当前位置: 仪器信息网 > 行业主题 > >

质谱检测量

仪器信息网质谱检测量专题为您提供2024年最新质谱检测量价格报价、厂家品牌的相关信息, 包括质谱检测量参数、型号等,不管是国产,还是进口品牌的质谱检测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱检测量相关的耗材配件、试剂标物,还有质谱检测量相关的最新资讯、资料,以及质谱检测量相关的解决方案。

质谱检测量相关的论坛

  • 测量惰性气体的质谱采购咨询

    公司准备新上个项目,计划采购能定量测量惰性气体的质谱,主要是Ar、Xe、Kr等,而且要测出其同位素组成和丰度,检测限越低越好,各位大虾有什么推荐?给我留言也行~感谢

  • 生物质谱技术及其在RNA 检测中的应用

    引 言在过去的30 年里,质谱技术尤其是测定生物大分子的生物质谱技术有飞速的发展,电喷雾离子化(ESI) 和基质辅助激光解吸电离(MALDI)离子化技术的发现为质谱的生物应用奠定基础;质谱的分辨率、灵敏度、准确度也达到很高的水平,生物质谱在蛋白、多肽领域得到广泛地应用,在核酸研究领域,质谱也逐渐发挥越来越重要的作用。下面分别介绍质谱技术、核酸的质谱检测方法以及质谱在核酸领域的应用。1 质谱技术简介质谱是测定物质分子量的工具,简单地说,质谱的操作部件由软件和硬件两部分组成。硬件主要包括三个核心硬件,分别为样品离子化、质量分析器(M/Z) 和离子检测器;软件部分包括机器的控制和质谱数据的分析处理。样品离子化有多种方法,在过去的20 多年,质谱领域的重大进展之一就是ESI 和MALDI 离子化方法的发现,可以在比较温和的条件下产生离子,这大大促进质谱在生物领域的应用。ESI 和 MALDI 离子化的原理在文献 中已经详细的介绍,这里不再详述。电喷雾离子化的特点是产生多电荷离子,使质量电荷比(m/z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展分子量的分析范围。电喷雾离子化根据喷射源液体流量的大小,可分为纳升、微升、电喷和涡轮离子喷射。 MALDI 是通过气化的带电基质和样品之间发生碰撞,把激光的能量传递给样品,从而导致样品的离子化。它也是一种软电离技术,适用于混合物及生物大分子的测定。质量分析器是质谱的核心,目前质谱的质量分析器有四类:离子阱(Ion Trap)、飞行时间(Time of Flight,TOF)、四极杆(Quadrupole) 和傅立叶变换离子回旋共振。它们在设计和构造上各有不同,因而各有优缺点。质量分析器决定整个机器的分辨率、质量准确性、敏感性和质量检测范围。离子阱质量分析器使用频率分离离子,具有中等的质量准确度,且测量的质量范围有限。傅立叶变换离子回旋质谱使用频率分离离子,具有很高的质量准确度和分辨率,但傅立叶变换离子回旋质谱价格昂贵、仪器操作复杂。飞行时间分析器使用时间和距离分离离子,具有较高的质量准确度和分辨率,测量的质量范围大。四极杆质量分析器使用频率分离离子,具有较低的质量准确度和分辨率,且测量的质量范围有限。这些质量分析器的发明促进质谱的应用。近10 年来,质谱的重要进展体现在两个方面:(1)质谱技术的第一个重要进展就是开发串联质谱,就是对上述质量分析装置进行不同的组合,以达到特异性的目标;(2)质谱另一个重要进展不是在于技术层面上,而是在仪器化方面,商业化的仪器推动质谱在应用领域里的快速发展。各厂家为满足客户的需要,尤其是生命科学领域的需要,组合不同的特殊电离技术以及各种质量检测器,生产出超高分辨率、高灵敏度、宽质量范围的质谱仪;把质谱与气相色谱、高效液相色谱系统联用,大大拓宽质谱应用范围。下面主要介绍一些有代表性的质谱仪。傅立叶变换- 离子回旋共振质谱(Fourier Transform ion Cyclotron Resonance Mass Spectrometer, FT-ICR-MS) 具有超高质谱分辨率、高质量测量准确度、回旋池内现场反应等显著优点。生产傅立叶变换- 离子回旋共振质谱的主要厂家有 Thermo Fisher 和Bruker。Thermo Fisher 的LTQ-FT 是串联线性离子阱 FT-ICR,而Bruker 的APEX-Qe 是三级四极杆和FT-MS 的结合; FT-ICR-MS 质量准确度达1~2ppm, 分辨率超过105。静电场轨道阱(Orbitrap) 质量分析器,是第一个在静电场中进行离子捕获的高性能质量分析器,基于这一分析器,开发LTQ orbitrap 质谱仪。该机器使用线性离子阱实现离子分离、裂解以及多级质谱功能。它在质量准确度、分辨率、动态范围、灵敏度以及多级质谱能力等方面具有明显优势,具有高达30 万的分辨率。它与LTQ FT 线性离子阱回旋共振质谱仪有相近的工作原理,但仪器运行时无需消耗大量制冷剂,能够在降低运行成本的同时得到高分辨率的数据结果。MALDI - TOF 质谱采用一系列的新技术, 如提供二阶无网离子反射器,延长离子在飞行管中的飞行距离, 飞行路径可达3m ;创新的使用LIFTTM 技术来提升能量,可高速完成高质量的MS/MS 质谱数据;采用独有的PANTM 全景宽域聚焦技术,可以在非常宽的质量范围内获得大于25000 的分辨率。MALDI - TOF 质谱可用来分析较为复杂的混合物,在样品含量低于10-12mol 时,分子量的测定仍有相当高的灵敏度和分辨率。近年来发展的MassARRAY ™时间飞行质谱生物芯片系统由美国Sequenom 公司开发,是目前唯一采用质谱法直接检测单核苷酸多态性(SNP)的设备。该系统的突出特点是能以极高的精确度快速进行基因型识别,直接测出带有SNP 或其他突变的目标DNA。MassARRAY ™系统反应体系为非杂交依赖性,不存在潜在的杂交错配干扰,不需要各种标记物,其采用的高密度SpectroCHIP ™点阵芯片分析系统能在4h 之内完成多达3840 个多重性鉴定,每个检测点只需3~5s,结果实现全自动分析。这套系统所提供的大规模、高通量检测SNP 的技术平台,在当前疾病机制研究中发挥重要作用。

  • 【原创大赛】质谱应用之分子量的测量

    【原创大赛】质谱应用之分子量的测量

    质谱应用之分子量测量 最近10年质谱技术的飞速发展,耐用的离子源,高性能的质量分析器和多种有效的扫描方式推动了质谱仪器走进各个单位,质谱成为功能强大的生物化学分析平台。目前基于质谱的物质定量定性实验应用广泛,从普通色谱-质谱(GC-LC&LC-MS)连用技术的定量分析实验(药理药代、农残筛查、环境污染物分析……),到大规模发现鉴定的组学实验(蛋白质组学和代谢组学)。抛开这些酷炫的方法和技术,我们今天讨论一下质谱的基本应用——测定分子量,通过一些测定分子量的实验我们可以看到分子量代表的更多意义。 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,质谱法(Mass Spectrometry, MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息(以上内容来自百度百科和高中教科书)。从定义我们看出,测定分子量是质谱的基本技能,一台质谱仪我们首先问的是它测量的分子量范围是多少,测量的准确度怎么样。1小分子的测定 质谱的首先发展是测定元素的相对分子量,比如我们一般说到元素C的分子量是12,其实说的是C在自然界的最高丰度12C的相对原子量,考虑自然界只有12C相对含量1.082%的13C,C准确平均分子量是12.011。化合物一般有C、H、O……多种元素组成,这些元素的同位素互相组合,如果我们的质谱可以区分相邻的同位素的相对分子量,质谱图上会显示的一簇峰,每个质谱峰对应相同的分子式下不同的同位素组成的化合物响应。因为化合物组形成元素的不同,他们的质谱簇峰分子量(momoisotopic mass)组成独特的质谱峰模式(pattern),如果质谱区分不了相邻的同位素峰,这一簇峰变成一个质谱峰所对应的是平均分子量(average mass)。 如果我们测定一个化合物分子量,如果通过质谱可以得到精细的元素分子量(momoisotopicmass)及其相对丰强度(在质谱上表现为簇峰的强度)的信息,可以通过谱图推测化合物的组成写出分子式。图1 A是测的城市污水提取物的分子量,三个主要质谱峰为同一个化合物的同位素质谱峰,推测分子式为C2HO2Br2,采用软件(很多软件都可以进行,最简单的是chem office)模拟此分子式的精确分子量,图2 B即为模拟所得的质谱图。可以看出所测得的质量偏差很小,最高元素峰216.8331-216.8328=0.0003Da,质谱峰分布模式(分子量和相对强度)实际测量图和模拟图几乎一致,可以确定该化合物的分子式是C2HO2Br2。http://ng1.17img.cn/bbsfiles/images/2014/12/201412131121_526995_2265735_3.jpg图1 污水提取物质谱图。A测量图,B模拟图。质谱Thermo LTQ-orbit,HESI源。 对于有特殊的元素的化合物,测量准确的分子量及其同位素质谱模式可以准确的判定特殊元素的存在,图2是测得某配位化合物的质谱图,通过其特殊的质谱图可以确定此化合物为Os金属配合物。http://ng1.17img.cn/bbsfiles/images/2014/12/201412131125_526996_2265735_3.jpg图2 Os配合物质谱图。质谱Thermo LTQ-orbit,HESI源。 上述测量过程简单实用,但是这个实验要求质谱有足够的质量准确度,所测的分子量与实际值最好在小数点最后一位有波动,不然预测分子式会有很大的偏差。2更高分子量的测量 对于同位素峰的测量,需要质谱区分相邻的同位素峰。在图1中两个同位素峰相差越2个道尔顿,在测量217分子量时候,只要质谱可以区分2个道尔顿的质谱峰就可以了,在图2中,同位素峰相差1道尔顿,区分度只有1个道尔顿。当分子量达到5K以上的时候,如果化合物仅仅由CHON等简单同位素组成,因为组成原子个数的增多,同位素峰越来越复杂,两个同位素峰之间的区分度越来越小,当质谱区分不开这些同位素峰的时候,测得是平均分子量(average mass)。图3 A测量的是一个分子量为10380Da的多肽,B和C是带10个电荷和11电荷同位素峰的局部方法图。在B中,同位素质谱峰间距(区分度)为0.1001Da。随着分子量的增加,需要质谱对相近同位素峰区分能力更强。评价质谱这种能力的指标是分辨率,我们一般用单位分辨率R=m/Δm来表示(该论述与严格定义有区别),图1需要的分辨率217/2=108,图2的分辨率780/1=780,而图三需要的分辨率1100/0.1=11000。所以说准确测分子量尤其是大分子量需要质谱具有高的分辨率。http://ng1.17img.cn/bbsfiles/images/2014/12/201412051959_526030_2265735_3.jpg图3多肽质谱测定。 A,质谱图B,,+10电荷质谱放大图C,+11电荷质谱放大图。Thermo LTQ-orbit,HESI源。3不同离子源的测定大分子的策略 目前测定大分子的主要离子源有基质辅助激光解吸(MALDI)和电喷雾(ESI)。图4是采用不同离子源测定聚乙二醇修饰药物分子量,A是MALDI质谱测得,几乎为所有分子的都带一个电荷,质谱间距为聚乙二醇重复单元-CH2-CH2-O-44Da;B为ESI质谱所测谱图,Z为分子所带电荷数,z=4质谱间距为44/4=11,z=3质谱间距为44/3=14.67。http://ng1.17img.cn/bbsfiles/images/2014/12/201412052001_526031_2265735_3.jpg图4聚乙二醇化药物质谱图。A AB MALDI-TOF谱图,基质DHB反射模式;B Thermo ESI-LTQ-Orbit谱图。 MALDI电离的离子一般带一个电荷(随着分子量增加,会出现带多个电荷的情况),图5是测得8478和11675多肽质谱图,5737为11675多肽带双电荷所得。采用MALDI测量分子量谱图测量结果直观方便,图6是测量分子

  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?

    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。[img=mega创始人.png]https://img1.17img.cn/17img/images/202202/uepic/6936b2e1-2955-452e-9eb5-9ca539fb600a.png[/img][font=&][size=16px][color=#333333]笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge [/color][/size][/font][font=&][size=16px][color=#333333]Accuracy”相关文章。(DOI:[url]https://doi.org/10.1021/acs.analchem.5b02324[/url])。[/color][/size][/font][font=&][size=16px][color=#333333]2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:[url]https://doi.org/10.1021/acs.chemrev.1c00377[/url])[/color][/size][/font]2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。[align=center][img=2018 ASMS杰出共享奖.png,600,259]https://img1.17img.cn/17img/images/202202/uepic/1967a9e8-bc50-4b33-80f6-46585d05a407.png[/img][/align][align=center]2018年ASMS质谱杰出贡献奖[/align]可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。[url=https://www.instrument.com.cn/news/20220207/605434.shtml][color=#ff0000](相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)[/color][/url]此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。[align=center][img=True.png]https://img1.17img.cn/17img/images/202202/uepic/1513aab2-aa16-408e-914a-00cdf762c4ca.png[/img][/align][align=center][/align]TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。[align=center][/align][align=center][img]https://img1.17img.cn/17img/images/202202/uepic/a9414deb-6b4c-4547-93b0-af042aab0c2c.png[/img][/align][align=center][img]https://img1.17img.cn/17img/images/202202/uepic/000b48b0-acd8-4420-98f4-9ffe3137fc02.png[/img][/align][align=center][/align]笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。[align=center][img=john Hoyes.png,600,373]https://img1.17img.cn/17img/images/202202/uepic/efa105d1-a0e5-40b4-acf2-5dd6eabfce69.png[/img][/align][align=center]TrueMass创始人 John Hoyes博士[/align]TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。  质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小; 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。  一、质谱在临床生化检测中的应用  由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。  1. 新生儿遗传代谢病筛查 新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。  2. 维生素D检测 维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。  3. 激素检测 对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。  4. 血药浓度监测 在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。  5. 痕、微量元素检测 人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。  6. 其他项目 除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。  二、总结与展望  质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。  相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。

  • 【求助】质谱检测限太高

    质谱的检测限达到微克级别,是不是不太正常,最初怀疑是样本处理的不好造成检测的物质没有提取出来造成检测限偏大,但是后来拿来标准品进一下,发现ug/ml的标准品就几乎检测不到了,而且仪器的本底也随着检测的进行越来越高,另:检测的物质出峰圆钝,如何将峰高调好呀,现在出峰时间3-4分钟。仪器型号:Finnigan高效液相色谱-质谱联用仪,LC-10ADvp双泵,在线真空脱气机,恒温自动进样器,柱温箱,电喷雾离子化接口的四极杆质谱检测器

  • 气质联用的质谱与直接测的质谱检测结果有区别吗

    [color=#444444]最近在做一个项目,得到了一个产品的二氯甲烷溶液,分别用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]和直接测的质谱检测了分子量,但是两个检测结果差别很大。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]的检测结果中有我目标产物的分子量,但是直接测的质谱里根本看不到我目标产物的分子量,局部放大了看,也没有啊。[/color][color=#444444]我一直以为这两种质谱检测的结果应该一致才对啊,所以现在我很迷茫,不知道这是什么原因,求高人指教![/color]

  • ACQUITY QDa质谱检测器靠谱吗?

    前段时间waters在本版发了一个关于“Waters将在10月7日推出什么新产品?”,相信很多版友都挺好奇的,现在谜底终于揭晓了,是ACQUITY QDa质谱检测器,我们来看看仪器介绍上说的:借助ACQUITY QDa质谱检测器,您可以:利用更高质量的质谱定性分析数据来有效补充沃特世光学检测器的定量分析数据,对成分进行准确鉴定。扩展现有PDA检测器的样品检测能力,对UV无响应的化合物以及光学检测不适合或是无法确定的化合物进行定量分析。您可以通过ACQUITY QDa质谱检测器获得信息量极其丰富的质谱数据。ACQUITY QDa质谱检测器如同光学检测器一样直观易用,并且能够稳定处理所有分析。同时,它能与您的色谱分析系统完美兼容,且仪器经过预先优化,适用于任何样品;而且无需像传统质谱仪那样要求用户针对不同样品的特异性进行仪器调谐。按上面的意思是ACQUITY QDa质谱检测器无需对仪器及样品进行任何参数的调谐优化,更或者说这种检测器根本就不需要这些参数,那ACQUITY QDa质谱检测器到底是质量分析器呢?还是只是光学检测器的一种升级版呢?还是其他的?它的检测限到底能达到多低的痕量呢?能达到目前主流的MS/MS的水平吗?您对ACQUITY QDa质谱检测器又是怎么看待的呢?原文由 victorlpyj(victorlpyj) 发表:关于这款检测器,我写了一篇报道,解读了相关参数和应用。详见:http://www.instrument.com.cn/news/20131028/115918.shtml。

  • 质谱可以检测重烃吗

    [color=#444444]质谱可以检测重烃吗,要检测煤层气中C2以上的烃[/color][color=#444444]我理解的是,只要是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]能分开,质谱就能检测,对吗??[/color][color=#444444]TCD FID能做到的,质谱就能做的到,对吗??[/color]

  • AB质谱检测器

    请问各位怎么看AB质谱的检测器,和怎么调AB质谱检测器的数值?http://simg.instrument.com.cn/bbs/images/brow/emyc1004.gif

  • 气相质谱检测

    各位老师好,请教一下,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]质谱检测SIM检测时,标准曲线做的可以,但把标准曲线中的一个点当成样品,测定值减半,是什么原因呢?比如走一个100ng/ml的,检测出来只有40多。

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。一、质谱在临床生化检测中的应用由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。1. 新生儿遗传代谢病筛查新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。2. 维生素D检测维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。3. 激素检测对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。4. 血药浓度监测在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。5. 痕、微量元素检测人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。6. 其他项目除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。二、总结与展望质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。参考文献[1] 韩丽乔, 庄俊华, 黄宪章. 质谱技术及其在临床检验中的应用[J]. 检验医学, 2013, 28(3): 252-256. [2] 武汉大学. 分析化学(下册)[M]. 5版. 北京: 高等教育出版社, 2007: 633-634. [3] YE H, GEMPERLINE E, LI L. A vision for better health: mass spectrometry imaging for clinical diagnostics[J]. Clin Chim Acta, 2013, 420: 11-22. [4] 王洪允, 江骥, 胡蓓. 串联质谱在新生儿遗传代谢性疾病筛查中的应用[J]. 质谱学报, 2011, 32(1): 24-30. [5] LA MARCA G. Mass spectrometry in clinical chemistry: the case of newborn screening[J]. J Pharm Biomed Anal, 2014, 101: 174-182.[6] 李峰, 顾学范. 串联质谱技术在临床检验中的应用进展[J]. 国外医学临床生物化学与检验学分册, 2004, 25(4): 319-321. [7] 程雅婷, 董衡, 梁晓翠, 等. 人血清中25羟基维生素D测定的两种质谱方法比较[J]. 中华临床医师杂志: 电子版, 2013, 7(14): 6535-6537. [8] 郭守东, 崔华东, 桑慧, 等. [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆25-羟基维生素D3[J]. 泰山医学院学报, 2014, 35(3): 161-164. [9] 周宁, 曹梅馨, 黎冬梅, 等. 过敏性鼻炎儿童血清维生素 D 水平的临床研究[J]. 中国医药导报, 2012, 9(17): 180-181. [10] PEITZSCH M, DEKKERS T, HAASE M, et al. An [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism[J]. J Steroid Biochem Mol Biol, 2014, 145: 75-84.[11] ZHAO X, XU F, QI B, et al. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry[J]. J Proteome Res, 2014, 13(2): 1101-1111.[12] 丁一峰, 顾学范, 叶军, 等. [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱分析新生儿尿液中类固醇激素方法的建立[J]. 临床儿科杂志, 2010, 28(8): 748-751.[13] 黄河花, 刘东阳, 胡蓓, 等. 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法同时定量测定人血清中脱氢表雄酮、睾酮及雄酮[J]. 药物分析杂志, 2012, 32(2): 210-216.[14] 任秀华, 杜光, 刘东. [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定人血浆中甲氨蝶呤的血药浓度及其临床应用[J]. 中国医院药学杂志, 2014, 34(10): 801-804. [15] 曲素欣, 陈湛芳. [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]法监测癫痫患儿卡马西平血药浓度及结果分析[J]. 中国医学创新, 2014, 7(26): 101-103.[16] 崔刚, 陈文倩, 刘晓, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定肾移植患者体内霉酚酸的血药浓度[J]. 中国药房, 2013, 24(22): 2046-2048.[17] 张霖琳, 邢小茹, 吴国平, 等. 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测定人体血浆中30种痕量元素[J]. 光谱学与光谱分析, 2009, 29(4): 1115-1118.[18] 张文洁, 何学红, 赵友林, 等. [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法测定慢性肾炎患者血清中的微量元素[J]. 中华中医药学刊, 2009, 28(5): 1017-1019.[19] 欧阳珮珮, 吴惠刚, 黄诚, 等. 压力罐消解[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法同时测定全血中5种微量元素[J]. 氨基酸和生物资源, 2014, 36(2): 70-72. [20] 叶军, 韩连书, 邱文娟, 等. 联合质谱技术在多种羧化酶缺乏症诊治中的应用研究[J]. 中国实用儿科杂志, 2008, 23(8): 582-585.

  • 新人想用质谱定性检测核酸

    想做核酸检测,但因为是新手,所以N多问题都不是很懂,还望各位大神不吝赐教!1、用质谱对核酸进行定性分析,这样的方法可行吗?2、如果可行,那是不是就是将我做出的质谱图拿来与质谱数据库中的该核酸标准质谱图进行对比,以确定我所得出的就是我想检测的核酸呢?这个不知道思路是不是这样的,如果不是,还望帮我指条明路http://assets.dxycdn.com/gitrepo/bbs/emotions/default/078.gif 如果是这样思路的话,那标准质谱图/质谱数据库我该去哪儿找呢?

  • 质谱检测分子量过大

    [color=#444444]利用液相色谱-质谱做的酯类润滑油,检测出分子量都在七八百,实际情况应该在四百左右。请问什么因素会导致检测结果大这么多呢?[/color]

  • 【求助】四级杆质谱检测

    四级杆质谱仪是通过质量过滤后,怎么通过检测器来得到每种气体的含量的?是不是质谱仪在每次的分析时间中,会把样气中的每种气体都要分析出来,然后计算出它的比值,从而得到每种气体的含量的?能否介绍一下过滤后检测原理的详细过程?

  • 质谱检测问题

    [color=#444444]求助关于质谱检测条件的问题。中药材提取物,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]测定时,极性较大的物质,为什么在质谱中响应很小,甚至离子流图基本看不到信号,而极性小的物质可以看到信号。如何改善条件呢?(流动相为乙腈-0.1%甲酸水梯度洗脱。)[/color]

  • 有机质谱检测

    [color=#444444]我做的是查尔酮的环氧化反应,得到的产品我用质谱检测,发现分子离子峰主要是加钾峰,还算很强。但是500多和390多有几乎是基峰的杂质峰,不知道为什么?我的这些物质在板层上只有一个点啊!而且熔点都符合文献值啊!开始以为是质谱机子的原因,但是尝试发现这些杂质峰是我们样品里面的。我不知道怎么会有这些杂质峰,不知道是什么杂质?望高手给我解答!![/color]

  • 质谱技术中常用术语及其缩写-02质谱检测器总结:

    质谱技术中常用术语及其缩写-02质谱检测器总结:Q: Quadropole 四极杆IT: Ion Trap 离子阱FT-ICR: Fourier Transform – Ion Cyclotron Resonance 傅里叶变换离子回旋共振TOF: Time Of Flight 飞行时间SM: Sector Magnetic 扇形磁场MS-MS: Mass Spectrometer – Mass Spectrometer ( tandem MS) 质谱质谱(多级质谱)联用MCP: Micro-Channel Plates 微通道板AD: Array Detection 阵列检测器

  • 【求助】用气相色谱检-质谱联用检测具有顺式、反式结构物质的色谱峰

    最近用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检-质谱联用检测了一种具有顺式、反式结构农残类物质,出现了两个分离不好的色谱峰,保留时间相差0.03秒,两个峰的响应值基本相同,用质谱检测抽取的离子是一样,调整升温程序也无法分开。不知道各位有没有碰到过类似的情况,给点建议如何处理,是同时取两个峰的响应值还是有什么其它的办法?谢谢

  • 质谱仪直接监测生物发酵尾气方法过验收

    生物发酵涉及到医药、轻工、食品、农业、海洋、环保等众多领域,在我国国民经济发展中占有极其重要地位,是当前经济社会发展急需突破的技术领域,也是当前世界各国发展的热点领域。在生物发酵过程中,对发酵尾气中各种气体组分的检测有着相当重要的地位。发酵尾气的组分变化,反映了整个发酵过程中物质的变化情况,对尾气数据的分析,可对发酵过程起到监测的作用。 在项目完成过程中,项目组根据发酵尾气的特点以及现场应用环境的要求,对尾气预处理、采集、分析、数据处理等进行了一系列的条件优化,最终建立了一套“在线质谱仪直接分析生物发酵尾气的方法”和标准操作程序。采用SHP8400PMS在线质谱仪可对发酵尾气进行直接分析,实现实时自动在线监测,能够获得连续稳定的准确测量结果,对氧气、二氧化碳、氮气、氩气以及各种挥发性的物质进行高精度定量分析,提高了监测效率。目前该方法已成功应用于国家生化工程技术研究中心(上海)的发酵工程研究和多家生物制药企业的生产现场监测,具有推广应用的示范意义,为建立行业标准方法打下基础。专家组在给予项目肯定和高度评价的同时,也提出了相当中肯的进一步研究建议,希望能将国产质谱仪更好的应用于现场监测领域。

  • 你的质谱联用仪配了色谱检测器吗

    质谱,其实就是一个检测器,可是我们买仪器的时候通常会考虑其他很多因素,也许你的GCMS还配了气相的检测器,LCMS也许还配了紫外检测器。你的质谱联用仪配了色谱检测器吗?你绝对有必要配吗?

  • 关于质谱检测器

    质谱检测器。。。我的书上写这是常用的,而我的机器上却没有说它与FID共同是常用的,可我这没有,不明白这是什么东西他和热导检测器什么区别呢》?

  • 质谱可以检测病毒吗?

    提到现在主流的病毒检测手段,首推本次疫情期间大放异彩的荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]为主,具备快速、灵敏的特点;传统细胞培养分离法,虽然操作繁琐,但仍旧是病毒分离鉴定金标准,如本次新型冠状病毒, 在初期是通过将呼吸道分泌物置于人呼吸道上皮细胞培养传代,通过透射电镜和培养上清液的全基因组测序得到最终确认;而基于抗原和抗体反应的血清学检测,操作简单、结果快速,但易产生交叉反应,可以与核酸检测配合使用进行诊断确认,或用于大规模人员排查。这些方法各有优势,但同时也存在操作复杂、检测周期长或特异性低等的特点。  自上世纪MALDI-TOF MS开始作为微生物检测工具开始,其高通量、成本低、简易操作的特点,一直吸引着科学家们在病毒检测领域进行探索,虽不及细菌学、真菌学诊断领域应用成熟而广泛,但迄今为止,MALDI-TOF MS已经成功应用于各类呼吸道病毒(流感病毒、冠状病毒、腺病毒等)、肝炎病毒、人乳头瘤病毒(HPV)、人肠病毒以及某些动物病毒等的检测,覆盖病毒鉴定、突变分析、分型、和抗病毒药物耐药性分析等各个应用方向。  这些病毒检测功能,主要依赖于MALDI-TOF MS能够准确检测多肽、蛋白质、核酸、多糖等生物大分子的分子质量和纯度,围绕不同检测目标,开发多种针对性检测方案:[b][color=#0070c0]01 基于细胞培养呼吸道病毒质谱鉴定[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267262][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740491.jpg[/img][/url][/align][b][color=#0070c0]02 基于MALDI-TOF MS的冠状病毒筛查[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267263][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740521.jpg[/img][/url][/align][b][color=#0070c0]03 抗体-磁性纳米粒子法对流感病毒分型[/color][color=#0070c0][url=https://www.antpedia.com/batch.download.php?aid=267264][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740551.jpg[/img][/url][/color][color=#0070c0]04 质谱检测乙肝病毒YMDD耐药突变[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267265][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740581.jpg[/img][/url][/align]  众多研究已经表明,基于不同方向MALDI-TOF MS 可以鉴定不同种类、来源的病毒,结果可媲美现有各类分子检测方法,且具有通量高、速度快,人工、试剂成本低、结果判读简单的优势,基于质谱核酸检测,可用于直接样本检测的同时,高通量的特点支持多位点多靶向检测,而其基于蛋白的检测则有助于早期监测确认、疫苗开发等。同时基于MALDI-TOF MS 系统的多种现有解决方案,支持同时鉴定和诊断多种类型的病原体感染,在不增加实验室成本的情况下,减少多重感染样本的误诊和治疗延误。  但质谱对病毒的检测,同时也受到了一些制约,如实例1中基于蛋白分析的病毒检测方法,前期需依赖于细胞培养,病毒的培养富集对实验室安全级别要求较高(BSL-3级以上),限制了该方法在常规实验室开展。而基于核酸的病毒检测方法如实例2,虽然前期依靠[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增可以进行样本的直接检测,但却受制于缺乏广泛的参考数据库或差异性遗传标志序列,同时受到质谱核酸检测的灵敏度和稳定性限制,此外该方法还有对专业要求相对较高,标准化方案少,自动化方案成本较高等的缺陷。[b][color=#0070c0]总结[/color][/b]  MALDI-TOF MS 在临床病毒学检测中的应用已经取得一定的发展成果,但若要成为常规应用工具,还需依赖对流程进行进一步的优化、数据库的更新,以形成更多完整成熟的解决方案。但相信随着各领域科学技术的不断升级更新,必然会推动MALDI-TOF MS在病毒检测中发挥更重要的作用,成为病毒检测领域的主力军

  • 试剂对质谱检测的影响?

    大家有关注过质谱所用试剂对质谱检测的影响吗?原来本人从不相信国外的月亮比国内的圆,但个人比较过国产色谱纯乙腈和进口乙腈后,不得不承认,进口乙腈更好一些,体现在,国产乙腈,天津大茂,色谱纯,背景噪音大约在150上下,而进口4L装乙腈,背景噪音仅有20,……这一点相信对有定量下限要求的筒子们额外重要……欢迎大家分享一下在试剂影响方面的经验

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制