聚区,筹建安徽省仪器仪表产业计量测试中心,建立仪器仪表计量测试评价制度,培育具有核心竞争力的安徽仪器仪表品牌。《方案》原文如下: 安徽省实施计量发展规划(2021—2035年)工作方案 为贯彻落实国务院印发的《计量发展规划(2021—2035年)》,进一步夯实计量基础,提升计量能力和水平,优化计量服务,强化计量监管,推动安徽经济社会高质量发展,结合《安徽省国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,制定本工作方案。一、主要目标到2025年,全省现代先进测量体系初步建立,计量科技创新和服务经济社会发展能力进入全国先进行列。计量科学技术水平明显提升,攻克超导、高温、低温、大电流等一批关键计量测试技术,培养造就一批计量科学人才队伍。计量服务保障能力明显增强,支撑我省“三地一区”建设作用更加凸显,服务全省经济社会高质量发展的计量体系日趋完善。计量监管体制机制逐步健全,加快推进我省计量条例规章制定修订,增强社会计量溯源意识,建立健全开放共享的协同发展机制。到2035年,计量科技创新水平大幅提升,以量子测量为核心的计量技术在全国领先。计量服务保障能力大幅增强,在线测量技术得到广泛应用。现代计量治理体系进一步健全,民生计量得到充分保障。建成现代先进测量体系。全省“十四五”计量发展主要指标类别主要指标“十三五”“十四五” 属性科学技术计量基准、国家计量标准(个)—1预期性国家计量技术规范(项)24预期性主导国家或华东大区计量比对(次)—1预期性研发计量标准装置(台套)24预期性研制标准物质(项)—5预期性支撑保障社会公用计量标准(项)30003700预期性现代先进测量实验室(个)—1预期性计量数据建设应用基地(个)—1预期性国家产业计量测试中心(个)12预期性省级产业计量测试中心(个)25预期性国家计量器具型评实验室(个)79预期性地方计量技术规范(项)106180预期性省级专业计量技术委员会(个)713预期性法定计量检定机构国家考评员(个)24预期性国家计量标准考评员(个)1118预期性国家专业计量技术委员会委员(个)48预期性法制监督引导培育诚信计量示范单位(家)30006000预期性强检项目建标覆盖率(%)8590预期性二、深化计量科技创新(一)加强计量基础和前沿技术研究。强化计量基础理论和量子标准、量子传感、精密测量等技术研究和创新。充分发挥我省在量子通信、量子计算、量子精密测量研发的领先优势,推动“量子度量衡”计划,开展量子计量及计量标准装置技术研究,在量子传感和芯片级计量标准技术方面实现突破,形成核心器件研制能力。支持企业、高校、科研院所申报国家级和省级科技计划项目,开展新一代信息技术、人工智能、新材料、新能源、高端装备制造和生命健康等领域精密测量技术研究。开展测量不确定度等理论研究。(责任单位:省市场监管局、省科技厅,中国科学技术大学、合肥工业大学、安徽大学等高校科研院所;列第一位的为牵头责任单位,下同)(二)开展计量数字化转型研究。推广应用国家强制检定工作计量器具业务管理平台(e-CQS),探索建设全省计量检定校准结果数字化平台,建立全省计量电子证书系统。积极参与国家计量数据中心建设,争创安徽分中心。在生命健康、装备制造、食品安全、环境监测、节能降碳、新能源汽车等领域加强计量数据建设,争创国家计量数据建设应用基地。(责任单位:省市场监管局、省数据资源局)(三)推进新型测试和量值传递溯源技术研究。针对高温、低温、高压、大电流等极端环境和量子计量需求,研究新型测试技术和量值传递溯源方法,解决极端量、复杂量、微观量和实时工况的准确测量难题。探索开展计量标准智能化、网络化技术研究和应用。(责任单位:省市场监管局、省科技厅,中科院合肥物质科学研究院等高校科研院所)(四)聚焦关键共性计量技术研究。开展量热技术、数字化模拟测量技术、工况环境监测技术、智能计量校准技术和新型传感技术研究,加强时间、频率、加速度、电磁场等物理量精密测量方法研究,推动光钟、量子陀螺仪、量子重力仪、量子磁力仪等关键计量测试设备研制。(责任单位:省市场监管局、省科技厅,中国科学技术大学、中科院合肥物质科学研究院等高校科研院所)(五)构建良好计量科技创新生态。发挥我省企业、高校、科研院所作用,建设量子、新能源等先进计量测试实验室和计量科技创新基地。支持安徽省计量科学研究院争创安徽省技术创新中心、安徽省重点实验室。(责任单位:省市场监管局、省科技厅,中科院合肥物质科学研究院、中国科学技术大学、合肥工业大学等高校科研院所)三、强化计量应用服务(六)支撑新兴产业质量提升。重点围绕我省十大新兴产业,开展计量能力提升工程。在人工智能、新能源汽车、半导体、生物基材料、硅基材料、新型显示、轨道交通、航空装备、绿色食品和生命健康等领域筹建1—2家国家级、3—5家省级产业计量测试中心和计量测试联盟。开展产业计量基础能力提升行动,发挥计量对核心基础零部件(元器件)、关键基础材料、先进基础工艺和产业技术基础的支撑保障作用。开展工业计量基础数据库建设。(责任单位:省市场监管局、省发展改革委、省经济和信息化厅、省数据资源局,各市人民政府)(七)支撑高端仪器产业质量提升。鼓励开展仪器设备核心技术、核心算法攻关,推动色谱仪、质谱仪、扫描电子显微镜、磁共振波谱仪、比表面及孔径分析仪、跨尺度微纳形貌测量仪等通用仪器质量提升,逐步替代进口。重点推动量子芯片技术在计量仪器设备中的应用。加快小型化矢量原子磁力仪、量子微波场强仪等量子传感器和太赫兹传感器、高端图像传感器、高速光电传感器等研制与应用。开展仪器设备质量提升工程。支持合肥、滁州、蚌埠市建设仪器仪表产业发展集聚区,筹建安徽省仪器仪表产业计量测试中心,建立仪器仪表计量测试评价制度,培育具有核心竞争力的安徽仪器仪表品牌。(责任单位:省市场监管局、省发展改革委、省科技厅、省经济和信息化厅,合肥、滁州、蚌埠市人民政府)(八)支撑航空、航天和海洋领域计量能力提升。筹建安徽省航空航天、海工装备产业计量测试中心,开展涡轴、涡桨多类发动机、飞机起降系统、减速传动系统和关键原材料、电子元器件等计量测试技术研究。支持我省高校、科研院所开展卫星制造、有效载荷、卫星发射、地面设备、运营服务、数据应用、无人机等空天信息领域计量技术研究和推广应用。(责任单位:省市场监管局、省发展改革委、省科技厅、省经济和信息化厅,芜湖、安庆市人民政府)(九)支撑人工智能与智能制造发展。加快建设安徽省机器人及智能装备产业计量测试中心,开展工业机器人减速器、控制器、传感器等核心零部件以及整机性能的关键计量测试技术研究,加快提高工业机器人质量稳定性。提升人工智能领域计量测试服务能力,打造国家级语音及人工智能检测平台。(责任单位:省市场监管局、省科技厅、省经济和信息化厅,中国科学技术大学、合肥工业大学等高校科研院所,合肥、芜湖市人民政府)(十)支撑数字安徽建设。加强计量与现代数字技术、网络技术以及产业数字化科研生产平台联动。针对工业先进制造,加快高精度地基授时系统(合肥一级核心站)、传感器动态校准等数字计量设施建设。推动安徽省计量数据库建设,服务数字安徽。(责任单位:省市场监管局、省发展改革委、省科技厅、省数据资源局,合肥市人民政府)(十一)支撑碳达峰碳中和目标实现。利用星载、机载、基站等先进测量技术,重点加强碳排放、生态环境、气候变化等关键计量测试技术研究和应用,健全碳计量标准装置,为温室气体排放可测量、可报告、可核查提供计量支撑。推进碳计量监测技术中心、安徽省水资源计量中心建设,发挥国家城市能源计量中心(安徽)作用,积极开展能源资源计量服务示范工程建设。(责任单位:省市场监管局、省发展改革委、省生态环境厅、省能源局,中科院合肥物质科学研究院等高校科研院所,各市人民政府)(十二)服务大众健康与安全。加快安徽省生物医药、中药等产业计量测试中心建设,围绕疾病防控、生物医药、诊断试剂、高端医疗器械、康复理疗设备、可穿戴设备、营养与保健食品等开展关键计量测试技术研究和应用,重点在先进诊疗技术、治疗装置、肿瘤靶向药物等前沿领域提供计量测试技术服务。加强公共安全、社会稳定、自然灾害等领域计量技术研究和测试服务。(责任单位:省市场监管局、省公安厅、省交通运输厅、省卫生健康委、省应急厅,合肥市人民政府)(十三)服务交通计量技术发展。针对铁路及轨道交通安全专用测量设备、货车超载超限设备、机动车测速装置和机动车光污染、声污染、尾气排放在线监测设备等开展计量技术研究,实行交通一体化综合检测模式,确保测量设备量值溯源科学准确。开展新能源汽车电池、充电设施等计量测试技术研究和测试评价,加快国家新能源汽车储供能产业计量测试中心和国家市场监管技术创新中心(电动汽车充换电设施)建设,围绕燃料电池、电动汽车在役动力电池、“光储充放”多功能综合一体站、大功率双向充放电系统等领域,开展关键计量测试技术研究和测试评价。加强智能网联汽车计量测试方法研究和基础设施建设。(责任单位:省市场监管局、省科技厅、省公安厅、省生态环境厅、省交通运输厅)四、加强计量能力建设(十四)建立新型量值传递溯源体系。积极应对国际单位制的变革和量值传递溯源的数字化、扁平化要求,逐步构建政府统筹、依法管理的量值传递体系和市场驱动、高效开放的量值溯源体系。强化量值传递体系的法制保障和基础保障,科学规划全省计量标准建设,加快大口径流量、超大尺寸基线、高电压互感器、30MN力值和电离辐射等方面社会公用计量标准建设,尽快填补我省量值传递空白。充分发挥市场力量,提升量值溯源效能,鼓励社会资源提供量值溯源技术服务。(责任单位:省市场监管局,各市人民政府)(十五)推进计量基标准建设。加大在量子、高温、低温、高压、大电流等领域的研究,推进计量基准、国家计量标准建设。开展计量标准能力提升工程,在公平贸易、乡村振兴、公共安全、自然资源等重点领域新建一批社会公用计量标准,推进我省各类计量标准升级换代。加快推动嵌入式、芯片级、小型化的计量标准研制及应用。(责任单位:省市场监管局,中科院合肥物质科学研究院、中国科学技术大学、合肥工业大学等高校科研院所,各市人民政府)(十六)加强标准物质研制应用。实施标准物质能力提升工程,鼓励高校科研院所和企业围绕环境监测、生产安全、生物医药、生命科学、食品安全、刑事司法等重点领域,开展水中氨氮溶液、水中COD溶液、水中总磷溶液、水中总氮溶液、高锰酸盐指数溶液等标准物质技术研究和应用。加强标准物质监管能力建设,参与标准物质量值核查验证实验室及标准物质质量追溯平台建设,形成标准物质全寿命周期监管能力。(责任单位:省市场监管局)(十七)统筹计量技术机构建设。推进全省计量技术机构改革,推动计量技术机构协同、错位发展。省级法定计量检定机构要重点加强应用计量科学技术研究,发挥技术辐射全省的带头作用;市、县级法定计量检定机构要立足为社会提供基础性、公共性量值传递与溯源服务,落实好强制检定职责,强化民生计量、法制计量保障。鼓励支持其他各类计量技术机构发展,支持其为经济社会发展和行业创新提供多样化的计量测试服务。促进计量技术机构创新发展,搭建产业计量技术基础公共服务平台,加快“国家产业计量公共技术服务平台”项目建设,推进国家新能源汽车及智能网联汽车关键零部件质量检验检测中心建设。(责任单位:省市场监管局,各市人民政府)(十八)加强计量人才队伍建设。依托重大科研项目、重点建设平台,在计量领域培育国家、省学术和技术带头人,鼓励支持在计量领域做出突出贡献的创新型人才申报中国科学院或工程院院士。积极引进紧缺人才,支持培养中青年人才,培育计量领域“115”产业创新团队。实施计量专业技术人才提升行动,以省、市法定计量检定机构为依托,建设计量“传、帮、带”培训平台和实训基地,提升我省计量专业技术人员能力。加强计量领域相关职业技能等级认定、注册计量师职业资格管理和计量专业职称评聘工作。鼓励计量技术机构和规模以上工业企业创新岗位设置,探索建立首席计量师、首席工程师、首席研究员等聘任制度。建立我省计量人才库和省际计量合作专家团队,培养一批国家专业计量技术委员会委员、国家计量标准考评员和法定计量检定机构国家级考评员,支持技术人员开展多层次计量交流合作。(责任单位:省市场监管局、省科技厅、省人力资源社会保障厅)(十九)加强企业计量体系建设。引导企业建立健全计量管理制度和保障体系,加强计量基础设施建设、计量科技创新和测量数据应用,鼓励企业通过测量管理体系认证。落实企业计量能力自我声明制度,推广开展企业计量标杆示范。发挥产业计量优势,落实中小企业计量伙伴计划,开展“计量服务中小企业行”活动,提升产业链计量保证能力。鼓励社会加大对企业计量发展的资源投入,研究出台激励企业增加计量投入的普惠性政策,落实好国家对企业新购置计量器具相关税收优惠政策。(责任单位:省市场监管局、省税务局,各市人民政府)(二十)推动计量协作发展。积极参加区域计量服务协同平台和计量数据协同应用中心建设,参与建立区域量值传递溯源体系,提升我省区域发展计量服务保障和科技创新能力。加强区域计量科技创新合作,参加并力争主导区域性计量比对和计量技术规范制定修订,推进区域计量能力、结果互认。围绕“一带一路”建设,开展国际计量合作,筹建国际法制计量组织(OIML)证书指定实验室,鼓励我省计量器具制造企业取得相关证书。(责任单位:省市场监管局)(二十一)推动质量基础设施一体化发展。深化国家质量基础设施协同服务及应用示范创新,依托现有技术机构、重点企业等搭建质量基础设施“一站式”服务平台,为企业提供计量、标准、认证认可、检验检测、质量管理、知识产权、品牌培育等一揽子服务,聚焦“芯屏器合”等关键领域,开展“计量—标准—检验检测—认证认可”全链条整体技术服务。推动计量与相关领域技术规范共享共用,强化计量溯源性要求,发挥精准计量的科学验证作用。(责任单位:省市场监管局)五、加强计量监督管理(二十二)推动计量制度改革。贯彻落实计量法律法规,推动适时修订《安徽省计量监督管理条例》。推进“双随机、一公开”监管,加快智能计量器具实时监控、失准更换和监督抽查相结合的新型监管制度建设,加强国家法定计量单位监督检查和标准物质监管,争创国家级计量比对中心。压实市场主体责任,落实《安徽省计量突发事件应急预案(试行)》。(责任单位:省市场监管局,各市人民政府)(二十三)大力推进民生计量监管。广泛实施计量惠民工程,加强对供水、供气、供热、供电等基础民生计量行业的监督管理,提升精准医疗、可穿戴设备、体育健身、养老等高品质生活领域的计量监管能力。加强计量器具强制检定能力建设,持续开展对集贸市场、加油站、餐饮业、商店、眼镜店和定量包装商品的计量监督,加强对医疗卫生、环境监测、安全防护、取用水、节能减排等领域计量专项监督检查。加强乡村民生计量保障,加大粮食、化肥等涉农物资计量监管。(责任单位:省市场监管局、省发展改革委、省生态环境厅、省住房城乡建设厅、省农业农村厅、省水利厅、省卫生健康委、省应急厅,国网安徽省电力公司,各市人民政府)(二十四)积极推行智慧计量监管。探索建立智慧计量监管平台和数据库,鼓励计量技术机构建立智能计量管理系统,建立智慧计量实验室。做好中国(安徽)自由贸易试验区在用电能表状态评价及更换试点工作并逐步在全省推广应用,积极建立全省电动汽车充电设施在线计量监管平台,确保充电设施强制检定工作有效开展。(责任单位:省市场监管局、省发展改革委、省商务厅,国网安徽省电力公司)(二十五)加强诚信计量体系建设。建立完善以经营者自我承诺为主、政府部门推动为辅、社会各界监督为补充的诚信计量体系。在商业、服务业等领域全面开展诚信计量行动,推行经营者诚信计量自我承诺,建立市场主体计量信用记录,推进计量信用分级分类监管。(责任单位:省市场监管局)(二十六)严格计量执法活动。加大对计量违法行为的打击力度,依法查处制造、销售和使用带有作弊功能计量器具,伪造计量数据、出具虚假计量证书和报告等违法行为。建立健全查处重大计量违法案件执法联动机制,做好行政执法与刑事司法衔接。实现计量业务监管与综合执法信息共享,提升执法效率。加强计量执法队伍建设,提高计量执法装备水平。对举报计量违法行为的单位和个人,按照国家有关规定予以奖励。(责任单位:省市场监管局、省公安厅,各市人民政府)(二十七)推动计量市场健康发展。通过政府购买服务、专项授权等形式,吸纳各类社会组织参与法制计量工作。推动计量校准、计量测试、产业计量等高技术服务业的发展,满足市场多样化、个性化的计量需求。强化对高校、科研院所、企业所属实验室和第三方检验检测机构在用仪器设备的计量溯源性要求,确保科研成果有效和测试结果可信。(责任单位:省市场监管局)六、保障措施(二十八)强化组织领导。坚持党对计量工作的全面领导,建立安徽省计量工作联席会议制度,构建协调统一、多元共治的计量工作新格局。谋划建立安徽省计量发展咨询专家委员会,为我省重大计量决策提供支撑和咨询服务。各级人民政府要把计量事业发展与国民经济和社会发展规划实施有效衔接,确保各项目标任务落实。(二十九)加大政策支持力度。各级人民政府要对公益性计量技术机构予以支持,加强计量强制检定、社会公用计量标准建设等公益性工作经费保障。公益性计量工作所需经费按规定纳入本级财政预算。各市应制定相应的投资、科技和人才保障支持政策,加强对计量科研项目和计量科技创新支撑平台的支持。鼓励社会资源通过多元化融资方式,参与产业计量、计量技术、装备研发和应用服务。(三十)推动计量文化建设。省教育主管部门要加强安徽高校计量学科建设,将计量知识教育纳入我省公民基本科学素质培育体系,加强义务教育阶段计量知识宣传教育。各级科技、文化等主管部门要加强计量科普宣传和文化建设,培育建设一批计量博物馆、科技展览馆,建设量子计量科普基地。弘扬新时代计量精神。(三十一)狠抓工作落实。各级人民政府要建立落实本工作方案的工作责任制,明确职责分工,并将主要目标纳入质量工作考核。省市场监管局会同有关部门加强对本工作方案实施情况的跟踪监测,通过第三方评估等形式开展本工作方案实施的中期评估、总结评估,总结推广典型经验做法,发现存在的问题并研究解决对策,重要情况及时报告省政府。
  • 谁来挑战我,一款您不可错过的波前传感器
    〖导读〗目前,国际通用的波前传感器主要是四波横向剪切干涉类型的波前传感器,这款波前传感器采用的是国际名企--法国Phasics的专利技术,并在实际应用中得到广大科研工作者的一致认可! 四波横向剪切干涉类型的波前传感器采用的是法国Phasics对传统的夏克-哈特曼波前传感器的改进的专利技术: 四波横向剪切干涉和夏克-哈特曼技术的区别:PHASICS:SID4SH区别技术四波横向剪切干涉夏克-哈特曼是对夏克-哈特曼技术的改进,PHASICS全球售出超过300个探测器。强度采用傅里叶变换方法,测量对强度变化不敏感由于需要测量焦点位置,测量对强度变化灵敏关于测量精度,波前测量不依赖于强度水平。使用方便界面直观,利用针孔进行对准安装困难,需要精密的调节台SID4 产品使用方便。取样SID4-HR达300x400测量点64x6测量点(微透镜数量)SID4-HR具有很高的分辨率。这使得测量更可靠,也更稳定。数值孔径 NA:0.5NA:0.1SID4-HR动态范围更高。空间分辨率29.6μm115μmSID4-HR具有更好的空间分辨率。重复性2nm RMSλ/200( 5nm @1053 nm)更好的重复率,更稳定。获取频率10fps7.5fps分析速度快照明SID4的技术可以消色差。系统对不同波长和带宽响应一致。无需对每个波长进行校准。夏克-哈特曼技术基于微透镜,其特性依赖于波长(由于玻璃色散)。仪器需要对每个波长校正。PHASICS更灵活:可以测试宽波段,而不需要额外校准。Phasics波前传感器与传统哈特曼波前传感器测量结果对比: Phasics公司波前传感器具有高分辨率、消色差测量 、高动态范围 、高灵敏度、设计简洁紧凑、高性价比、测量可重复性高等优良特性 ,可广泛应用于光传输变换中波前特性分析中。谁来挑战我,法国Phasics公司的波前传感器,一款您不可错过的波前传感器:为了能让广大科研工作者更加直观的了解法国Phasics公司的波前传感器,我们瞬渺团队将出席4月14-16日在南京展览中心举办的---2017年中国(南京)国际教育装备暨科教技术展览会。届时,将展出该款波前传感器,瞬渺团队的技术工程师和销售精英亲临现场,为广大科研工作者全面解析法国Phasics公司的波前传感器!瞬渺团队对于瞬渺人来说,客户的支持是对我们团队最大的认可,面对日益激烈的国内市场,瞬渺将一直秉持客户为先的团队理念,为广大科研工作者带来专业的技术和售后支持!2017年4月14-16日,瞬渺团队将亲临南京-展览中心381展位(靠近交流会一区),届时,欢迎您前来咨询!
  • 应用案例 | 基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器
    近日,来自中国科学院安徽光学精密机械研究所、先进激光技术安徽省实验室、中国科学技术大学、法国滨海大学大气物理化学实验室联合研究团队发表了《基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器》论文。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Advanced Laser Technology Laboratory of Anhui Province, University of Science and Technology of China, Laboratoire de Physicochimie de l′ Atmosph`ere, Universit´ e du Littoral C&circ ote d′ Opale, published an academic papers Dual mid-infrared wavelength Faraday rotation spectroscopy NOx sensor based on NdFeB ring magnet array.氮氧化物(NOx,包括二氧化氮(NO2)和一氧化氮(NO))是对流层臭氧的重要前体,同时也影响羟基和过氧基自由基的浓度。大多数气态化合物在被氧化和从空气中去除或转化成其他化学物质时,都会直接或间接接触到NOx。在典型的羟基自由基水平下,NOx的寿命取决于季节和光化学反应速率,通常为几小时。根据IPCC第六次评估报告,NOx的排放导致净正向变暖,因为它既形成短期臭氧(变暖),又破坏环境甲烷(冷却)。此外,NOx还导致酸沉降以及化学烟雾和气溶胶的形成。NO和NO2在大气光化学反应中起着核心作用,针对它们的检测有助于理解这两种气体的来源和去向,以及研究陆地生态系统与大气之间的NOx交换通量。Nitrogen oxides (NOx, the sum of nitrogen dioxide (NO2) and nitric oxide (NO)) are important precursors of tropospheric ozone, and they also influence the concentration of hydroxyl and peroxyl radicals. Most of the compounds that are oxidized and removed from the air or converted to other chemical species are in direct or indirect contact with NOx. At typical hydroxyl radical levels, the life time of NOx depends on the season and the photochemical reaction rate, which is typically a few hours. According to the IPCC sixth assessment report, the emissions of NOx result in net-positive warming from the formation of short-term ozone (warming) and the destruction of ambient methane (cooling). Additionally, NOx contributes to acid deposition and the formation of chemical smog and aerosols. Since NO and NO2 play a central role in atmospheric photochemical reactions, their simultaneous detection helps to understand the sources and sinks of these two gases, in addition to studying the NOx exchange fluxes between terrestrial ecosystems and the atmosphere.化学发光检测(NO + O3 → NO2 + O2 + hν)是测量NOx的传统方法。在通过化学发光反应(Mo + 3NO2 → MoO3 + 3NO)测量之前,NO2首先需要在高温(~325°C)下转化为NO。虽然这种方法被广泛使用,但其他氧化氮化合物,如过乙酰亚硝酸酯(PAN)和硝酸(HNO3),可能会在测量NOx浓度时引起交叉干扰。同时,这种方法不能区分NO和NO2。红外吸收法也可用于测量NO和NO2。在这种方法中,通常需要通过转化器将NO2还原为NO。由于NO和NO2是顺磁分子,法拉第旋转光谱(FRS)可以用作实现其高度敏感和选择性检测的潜在方法。FRS通过检测气态介质在纵向磁场中引起的光偏振状态的变化,实现对物种浓度的高灵敏度检测。该方法通过测量光学色散实现气体浓度的检测,因此其动态测量范围比基于比尔-兰伯定律的吸收光谱(动态范围上限≤10%)更大。FRS的另一个重要优势是它对于抗磁性分子(如水和二氧化碳)具有较强的抗干扰能力,从而使其具有高样品特异性。Chemiluminescence detection (NO+O3→NO2+O2+hν) is the conventional method for measuring NOx. NO2 first needs to be converted to NO at high temperature (~325 ◦ C) before it can be measured by chemiluminescence reaction (Mo+3NO2→MoO3+3NO). Although this method is more widely used, other oxidized nitrogen compounds, such as peroxyacetyl nitrate (PAN) and nitric acid (HNO3), can cause cross-interference in the measurement of NOx concentrations. Simultaneously, this method is non-selective in discriminating between NO and NO2. The infrared absorption method can also be used for NO and NO2 measurements. In this method, NO2 usually needs to be reduced to NO by the converter. As NO and NO2 are paramagnetic molecules, Faraday rotation spectroscopy (FRS) can be used as a potential method to achieve their highly sensitive and selective detection. FRS enables highly sensitive detection of species concentrations by detecting changes in the polarization state of light induced by a gaseous medium immersed in a longitudinal magnetic field. This method realizes the detection of gas concentration by measuring optical dispersion, so it has a higher dynamic measurement range than absorption spectroscopy (dynamic range upper limit ≤10%) based on Beer-Lambert law. Another significant advantage of FRS is that it is reasonably immune to diamagnetic species (e.g., water and carbon dioxide), which allows it to exhibit high sample specificity. 大多数这些报道的FRS传感器使用螺线管提供外部纵向磁场,从而导致能耗高和产生过多焦耳热。同时产生目标磁场所需的高电流交流电路会产生不受控制的电磁干扰(EMI),通常会降低FRS传感器的长期稳定性。此外,当前报道的FRS传感器只能在吸收池中进行单组分测量,不能满足复杂环境中同时进行多组分测量的需求。Most of these reported FRS sensors use solenoid coils to provide an external longitudinal magnetic field, which makes them suffer from high power consumption and excessive Joule heat generation. The high-current alternating current circuit required to generate the target magnetic field produces uncontrolled electromagnetic interference (EMI), which usually deteriorates the long-term stability of the FRS sensors. In addition, the currently reported FRS sensors are only capable of single-component measurements in the absorption cell and cannot meet the demand for simultaneous multi-component measurements in complex environments.在本研究中,提出了一种新型的低能耗FRS传感器,基于钕铁硼(NdFeB)环形磁体阵列,实现在单个吸收池中同时检测NO和NO2。分析了同轴双波长赫里奥特池(DWHC)的环形磁体阵列的磁场分布特性。使用两台室温连续波中红外量子级联激光器(QCL),波长分别为5.33 µ m(1875.81 cm&minus 1)和6.2 µ m(1613.25 cm&minus 1),同时探测DWHC内的磁光效应。通过对激光波长进行高频调制,有效抑制了1/f噪声。优化了双波长FRS NOx传感器的性能,包括调制幅度、调制频率、样品气压和分析器偏置角。本研究提出的FRS传感器为现场可部署的微量气体检测设备提供了理想解决方案。宁波海尔欣光电科技有限公司为此研究提供了HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器,用以分别检测2个激光束。In the present work, a novel low-power FRS sensor based on a neodymium-iron-boron (NdFeB) ring magnet array was proposed to achieve simultaneous detection of NO and NO2 in a single absorption cell. The magnetic field distribution characteristics of a ring magnet array coaxial to a dual-wavelength Herriott cell (DWHC) were analyzed. Two room-temperature continuous wave mid-infrared quantum cascade lasers (QCL) with wavelengths of 5.33 µ m (1875.81 cm&minus 1) and 6.2 µ m (1613.25 cm&minus 1), respectively, were used simultaneously to probe magneto-optical effects within the DWHC. The 1/f noise was effectively suppressed by high-frequency modulation of the laser wavelength. The performance of the dual-wavelength FRS NOx sensor was optimized with respect to modulation amplitude, modulation frequency, sample gas pressure, and analyzer offset angle. The FRS sensor proposed in this work provides a preferable solution for field deployable trace gas detection equipment. The laser detected by two TEC-cooled mid-infrared thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K).(a) Schematic diagram of the dual mid-infrared wavelength FRS NOx sensor based on a NdFeB ring magnet array (b) Optical layout of the FRS NOx sensor.thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K),结论本研究开发了一种基于NdFeB环形磁铁阵列的双中红外波长FRS传感器,用于同时检测NO2和NO。在光学路径长度为23.7米,积分时间为100秒的条件下,NO2和NO的检测限分别为0.58 ppb和0.95 ppb。高频激光波长调制与外部静态磁场相结合,最大程度地减小了低频噪声对FRS信号的影响。基于有限元方法分析了使用的永磁体阵列的磁场分布特性,帮助确定与其耦合的吸收池长度。采用双波长赫里奥特池放大两种不同偏振光波长与氮氧化物分子之间的相互作用,从而实现了在单个吸收池内对两种顺磁分子的高灵敏度检测。本文提出的FRS NOx传感器在大气环境监测或生态系统NOx通量观测等领域,具有进一步发展成为便携式、可在实地使用的仪器的巨大潜力。Conclusion In this work, a dual mid-infrared wavelength FRS sensor based on a NdFeB ring magnet array was developed for the simultaneous detection of NO2 and NO. The detection limits for NO2 and NO were 0.58 ppb and 0.95 ppb, respectively, at an optical path length of 23.7 m and an integration time of 100 s. High frequency laser wavelength modulation was combined with an external static magnetic field to minimize the effect of low frequency noise on the FRS signal. The magnetic field distribution characteristics of the used permanent magnet array were analyzed based on the finite element method, which helped to determine the length of the absorption cell coupled to it. A dual-wavelength Herriott cell was used to amplify the interaction between two different wavelengths of linearly polarized light and nitrogen oxide molecules, thus achieving highly sensitive detection of two paramagnetic molecules within a single absorption cell. The FRS NOx sensor presented in this work shows great potential for further development into a portable, field-deployable instrument with applications in atmospheric environmental monitoring or ecosystem NOx flux observation. (a) Schematic diagram of a dual-wavelength Herriott cell (DWHC) with a NdFeB ring magnet array (b) Characteristics of the magnetic inductance line distribution around a NdFeB ring magnet array (c) Ray tracing results in a DWHC (d) Spot distribution on a concave mirror.Optimization of laser modulation frequency for the dual mid-infrared wavelength FRS NOx sensor.Optimization of laser modulation amplitude for the dual mid-infrared wavelength FRS NOx sensor.(a), (b) Measured FRS NOx signal as a function of analyzer angle (c), (d) Calculated FRS NOx noise as a function of analyzer angle (e), (f) Calculated SNR as a function of analyzer angle.Measured FRS NOx signal amplitude as a function of sample pressure.(a) , (b) FRS signals for different concentrations of NOx (c), (d) Linear dependence of FRS signal amplitude as a function of NOx concentration.Allan deviation plot of the dual mid-infrared wavelength FRS NOx sensor.Reference:Yuan Cao, Kun Liu, Ruifeng Wang, Guishi Wang, xiaoming Gao, Weidong Chen,Dual mid-infrared wavelength Faraday rotation spectroscopy NOx sensor based on NdFeB ring magnet array, Sensors & Actuators: B. Chemical 388 (2023) 133805https://doi.org/10.1016/j.snb.2023.133805
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • “传感器”仍是卡脖子问题!海洋监测当如何破题?
    2020年,传感器国家工程研究中心等四个行业核心机构,联合发布权威报告《中国传感器发展蓝皮书》,提到中国高端传感器的应用市场几乎被国外垄断,尤其是高端传感器市场,90%以上仍需要靠进口。值得一提的是,其中一类传感器领域的国产占比竟为0%,换句话说,该类传感器领域要 100%靠进口——它就是“海洋传感器”,主要为CTD传感器。由于海洋观测监测平台都要集成和应用温盐深(CTD)传感器,这一难题极大限制了我国海洋监测技术的发展。卡脖子“背后”的国内现状据悉,国内海洋 CTD测量技术始于 20世纪 70年代, 国家海洋技术中心先后研制了千米和 3000 m 自容式 CTD 自记仪, 并成功参与了我国首次南大洋考察。随着国家对海洋监测的重视程度升级,“九五”时期,海洋监测技术被正式列入国家科技部“863”计划。随后,以国家海洋技术中心、山东省科学院海洋仪器研究所、中科院声学所等国内知名科研机构为首的联盟,先后研发了各种新型 CTD 传感器,部分技术指标于国内领先并接近国际先进水平。尽管如此,由于自主研发的产品与国际仍存在一定差距,且存在生产周期长、成本高, 产品一致性、可靠性差等系列问题, 无法满足市场快速发展,大量的海洋传感器应用仍依赖进口。院士支招,关键在于“对症下药”2023年5月,《中国工程科学》刊登了文章《我国海洋监测仪器装备发展分析及展望》,第一作者为王军成院士,文章中展望了我国海洋传感器的研发重点,以下为原文引用内容,对于海洋监测卡脖子难题的“破解”具有指导意义:一是构建与国际评价体系接轨的我国海洋传感器检定校准测试体系,形成统一的海洋监测仪器测试环境。开展海洋传感器校准测试的基础理论方法研究,发展海洋传感器新传递量值标准器、量值溯源传递体系。建立海洋传感器标定、校准实验条件并达到国际一流水平,革新海洋传感器标定与校准体系并提高检定校准及评价水平。二是借鉴国际海洋传感器评价方面的先进技术及标准,构建系统完备、运行高效的我国海洋标准化评价体系。建设计量校准检测技术支撑平台,形成海洋标准计量质量“三位一体”工作模式,体现严谨公正,达到国际领先水平。实施“海洋标准 化+”工程,推动标准融入海洋领域各细分方向,改善标准制定、修订的速度与质量。三是开展海洋监测仪器检测评价、标准化、质量控制方面的国际合作。建设全球海洋传感器计量检测技术交流合作平台,逐步扩大我国海洋传感器评价体系的国际影响力,推动海洋标准、海洋监测仪器计量校准结果的国际互认。基于此,为助力我国海洋生态环境的持续改善,仪器信息网将于7月18日举办“近岸海域环境监测技术进展”网络研讨会,届时将邀请海洋领域内的权威专家出席,分享海洋监测技术进展,旨在为我国海洋监测技术发展贡献绵薄之力。7月18日,国家海洋环境监测中心、国家海洋技术中心、连云港生态环境监测中心、中科院青岛海洋所、天津科技大学、中国水产科学研究院单位专家,不同维度解析近岸海域监测技术进展。免费参会链接:https://www.instrument.com.cn/webinar/meetings/ocean2023/ (仅部分报告有回放,限时免费报名,优先看直播)
  • 日本研发膏药式脑电波传感器 可随时查看大脑状态
    日本大阪大学的科研团队于2016年8月17日宣布,他们成功研发出如同“降温贴”一般,可以贴在额头上使用的膏药式脑电波传感器,能够帮助人们实时观察大脑状态。  以大阪大学产业科学研究室为中心的医脑理工合作项目小组与该校的谷池雅子教授等数位专家共同完成了相关研发工作。  实验证实,这款膏药式脑电波传感器能够对睡眠中的脑电波进行无线测量,精确水平与大型医疗设备基本持平。它不仅能够检测出深度睡眠期常见的δ 波(频率范围0.5-2Hz),而且对人体的负担非常小。  膏药式脑电波传感器让使用者可以在家中自己进行大脑活动检测,轻松确认自己和家人的睡眠品质。每天进行检测还有助于及时发现包括老年痴呆症在内的大脑疾病的初期症状。此外,该机器还能够应用到各种领域,比如让家长通过观察孩子的注意力集中程度判断其对不同学习科目的喜好 监测司机大脑状态,在其身体突然不适时切换成自动驾驶模式等。
  • 三星开发CMOS超光谱图像传感器,有望成为光谱成像的新平台
    光谱仪在材料分析、天文学、食品化学以及医学诊断等许多领域都有应用。市场需求正在迅速增长,但光谱仪的尺寸阻碍了其在更广泛领域的普及。因此,市场急需高性能的紧凑型光谱仪,不断缩小光谱传感器尺寸已成为当前的研究热点。为了使光谱仪小型化,已经进行了各种尝试,例如传统的色散方法、傅里叶变换干涉技术(FTI),以及使用带有随机滤波器阵列和窄带通滤波器的探测器等。与色散和傅里叶变换干涉系统相比,滤波器阵列与探测器的集成,由于无需长光路和光学元件的精确对准来获得高分辨率而具有优势。此外,将滤波器阵列与电荷耦合器件(CCD)或CMOS图像传感器(CIS)等探测器集成,可以通过单次捕捉二维图像实现高光谱成像。特别是,与随机滤波器方案相比,窄带通滤波器阵列的集成无需进行后处理分析。然而,为了获得高分辨率需要大量的信道,意味着更复杂的制造工艺,例如蚀刻和沉积,因为每个信道都需要不同厚度的薄膜。为了解决这个问题,有研究使用组合蚀刻技术来制造多信道。业界对光谱仪中使用的窄带通滤波器的谐振结构进行了研究,但大多数研究仅限于改变电介质多层膜的厚度,以形成不同波长和品质因数的光学腔。这对于器件的大规模生产很麻烦,因为它需要过多的电介质沉积、蚀刻和光刻步骤,尤其是在像素尺寸级别的制造工艺。据麦姆斯咨询介绍,三星高级技术研究所光子器件实验室的Jaesoong Lee及其同事通过将被称为超表面的亚波长纳米结构集成到直接位于CMOS图像传感器顶部的带通滤波器阵列中,开发出了一种紧凑型超光谱(meta-spectral)图像传感器。由于窄带通滤波是通过亚波长光栅结构而不是通过改变层的厚度来调谐的,因此所有信道都可以通过一步光刻工艺制造。这种方案简化了制造,并且与CMOS工艺完全兼容。这种紧凑型超光谱图像传感器具有窄带高效率、与相邻信道的低串扰和高光谱分辨率。利用该器件,研究人员从波长混合图像中获得了高光谱图像。超光谱图像传感器示意图超光谱图像传感器制造研究人员在CMOS图像传感器晶圆(三星S5K4E8)上采用标准的洁净室工艺(包括PECVD和干法蚀刻)制作了超表面带通滤波器阵列。首先,研究人员为底部介质反射器沉积了多层硅和二氧化硅;然后利用电子束光刻定义纳米柱阵列;再使用电感耦合等离子体反应离子刻蚀(ICP-RIE)形成纳米柱阵列,并再次沉积二氧化硅以填充纳米柱之间的间隙;然后进行化学机械抛光(CMP)工艺,以平整二氧化硅顶面;最后,为顶部反射器沉积了一层由硅和二氧化硅制成的多层膜。超光谱图像传感器制造过程示意图高光谱成像为了验证演示其高光谱成像性能,研究人员拍摄了由3 x 5颗多波长LED组成的LED面板的光谱图像。每颗LED可以发射多个波长的组合,这些波长被选择以显示以下大写字母:770 nm显示“S”,810 nm显示“I”,850 nm显示“A”,950 nm显示“T”,如下图(a)底部所示。超光谱成像仪的高光谱成像演示作为概念证明,研究人员拍摄了一张所有LED都打开的面板照片,如上图(b)顶部所示。图像中的所有字母都无法区分,因为面板上的所有LED都已打开。通过将这个组合图像分成20个信道,如上图(b)底部所示,研究人员发现了隐藏的“SAIT”字母。在对应829.1 nm的信道11处,由于810 nm和850 nm LED的宽带发射,“I”和“A”被结合在一起。对于更长的波长(信道12和信道13),研究人员观察到字母“I”变得更模糊,而字母“A”变得更清晰。通过实验结果,研究人员证实了这款超光谱图像传感器具有良好的光谱成像性能。
  • imec集成薄膜固定光电二极管以实现卓越的短波红外成像传感器
    2023年8月14日在比利时鲁汶,imec作为纳米电子学和数字技术领域的全球研发和创新中心宣布成功集成了固定光电二极管结构到薄膜图像传感器中。通过添加固定光电栅和传输栅,薄膜成像器超过一微米波长的吸收质量终于可以被利用,以一种成本效益的方式解锁感知可见光之外光线的潜力。检测可见光范围之外的波长,例如红外光,具有明显的优势。应用包括自动驾驶汽车上的摄像头,以“看穿"烟雾或雾霭,以及用于通过面部识别解锁智能手机的摄像头。虽然可见光可以通过基于硅的成像器检测,但需要其他半导体材料来检测更长的波长,比如短波红外线(SWIR)。使用III-V材料可以克服这一检测局限。然而,制造这些吸收体的成本非常高,限制了它们的使用。相比之下,使用薄膜吸收体(如量子点)的传感器最近出现为一个有前景的替代方案。它们具有良好的吸收特性和与传统CMOS读出电路集成的潜力。尽管如此,这种红外线传感器的噪声性能较差,导致图像质量较差。早在20世纪80年代,固定光电二极管(PPD)结构就在硅CMOS图像传感器中引入。该结构引入了一个额外的晶体管栅极和一个特殊的光检测器结构,通过该结构, charges可以在积分开始前全部排空(允许在没有kTC噪声或前一帧影响的情况下复位)。因此,由于噪声更小、功耗性能更好,PPD主导了基于硅的图像传感器的消费者市场。 在硅成像之外,至今还不可能集成此结构,因为难以混合两种不同的半导体系统。现在,imec在薄膜图像传感器的读出电路中成功集成了PPD结构。 一种SWIR量子点光电检波器与一种氧化铟镓锌(IGZO)薄膜晶体管单片集成成PPD像素。 随后,该阵列被进一步处理在CMOS读出电路上以形成一个完整的薄膜SWIR图像传感器。 imec的“薄膜固定光电二极管"项目负责人Nikolas Papadopoulos 表示:“配备4T像素的原型传感器表现出显着低的读出噪声6.1e-,相比之下,传统的3T传感器超过100e-,证明了其良好的噪声性能。" 因此,红外图像的拍摄噪声、失真或干扰更小,准确性和细节更高。imec像素创新项目经理Pawel Malinowski补充说:“在imec,我们正在红外线和成像器的交汇处处于地位,这要归功于我们在薄膜光电二极管、IGZO、图像传感器和薄膜晶体管方面的综合专业知识。通过实现这一里程碑,我们克服了当前像素架构的局限性,并展示了一种将性能最佳的量子点SWIR像素与经济实用的制造方法相结合的方法。下一步包括优化这项技术在各种类型的薄膜光电二极管中的应用,以及扩大其在硅成像之外的传感器中的应用。我们期待通过与行业伙伴的合作进一步推进这些创新。“研究结果发表在2023年8月《自然电子学》杂志"具有固定光电二极管结构的薄膜图像传感器"。初步结果在2023年国际图像传感器研讨会上呈现。原文: J. Lee et al. Thin-film image sensors with a pinned photodiode structure, Nature Electronics 2023.摘要使用硅互补金属氧化物半导体技术制造的图像传感器广泛应用于各种电子设备,通常依赖固定光电二极管结构。 基于薄膜的光电二极管可以具有比硅器件更高的吸收系数和更宽的波长范围。 但是,它们在图像传感器中的使用受到高kTC噪声、暗电流和图像滞后等因素的限制。 在这里,我们展示了具有固定光电二极管结构的基于薄膜的图像传感器可以具有与硅固定光电二极管像素相当的噪声性能。 我们将一种可见近红外有机光电二极管或短波红外量子点光电二极管与薄膜晶体管和硅读出电路集成在一起。 薄膜固定光电二极管结构表现出低kTC噪声、抑制暗电流、高满量容和高电子电压转换增益,并保留了薄膜材料的优点。 基于有机吸收体的图像传感器在940 nm处的量子效率为54%,读出噪声为6.1e–。
  • 新生力量,为波谱研究注入新动能——2024年度北京波谱年会圆满闭幕
    仪器信息网讯 6月2日,2024年度北京波谱年会圆满落下帷幕。本次会议共进行了9个大会报告、11个技术报告、8个青年论坛报告,吸引了100余位波谱领域代表出席,参会人员进行深入的沟通与交流,共同推动波谱技术的创新与应用。大会报告环节,由中国科学院精密测量科学与技术创新研究院研究员刘朝阳主持,中国科学技术大学教授石发展分享了题目为《基于单自旋量子传感的微观磁共振谱学》的报告。中国科学院精密测量科学与技术创新研究院研究员 刘朝阳 主持大会报告中国科学技术大学教授 石发展 作报告分享石发展介绍了基于金刚石氮-空位色心单自旋量子精密测量,其在磁检测上具有高分辨率高灵敏度的综合独特优势,可以实现单细胞到单分子的微观磁共振谱学和成像,在生物和医学方向具有重要应用价值和前景。同时,石发展课题组进行了基于单自旋量子精密测量的微观磁共振技术发展和生物医学应用探索,具体包括单分子磁共振谱学、高谱线分辨率的零场纳米磁共振谱学、亚微米分辨率免疫磁显微成像在肿瘤病理检测等医学应用研究、单分子免疫磁检测等。大会报告结束后,会议开展了以在读和刚刚毕业学生为主的青年论坛。论坛致力于为波谱学领域的青年才俊构建一个展示才华、增进互鉴的舞台,充分发挥他们在波谱技术与应用上的独特优势。众多来自知名高校及科研院所的硕士与博士研究生在论坛上精彩呈现了各自的科研成果,并与在场的资深专家展开了深入的技术探讨。青年论坛由中国医学科学院药物研究所副研究员王亚男、北京大学研究员刘国全分别主持。北京大学李子曦、中国医学科学院药物研究所赵东阳、清华大学曹波波、首都医科大学李梦琪、北京理工大学周瑾修、清华大学陈阳、华东理工大学何津涵、北京理工大学何晓东为大家带来精彩的报告。中国医学科学院药物研究所副研究员 王亚男 主持论坛北京大学研究员 刘国全 主持论坛北京大学 李子曦《光动力靶向降解表皮生长因子受体(EGFR)的EPR研究》中国医学科学院药物研究所 赵东阳《 “豨加芪“治疗慢性心力衰竭的物质基础及作用机制研究》清华大学 曹波波《一种基于静态固体磷核磁共振表征自组装结构的新方法》首都医科大学 李梦琪《肝硬化患者中血清白蛋白的功能变化:一项EPR探索性研究》北京理工大学 周瑾修《基于异氰与氯肟的偶联反应快速构筑新结构多孔高分子》清华大学 陈阳《固体核磁样品制备系统自主研发和国产化新进展》华东理工大学 何津涵《渐冻症相关蛋白bnRNP H与GGGGCC重复扩增RNA相互作用的核磁共振研究》北京理工大学 何晓东《高分子骨架编辑:多孔聚酮肟的Beckmann重排反应研究》此外,大会设置了墙报展示区,为青年波谱研究者提供了分享科技创新见解、前沿技术及研发成果的窗口,进一步激发了学术交流的活力与热情。墙报展示会议期间,与会人员积极参与优秀青年报告和墙报的评比环节,并在现场投票得出获奖名单。颁奖环节中,会议评选出了“2024年北京波谱会优秀青年论坛奖”、“2024年北京波谱会优秀墙报奖”和“2024年北京波谱会终身成就贡献奖”。颁奖仪式由中国科学院化学研究所研究员向俊锋主持。中国医学科学院药物研究所赵东阳、清华大学陈阳、北京大学李子曦、首都医科大学李梦琪、北京理工大学周瑾修、华东理工大学何津涵获“2024年度北京波谱会优秀青年论坛奖”;北京理工大学石经、中国科学院精密测量研究院王梓农、华南理工大学闫志威、中国科学院化学研究所刁怀玲、中国科学技术大学陈晓杰、北京理工大学龚政获“2024年度北京波谱会优秀墙报奖”;北京化工大学教授严宝珍、中国科学院生物物理研究所研究员王金凤荣获“2024年度北京波谱会终身成就贡献奖”。中国医学科学院药物研究所 赵东阳获“2024年度北京波谱会优秀青年论坛奖”一等奖清华大学陈阳、北京大学李子曦(代领)获“2024年度北京波谱会优秀青年论坛奖”二等奖首都医科大学李梦琪、北京理工大学周瑾修、华东理工大学何津涵获“2024年度北京波谱会优秀青年论坛奖”三等奖北京理工大学石经(代领)获“2024年度北京波谱会优秀墙报奖”一等奖中国科学院精密测量研究院王梓农、华南理工大学闫志威获“2024年度北京波谱会优秀墙报奖”二等奖中国科学院化学研究所刁怀玲、中国科学技术大学陈晓杰、北京理工大学龚政获“2024年度北京波谱会优秀墙报奖”三等奖北京化工大学教授严宝珍(右二)、中国科学院生物物理研究所研究员王金凤(左二)获“2024年度北京波谱会终身成就贡献奖”
  • 第十三届全国化学传感器学术会议(13th SCCS)隆重召开
    p  strong仪器信息网讯/strong 2017年11月6日,第十三届全国化学传感器学术会议(13th SCCS)在广西桂林漓江瀑布大酒店隆重召开。本次会议由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,桂林电子科技大学承办,湖南大学化学生物传感与计量学国家重点实验室、上海师范大学、西南大学、江苏江分电分析仪器有限公司和桂林理工大学、广西师范大学等共同协办,吸引业界逾500位代表参加,旨在促进化学与生物传感器的学术交流与发展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9060593b-b2c8-446c-b91e-fa58eeb5cec2.jpg" title="IMG_0524.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "第十三届全国化学传感器学术会议现场传真/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: left "  本次会议还得到广西壮族自治区科学技术厅、桂林市政府、广西新能源材料结构与性能协同创新中心、广西电子信息材料构效关系重点实验室、广西先进功能材料与器件工程技术研究中心的大力支持。会议共征集论文297篇,分设四个分会场,安排大会报告12个、邀请报告50个、口头报告41个,墙报展示146篇,参会代表总计超过500人,规模相比上届再创新高。br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/c01d751c-5b1b-4f4a-a272-0b75ab97b9f6.jpg" title="孙立贤.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "桂林电子科技大学材料学院院长孙立贤主持开幕式并介绍嘉宾/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/34fdaae9-8c19-498d-a42e-a0bff325c493.jpg" title="主席台_副本.jpg"//pp  俞汝勤院士、汪尔康院士、董绍俊院士、中国仪器仪表学会分析仪器分会理事长关亚风、常务理事长刘长宽、桂林电子科技大学副校长徐华蕊、化学传感器专业委员会名誉主任委员章宗穰、湖南大学分析测试中心主任沈国励、化学传感器专业委员会主任吴海龙主席台就座。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/708ba7bd-4d09-42c9-855b-195eb7a3d7d8.jpg" title="徐华蕊.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "桂林电子科技大学副校长徐华蕊致辞/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9e5b12df-6073-4b72-90e1-05ab205ee7e9.jpg" title="关亚风.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "中国仪器仪表学会分析仪器分会理事长关亚风致辞/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/88f6eb8a-cf1d-4e62-8c70-e74175e440eb.jpg" title="吴海龙.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "化学传感器专业委员会主任、湖南大学教授吴海龙致辞/span/pp  中国仪器仪表学会分析仪器分会化学传感器专业委员会成立于1985年,今年正值成立33周年。从最初的全国离子选择性电极学术交流会到如今的全国化学传感器学术会议,SCCS学术会平均每三年一届,迄今已成功举办十三届,走过38年踟蹰岁月。SCCS与1983年在日本福冈召开的国际化学传感器系列会议几乎同步起源,可谓反映见证了我国化学传感器研究领域的发展历程,充分显示多学科、多技术交叉的特色和向产业化推进的美好前景。/pp  开幕式后是精彩的大会报告环节,中国科学院长春应用化学研究所汪尔康院士、中国科学院长春应用化学研究所董绍俊院士、湖南大学俞汝勤院士等6位学术“大拿”分享前沿学术成果。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/8676daf8-904b-46f2-bea5-e68cff61b06c.jpg" title="汪尔康.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:水质监测系统和生化需氧量(COD)现场实时监测/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:中国科学院长春应用化学研究所 汪尔康院士/span/strong/pp  化学需氧量(BOD)是衡量水体被污染程度最具代表性的参数之一,基于目前还没有可靠水体快速BOD方法和在线监测仪器这一问题,汪尔康院士介绍了团队基于原位培养微生物膜/玻璃管微生物膜反应器,开发出的水体快速BOD监测技术,且成功实现BOD在线监测仪的商品化生产,在江苏无锡太湖沙渚水质自动监测站、江苏常州江边污水处理厂均有良好应用。微生物膜反应器方法具有环境变化能力强、连续使用稳定性高优点,能在短时间实现高效生物降解,实用价值潜力巨大。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/fcc3fefc-e3f1-4a2f-988b-81c2f1275793.jpg" title="董绍俊.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:基于新型能源的自供能生物电化学传感器/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:中国科学院长春应用化学研究所 董绍俊院士/span/strong/pp  基于新型能源的自供能生物化学传感器是当前业界的研究热点之一,董绍俊院士在报告中介绍了三种自供能电化学传感器,包括基于BFCs抑制作用,用于氰基离子和汞离子检测的自供能生物传感器 基于原电池折纸技术,建立的微流体自供能ECL生物传感器和基于化学能的自供能SP-BP-EC-E电极。三种传感器具有高选择性和灵敏度,SP-BP-EC-E电极还可应用于生物催化剂及酶底物等目标物的评价与分析。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/dc0b8530-0091-46cd-a4f9-5b44f16b0919.jpg" title="俞汝勤.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:化学计量学与传感技术促推分析化学数学化、信息化及研究范式转换/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:湖南大学 俞汝勤院士/span/strong/pp  欧洲化学会联合会(FECS)所属分析化学委员会(WPAC)将化学传感器、化学计量学与色谱学、波谱学并列为分析化学研究生教育中的“四大支柱”。结合本次会议主题,俞汝勤院士从分析化学学科发展的视角,讨论化学计量学与传感技术对学科发展某些重要侧面的影响。从经验科学向理论科学演进中化学与分析化学遇到的“数学化”问题,探讨化学计量学助推分析化学完善数学化,进而实现“信息化”进入计算科学时代。以化学传感器为代表的新型分析手段导致数据量急剧上升。在这种“数据海啸”的背景下,化学计量学又助推分析化学向数据密集型知识发现的数据科学新阶段过渡。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b2e6e02c-5807-4e33-9950-f9e89d199eaa.jpg" title="雷建平.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:生物传感中的信号放大策略/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:南京大学 雷建平教授/span/strong/pp  雷建平教授重点介绍了南京大学生命分析化学重点实验室鞠熀先教授课题组在生物传感信号放大方面开展的工作。体外检测方面,在纳米信号放大、FRET/ECL能量转移、分子生物学信号放大、SERS效应与杂交放大的基础上,开发高特异性核酸检测新方法 基于信号放大、ECL与光电与化学发光成像,开发出免疫标志与蛋白质多标志物检测。最终将上述两种体外检测方法引入原位,实现细胞功能分子的原位检测与癌症诊断新方法的开发研制。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/e4b89d59-18f1-4b82-8770-0149bdf65656.jpg" title="袁若.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:电致化学发光生物传感器构建新方法进展/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:西南大学 袁若教授/span/strong/pp  电致化学发光生物传感器因其快速、灵敏、操作简便等优点,为目前生物分析领域的研究热点之一。为获得高的灵敏度和低的检测限,实现对目标物的痕量检测,近年来团队发展了一系列基于新型电致化学发光试剂和新型电致化学发光生物传感器构建的新策略,主要包括基于自增强型电致化学发光试剂构建生物传感器的新策略 基于共反应促进剂的电致化学发光生物传感器构建的新方法 基于能量转移的电致化学发光生物传感器构建的新观点 基于新型发光试剂的电致化学发光生物传感器构建的新思路 基于新型分析方法构建的电致化学发光多组分生物物质检测。通过以上新策略不仅显著提高了电致化学发光生物传感器的灵敏度,实现了目标物的超灵敏检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/886857c2-bd1f-4e2f-b65b-c3eef5c4039f.jpg" title="樊春海.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告题目:DNA 有序纳米结构的构筑与生物应用/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "报告人:中国科学院上海应用物理研究所 樊春海研究员/span/strong/pp  团队利用DNA折纸技术,在试管中进行各类纳米结构的有序构筑,方法具备分子量精确、刚性结构内部可控、提升生物反应效率等特性。利用DNA有序结构可为原子力显微镜提供有效力学标记,从而提高AFM对目标物检测的分辨率,为基因突变的分析检测提供强有力手段。此外DNA有序机构也可用于生物传感界面,从而提高生物检测的灵敏度和特异性。/pp  本次会议也得到岛津企业管理(中国)有限公司、天津市兰力科化学电子高技术有限公司、天津艾达恒晟科技发展有限公司、天津德尚科技有限公司、雷迪美特中国有限公司、曼迪匹艾(北京)科技服务有限公司以及江苏江分电分析仪器有限公司等单位的赞助支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/96b915b3-e701-4824-8e56-7af39e0c6e51.jpg" title="合影.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "会议代表合影留念/span/pp  6号下午四个分会场的报告将同期召开,届时将有更多专家学者带来学术分享。strongspan style="color: rgb(255, 0, 0) "仪器信息网/span/strong作为大会战略合作媒体,将为您带来更多精彩报道,敬请期待。/pp  以下是展商风采一览:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2a3b4c26-93f8-4dba-adca-43b3b1eba2bd.jpg" title="天津兰力科.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "天津兰力科/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/128494c7-e5ff-42ea-8ae6-159ad7fca370.jpg" title="雷迪美特.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "雷迪美特/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/4db5b7df-1df8-41a7-ad9a-03a3e21615f0.jpg" title="天津艾达恒晟.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "天津艾达恒晟/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/34463a29-1b22-4504-8aad-a0c81783005d.jpg" title="天津德尚.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "天津德尚/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/8dcc9738-4872-4372-ad86-2a9386cce047.jpg" title="MDPI.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "MDPI Sensors/span/p
  • 安东帕全新推出Carbo 520在线二氧化碳传感器
    奥地利安东帕公司全新推出Carbo 520光学二氧化碳传感器,它是一款易于在线安装的饮料生产流程 CO2 传感器。该系统可与您的样品直接接触,在 0 g/L 到 12 g/L 的整个测量范围内提供无漂移的CO2检测结果。详细参数:http://www.anton-paar.com/cn-cn/products/details/carbo-520-optical/co2-sensor/ ? 安装后免维护Carbo 520 Optical 是一种完全免维护的设备。它基于衰减全反射 (ATR) 光谱法来测量 CO2 浓度,传感器中无移动或机械部件,因此不存在磨损且无损耗品。操作传感器时无需准备外部清洗气体和外部压缩空气,因此也不存在需要操控的供气阀。 ? 所需运行成本最少Carbo 520光学二氧化碳传感器只需 24 V 10 W 的电源,耗电量与您的节能灯泡相同。除节能以及传感器使用寿命长之外,Carbo 520 Optical 还具有测量精确、测量速度快的特点,可最大限度降低您的成本,使您在原材料上的花费最少并严格按照规范进行生产。 ? 单次设置后可测量所有饮料Carbo 520的测量结果不受所测饮料的溶解度和糖组分的影响。无论测量可乐、啤酒、果酒还是其他饮料中的 CO2 含量 - 您都可以采用相同的测量方法,无需考虑任何饮料类型差异。 ? CO2 测量结果不受影响,值得信赖Carbo 520光学二氧化碳传感器提供绝对精确的测量结果,因为其设计为可避免其他类似光学系统中纂改测量结果的某些“陷阱”。由于传感器只测量 CO2 分子吸收的光的特定波长,因此该测量具有高度选择性且不受饮料中普遍存在的其他气体(比如氧气或氮气)的影响。另外,由于测量只在样品的表层进行,因此测量结果同样与各个样品的色度或浊度无关。 ? 可轻松测量通常难测的样品就准确度和卫生而言,测量含大颗粒物的饮料是一种特别的挑战。凭借 Carbo 520 二氧化碳传感器,可简单可靠地测量通常难测的样品(比如含果肉的果汁),因为安东帕传感器的构造中不含任何移动部件或卫生死角且该传感器适合于无菌应用。清洁该 EHEDG 认证传感器既轻松又高效。 ? 随时可获得即时测量结果安东帕二氧化碳传感器易于直接在线安装并因此能真正接触您的样品。即使最微小的浓度变化也会迅速进行实时报告,测量值每 4 秒更新一次。系统通信无障碍,可轻松连接 PROFIBUS、Modbus TCP、PROFINET、DeviceNet 和 EtherNet/IP 等现场总线。测量速度越快,则反应速度也就越快 - 从而优化控制和效率。关于安东帕(中国)奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 商用表面增强拉曼光谱传感器面世
    据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。  表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。  新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。  研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。  由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。
  • 全球首款晶圆级传感器芯片问世 或掀起光谱仪应用革命
    AS7262和AS7263六通道数字光谱传感器IC推出样品,掀起消费和工业光谱分析应用的革命  2017年1月17日,领先的高性能传感器解决方案和模拟IC供应商艾迈斯半导体公司(ams AG)宣布推出全球首款高性价比的多通道光谱片上传感器解决方案,为消费和工业应用实现新一代光谱分析仪开辟了道路。  采用4.5 x 4.4mm小型阵列封装,超低功率AS7262可见光传感器和AS7263近红外传感器均提供六个经过校准的光谱通道。极具竞争力的价格优势,使这款新的多通道光谱传感器为消费产品及现实领域各种应用的测试和使用打开了一扇门。其主要解决包括材料和产品认证、产品质量和完整性以及近红外光谱(NIR)和可见光谱方面的材料内容分析。  艾迈斯半导体新兴传感器系统市场总监Jean Francois Durix表示:“将传感器越来越多地集成到智能手机和平板电脑已经形成了新的移动应用浪潮,AS7262 和AS7263的推出使芯片级光谱分析得到广泛应用,为工业及消费应用领域的光谱传感创新带来革命性的发展。新的光谱传感解决方案大大降低了光谱分析的成本及方案尺寸,广泛适用于食品安全、产品认证、常规测试等应用,帮助更好地保护人们的身体健康和生活环境。”  多光谱传感器采用新的制造技术,使纳米光干涉滤波器极其精确地直接附着在CMOS硅晶圆上。该传感器使用的干涉滤波器技术具有极高的精确性和稳定性,不受使用时间及温度的影响,比如今常用于各类光谱分析仪器的组件尺寸更小、更具性价比。  集成智能的AS7262六通道可见光传感器通过I2C 或UART接口可提供经过校准的数字输出。它能量测可见光范围内六个不同波长的光强度:450nm、500nm、550nm、570nm、600nm和 650nm。AS7263可检测近红外光谱610nm、680nm、730nm、760nm、810nm和860nm的红外特性。两款产品都包含一个带有 LED驱动电路的电子快门,这意味着设备设计师可以通过单芯片准确地控制光源和光谱检测功能。  新的多光谱传感器具有小尺寸、低功耗的特点,测量设备OEM厂商可凭借这些特点轻松实现新产品的开发。例如,笨重的实验室级分析设备现在可以被便捷的手持设备取代。在工厂,如今生产的样品不得不从生产线送往实验室进行化学分析,未来的质量检测将可以通过基于多光谱传感器的全新小巧、稳健的光谱分析仪在生产线上完成。  AS7262和AS7263正在量产。AS7262和AS7263的评估板可从艾迈斯半导体的ICdirect在线商店获取。
  • 立仪科技获数千万A轮融资,专注研发光谱共焦传感器
    3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被基恩士等国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波表示:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。
  • 超声波雷达传感器厂商佑航科技获数千万元融资
    近期,超声波雷达传感器厂商珠海佑航科技有限公司(简称:佑航科技)宣布成功完成数千万元Pre-A轮融资,由中南创投领投,鼎嘉资本跟投。据了解,本轮融资将主要用于车载超声波雷达传感器芯片AK2的车规验证测试、量产、超声波探芯产能扩展以及车载微碰撞传感器芯片的研发等项目。佑航科技位于珠海市香洲区,厂房面积约6000平米,超声波雷达传感器年产能规划超8000万颗,公司是由珠海佑航和广州佑航于2021年合并成立的高新技术企业,是一家专业致力于车载安全系统:超声波雷达传感器探芯(换能器)、芯片、算法的研发设计、生产和销售为一体的企业。公司设有六大车间:三个传感器探芯智能制造车间、铝壳加工车间、压电陶瓷片制造车间、涂装加工车间、车规级实验室。珠海佑航在超声波雷达传感器端进行深度研发,以传感器探芯+芯片+算法为产品基础的模式作为前装二级供应商。探芯作为车载超声波雷达的核心零部件,直接影响总成产品的各项性能指标和技术特征。因此,佑航科技先从探芯入手,已经于去年底实现了超声波雷达探芯的规模交付,目前佑航拥有三条全自动化探芯生产线,预计今年可达到2000万颗探芯的销售量。计划今年底再新增两条生产线,明年能达到4000万颗探芯的产能。除了探芯,佑航科技还建立了一支车载超声波芯片研发团队,结合在超声波探芯领域的积累,研发符合国内标准的车载超声波AK2功能芯片。此外,佑航科技还在开发微碰撞传感器芯片。这一技术与超声波芯片技术都基于机械波来实现对距离和震动的感知,将两项功能整合后,可以提供更全面的应用和超声波融合算法,以降低成本。
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • 研究人员开发出高灵敏度的声表面波氨气传感器
    氨气是一种有毒易挥发且具有强刺激性的工业气体,作为化学原料广泛应用于化学工业、食品加工和医疗领域。痕量氨气的检测对于环境和人体健康保护以及工业生产安全防范具有重要意义。现有氨气传感技术存在工作温度高、选择性差及响应速度慢等方面的不足,难以满足实际应用需求。中科院声学所超声学实验室王文研究团队与中科院空天技术研究院孙建海团队合作,将微纳声表面波器件技术与氧化石墨烯-氧化锡(GO-SnO2)纳米复合材料相结合,设计并制作了一种在室温条件下(25摄氏度)灵敏度达到ppb级的新型声表面波氨气传感器。该复合材料具有较大的表面积和较多的化学活性位点,大幅增加了氨气吸附效率,从而提高了传感器灵敏度与响应速度。研究人员利用氧化石墨烯-氧化锡纳米复合材料制备于声传播路径表面,构建出了小尺度声表面波氨气传感器。他们结合鉴相传感电路,对所研制的声表面波氨气传感器进行实验测试,结果表明相对于国内外已报道氨气传感器,该传感器实现了低检测限(40ppb)、高灵敏度(0.098 mV/ppb)以及快速的传感响应(16.4 s),此外还具有良好选择性和重复性的特点,在痕量氨气的检测中具有很好的应用前景。相关研究成果在线发表于Top期刊Sensors and Actuator B-Chem.(IF:9.221)。本研究获得国家自然科学基金(No.11774381,No.62174163)、国家重点研发计划(No.2020YFB1506205)资助。图1 氧化石墨烯-氧化锡纳米复合材料的表征(图/中科院声学所)图2 声表面波氨气传感器及其响应特性(图/中科院声学所)
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制