当前位置: 仪器信息网 > 行业主题 > >

质谱内标法

仪器信息网质谱内标法专题为您提供2024年最新质谱内标法价格报价、厂家品牌的相关信息, 包括质谱内标法参数、型号等,不管是国产,还是进口品牌的质谱内标法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱内标法相关的耗材配件、试剂标物,还有质谱内标法相关的最新资讯、资料,以及质谱内标法相关的解决方案。

质谱内标法相关的资讯

  • 质谱技术进展:低温CE-MS应用于溶液内标记氢氘交换质谱
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry1,文章的通讯作者为乌普萨拉大学的Erik T. Jansson博士。  氢氘交换质谱(HDX-MS)适用于研究蛋白质在溶液中的动力学和相互作用,其能够快速分析非变性蛋白中位于蛋白表面的氨基酸序列,广泛应用于蛋白动态表位、活性位点的表征。HDX-MS平台通过低温UPLC分离提供自动化、在线的样品处理和分析。目前,HDX-MS装置的工作流程主要基于Peltier冷却的超高效液相色谱(UPLC)模块的LC-MS方法,但该系统价格昂贵,成本较高,并且在低温条件下,流动相粘度增加导致高背压(可达-20,000 psi),降低了LC的分离效率。而毛细管电泳(CE)在HDX领域有着更好的应用潜力。CE是一种成熟的分离多种类型分子的方法,在蛋白质组学研究中具有独特的价值。CE基于分析物在电场中的不同迁移率进行分离,分离速度取决于分析物的尺寸和电荷。20世纪90年代初,CE-MS开始应用于肽段水平的蛋白质和蛋白质复合物的分析。自此,CE-MS在多肽和蛋白异质体的检测中就显示出比反相LC-MS高10~100倍的灵敏度。近年来,HDX-MS领域的研究人员也聚焦于探究CE用于HDX-MS工作中的潜在优势。本文利用熔融硅毛细管电泳在零摄氏度下完成了氘代肽段和蛋白的淬灭、酶切和分离,该平台具有较好的成本效益,易于装配于任何MS。  CE装置的主要配件包括丙烯酸气密匣(图1A)、毛细管液相分离装置(图1C)和P-727聚醚醚酮三通组件(图1D)。丙烯酸气密匣用于接收N2,内部放有一个不锈钢小瓶装纳氘代背景电解液,能够允许高电压传导到分离毛细管。P-727聚醚醚酮三通组件联通高压电源和N2源,提供分离电压和N2,在毛细管出口产生离子。  图1.Peltier冷却CE外壳+进样槽的结构。(A) 丙烯酸气密匣。(B) Peltier冷却单元所粘附的铝壳体的截面。(C) 毛细管液相分离装置。(D) 同轴三通阀nano电喷雾针。  完成该毛细管平台(图1)的加工和组装后,作者评估了其性能,并将其与先前在微芯片电泳装置上发表的报道进行了比较。首先是峰值容量的评估。使用血管紧张素II(ATII)和甲硫啡肽(ME)作为分离标记的淬灭肽标准品,在0 ℃下,以1 % FA、25% ACN (BFS毛细管)和10% HAc(LPA毛细管)组成的氘代背景电解液(BGE)计算峰容量。与BFS毛细管相比,LPA毛细管除了峰容量值增加外,其序列覆盖率也明显增加。作者比较了0 ℃ CE到0 ℃ LC和微芯片电泳的峰容量值。结果显示,CE的上峰容量虽小于微芯片电泳方法,但序列覆盖率更高。而与LC相比,CE的峰值容量大大提高。  氘质子在淬灭时和分析时中的回交(BE)也是HDX实验重点考察的因素之一。作者使用缓激肽(BK)、ATII和ME作为肽标准品对BE进行了评估。在0 ℃、20 kV的条件下对BFS毛细管和LPA毛细管分别进行测试。结果表明,ATII在BFS和LPA毛细血管上的BE分别为20 %和34 %。ATII在LPA毛细管上的BE值与已报道的商业和实验室改装的UPLC平台的数据(28~36 %)相似,而在BFS毛细管上则接近直接进样完全氘代标准品达到的BE水平。此外,由于注入到毛细管中的样品量与LC所使用的样品量相比很低,在检测的质谱中没有出现任何残留的迹象。  作者对溶液中牛血红蛋白(Hb)进行了HDX,随后又进行了淬灭、胃蛋白酶酶切、低温毛细管电泳分离与质谱(MS)检测。图2显示了根据Kyte-Doolittle疏水性指数选择的6个肽段在不同分离条件下相应的电泳图谱和氘代速率。从图中可以看出,LPA毛细管上分离的肽段峰形更对称,信号强度比BFS毛细管上高一个数量级左右。与BFS毛细管相比,LPA涂层的毛细管整体的氘标记保留绝对值较低,但氘代速率没有检测到差异。虽然BFS毛细管迁移时间更快,但由于BFS毛细管在样品进样之间需要更多的冲洗步骤,因此分析时间比使用LPA毛细管要长。  图2.强度归一化的提取离子电泳图谱,显示了BFS和LPA毛细血管之间迁移时间的差异,以及标记Hb的消化性中的6个代表性肽的HDX动力学图。橙色的迹线显示了使用BFS毛细管分离的结果,紫色的迹线显示了使用LPA涂层毛细管分离的结果。肽段序列的注释及其对应的Kyte-Doolittle疏水性指数显示在右方。(左)在500 s标记时间点显示了代表性的峰形和迁移时间。(右)BFS毛细管中的氘代保留更高。误差棒表示一个标准差,每个时间点n = 3。有些多肽在所有孵育时间内只存在于LPA涂层中,因此上述六个面板其中的两个面板没有在BFS毛细管中的痕迹。α 136 - 141在BFS毛细管上分离的特定样品在500 s时间点显示,但在以后的时间点没有足够的质量,从最终的数据集中省略,因此HDX动力学图不包括该肽段。β 35 - 40没有被检测到,也未被包括在HDX动力学图中。  最后,本文研究了HDX CE-MS平台在表征结构相关信息方面的作用。作者比较了非变性条件下的Hb样品与用6 M尿素置于变性条件下的Hb样品的相对氘代值。研究发现,在非变性状态下更容易受到HDX保护的位点与Hb亚基的相互作用位点相吻合。具体来说,α-Hb上的R32-Y43和L92-D127以及β- Hb上的R29-E42和D98-Q130与这两个单体相互结合的位置相吻合。数据显示(图3),与局部区域的尿素暴露状态相比,Hb的非变性状态对HDX的敏感度降低。这一发现验证了该方法可作为结构蛋白质组学研究的潜在工具——能够表征分子结合和构象动力学,如蛋白质-配体相互作用中遇到的问题。  图3. Hb的HDX数据在PDB 1FSX上的映射。在非变性条件下用D2O标记的Hb与用6 M尿素变性后标记的Hb进行比较。颜色刻度表示50,000 s氘掺入后,天然/尿素D吸收量的比值。  总的来说,本研究提供了低温CE - MS应用于溶液内标记HDX的理论证明。尽管BFS毛细管提供了快速的肽段分离和标记肽段的最小氘损失,但研究结果表明LPA涂层的毛细管在HDX CE - MS中更有优势。有很多途径能够实现该平台的进一步优化,包括但不限于BGE优化(pH、有机质含量、浓度)、浓缩/脱盐步骤、固定化/嵌入式蛋白酶消化、升级Peltier元件以实现更低温的分离、集成无鞘电喷雾界面、交替毛细管涂层和评估更长或更短的毛细管。进一步研究蛋白质化学中常见的盐和溶质分离的耐受性也将是未来优化的一个重点。  撰稿:陈凤平  编辑:李惠琳,罗宇翔  文章引用:Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry  参考文献  1. Aerts, J. T. Andren, P. E. Jansson, E. T., Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry. Anal. Chem. 2022.
  • 嗨,这里有你要的HJ 1183 同位素内标
    上周小编和大家共同学习了《HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法》; 该标准覆盖了大部分的有机磷农药,但是对于沸点低,热稳定性差的农药,是不适合气相色谱法分析的;因此,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四级杆质谱法》,该标准为首次发布,并将于2021年12月15日起实施 氧化乐果、乙酰甲胺磷、辛硫磷是有机磷农药生产行业的特征污染物控制指标,乙酰甲胺磷在自然条件下易降解为甲胺磷,这4种有机磷农药均具有较强的生物毒性,其进入环境后对于生态环境和人体健康具有较大的危害。HJ 1183标准的出台,规定了地表水、地下水、生活污水和工业废水中氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定方法,将有效支撑《农药工业水污染物排放标准》的执行工作,满足我国氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷水质监测和排放控制工作的需要,也是今后开展水体中这几种有机磷农药环境调查与排放监控的技术基础,对于保障水环境质量及人民群众的身体健康具有重要意义。 试剂与材料:章节类别试剂与材料要求用途5.1试剂乙腈(CH3CN)色谱纯溶剂5.2甲醇(CH3OH)色谱纯溶剂5.3乙酸乙酯(CH3COOCH2CH3)色谱纯溶剂5.4盐酸:ρ = 1.19 g/ml优级纯调节样品 pH 值5.5氢氧化钠(NaOH)。分析纯调节样品 pH 值5.6甲酸铵(HCOONH4)。分析纯流动相5.9溶液乙腈溶液φ( CH3CN )=50%标准稀释液5.10乙腈-乙酸乙酯混合溶液φ( CH3CN )=50%固相萃取洗脱液5.11甲醇溶液φ( CH3OH) =80%固相萃取洗脱液5.12盐酸溶液φ=50%调节样品 pH 值5.13氢氧化钠溶液c(NaOH) = 0.1mol/L调节样品 pH 值5.14甲酸铵溶液c(HCOONH4) = 5.0 mmol/L流动相5.15甲酸铵-乙腈溶液c = 5.0 mmol/L流动相5.16有证标准溶液氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准贮备液ρ=1000 μg/ml待测目标,坛墨编号:81426b5.18乙腈中甲胺磷-D6同位素ρ=100 μg/ml内标物,坛墨编号:92684a乙腈中氧化乐果-D6同位素ρ=100 μg/ml内标物,坛墨编号:92685a乙腈中辛硫磷-D5同位素ρ=100 μg/ml替代物,坛墨编号: 92686a5.20固相萃取柱Ⅰ填料为十八烷基键合硅胶,或同等柱效的萃取柱,规格为500 mg/6 ml。5.21固相萃取柱Ⅰ填料为二乙烯苯和N-乙烯基吡咯烷酮共聚物,或同等柱效的萃取柱,规格为500 mg/6 ml。 实验与分析:章节实验步骤实验过程7.17.1样品采集与保存按照HJ/T 91、HJ 91.1和HJ 164的相关规定进行样品的采集。用棕色采样瓶(6.4)采集样品,样品满瓶采集。如果采集的样品pH不在2~8之间,用盐酸溶液(5.12)或氢氧化钠溶液(5.13)调节pH至2~8,4℃以下冷藏避光运输和保存,3天内完成样品分析工作。7.2试样的制备A:地表水、地下水经滤膜(5.22)过滤,弃去2 ml初滤液后,移取1.0 ml过滤后的样品于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 B: 基体复杂的样品(生活污水和有机磷生产废水)经固相萃取净化后再进样。取5.0 ml样品,以约3 ml/min(约1滴/秒)的流速通过固相萃取柱。甲胺磷、氧化乐果和乙酰甲胺磷用固相萃取柱Ⅰ净化,10 ml乙腈-乙酸乙酯混合溶液洗脱;辛硫磷用固相萃取柱Ⅱ净化,10 ml甲醇洗脱。合并洗脱液,经浓缩装置浓缩至近干,用乙腈溶液定容至5.0 ml.经滤膜过滤后,取1.0 ml滤液于棕色样品瓶中,加入10.0 μl内标使用液,混匀待测。 7.3空白试样的制备以实验用水代替水样,按照与试样的制备(7.2)相同的步骤,制备空白试样。8.1仪器条件仪器:液相色谱-串联质谱联用仪流动相A:甲酸铵溶液;流动相B:甲酸铵-乙腈溶液;梯度洗脱;流速:0.3 ml/min;进样体积:5.0 μl;柱温:40℃。 质谱条件:正离子模式;离子化电压:5 500 V;离子源温度:550℃;喷雾气压力:380 kPa;辅助加热气压力:410 kPa;气帘气压力:210 kPa;多离子反应监测方式(MRM)。8.2标准曲线移取适量的氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准使用液,逐级稀释,配制至少5个浓度点的标准系列,各组分质量浓度分别为0.00 μg/L、2.00 μg/L、5.00 μg/L、10.0 μg/L、50.0 μg/L、100 μg/L(此为参考浓度)。移取1.0 ml配制好的标准系列溶液于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 按照仪器参考条件,由低浓度到高浓度依次对标准系列溶液进行测定。以标准系列溶液中目标组分的质量浓度(μg/L)为横坐标,以其对应的峰面积(或峰高)与内标物峰面积(或峰高)的比值和内标物浓度的乘积为纵坐标,建立标准曲线。可用平均相对响应因子法或标准曲线法进行标准曲线绘制。8.3试样的测定按照与标准曲线的建立(8.2)相同的仪器条件进行试样(7.2)的测定8.4空白试验按照与试样测定(8.3)相同的仪器条件进行空白试样(7.3)的测定。 分析结果表述:根据样品中目标化合物与标准系列中目标化合物的保留时间和特征离子定性,内标法定量。 坛墨质检秉持一直以来对环境安全的高度关注,依据该标准推出如下混标产品方案, 欢迎垂询!针对该标准,坛墨推出如下配套的产品方案:商城编码名 称浓 度说 明81426b乙腈中4种有机磷混标1000μg/mL标准储备液92684a乙腈中甲胺磷-D6同位素100μg/mL内标储备液92685a乙腈中氧化乐果-D6同位素100μg/mL内标储备液92686a乙腈中辛硫磷-D5同位素100μg/mL内标储备液欢迎大家到坛墨商城选购,有任何疑问,随时与我们交流。 原文章链接:https://www.gbw-china.com/ns_detail/1106.html
  • 做了这么多年的实验,真的搞清楚内标法与外标法了吗
    在实验室埋头苦干多年,也做了无数次定量分析实验,你常用的是内标法还是外标法?您了解两者的区别吗?各自有什么优缺点?  其实,内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,简单而有效的进行定量分析来满足要求才是最重要的。  那么,定量分析中怎样选择内标法或外标法?  一、内标法  什么叫内标法?怎样选择内标物?  内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。  内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。  采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。  在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值?  影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。  由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。  化学方面的因素包括:  1、内标物在样品里混合不好   2、内标物和样品组分之间发生反应,  3、内标物纯度可变等。  对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定,  在制作内标标准曲线时应注意什么?  在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。  二、外标法  什么是外标法?  用待测组分的纯品作对照物质,以对照物质和样品中待测组分的响应信号相比较进行定量的方法称为外标法。此法可分为工作曲线法及外标一点法等。工作曲线法是用对照物质配制一系列浓度的对照品溶液确定工作曲线,求出斜率、截距。在完全相同的条件下,准确进样与对照品溶液相同体积的样品溶液,根据待测组分的信号,从标准曲线上查出其浓度,或用回归方程计算,工作曲线法也可以用外标二点法代替。通常截距应为零,若不等于零说明存在系统误差。工作曲线的截距为零时,可用外标一点法(直接比较法)定量。    外标一点法是用一种浓度的对照品溶液对比测定样品溶液中i组分的含量。将对照品溶液与样品溶液在相同条件下多次进样,测得峰面积的平均值,用下式计算样品中i组分的量: W=A(W)/(A)           式中W与A分别代表在样品溶液进样体积中所含i组分的重量及相应的峰面积。(W)及(A)分别代表在对照品溶液进样体积中含纯品i组分的重量及相应峰面积。外标法方法简便,不需用校正因子,不论样品中其他组分是否出峰,均可对待测组分定量。但此法的准确性受进样重复性和实验条件稳定性的影响。此外,为了降低外标一点法的实验误差,应尽量使配制的对照品溶液的浓度与样品中组分的浓度相近。  外标法 external standard method 色谱分析中的一种定量方法,它不是把标准物质加入到被测样品中,而是在与被测样品相同的色谱条件下单独测定,把得到的色谱峰面积与被测组分的色谱峰面积进行比较求得被测组分的含量。外标物与被测组分同为一种物质但要求它有一定的纯度,分析时外标物的浓度应与被测物浓度相接近,以利于定量分析的准确性。  外标法误差的来源,除了分离条件的变化之外,就是进样的重复性。使用注射器进样,外标法的误差大约在0.5%以内。但是,使用定量进样阀可获得1%的精密度 若同时小心控制分离参数,分析精密度可达± 0.25%。外标要求仪器重复性很严格,适于大量的分析样品,因为仪器随着使用会有所变化,因此需要定期进行曲线校正。此法的特点是操作简单,计算方便,不需测量校正因子,适于自动分析。但仪器的重现性和操作条件的稳定性必须保证,否则,会影响实验结果。  三、定量分析中怎样选择内标法或外标法  选一与欲测组分相近但能完全分离的组分做内标物(当然是样品中没有的组分),然后配制欲测组分和内标物的混合标准溶液,进样得相对校正因子。再将内标物加入欲测组分的样品中,进样后测得欲测组分和内标物的定量参数。用内标法公式计算即可。  内标法是将一定量的纯物质作内标物,加入到准确称量的试样中,根据被测试样和内标物的质量比及其相应的色谱峰面积之比,来计算被测组分的含量。选择内标物有4个要求:  1.内标物应是该试样中不存在的纯物质   2.它必须完全溶于试样中,并与试样中各组分的色谱峰能完全分离   3.加入内标物的量应接近于被测组分   4.色谱峰的位置应与被测组分的色谱峰的位置相近,或在几个被测组分色谱峰中间。  内标法的优点是测定的结果较为准确,由于通过测量内标物及被测组分的峰面积的相对值来进行计算的,因而在一定程度上消除了操作条件等的变化所引起的误差。内标法的缺点是操作程序较为麻烦,每次分析时内标物和试样都要准确称量,有时寻找合适的内标物也有困难。外标法简便,但进样量要求十分准确,要严格控制在与标准物相同的操作条件下进行,否则造成分析误差,得不到准确的测量结果。  内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,我想简单而有效进行定量分析来满足要求才是最重要的。  1、以前做过很多医药、农药中间体的芳香族卤代化合物的常量定量分析,没有自动进样器,用外标法定量,确实重现性与稳定性非常差,结果经常受到搞合成同事的质疑。其实,仔细分析原因不一定就是外标法不适合这种定量分析,首先我们的实验室仪器和手段是否调整到一种稳定而合理的状态了,比如,衬管是否洁净,玻璃棉的位置是否合适恰当(能否使样品尽可能的汽化)、汽化温度是否合适、色谱峰形是否对称(也就是样品与色谱柱健合相是否匹配)、附近有没有其它色谱峰的干扰、选用什么进样方式(如快速进样还是热针进样)等等因素的影响都需要考虑,如果这些因素都考虑了,按照GMP方法验证对于精密度的要求,同一样品进6针以上的RSD和配制6个样品的定量结果RSD都能满足小于1.5%的要求,那么这个方法用外标法就是完全适用的,但是前面的影响因素是一定要都考虑到的,否则谈论这个方法是否适用就有失偏颇了。在做过的许多出口产品的定量分析方法当中有许多是一些医药公司提供的比较完善而验证过的方法,内标与外标都有(他们用的都是自动进样)精密度都能满足RSD小于1.5%的要求,当一个方法能够满足测试要求的时候,无论内标外标,都是可行的,当然有一个分析成本和分析时间的问题,内标的成本和控制溶液、样品溶液的配制当然要比外标要高和麻烦一些了。而有些时候,可能受你实验室现有仪器和附属设备的影响,达不到一定的要求,而还必须进行定量分析,有时外标的结果可能就要差一些,这时,你可能就要考虑用内标法了,可以排除手动进样的误差、分流歧视的影响、包括一些未知因素平行误差的影响,这时内标可能就显示出它的优势来了。  2、上面已经提到当做方法验证的时候,当同一样品配制6个样品溶液用所选用的外标法进行定量的时候,RSD都满足1.5%的要求时,也分为两种情况,小于1%和大于1%小于1.5%。如果RSD的结果小于1%,那这个方法就没有什么可以怀疑的了 如果RSD的结果大于1%而在1.5%略低一些的范围活动时,这个方法的可行性就将受到质疑,毕竟这是方法验证,你就要考虑上面1所提到的影响因素的影响了,如果排除掉以上的影响因素,RSD还是在1.5%附近,就要尝试内标了,如果内标结果的RSD很好,就证明你的这个方法受实验条件的影响很大,只能用内标了,或者干脆将原方法做大的变动,再尝试用外标法测试。  3、而对于微量分析,比如农药和兽药残留的分析、环境分析等,根据不同的限量标准要求对于精密度的要求也比常量分析的要求要宽松的多,RSD有时可以允许达到10%甚至更高,这时可能外标法有更大的应用空间。  4、单从精密度方面去考虑,排除其它成本和效率的因素,个人认为还是内标优于外标。曾经做过一个中间体二氨基丙醇的常量定量分析,以二乙醇胺为内标,RTX-5 amine(碱改性) 15m*0.32mm*1.0um色谱柱分析,将配制好的控制溶液(含有内标物)自动进样器进6针,目的物(二氨基丙醇)与内标物(二乙醇胺)峰面积比率的RSD为0.18%,而只对这六针样品的目的物峰(二氨基丙醇)面积求RSD,结果为0.71%,通过这一实例的结果大家就会发现到底哪个方法精密度更好了,当然是内标更好了。当然这个化合物的检测方法最后根据上面的验证数据用内标和外标定量都是可以的,实验室可以自由选择。但内标与外标精密度结果的差异是显然存在的事实。  结论:应用外标法能够满足要求,首选还是外标法了,毕竟简单而省事。对于精密度要求比较高、结果准确度会产生重大影响、实验室条件不是很理想的等等条件下,用内标法还是必要的。无论应用那种方法,方法的验证和确认都是很重要的,只要是按照程序经过验证和确认的方法,都有其应用的空间的。  另峰面积归一法:如果被分析样品的组分是同系物,校正因子相近可直接用峰面积求出组分的百分含量。如果被分析样品的组分不是同系物,则要知道每种组分的相对校正因子。优点:不必准确知道进样量,操作条件略为变动对结果影响较小,计算方便,适合多组分的工厂例行分析。主要分析对象为任意。  测量各杂质峰的面积和色谱图上除溶剂峰以外的总色谱峰面积,计算各杂质峰面积及其之和占总峰面积的百分率。由于峰面积归一化法误差较大。因此,通常用于粗略考察供试品中的杂质含量。除另外规定外,不宜用于微量杂质的检查。
  • 中关村材料试验技术联盟发布《小分子有机化合物 内标法定量分析 核磁共振氢谱法》征求意见稿
    各位专家、委员及相关单位:中国材料与试验标准化委员会决定对《小分子有机化合物 内标法定量分析 核磁共振氢谱法》团体标准征求意见稿公开广泛征求意见。请登录CSTM官网http://www.cstm.com.cn/article/details/f028d4f5-4e31-4d31-8aa8-72867dfb57ee查看征求意见通知并下载相关资料附件。
  • 国家市场监督管理总局对《定量核磁共振波谱氢谱内标法分析通则》等42项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《定量核磁共振波谱氢谱内标法分析通则》等42项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月9日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001903,查询项目信息和反馈意见建议。2024年7月10日相关标准如下:#项目中文名称制修订截止日期1定量核磁共振波谱氢谱内标法分析通则制定2024-08-092能量色散X射线荧光光谱分析方法通则修订2024-08-09
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 气相色谱-高分辨双聚焦磁质谱法检测,让血清无所遁形
    同位素内标-气相色谱-高分辨双聚焦磁质谱法检测血清中多溴联苯醚背景介绍  多溴联苯醚(PBDEs),是一种持久性有机污染物(POPs),根据苯环上溴原子的取代个数和位置的不同,共有10类209种同系物。由于其阻燃性能良好,被广泛应用于纺织品、玩具、建筑材料和电子设备等产品中。PBDEs的化学结构稳定,亲脂性强,容易释放到环境中,并通过食物链对生物体产生生物蓄积与生物放大作用,产生甲状腺毒性、神经毒性、内分泌毒性、生殖毒性、肝脏毒性、细胞毒性、致癌性等。  PBDEs对人体健康的影响已成为世界范围内高度关注的问题,目前针对多溴联苯醚人群暴露情况的研究,分析样本主要为血液、母乳和各种组织(脂肪、胎盘等)。由于多溴联苯醚是脂溶性化合物,在尿液中含量较低且多以羟基化代谢物的形式存在,脂肪组织的采样具有侵害性,且母乳和胎盘的采样仅限于一部分特殊人群,而血液样本相对较易获得,所以血液样本的测定是研究多溴联苯醚对人群健康影响的主要途径。  人体血清基质复杂,PBDEs含量较低,因此需提高富集效率并尽可能降低基质干扰,提高检测灵敏度。目前,液液萃取法、固相萃取法和加速溶剂萃取法是样品提取时较常使用的方法,样品净化主要使用凝胶色谱法和固相萃取柱净化法,检测方法主要有液相色谱-质谱法(LC-MS)、气相色谱-串联质谱法(GC-MS/MS)、气相色谱-负化学源质谱法(GC-NCI/MS)和气相色谱-高分辨双聚焦磁质谱法(GC-HRMS)。  LC-MS前处理步骤相对简便,但对PBDEs分辨能力较弱、灵敏度较低,更适合易热降解的高溴代多溴联苯醚的测定;GC-MS/MS、GC-NCI/MS选择性、灵敏度较高,对复杂基质抗干扰能力强,适用于痕量PBDEs的测定,但样本需求量较大,需采集2~5 mL血清样本;GC-HRMS同时备有静电场离子分析器和磁场质量分析器,因而使仪器同时具有能量聚焦和方向聚焦的双聚焦功能,灵敏度高、检出限低,适用于小体积样本中痕量和超痕量PBDEs的测定。  目前常用的GC-HRMS样品前处理步骤中主要采用凝胶色谱和酸性硅胶柱对样品进行净化,其中凝胶色谱法样本需求量较大(2 mL),酸性硅胶柱对实验人员填装操作要求较高,且无法同时测定多种PBDEs组分(如BDE-209等),批量样品检测时效率较低。  本方法探索使用少量血清(0.5 mL),采用GC-HRMS结合液液萃取和硅胶柱净化的方法,建立了人血清中14种PBDEs的测定方法,并用该方法对某地区15份青少年人群血样进行了检测,以期了解该地区青少年人群PBDEs的暴露水平。  样品前处理  血清样品解冻后移取0.5 mL于12 mL玻璃离心管中,分别加入200 μL硫酸、0.5 mL甲醇和20 μL内标使用溶液后混匀。先加入6 mL正己烷充分摇振后,以3500 r/min离心10 min,收集上层有机相;再加入6 mL甲基叔丁基醚,重复萃取,合并两次萃取液,于40 ℃、5 Pa氮吹25 min至0.5 mL。依次用2 mL甲醇和2 mL正己烷活化硅胶固相萃取柱,将浓缩液转移到硅胶柱上,先收集流出液,再用10 mL二氯甲烷-正己烷(1:1, v/v)溶液洗脱,合并流出液与洗脱液,40 ℃氮吹30 min至近干。向试管中加入10 μL正己烷复溶,振荡混匀,转移至棕色进样小瓶中,待测。  色谱条件  色谱柱:Rtx-1614毛细管柱(30 m×0.25 mm×0.1 μm);进样方式:不分流进样;进样口温度:290 ℃;传输线温度:320 ℃;升温程序:初始温度150 ℃,保持2 min,以15 ℃/min升温至250 ℃,保持1 min,再以25 ℃/min升温至290 ℃,保持3 min,然后以25 ℃/min升温至320 ℃,保持12.5 min;载气:氦气,恒定流量1.0 mL/min;进样量为1 μL。  质谱条件  电子轰击(EI)离子源,源温:280 ℃;电子能量:35 eV;电压选择离子检测(VSIR);分辨率:10000。14种PBDEs及其同位素内标的质谱参数见原文表1。  质量控制  样品前处理环境应在每次实验开始前和结束后进行清理,避免有目标物残留。实验过程中所用玻璃离心管、试剂、进样小瓶、固相萃取柱、枪头均做空白对照实验,未检出14种待测PBDEs。  文章信息  色谱, 2022, 40(4): 354-363  DOI: 10.3724/SP.J.1123.2021.10017  王梦梦, 谢琳娜, 朱英*, 陆一夫*  中国疾病预防控制中心环境与人群健康重点实验室, 中国疾病预防控制中心环境与健康相关产品安全所, 北京 100021
  • 珀金埃尔默Torion助力新国标《水中挥发性有机物的测定便携式顶空/气相色谱质谱法》
    近期,生态环境部办公厅发布了《水质挥发性有机物的测定 便携式顶空/气相色谱质谱法(征求意见稿)》,该标准规定了地表水、地下水、生活污水、工业废水和海水中挥发性有机物的现场快速定性和56种目标化合物的定量分析。珀金埃尔默Torion T-9仅需80秒即可完成标准中56种VOCs的定性定量分析,可从容应对环境突发事件的应急监测需求。减少了样品运输和保存过程中待测物质的变化,具有实验室分析方法不可替代的优势。随着我国经济的增长,工业发展迅猛,在化工品生产、运输和储存过程中导致的挥发性有机物(VOCs)污染事故频发,严重影响了当地的人民生活、社会稳定和经济发展。VOCs并非单一的化合物种类众多,具有迁移性、持久性和毒性是一类重要的环境污染物。VOCs会对空气、水、土壤等造成严重伤害和污染,其中水与我们的生活息息相关。目前,国内外针对水中VOCs的检测标准主要是顶空气相色谱法、顶空气相色谱质谱法、吹扫捕集气相色谱质谱法等均为实验室检测标准。珀金埃尔默Torion T-9便携式气质配合SPS-3顶空工作站可以在突发应急现场分析水中VOCs,样品分析速度快,检测56种VOCs仅需80秒,同时峰形尖锐分离效果好。在满足新标准的同时可在突发性环境应急事件中快速提供检测结果,指导应急策略。Torion T-9便携式气质技术优势:SPME/CME/顶空/热脱附等多种样品前处理方式创新的环状离子阱比常规离子阱离子容量高400倍开机5分钟做样3分钟升温速率高达2.5℃/s无基础用户一天培训可独立操作隔膜泵/涡轮分子泵的真空系统非耗材省心省成本图1 56种VOCs与2种内标总离子流图1-氯乙烯;2-1,1-二氯乙烯;3-二氯甲烷;4-反-1,2-二氯乙烯;5-1,1-二氯乙烷;6-氯丁二烯;7-顺-1,2-二氯乙烯;8-2,2-二氯丙烷;9-溴氯甲烷;10-氯仿;11-1,1,1-三氯乙烷;12-1,2-二氯乙烷;13-1,1-二氯丙烯;14-苯;15-四氯化碳;16-1,2-二氯丙烷;IS1-氟苯(内标);17-三氯乙烯;18-二溴甲烷;19-一溴二氯甲烷;20-顺-1,3-二氯丙烯;21-反-1,3-二氯丙烯;22-1,1,2-三氯乙烷;23-甲苯;24-1,3-二氯丙烷;25-二溴氯甲烷;26-1,2-二溴乙烷;27-四氯乙烯;28-氯苯;29-1,1,1,2-四氯乙烷;30-乙苯;31/32-对/间-二甲苯;33-溴仿;34-苯乙烯;35-邻-二甲苯;36-1,1,2,2-四氯乙烷;37-1,2,3-三氯丙烷;38-异丙苯;39-溴苯;40-正丙苯;41-2-氯甲苯;42-4-氯甲苯;43-1,3,5-三甲基苯;44-叔丁基苯;45-1,2,4-三甲基苯;46-1,4-二氯苯;IS2-1,4-二氯苯-d4(内标);47-仲丁基苯;48-1,3-二氯苯;49-4-异丙基甲苯;50-1,2-二氯苯;51-正丁基苯;52-1,2-二溴-3-氯丙烷;53-1,2,4-三氯苯;54-萘;55-六氯丁二烯;56-1,2,3-三氯苯;图2 1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出解卷积谱图在突发应急事件中,由于便携质谱检测结果是制定应急决策的重要依据,不但要快而且要准。Torion T-9内置强大的谱库的同时还具备独特的解卷积功能,可以轻松鉴定极为复杂的化合物,即使有化合物共流出也可以实现准确定性和定量。如图2所示1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出通过Torion T-9的内置谱库和解卷积功能可以准确识别出这4种物质。Torion T-9便携式气质为突发应急保障而设计,总重量仅14.5公斤,仪器从启动到样品分析仅需5分钟,样品分析时间3分钟以内,在福建泉港C9泄露、江苏海安工业园泄露、青岛上合峰会、武汉军运会等突发事件和重大会议保障上起到了关键的作用。
  • Pribolab明星产品—真菌毒素检测中的碳13稳定同位素内标
    h2 style="margin-bottom:11px text-align:center background:white"span style="font-size: 17px font-family:萍方-简 color:#333333 letter-spacing: 0 background:white"spanPribolab || /span真菌毒素supspan13/span/supspanC/span稳定同位素内标/span/h2p style="text-align:center"spanimg src="https://img1.17img.cn/17img/images/202009/uepic/401ecf02-1ec2-4c52-b4a1-dca5159a427c.jpg" title="clip_image002.jpg"//span/pp style="text-indent:28px"span style="color: rgb(51, 51, 51) letter-spacing: 0px background: white font-family: arial, helvetica, sans-serif font-size: 10px "随着质谱技术的应用,2020版《中国药典》及2017年最新颁布的真菌毒素新国标中已采用同位素内标稀释法,印证了同位素内标在真菌毒素检测领域举足轻重的地位!加之稳定性同位素内标无影响因子,可以有效校正基质效应;消除实验误差,有效提高准确度和精密度;结合普瑞邦固相净化柱完美实现一步净化,选择在待测样品中,净化过程或上LC-MS/MS前的步骤加入稳定性同位素内标(不同步骤加入有差异),可实现多毒素同时快速检测。/span/pp style="text-indent:28px"span style="font-family: arial, helvetica, sans-serif "strongspan style="font-size: 14px letter-spacing: 1px "独有的生物合成专利技术以及三重纯化方式推出的/span/strongstrongspan style="color: rgb(0, 158, 125) letter-spacing: 1px "Pribolab/span/strongstrongspan style="color: rgb(0, 158, 125) letter-spacing: 1px "真菌毒素sup13/supC稳定同位素内标,/span/strongstrongspan style="font-size: 14px letter-spacing: 1px "我司可提供常用规格1.2mL,臻品大包装2~10mL,亦可根据您的需求提供浓度、规格定制服务。/span/strong/span/pp style="text-indent:28px"span style="font-size:10px letter-spacing:1px" /span/pp style="text-align:left"strongspan style="font-size:16px font-family: 宋体 color:#366092"全新外包装,创新真菌毒素标准溶液长期存储模式/span/strongstrongspan style="font-size:11px font-family:宋体 color:#366092"“/span/strongstrongspan style="font-size:11px font-family: 宋体 color:#366092"迷你取样口,防溢液漏液span”/span/span/strong/ppspanimg src="https://img1.17img.cn/17img/images/202009/noimg/67c50ec5-5b74-4457-b053-40ee486de3df.gif" alt="说明: IMG_257" title="clip_image004.gif"//span/ppstrongspan style="font-size:11px font-family:宋体 color:#366092"注:取样针支持单独购买/span/strong/pp style="margin-bottom:16px text-align:left"strongspan style="font-size:16px font-family:宋体 color:#366092" /span/strong/pp style="text-align:justify text-justify:inter-ideograph background:white"strongspan style="font-family:宋体 color:#366092"产品速递,现货充足,欢迎详询!spanbr/ br/ /span/span/strong/ptable border="0" cellspacing="0" cellpadding="0" width="283" style="border-collapse:collapse"tbodytr style=" height:28px" class="firstRow"td width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"黄曲霉毒素/span/strong/p/tdtd width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"脱氧雪腐镰刀菌烯醇/span/strong/p/td/trtr style=" height:28px"td width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"伏马毒素/span/strong/p/tdtd width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"T-2/HT-2/span/strongstrongspan style="font-size:13px font-family: 华文细黑 color:#404040"毒素/span/strong/p/td/trtr style=" height:28px"td width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family: ' 微软雅黑' ,' sans-serif' color:#009E7D letter-spacing: 1px"交链孢毒素/span/strongstrong/strong/p/tdtd width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"玉米赤霉烯酮/span/strong/p/td/trtr style=" height:28px"td width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"赭曲霉毒素/span/strong/p/tdtd width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"展青毒素/span/strong/p/td/trtr style=" height:28px"td width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"黄绿青霉素/span/strong/p/tdtd width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"桔青霉素/span/strong/p/td/trtr style=" height:28px"td width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"白僵菌素/span/strong/p/tdtd width="141" style="background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height="28"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:华文细黑 color:#404040"细格菌素/span/strong/p/td/tr/tbody/tablep style="text-align:justify text-justify:inter-ideograph background:white"strongspan style="font-family:宋体 color:#366092" /span/strong/ppspan style="font-family: arial, helvetica, sans-serif "strongspan style="color: rgb(0, 158, 125) letter-spacing: 1px "贴心小知识:/span/strong/span/pp style="margin-left:28px"span style="font-family: arial, helvetica, sans-serif "span style="font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px "lspan style="font: 9px " Times New Roman" " /span/spanspan style="font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white "自然界中碳以sup12/supC、sup13/supC、sup14/supC等多种同位素的形式存在。sup13/supC在地球自然界的碳中占约1.109%,不仅丰度低,提取也极其困难。20世纪50年代以来,随着浓缩和分析技术的突破,利用sup13/supC同位素的质量和磁性的同位素效应,才让sup13/supC标记的提取成为可能。/span/span/pp style="margin-left:28px"span style="font-family: arial, helvetica, sans-serif "span style="font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px "lspan style="font: 9px " Times New Roman" " /span/spanspan style="font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white "相较于氘代同位素内标,sup13/supC稳定同位素内标骨架取代,与原型物理化性质更接近,结构更稳定。/span/span/pp style="text-align: justify background: white "span style="font-size:13px font-family:' 微软雅黑' ,' sans-serif' color:#333333 letter-spacing:0 background:white" /span/p
  • 【质谱文献】超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素
    本文来源: 柯瑞斯质谱平台摘 要目的  建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中维生素A、维生素D(25-OH-VD2、25-OH-VD3)、维生素E(α-、β-和γ-生育酚)的方法。 方法  血清中脂溶性维生素经甲醇-乙腈(50:50, v/v)沉淀蛋白、正己烷萃取,以Phenomenex Kinetex F5色谱柱为分离柱,2.5mmol/L甲酸铵-0.1%甲酸水溶液和甲醇为流动相,梯度洗脱,电喷雾电离(ESI~+)、多反应监测(MRM)模式下检测,同位素内标法定量。结果  血清中6种脂溶性维生素线性范围内线性关系良好,相关系数r0.995;6种脂溶性维生素的检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL;加标回收率为86.6%~107.7%,日内精密度9.6%,日间精密度9.3%。NIST标准参照品SRM 968f验证方法准确度,结果偏差均在5%以内。结论  本方法准确度高、重现性好、用血量少,适于婴幼儿等采血困难者微量血样中多种脂溶性维生素的同时快速检测。正 文维生素在人体生长代谢过程中发挥着重要作用,是人体必须的微量营养素,缺乏或过量都会对人体健康产生不利影响。维生素A、D、E是脂溶性维生素,研究表明缺乏这些维生素会增加患夜盲症、骨质疏松、心血管疾病及免疫系统相关疾病的风险[1],婴幼儿及未成年人缺乏其对生长发育的影响则更为明显[2-4]。目前维生素检测的方法主要有高效液相色谱法[5-7]、液相色谱-串联质谱法[8-14]等,其中液相色谱-串联质谱法因其灵敏度高、重现性好、可同时快速检测多种维生素已成为很多临床实验室的首选方法。但是目前的液相色谱-串联质谱方法血液需求量较大[10,13],检测项目单一[8-9,14]或检测时间较长[11],不能满足临床同时快速检测多个项目的需求,特别是婴幼儿采血困难采血量很难满足需求。虽然已有部分学者建立微量检测方法用于维生素检测,但是这些方法需要衍生化过程,前处理复杂耗时较长[8-9,14]。因此,建立能够用微量血液同时快速检测多种维生素的方法满足临床不同年龄段的检测需求显得尤为必要。此外,视黄醇,维生素D的代谢产物25-OH-VD2、25-OH-VD3,α-生育酚是脂溶性维生素A、D、E在血液循环中的主要存在形式,常作为脂溶性维生素检测的首选指标[15-18]。γ-生育酚是维生素E主要的饮食摄入形式,但其与α-生育酚转移蛋白(α-TTP)的亲和力较低,在体内含量较α-生育酚低,但是,近年来文献报道其在人体健康活动中也扮演着重要角色[19]。本文建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中视黄醇,维生素D(25-OH-VD2、25-OH-VD3)和α-、β-、γ-生育酚的方法,满足临床各年龄段尤其是对婴幼儿同时快速检测多种维生素的需求。1实验部分1.1  仪器与试剂 液质联用仪;高速冷冻离心机;涡旋振荡仪;超声波振荡器;氮吹仪(Agela);紫外分光光度计。视黄醇、25-OH-VD2、25-OH-VD3、α-生育酚、β-生育酚、γ-生育酚均购自美国Sigma-Aldrich;视黄醇-d6标准品购自上海谱芬生物;25-OH-VD2-d3购自美国IsoSciences、25-OH-VD3-d6、α-生育酚-d6标准品购自加拿大TRC 血清质控样品购自美国NIST 收集安徽省第二人民医院近期健康体检正常儿童血液样本17份,避光保存。LC-MS级甲醇,色谱级乙腈、正已烷及甲酸均购自美国Fisher;甲酸铵、牛血清白蛋白(BSA)购自美国Sigma-Aldrich;色谱级乙醇购自国药集团。实验用水由Milipore纯水仪(美国密理博)提供。1.2  标准溶液和内标溶液的配制  用无水乙醇配制视黄醇标准品储备液100μg/mL;α-生育酚、β-生育酚、γ-生育酚标准品储备液各1000μg/mL,并用紫外分光光度计对其浓度进行校正[18,20]。用甲醇配制25-OH-VD2标准品储备液25μg/mL和25-OH-VD3标准品储备液100μg/mL,视黄醇-d6标准品储备液100μg/mL,25-OH-VD2-d3标准品储备液50μg/mL,25-OH-VD3-d6标准品储备液50μg/mL,α-生育酚-d6标准品储备液1000μg/mL。将各目标化合物标准储备液用复溶液(初始流动相)稀释混匀,配制成混合标准溶液(视黄醇2.50μg/mL、25-OH-VD2 0.20μg/mL、25-OH-VD3 0.40μg/mL、α-生育酚50.00μg/mL、β-生育酚5.00μg/mL、γ-生育酚 5.00μg/mL);将各同位素标品储备液用甲醇稀释混匀,配制成混合内标工作液(视黄醇-d6 2.00μg/mL、25-OH-VD2-d3 0.10μg/mL、25-OH-VD3 0.20μg/mL、α-生育酚-d6 20.0μg/mL)。取4g BSA溶解于100mL水中配成4% BSA溶液。1.3  样本前处理  取血清样品20μL至2mL离心管中,加入10μL同位素内标工作液,80μL水,2000r/min涡旋振荡30s后加入200μL甲醇-乙腈(50∶50,v/v),2000r/min混匀60s;加入800μL正己烷,2000r/min,混匀5min,然后4℃,12000r/min离心5min;吸取600μL上清液至1.5mL离心管中,室温下氮气吹干;加100μL初始流动相复溶,涡旋振荡60s,4℃,12000r/min离心5min,上清液转移至进样瓶中待分析。1.4  色谱 - 质谱条件  采用Phenomenex Kinetex F5(100mm × 2.1mm, 2.6μm)色谱柱,柱温35℃,流动相A含2.5mmol/L甲酸铵和0.1%甲酸的水溶液;流动相B含2.5mmol/L甲酸铵和0.1%甲酸的甲醇溶液,梯度洗脱程序:0~2.0min,70%B,2.0~2.5min,70%~88% B,2.5~3.5min,88% B,3.5~3.51min,88%~81%B,3.51~11.0min,81% B,11.0~12.0min,81%~70%B,流速0.5mL/min。进样量:20μL。采用多反应监测(MRM)、电喷雾正离子模式(ESI+),离子源温度 150℃,脱溶剂温度500℃,毛细管电压3kV,脱溶剂气流速1000L/h;6种脂溶性维生素的MRM 离子参数见表1。2  结果与讨论2.1  前处理条件优化  对血清前处理过程中蛋白沉淀剂(甲醇、乙腈、乙醇)的选择及萃取溶剂正己烷的用量(400μL、600μL、800μL)进行了优化,结果表明,甲醇-乙腈(50∶50,v/v),沉淀效果最好,色谱图杂峰明显减少;正己烷用量较大时萃取更完全,信号值更高。另外,考察了不同复溶液体系:甲醇-水(50∶50,v/v)、甲醇-水(70∶30,v/v)、甲醇均含2.5mmol/L甲酸铵和0.1%甲酸对色谱分离的影响,结果如图1所示,使用b组复溶液即初始流动相时视黄醇响应值较a组增加1倍以上,c组视黄醇峰宽变大且峰形不对称。同时b组中25-OH-VD3和25-OH-VD2响应值是a组的2倍、c组的4倍以上,且峰形明显改善有利于25-OH-VD3和 25-OH-VD2的分离检测。最终,采用血清样加水混匀后用200μL沉淀剂(甲醇:乙腈(50∶50,v/v)沉淀蛋白,800μL正已烷液液萃取,取600μL上清液氮吹,初始流动相复溶进样。2.2   液 相 色 谱 条 件 优 化   Kinetex F5色谱柱可以实现所有组分包括β、γ-生育酚的分离。此外,25-OH-VD3同分异构体3-epi-25-OH-VD3在婴幼儿体内含量较高,对维生素D含量测定影响较大[21],该色谱柱可以实现25-OH-VD3和3-epi-25-OH-VD3的分离,减少3-epi-25-OH-VD3对检测结果的影响。故采用Kinetex F5色谱柱进行所有组分的分离(见图2)。研究发现在流动相中加入甲酸铵后其促进目标化合物离子化的效果较加入乙酸铵好,响应值增加明显,故在水相和有机相中均加入2.5mmol/L甲酸铵。2.3  线性范围、检出限和定量限  将混合标准溶液用复溶液逐级稀释,得到一系列标准工作液,各取20μL,分别加入10μL内标工作液和80μL 4% BSA溶液,其余操作同样本前处理。由于人血中存在内源性脂溶性维生素,故在标曲制作中加入4% BSA。以各目标化合物的色谱峰与其相对应的同位素内标色谱峰的峰面积比值-浓度比值作图,得到各目标化合物的标准系列工作溶液的直线拟合方程,并计算相应的线性相关系数。6种脂溶性维生素的标准曲线和线性范围见表2。结果表明,6种脂溶性维生素在对应的浓度范围内线性关系良好,相关系数0.995,标准溶液色谱图如图3所示。每个浓度重复检测6次,满足相对标准偏差20%且信噪比S/N≥3的最低浓度值定为检测限,满足相对标准偏差20%且信噪比S/N≥10的最低浓度值定为定量限。6种脂溶性维生素检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL(见表2)。2.4  方法精密度 将低、中、高三个浓度标准品溶液加入4% BSA混合血清样本经本法处理后进行检测,每个浓度重复6次,连续检测三天,计算日内精密度为0.9%~9.6%,日间精密度为3.0%~9.3%(见表3)。该方法同时测定6种脂溶性维生素的日内精密度和日间精密度均在15%以内,方法精密度满足检测需求。2.5  方法准确度  将低、中、高浓度的标准品溶液加入混合血清样本中按本法进行前处理后进行检测,每个浓度重复6次,计算加标回收率,3个水平的加标回收率为86.6%~107.7%,相对标准偏差(RSD)为1.46%~9.39%(见表4)。该方法加标回收率均在80%~120%以内,方法准确度高满足检测需求。2.6  方法验证  采用建立的UPLC-MS/MS方法对美国国家标准技术研究所(NIST)制定的标准参照品SRM 968f进行检测,每个水平重复2次取平均值,验证方法准确度。结果表明,除25-OH-VD2含量较低未能检出外,其它检测结果与靶值偏差均在5%以内,该方法检测结果准确可靠(表5)。2.7  实际样品测定  使用本方法对17份健康儿童血液样本进行检测,其中视黄醇含量为0.22~0.43μg/mL,25-OH-VD2含量为未检出~5.19ng/mL,25-OH-VD3含量为6.83~49.21ng/mL,α-生育酚含量为5.63~12.73μg/mL,β-生育酚含量为0.03~1.37μg/mL,γ-生育酚含量为0.11~1.68μg/mL。本法适用于微量临床血液样本6种脂溶性维生素的同时快速检测。3结  论本研究建立了超高效液相色谱串联质谱法同时测定微量血清样本中多种脂溶性维生素的方法,并对前处理过程中的蛋白沉淀试剂、萃取液用量,复溶液等进行了优化,以减少色谱图中噪音干扰,改善色谱峰形,提高检测灵敏度。并比较了不同色谱柱对多种脂溶性维生素尤其是不同类型维生素E的分离效果,最终选择Phenomenex Kinetex F5色谱柱,该色谱柱可以实现β-生育酚和γ-生育酚的有效分离。本研究中只需20μL血清就能够快速完成6种脂溶性维生素的测定。该方法测定样本需求量少、操作简单、检测结果准确快速可实现大量临床样本的同时检测,尤其对采血较为困难的婴幼儿可以实现少量血液样本检测多数项目的需求。参考文献(略)本文引用来源: 李雪梅,吴慧慧,陈竞,赵盼,唐玉菲.超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素[J].现代预防医学,2022,49(07):1297-1302.
  • 河南省有色金属行业协会发布《焙烧钼精矿化学分析方法 钼、铜含量的测定 波长色散X-射线荧光光谱法(铌内标法)》等22项团体标准
    各相关单位:根据《河南省有色金属行业协会团体标准管理办法》的有关规定,河南省有色金属行业协会批准发布《焙烧钼精矿化学分析方法 钼、铜含量的测定 波长色散X-射线荧光光谱法(铌内标法)》等22项团体标准(详见附件),自2023年12月31日起实施,现予以公告。附件:22项团体标准编号、名称、起草单位一览表 序号编号标准名称起草单位主要起草人实施日期1T/HNNMIA 37-2023铝用炭素焙烧焦油资源化利用规范中铝郑州有色金属研究院有限公司、山西三晋碳素股份有限公司、河南华慧有色工程设计有限公司、万基控股集团石墨制品有限公司、河南中孚炭素有限公司、河南神火炭素新材料有限责任公司杨宏杰、罗钟生、郭彦生、茹德敏、罗英涛、孙丽贞、张继光、刘建军、刘彤、王玉杰、马志华、许炎锋、赵明超2023-12-312T/HNNMIA 38-2023企业温室气体排放核算方法与报告指南铝电解槽中铝郑州有色金属研究院有限公司、中铝环保节能集团有限公司李新华、张树朝、李荣柱、仓向辉、姜治安、罗丽芬、余伟奇、寇帆、卢成、朱君罡、王文广、瞿媛媛2023-12-313T/HNNMIA 39-2023质量分级及“领跑者”评价要求重熔用铝锭中铝郑州有色金属研究院有限公司、包头铝业有限公司、云南铝业股份有限公司、鹤庆溢鑫铝业有限公司寇帆、仓向辉、石磊、王开爱、张蓝霄、刘凤杰、单鑫、罗安民、邓志锋2023-12-314T/HNNMIA 40-2023质量分级及“领跑者”评价要求铝电解用预焙阳极中铝郑州有色金属研究院有限公司、中铝山西新材料有限公司、济南万瑞炭素有限责任公司、鹤庆溢鑫铝业有限公司张树朝、仓向辉、寇帆、马卫丹、崔军峰、郭丽娜、王波、王玉强、邓志锋2023-12-315T/HNNMIA 41-2023铝电解槽用侧部复合块中铝郑州有色金属研究院有限公司、焦作市北星耐火材料有限公司、中国有色集团晋铝耐材有限公司、中铝工业服务有限公司西宁分公司卢成、刘源、仓向辉、寇帆、李东东、朱君罡、阮克胜、杨磊、梁冬梅2023-12-316T/HNNMIA 42-2023铝电解打壳锤头耐磨性测试方法中铝郑州有色金属研究院有限公司、内蒙古华云新材料有限公司、包头铝业有限公司、遵义铝业股份有限公司、广西华磊新材料有限公司、广元中孚高精铝材有限公司侯光辉、李冬生、马军义、张亚楠、刘丹、温瑞宇、王文印、田建明、陈善永、周剑、周晓红、李德赞、张晓东、郭庆峰、张华锋、姜治安、王俊伟、王慧瑶2023-12-317T/HNNMIA 43-2023铝电解废阴极炭块资源化利用规范中铝郑州有色金属研究院有限公司、万基控股集团石墨制品有限公司、河南中孚炭素有限公司、河南神火炭素新材料有限责任公司罗钟生、刘建军、杜婷婷、王珣、孙丽贞、王玉杰、刘彤、马志华、许炎锋、赵明超2023-12-318T/HNNMIA 44-2023焙烧钼精矿化学分析方法 钼、铜含量的测定 波长色散X-射线荧光光谱法(铌内标法)洛阳栾川钼业集团股份有限公司、洛阳栾川钼业集团冶炼有限责任公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司车文芳、姚洪霞、周春仙、李明、常富强、王小红、崔关怀、王君花、侯凯、周哲、李晓燕、杨翠、汤平平、李延槐、陈杰2023-12-319T/HNNMIA 45-2023钼精矿化学分析方法钼含量的测定 微波消解-钼酸铅重量法洛阳栾川钼业集团股份有限公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司、栾川县大东坡钼钨矿业有限公司、洛阳栾川钼业集团冶炼有限责任公司姚建斐、史丽娟、刘素娟、李雪、刘英英、申琳琳、朱孔贺、原娜娜、朱新玉、杨云云、刘珊珊、王璇、李延槐、陈杰、周延松2023-12-3110T/HNNMIA 46-2023钼精矿化学分析方法钼、铜、铅、钙、三氧化钨、二氧化硅含量的测定 波长色散X-射线荧光光谱法(铌内标法)洛阳栾川钼业集团股份有限公司、栾川县三强钼钨有限公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司、洛阳栾川钼业集团冶炼有限责任公司曹伟强、刘素娟、姚建斐、贺阁、段亚南、史丽娟、李向楠、谢晓丹、董雪姣、段艳阁、常富强、王留晓、李延槐、李曦阳、陈杰2023-12-3111T/HNNMIA 47-2023钼酸铵化学分析方法氟含量的测定 离子选择性电极法 洛阳栾川钼业集团股份有限公司、栾川县产品质量检验检测中心、栾川龙宇钼业有限公司、洛阳豫鹭矿业有限责任公司、洛阳栾川钼业集团冶炼有限责任公司周哲、罗凯、段亚南、杨绍泷、曹伟强、周春仙、贺阁、朱孔贺、姚洪霞、王亚丽、杨亚楠、李延槐、李凤荣、陈杰、王俊杰2023-12-3112T/HNNMIA 48-2023铅铋合金化学分析方法 铅量和铋量的测定Na2EDTA 滴定法河南豫光金铅股份有限公司、河南豫光锌业有限公司、河南国之信检测检验技术有限公司、河南金利金铅集团有限公司、济源市万洋冶炼(集团)有限公司孔建敏、杨杰、朱晓宇、许双宝、范萍萍、赵凯、李凯、刘家钦、刘艳华、颜江平、袁奔驰、李秉彥、闫清艳、苗贤委2023-12-3113T/HNNMIA 49-2023酸泥 汞含量的测定 铜试剂滴定法河南豫光金铅股份有限公司、 河南国之信检测检验技术有限公司、 河南豫光锌业有限公司、 安徽铜冠有色金属(池州)有限责任公司 、河南中原黄金冶炼厂有限责任公司牛军民、 张全胜、 周君玲、 马金梅、 卫平、 刘家钦、 刘艳华 、牛鹏波、 徐淑敏、姚亚军、 麻瑞苡2023-12-3114T/HNNMIA 50-2023酸泥 硒含量的测定 硫代硫酸钠滴定法河南豫光金铅股份有限公司、 河南国之信检测检验技术有限公司、 河南豫光锌业有限公司、 安徽铜冠有色金属(池州)有限责任公司、 河南中原黄金冶炼厂有限责任公司牛军民、 张全胜、 周君玲、 吴梅梅、 王九菊、 刘家钦、 刘艳华、 牛鹏波、 徐淑敏 、姚亚军、 麻瑞苡2023-12-3115T/HNNMIA 51-2023锌精矿化学分析方法氯含量的测定 氯化银比浊法河南豫光锌业有限公司、河南豫光金铅股份有限公司、中州铝业有限公司徐淑敏、李艳晶、牛鹏波、周玲、耿翠翠、赵晓文、周君玲、张海丽、王阳阳、贾青、贺婕2023-12-3116T/HNNMIA 52-2023铝灰化学分析方法铝含量的测定 气体容量法河南中孚实业股份有限公司、中铝郑州有色金属研究院有限公司、河南科创铝基新材料有限公司、河南中孚铝业有限公司樊军伟、骆帝兴、石磊、孙雅琴、张涛、毛冬艳、牛会娟、禹海燕、焦跃辉、刘楠、李玉莲、胡珂2023-12-3117T/HNNMIA 53-2023铝用炭素生产用石油焦挥发分分析方法河南中孚实业股份有限公司、中铝郑州有色金属研究院有限公司、河南科创铝基新材料有限公司、河南中孚炭素有限公司、河南中孚铝业有限公司、四川广元中孚有限公司樊军伟、骆帝兴、石磊、孙雅琴、张涛、张海燕、牛会娟、焦跃辉、毛冬艳、李玉莲、刘楠、胡珂、黄二军2023-12-3118T/HNNMIA 54-2023器件封装键合用镀金铝线河南理工大学、浙江东尼电子股份有限公司、河南科技大学、合肥中晶新材料有限公司,河南优克电子材料有限公司 曹军、周洪亮、吴雪峰、沈晓宇、丁勇、王福荣、张跃敏、吕长春、周延军、李绍林、张俊超、程平2023-12-3119T/HNNMIA 55-2023微细铜锡合金丝河南理工大学,浙江东尼电子股份有限公司、河南科技大学、常州恒丰特导股份有限公司,河南优克电子材料有限公司曹军,周洪亮,吴雪峰,张俊超、吕长春、沈晓宇、丁勇、陈鼎彪、周延军2023-12-3120T/HNNMIA 56-2023银铜带中铝洛阳铜加工有限公司师凯信、王梦娜、张娟、张梦雨、朱迎利、许春伟、郭云辉2023-12-3121T/HNNMIA 57-2023轧制镜面铝及铝合金板、带、箔材中铝河南洛阳铝加工有限公司、中铝材料应用研究院有限公司、中铝瑞闽股份有限公司、洛阳万基铝加工有限公司、洛阳昆特铝业有限公司、深圳市兴力宏金属材料有限公司、沈阳美拓金属有限公司徐巍昆、赖爱玲、吴广奇、李永锋、刘辉、高崇、韦拥、侯保平、梁重权、孟妙华、李长巍2023-12-3122T/HNNMIA 58-2023食品容器用再生铝合金箔河南明泰铝业股份有限公司、中南大学、河南明泰科技发展有限公司、河南义瑞新材料科技有限公司、郑州明晟新材料科技有限公司、河南爱纽牧新材料有限公司刘杰、闫帅杰、邓艳超、李伟坡、王斌、杨正高、王军伟、柴明科、刘涛、孙文峰2023-12-31河南省有色金属行业协会2023年12月4日关于发布《铝用炭素焙烧焦油资源化利用规范》等22项团体标准的公告.pdf
  • 填补国内标准空白,《日常防护口罩》团标发布实施
    p style="text-align: justify text-indent: 2em "日前,由广东省标准化协会提出并归口,广州检验检测认证集团联合易佰特(福建)电子有限公司、广州市健桥惠泽有限公司、爱慕(苏州)医疗健康科技有限公司、东莞市韦尔医疗科技有限公司、广州健朗医用科技有限公司等多家单位共同起草的《日常防护口罩》团体标准通过专家审定,并于3月20日发布实施。/pp style="text-align: justify text-indent: 2em "该团标对日常防护口罩的核心指标具有先进性和适用性,达到国际先进水平,部分技术要求填补国内标准空白,为日常防护口罩的高质量市场供给提供了技术支撑。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/1c9a8e2a-9cbb-4f95-bedb-ee482b0a32f6.jpg" title="22.jpg" alt="22.jpg"//pp style="text-align: justify text-indent: 2em "strong目前,我国关于口罩产品共有5个标准,/strong其中3个适用于医用,防护级别从高到低分别是GB 19083—2010《医用防护口罩技术要求》、YY 0469—2011《医用外科口罩》和YY/T 0969—2013《一次性使用医用口罩》,这3个标准对生产条件、资质以及产品适用范围作了严格规定;另外两个标准,一个是GB/T 32610—2016《日常防护型口罩技术规范》,主要针对在空气污染(PM 2.5) 环境下对人体的防护,另一个是GB 2626—2016《呼吸防护用品自吸过滤式防颗粒物呼吸器》,主要针对媒矿、粉尘车间等特定环境特定人群使用的口罩产品作出规定。显然,现有的5个国家和行业标准对目前大众普遍使用的日常防护口罩存在许多不适用的地方。/pp style="text-align: justify text-indent: 2em "有不少企业为应急所需,采用医用口罩标准组织生产,既增加成本,又浪费资源;有些企业则采用上述另两个标准或其他标准生产,产品质量和适用性难以保证。一些劣质产品则趁机滥竽充数。这非常不利于生产企业质量控制和政府对市场的监管。因此,strong制定适应防疫需求的日常防护口罩标准很有必要,《日常防护口罩》团标应运而生/strong。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/175c9e1f-a897-4fc8-a499-e37fdd956260.jpg" title="11.jpg" alt="11.jpg"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong产品分档次,AAA级核心指标达国际先进水平/strong/span/pp style="text-align: justify text-indent: 2em "该团标的鲜明特色是技术指标的先进性和适用性兼具。为确保产品质量,团标对涉及质量的各个环节包括基本要求、外观、结构与尺寸、鼻夹长度、口罩带与口罩体的连接处断裂强力、通气阻力、PH值、甲醇含量、可分解致癌芳香胺染料、耐摩擦色牢度、耐唾液色牢度、微生物、环氧乙烷残留量等都作了严格具体的规定,与国家有关强制性规定和要求相一致。颗粒物过滤效率和细菌过滤效率,是口罩标准的核心指标,直接决定产品的质量优劣。/pp style="text-align: justify text-indent: 2em "该团标创新性地把口罩过滤效率划分为三个等级,即A、AA、AAA。其中,AAA级对颗粒物的过滤效率(非油性)要求达到95%,细菌过滤效率达99%。细菌过滤效率同EN 14683(欧盟标准)和ASTMF 2100(美国材料与试验协会标准)一致,颗粒过滤效率(非油性)指标值达到ASTM F 2100 I级水平,高于EN14683(该标准对颗粒过滤效率未做要求)。此外,相比这两个标准,该团标增加了口罩材质的安全性(如甲醛、pH 值、可分解芳香胺染料、耐唾液色牢度和耐摩擦色牢度等)规定,折叠比、耐唾液色牢度等部分要求则填补国内标准的空白。/pp style="text-align: justify text-indent: 2em "该团标要求过滤效率等级要标在产品包装标识上,以方便消费者选择,推动优质产品的推广使用。考虑日常防护口罩使用者主要为普通民众,并要长时间配戴,团标对决定产品舒适性的通气阻力作了慎重界定。通过选取84个具有代表性样品按照国际标准的测试方法,在测试颗粒物过滤效率的同时记录通气阻力,发现通气阻力超过80Pa,使用者会感觉到不适,因此在确保颗粒物和细菌过滤效率的前提下将成人口罩通气阻力定为≤70Pa,经对抽样产品测试达标率达到94.1%,证明这一规定既提升了产品的舒适性实用性,并切实可行。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong对儿童和老人口罩作出特别规定/strong/span/pp style="text-align: justify text-indent: 2em "该团标的另一突出特色是对儿童和老人口罩的技术要求作出特别规定。目前国家和行业标准均无这些规定。考虑到儿童和老人的生理情况,肺活量比较小,将儿童和老人口罩通气阻力定为≤50Pa,以使产品更易为儿童和老人所接受。要求儿童口罩的细菌过滤和颗粒物过滤效率至少达到AA级水平。儿童口罩的织物除要符合GB 18401《国家纺织产品基本安全技术规范》外,还要符合GB 31701《婴幼儿及儿童纺织产品安全技术规范》的有关规定。/pp style="text-align: center "strong《日常防护口罩》与相关标准对比表/strongbr//pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/e96f0f28-f028-43e2-84ba-c05e48e0750c.jpg" title="日常防护口罩.jpg" alt="日常防护口罩.jpg"//strong/pp style="text-align: justify text-indent: 2em "strong style="color: rgb(0, 112, 192) text-decoration: underline "br//strong/pp style="text-align: justify text-indent: 2em "strong style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "a href="https://www.instrument.com.cn/download/shtml/946152.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "《日常防护口罩》标准下载链接/a/span/strong/p
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-MS/MS测量程序( 表4 )。  (四)类固醇激素LC-MS/MS测量程序的质量保证  1. 量值溯源:量值溯源是通过一条具有明确不确定度的不间断传递链,使测量结果的量值能够与规定的参考标准(国家或国际计量标准)联系起来 [ 28 ] 。类固醇激素量值的可溯源性是实现实验室间测量结果一致的基础,即同一标本在不同时间和地点采用不同测量程序得到准确测量结果。实验室应参考国际标准化组织(International Organization for Standardization,ISO)17511文件及中国合格评定国家认可委员会关于测量结果的计量溯源性文件要求建立计量溯源链,核心要素包括被测物、参考物质、校准及赋值程序、测量结果验证 [ 28 ] 。  实验室应参考国际临床化学和检验医学联合会/国际纯粹与应用化学联合会文件明确被测物属性,包括分析物特性(如化学形式)、测量基质、单位等 可通过检验医学溯源联合委员会网站或国家标准物质资源共享平台查询参考物质信息,并优先选择具有明确溯源信息的参考物质(如有证参考物质)作为校准品。对无有证参考物质的类固醇激素,实验室应参考CLSI EP30评估校准品的特性、纯度、均一性、稳定性及互通性并制定相关评估程序 [ 29 ] 。  需明确的是,计量溯源链本身并不直接保证测量结果的准确性和一致性,溯源链中每次量值传递都会新增测量不确定度,测量的准确度和不确定度也可能在使用新校准品或仪器大修后改变,实验室应通过检测校准品、参加能力验证计划或实验室间比对,明确测量程序的正确度和精密度。  建议8 实验室应优先选择具有明确溯源信息的类固醇激素参考物质作为校准品,建立计量溯源链。  2. 校准:校准是确定或校正质谱仪检测信号强度与待测物浓度之间的相关性。通常将校准物质加入到经活性炭处理、不含待测类固醇激素的单一来源或混合血清(浆)基质中以制备一系列稀释校准品。类固醇激素LC-MS/MS测量程序性能验证、更换试剂或校准物批号后,需确定每个分析批校准曲线的斜率、截距和相关系数的可接受标准。每个分析批都需进行校准,如果一个分析批包含的样品很多,校准品可在分析批不同位置进样,并监测每个校准品检测值与理论值的偏倚,以明确在大样本量分析中的校准漂移情况。  校准确认是采用与检测临床标本相同的测量程序,分析在报告范围内已知待测物浓度的标本或商品化室间质量评价(external quality assessment,EQA)质控物以确认仪器或检测系统的校准,验证正在使用的校准曲线在检测患者标本时依然有效。建议在变更标准品批次后、确认不同分析批之间的校准有效性时,开展校准确认。校准确认品应与实际患者标本相同或具有相似的性质,并与患者标本进行相同的前处理。与患者标本基质不同的质控品和校准品不可作为校准确认品。  建议9 实验室应对每个分析批进行校准,并监测每个校准品浓度检测值与理论值的偏倚。  3. 室内质量控制:血清(浆)类固醇激素LC-MS/MS测量程序室内质控的难点是获取与患者标本基质相近且稳定性好的质控品。对于多组分分析的血清(浆)类固醇激素LC-MS/MS测量程序,应优先选择生产质控严格、稳定性明确,并同时包含多个待测组分的商品化质控品。使用经处理的血清(浆)、冻干或合成基质质控品的一个明显缺点是,因与患者标本基质不完全相同而产生不同的质谱响应。而未添加分析物的患者血清(浆)质控品可能在评估测量程序性能时比经过处理的质控品更可靠。如通过将类固醇纯溶液标准品添加入基质制备质控品,用于制备质控品的类固醇标准品批号及基质应有别于制备校准品的类固醇标准品及基质。另外,实验室可使用低、中、高浓度的单个或混合患者样本作为质控品。为了保证质控结果解读的一致性,质控样品应大批量制备,分装储存,并明确质控品的储存稳定性及与患者标本基质的一致性。  实验室应自行确定质控物靶值及最大允许不精密度( 表4 ),将质控物放置在每一分析批内和分析批间的不同位置检测,以监测测量程序的批内、批间漂移情况。可参考《临床检验定量测定室内质量控制 WS/T641-2018》 [ 30 ] 建立测量程序的质控方案和失控规则(如1 3 s 、3 2 s 等),以及失控后处理措施,如分析批内质控不合格,应复测标本。  建议10 实验室应优先选择质量可靠、与患者标本基质一致的质控物,确定质控物靶值及最大允许不精密度,建立质控方案、失控规则和处理措施。  4. 分析批设置:血清(浆)类固醇激素LC-MS/MS测量一般分批进行,分析批的长度取决于系统校准稳定性和成本效益。一个典型的分析批应包含校准品、质控品、患者样本、空白样品、校准确认品(用于验证校准曲线的有效性,非必需)。实验室通过校准曲线、质控和校准确认监测每个分析批的有效性。当检测量大于2×96个时,建议每检测批次(96个/批次)都包含校准品、质控品和空白样本。实验室应确定并文件化血清(浆)类固醇激素LC-MS/MS测量程序的分析批长度 [ 31 ] 。  建议11 实验室应根据血清(浆)类固醇激素LC-MS/MS测量系统的稳定性和成本效益确定分析批的长度,并通过校准曲线、质控和校准确认监测每个分析批的有效性。  5. 能力验证/室间质量评价:由于血清(浆)类固醇激素LC-MS/MS检测程序标准化不足,基于分组数据进行测量结果一致性评估的EQA计划价值有限。正确度验证计划可同时监测测量程序的正确度和一致性,实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心正确度验证计划,如卫生健康委临床检验中心组织的类固醇激素正确度验证。正确度验证计划使用经最少程序处理的临床样本,通过参考方法对类固醇激素定值后,用于评估参评实验室LC-MS/MS测量程序的正确度和量值溯源性。对无正确度验证和室间质量评价计划的类固醇激素LC-MS/MS检测项目,实验室需定期(如2次/年)进行实验室间比对,并应优先选择通过ISO15189认可的实验室,以保证实验室间结果的一致性。  建议12 实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心组织的类固醇激素检测能力验证计划,无能力验证计划的项目需定期(2次/年)进行实验室间比对。  (五)数据收集及分析  实验室应建立患者样品、空白样品、校准品和质控品的数据处理、峰积分的标准操作程序,并在每一次临床检测中保持一致。数据处理软件应带有审核追踪功能可查询每个样品的数据处理方法。  1. 校准曲线接受原则:以校准品/内标物浓度比值为 X轴、分析物/内标物响应比值为 Y轴,构建校准曲线,将每个患者样品、质控品和空白样品的分析物/内标物响应比值代入校准曲线方程计算被测物浓度。分析患者标本时使用的校准曲线回归方法应与进行测量程序性能验证时使用的方法保持一致,大多数情况采用线性回归。如果校准曲线数据方差不同质(不同浓度点差异不同),推荐使用1/ x或1/ x 2权重回归分析以使低浓度校准点的偏倚在可接受范围。实验室应通过观察每个校准浓度点的相对偏差或总相对偏差选择合适的权重分析方法。  血清(浆)类固醇激素LC-MS/MS测量程序性能验证应明确校准曲线可接受标准:使用校准曲线计算出的校准品浓度与理论浓度之间偏倚可接受范围为85%~115%(LOQ浓度点:80%~120%)。确定校准曲线斜率和截距的可接受标准,计算相关系数、确定其接受范围(通常需0.99),并应用于常规分析的评估。校准曲线的可接受标准应与测量程序性能(如准确度)匹配。  建议13 血清(浆)类固醇激素LC-MS/MS测量校准曲线计算的校准品浓度与理论浓度之间偏倚的可接受范围推荐设置为85%~115%(LOQ浓度点:80%~120%)。  2. 色谱峰积分:应在类固醇激素LC-MS/MS常规检测中通过优化积分参数完成色谱峰的自动积分,以尽量避免操作人员手动积分导致的不一致性。通常使用3倍LOQ浓度类固醇激素样品的色谱峰优化自动积分参数。对色谱峰进行平滑处理可提升积分准确性,仪器背景杂质信号过高或色谱峰采集数据点不足可导致色谱峰不够平滑。但色谱峰过度平滑会导致峰形变宽和丢失细节,如将肩峰平滑进待测物的色谱峰,将影响待测物定量结果准确性。对于采样率较慢的系统,可使用成组平滑方法减小背景杂质信号的影响。经验性色谱峰平滑参数应在所有样品分析中保持一致。  建议14 应尽量通过优化积分参数完成每个待测类固醇激素的色谱峰自动积分,避免手动积分,实际标本检测需统一峰积分、平滑参数。  3. 色谱峰核查:在类固醇激素LC-MS/MS测量程序性能验证时,应建立色谱峰保留时间、背景杂质信号强度、峰形和峰分辨率的核查规则。理想的色谱峰是对称的且基线分离完整。如果一个分析批内有样品色谱峰基线分离不完整、峰形变宽或裂分,排除管路连接不正确的原因,应考虑更换色谱柱。实验室必须核查色谱峰的保留时间以确保待测物分析峰的正确积分,并在标准操作流程中明确保留时间的最大允许漂移范围,分析批间的变化应不超过±2.5%。样品中分析物色谱峰的保留时间应与校准品的保留时间一致。实验室可采用人工核查色谱峰,也可通过在仪器控制软件中设置色谱峰核查参数自动完成。如果使用自动色谱峰核查,实验室需验证自动核查参数及流程的有效性,同时明确需人工介入核查的情况。  建议15 实验室应建立每个待测类固醇激素的色谱峰保留时间、背景杂质信号强度、峰形、峰分辨率的核查规则和允许范围。  4. 内标峰面积核查:通过计算每个类固醇激素LC-MS/MS检测样品内标峰面积与校准品平均峰面积的比值确定每个样品的内标峰面积回收率。内标回收率用于校正分析物提取回收率,每个样品内标峰面积不同是可接受的,但在性能验证时应建立样品之间内标峰面积变动的最大可接受范围。样品内标峰面积回收率出现明显降低提示前处理效率低或存在其他可导致离子抑制的干扰物或存在干扰内标定量离子对的杂质峰。对于内标峰面积比前后样品少2/3或50%的样品,应复检。明显升高的回收率提示内标峰包含干扰峰,也需复检。可通过内标峰面积随进样量变化作图,识别过低或过高的回收率。  建议16 实验室应日常监测每个待测类固醇激素的内标峰面积在标准品、质控物及标本间的波动,建立内标峰面积波动的最大可接受范围。  5. 定性离子对监测:类固醇激素LC-MS/MS常规检测中,一个离子对用于定量分析(定量离子对),另一个离子对用于定性分析(定性离子对)。定性离子对用于分析物定性,在识别样品干扰物中发挥重要作用。定量离子对峰面积与定性离子对峰面积的比值在不同样品间应保持一致,如果发生变化则提示存在干扰物质。如果无法检出定量或定性离子对则提示样品中不存在该分析物或存在干扰物,应进一步分析原因。应同时评估分析物和内标物的定量离子对/定性离子对比值。定性离子对应在整个测量区间有稳定的响应,避免使用脱水分子、脱乙酰基、脱甲基或加合物的子离子设置定性离子对。测量程序性能验证时应建立定量/定性离子对比值差异的可接受范围(如±30%),并在每一个样品检测中予以监测。  建议17 实验室应日常监测每个待测类固醇激素的定量/定性离子对峰面积比值在标准品、质控物及标本间的波动,并设置最大可接受范围。  03 血清(浆)类固醇激素LC-MS/MS检验后质量保证  1.数据存储:实验室应保存血清(浆)类固醇激素LC-MS/MS分析产生的完整原始数据和处理数据,包括测量程序使用的色谱和质谱参数设置、每个离子对的色谱和质谱数据等,必要时使用独立系统备份数据。  2.参考范围:由于抗原抗体非特异性反应及与LC-MS/MS测量结果的偏差,采用免疫法建立的类固醇激素参考范围一般不适用于LC-MS/MS测量程序,然而我国目前尚未建立公认统一的类固醇激素LC-MS/MS检测参考范围,实验室可参考CLSI EP28针对目标检测人群验证国外权威机构建立的参考范围 [ 32 ] ,不同类固醇激素需按性别、年龄和/或月经周期分组,例如绝经前妇女的雌二醇、雌酮和雌三醇的浓度因月经周期或妊娠阶段的不同而有较大差异。  建议18 实验室可针对目标检测人群验证国外权威机构建立的类固醇激素LC-MS/MS参考范围,推荐建立中国人群的参考范围。  3.结果解读及报告:肾上腺皮质激素代谢终产物醛固酮和皮质醇浓度增高分别和醛固酮增多症和皮质醇增多症(库欣综合征)密切相关 17α-羟孕烯醇酮、17α-羟孕酮及其雄激素代谢产物(如脱氢表雄酮、雄烯二酮)水平的异常往往与女性PCOS、高雄激素血症及性发育异常等内分泌疾病相关 绝经后女性雌二醇检测是乳腺癌发病风险评估的关键 对女性和青春期前儿童体内睾酮的检测是鉴别儿童性早熟、女性高雄激素血症和PCOS的关键 对峰谷游离皮质醇的准确检测可有效辅助诊断库欣综合征 对17α-羟孕酮、雄烯二酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮的准确检测是确定CAH亚型的重要依据。此外,血清(浆)类固醇激素检测结果的解读应基于目标患者或人群的基本信息,如性别、年龄、生理期、昼夜节律及立卧位等,对结果解读具有重要参考意义。因此,实验室应为类固醇激素质谱检测的目标人群建立个性化的结果解读规则。为了报告的准确性,类固醇激素结果的解读还应结合类固醇代谢通路和临床初步诊断。  建议19 实验室应结合患者临床信息、方法性能、临床预期用途、类固醇代谢通路解读和报告血清(浆)类固醇激素LC-MS/MS检测结果。  血清(浆)类固醇激素LC-MS/MS检测在精确评估类固醇激素水平、诊断类固醇激素失衡相关疾病(如CAH、肾上腺功能不全、高雄激素血症等)、监测治疗效果中发挥着越来越重要的作用。本共识对血清(浆)类固醇激素LC-MS/MS检测全流程进行了详细说明,包括标本采集、保存、运输及前处理的检验前过程,LC-MS/MS定量分析方法、分析性能指标、质量保证、数据收集及分析的检验中过程,以及数据存储、参考范围、结果解读及报告的检验后过程,并提出19项针对性建议供实验室参考。本共识旨在规范我国血清(浆)类固醇激素LC-MS/MS检测程序,提升其检测质量和结果一致性,推动其临床应用。  执笔人:李霖(四川省医学科学院 四川省人民医院临床医学检验中心),蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),郭玮(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科)  专家组成员(以姓氏拼音排序):曹正(首都医科大学附属北京妇产医院检验科),戴锦娜(中国医科大学附属第一医院检验科),俸家富(绵阳市中心医院检验科),郭启雷(山东英盛生物技术有限公司),郭玮(复旦大学附属中山医院检验科),郭晓兰(川北医学院附属医院检验科),黄庆[陆军军医大学附属大坪医院(陆军特色医学中心)检验科],蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),蒋廷旺(常熟市第二人民医院转化医学科),柯江维(江西省儿童医院医学检验科),李霖(四川省医学科学院 四川省人民医院临床医学检验中心),李卿(上海市临床检验中心参考测量实验室),李水军(上海市徐汇区中心医院中心实验室),李艳妍(吉林大学第一医院检验科),廖璞(重庆市人民医院检验科),刘华芬(杭州凯莱谱精准医疗检测技术有限公司),刘靳波(西南医科大学附属医院医学检验科),卢丽萍(中国医科大学附属盛京医院检验科),闵迅(遵义医科大学附属医院医学检验科),倪君君(和合诊断集团研究院),聂滨(宜宾市第二人民医院检验科),潘柏申(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科),王成彬(解放军总医院检验科),王书奎(南京医科大学附属南京医院医学检验科),夏勇(广州医科大学附属第三医院检验科),徐元宏(安徽医科大学第一附属医院检验科),张传宝(国家卫生健康委临床检验中心生化室),张华(贵州省人民医院检验科),赵蓓蓓(金域医学临床质谱检测中心)
  • SCIEX:直接进样质谱法助力污水验毒
    污水中毒品定量是污水验毒的关键,污水验毒能够客观、全面的反应城市毒情,为公安机关锁定“毒源”,提供有力的技术支持。 污水验毒,有助于将禁毒重点从事后打击转向事前预警,污水毒情监测能准确获取毒品的相关区域信息,让实时监测毒品滥用情况成为可能。在污水中测出毒品含量稍有变化,就预示着这个区域发生了新的涉毒犯罪。警方根据线索进行追踪,及时扫除毒品来源,能将涉毒犯罪从源头进行控制。  在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈污水验毒相关的一系列产品技术及解决方案。SCIEX公司应用技术专家孙小杰经理  污水验毒作为一种客观、实时、准确、便捷的毒情监测方法,在我国还属于新兴技术,需要不断完善,提升其在追查制毒窝点、预警打击方面的作用。当前,新型毒品种类繁多、更新速度快,已成为世界毒品治理的一大难题。对此进行常规化监测,及时建立毒情监测预警更新,将是污水监测下一阶段发展的重点。此外,可以结合多种验毒手段,开展全方位监测。针对涉毒问题易发、多发的重点地域,在污水验毒基础上,提升对土壤、空气等环境介质的监测能力和水平,形成立体的多维毒情数据监测体系,有助于充分发挥新兴手段在毒品查缉、侦查破案、预防教育等领域中的积极作用。  近年来,中国各地开展城市污水中毒品成分监测结果显示,海洛因、冰毒、氯胺酮等3类主流毒品含量以及消费量普遍大幅下降,污水验毒是毒情监测的重要手段,能够推算出特定区域内滥用毒品的种类、消费量以及吸毒人员规模等,具有较高的灵敏性和准确度,不少地方运用城市污水监测毒情,这种非常高效的方式正成为打击防范毒品违法犯罪的利器。  但是,污水中毒品含量低通常在皮克(pg)级别或以下,污水中背景基质非常复杂,对液质联用仪的灵敏度、抗基质效应能力以及抗污染能力提出更高的要求,另外繁琐的前处理过程,大大降低了检测的效率。液质联用仪SCIEX 7500系统直接进样法,能够很好的解决污水中的毒品及其代谢物测定的这些难题。  目前实验方案现状:  通常需要采用离线或在线固相萃取法进行富集后上机分析,操作难度大、效率低,需要大量人力、物力和耗材成本的支撑。  SCIEX 全新解决方案突出特点:省时省力省钱  特点一:采用常规的液质联用直接进样法  特点二:无需离线固相萃取(SPE) 前处理且无需在线固相萃取(Online-SPE)  特点三:抗污染能力和抗基质效应能力强  SCIEX污水查毒全新解决方案  基于SCIEX Triple Quad™ 7500 LC-MS/MS 系统 – QTRAP Ready  测试谱图  毒品类化合物提取离子流色谱图  线性关系  样品浓度配置在1 pg/mL-500 pg/mL范围内,内标浓度为25 pg/mL,所有化合物具有良好的线性关系。  12种毒品以及代谢产物类化合物线性关系  基质效应  针对本文涉及到的12种毒品类化合物,在1 pg/mL,10 pg/mL,100 pg/mL三个浓度点下进行污水加标基质效应考察,基质效应均在95 %-105 %范围内,完全符合方法学要求。  该方案的特点和优势总结:  1. 简单准确:无需前处理,直接上机分析即可,结果准确。  2. 灵敏度高:12种毒品及其代谢产物定量限均在1 pg/mL以下,充分满足日常污水中毒品检测的需求。  3. 抗污染能力和抗基质效应能力强,基质效应95 %-105 %。  该方法节省人力、时间和物力,为地区毒品研究分析以及禁毒工作的开展提供了有力的监测手段。  打击防范毒品违法犯罪是一项复杂、艰巨、长期的系统工程。针对毒情新形势新变化,加强禁毒技术研究,推进禁毒科技创新,才能牢牢掌握同毒品违法犯罪作斗争的主动权,推动禁毒工作不断取得新成效。
  • 北京大学林崇熙老师核磁系列讲座:NMR应用--如何灵活应用内标毛细管
    【网络会议】:NMR应用--如何灵活应用内标毛细管【讲座时间】:2015年06月23日 14:30【主讲人】:林崇熙(博士后 北京大学化学与分子工程学院副教授、主要研究领域核磁共振的应用、有机合成、氮叶立德化学、有机技术化学。)【会议介绍】 用重水检测碳谱时, 是否曾困扰过谱图如何定标的问题? 本讲座将细述与分析几种解决方法的优劣, 包括有外标法、两段法、以及新两段法或本讲座介绍的毛细管内标法。 内标毛细管的图样以及制备在 PPT 中有详细介绍: 内径约 2 mm 高约 12 cm 的长毛细管, 穿透核磁管帽, 使用时固定在核磁管溶液中间. 置入置换以及存放都很方便. 有些实验室平时制备了上百根内标毛细管因应各种情况需要. 有哪些可能情况? 需要哪些考虑? 本讲座提供了许多范例与启发, 例如装含氟磷氘等, 可以用来检测杂核的氟谱磷谱氘谱. 因应不同的化学位移需要装入三氟乙酸, KF 水溶液, 三氟乙醇, 或磷酸, 三苯磷溶液, 或重水, 氘代苯等. 检测常规氢谱或碳谱的范例更多, 优先考虑呈现单峰的环己烷、二氧六环、甲醇、二氯甲烷、氯仿、苯等. 考虑到信号峰强度的不同需要, 可以备用粗细不同的毛细管, 或考虑使用四氯化碳或水进行稀释, 甚至使用氘代试剂代替 (氯仿改成氘代氯仿)&hellip &hellip 毛细管内标法的使用有一些注意事项, 除了避免化学位移的重叠或太远, 信号峰的相对强度比较之外, 还得知道封闭在毛细管内试剂的化学位移和管外的化学位移存在一些差异. 讲座中提供有具体范例与校正概念。本讲座的重点, 是内标毛细管的具体应用范例, 讲座中将逐一举例介绍。(1) 在协助标定化学位移方面: 杂核检测的化学位移标定, 溶剂浓度效应引起的化学位移漂移, 探讨盐酸的浓度与化学位移的关系。(2). 在协助标定积分定量方法: 可以方便用来做动力学的探讨, 配置已知浓度溶液可以制作标准曲线用来判断未知溶液的浓度, 对化合物的溶解度可以由积分比较获得定量评估。(3). 其它方面, 协助锁场, 增加检测窗口界面提供谱图清晰度等。听完本次讲堂内容, 将对毛细管内标的应用有深入的认识, 在课题研究遇到类似的情况便可以好好加以应用。----------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会网址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/13613、报名及参会咨询:QQ群&mdash 379196738
  • 团标T/BDAS 002-2023 血清中褪黑素含量的测定 液相色谱-串联质谱法 4月13日正式实施!
    标准编号:T/BDAS 002-2023中文名称:血清中褪黑素含量的测定 液相色谱-串联质谱法发布部门:北京市奶业协会发布日期:2023-03-14实施日期:2023-04-13 内容简介:本标准描述了血清中褪黑素含量测定的液相色谱-串联质谱法,适用于血清中褪黑素的测定。 提取方式:准确移取1 mL试样置于15 mL离心管中,加入氘代褪黑素标准工作液50 μL,加入4 mL甲醇,使用旋涡混合仪振荡提取5 min。使用低温高速离心机以10000 g、4 ℃离心5 min。取上清液,过0.22 μm滤膜,供液相色谱-串联质谱测定。 技术要点1:甲醇作为褪黑素溶剂,不但不会影响样品中目标物质的稳定性,还可以使得血清中蛋白变性沉淀,实验操作简便,其回收率能达到60%以上,能够很好满足血清中褪黑素检测要求。 技术要点2:血清中的褪黑素用甲醇提取后,用液相色谱-串联质谱仪测定,内标法定量。 本标准中规定了褪黑素的检出限为0.01 μg/L,定量限为0.05 μg/L;本标准方法的褪黑素回收率为:60~120%,依据GB/T 27404符合在一定浓度水平的回收率范围;相对偏差(RSD)≤20%。
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 离子淌度差分质谱法直接进样快速定量千种脂质
    p style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong背景介绍/strong/span/pp style="text-align: justify "  健康的身体是人人都想一直保持的,但是伴随着人的衰老,一些疾病的得病率也在不断攀升,例如:糖尿病、心血管疾病、神经退行性疾病等。脂质作为人体需要的重要营养素之一,在许多生物过程中都扮演着重要的角色,是人体细胞组织的组成成分,为机体供给所需的能量,以及协助细胞信号传导等。/pp style="text-align: justify text-indent: 2em " SCIEX公司于2011年美国质谱年会(American Society of Mass Spectrometry,ASMS)会议上展示了最新的SelexIONTM 技术。该技术是首个获得高重现性、耐用性及易用性的离子淌度差分质谱分离技术(Differential mobility Spectrometry,DMS),同时还可为高灵敏度的定量与定性分析提供更多的选择性。/pp style="text-align: justify "  近年来,随着科研人员对脂质研究的深入,发现疾病的发生通常伴随着体内脂质水平的紊乱,因此,将脂质作为疾病的生物标志物的研究也越来越火热,而如何全面检测并定量分析人体内的脂质含量成为了研究重点。/pp style="text-align: justify " span style="color: rgb(0, 32, 96) "strong 那么如何全面检测并定量分析人体内的脂质?/strong/span/pp style="text-align: justify "  在最新的一篇研究衰老的文献 “Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma” 中,同时采用strong非靶向脂质组学与靶向脂质组学方法(LipidyzerTM)/strong研究衰老老鼠血浆中脂质的差异变化。在该文章中,非靶向脂质组学与靶向脂质组学方法工作流程如图1所示,非靶向脂质组学方法采用LC-HRMS技术,利用反相色谱方法分离脂质,数据分析采用传统的分析方法,进行峰提取、峰对齐、峰鉴定、归一化、峰定量、手动确证。靶向脂质组方法采用SCIEX公司LipidyzerTM平台,相比非靶向脂质组方法,LipidyzerTM采用strong差向离子淌度分离技术(DMS)/strong对脂质进行分离,因无需色谱分离,故采集时间更短 LipidyzerTM采用的是MRM 方法靶向分析脂质,故在数据分析过程中,仅需要3步(鉴定、归一化、定量)即可得到准确的定量结果。/pp引用文献:a href="https://www.nature.com/articles/s41598-018-35807-4"https://www.nature.com/articles/s41598-018-35807-4/a/pp style="text-align: center "img title="640.webp.jpg" alt="640.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/036d08a3-9fa8-473f-b1f5-595ab3341d09.jpg"//pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="Cross-Platform Comparison.pdf" href="https://img1.17img.cn/17img/files/201901/attachment/bbe0fd7c-0aa9-44d4-9532-98d0ce313dc2.pdf" target="_blank" textvalue="Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma.pdf"Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma.pdf/a/pp style="text-align: center "img title="图1.webp.jpg" alt="图1.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/39c82326-fe5a-435a-8d92-c482ab684e96.jpg"//pp style="text-align: center "  图1. 靶向和非靶向工作流程/pp style="text-align: justify "  文章结果表明,LipidyzerTM方法在检测的脂质种类与数量上与传统非靶向脂质组学是相当的(图2),且都具有很好的定量准确度。研究者利用LipidyzerTM方法对衰老老鼠血浆的脂质差异性分析中发现strong甘油三脂TAG/strong在衰老过程中变化差异最大,说明TAG代谢在衰老过程中最为敏感,为未来走向临床提供了可靠的生物标记物。/pp style="text-align: center "img title="图2.webp.jpg" alt="图2.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/8a2de8e9-45b3-4c4f-98dd-033dd963924f.jpg"//pp style="text-align: center "  图2. LipidyzerTM检测出衰老过程中变化的脂质/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strongLipidyzeTM提供高通量大规模脂质绝对定量“一站式”方案/strong/span/pp style="text-align: justify "  SCIEX对于脂质的检测分析也推出了相应的解决方案——LipidyzerTM,能够实现13大类,1000多种脂质的绝对定量分析。该平台(图3)提供了一套完整的靶向脂质组学解决方案,包含样品前处理,数据采集,以及数据分析。/pp style="text-align: center "img title="图3.webp.jpg" alt="图3.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/dcbbf113-2f59-435f-86ca-9ab372659d13.jpg"//pp style="text-align: center "  图3. LipidyzerTM平台/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong多重技术优势适用临床样本分析,助力精准脂质代谢与健康研究/strong/span/pp style="text-align: justify "  LipidyzerTM利用离子淌度技术(DMS)实现不同脂类的完全分离,具有极强的特异性 方法内包含strong13类脂质/strong,strong50多个同位素内标脂质/strong,覆盖了复杂的脂质代谢通路 通过内标的添加,实现每类脂质的绝对定量分析(图4)。该技术平台已在人血清和血浆分析中得到验证,成为临床脂质组分析的“即得”利器。/pp style="text-align: center "img title="图4.webp.jpg" alt="图4.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/ffc841ad-1c91-458d-b348-ef1b81e03916.jpg"//pp style="text-align: center "  图4. LipidyzerTM的优势/pp /ppbr//p
  • 赛默飞发布TSQ 8000系列质谱仪应用指南
    2015年4月21日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出TSQ 8000 Evo系列质谱仪应用指南,针对TSQ 8000质谱仪在食品安全、环境保护、生物代谢组学、食品包装材料、中草药、精神类药分析中的12个应用,详细给出分析案例,帮助客户解决实际分析难题。以环保为例,PM2.5是指空气中空气当量直径小于2.5微米的颗粒物,PM2.5承载的有机化合物中,多环芳烃的危害最为显著,它具有强烈的致突变、致癌和致畸作用,且具有生物蓄积性和持久性。食品安全则是公众关注的另一热点,农药、多氯联苯、塑化剂、亚硝胺等非食用物质都具有强致癌性,严重危害人体健康。代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理变化的相对关系的研究方式。代谢组学在疾病分析、药物研究、植物与微生物基因功能和表型的研究等方面取得成功的示范效应,使得这门学科在定量方面从相对定量逐步走向绝对定量。TSQ 8000系列质谱仪应用指南中列举的应用案例中,包含上文所述的相关分析测定,例如:用三重四极杆测量-同位素内标法定量来测定酒类产品中的塑化剂残留,可以校正和消除操作条件对分析结果产生的影响,提高分析结果的准确度,具有操作方便,选择性好,灵敏度高,线性范围宽等优点。又如:在食品中亚硝胺的测定中,赛默飞拥有专利的强大AutoSRM功能,只需一个装有待优化化合物标样的样品瓶,全程无需手动修改,自动优化好离子对参数,并可将次离子对参数自动导入仪器方法,节省手工输入的时间,避免因此带来的错误。通过本文中相关应用案例的分享,客户可以进一步了解作为世界上最先进的气相色谱三重四极杆质谱仪,TSQ 8000系列应用于高通量目标化合物定量、筛选和常见有机分析的强大功能。应用指南下载链接:http://www.thermoscientific.com/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/GCMS/documents/TSQ%208000%E7%B3%BB%E5%88%97%E8%B4%A8%E8%B0%B1%E4%BB%AA%E5%BA%94%E7%94%A8%E6%8C%87%E5%8D%97-2015.0325.pdf?__hstc=20279463.82ef459de9036996d32aa125d230bb28.1422162213868.1429768882976.1429777389902.41&__hssc=20279463.2.1429777389902&__hsfp=1398633680------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 岛津超快速质谱助力靶向代谢组学研究
    靶向代谢组学中,通常需要同时检测多个目标组分,这对质谱数据的采集速度提出了很高的要求。 岛津超快速质谱(UFMS)拥有业内首屈一指采集速度。以LCMS-8050为例,其驻留时间(Dwell time≥0.8 ms)、切换时间(Pause time≥1 ms)、扫描速度(Scan speed≤30000 u/sec)、正负极切换速度(Polarity switching time=5 ms);并且具有触发子离子扫描功能,可以实现MRM定量的同时对目标组分进行子离子扫描定性分析。 以下图为例,假设一个峰宽6秒的UHPLC色谱峰用于定量分析,必须有20个采集点左右,峰型才足够平滑,峰面积和出峰时间的重复性才能达标。如此算来,每个采集点的循环时间(loop time)只有300 ms。在300ms的时间段内,需要进行所有目标组分的采集,如下AB正离子,CD负离子: 1.采集循环开始,切换时间内对质谱通道电压进行调整(为A离子对“铺路”);2.A母离子通过四级杆Q1、碰撞池内进行碰撞、四级杆Q3筛选子离子、最终到达检测器进行离子计数,这段时间总和即为驻留时间;3.为B离子重复以上过程,到此正离子采集完成;4.接着切换从离子源到质谱通道到检测器的电压为负,此为正负极切换时间;5.进入到C、D的采集过程,过程与AB一样;6.最后将电压切换为正,到此结束整个循环时间,开始下个采集点的循环时间。 这只是两个正离子和两个负离子的采集例子,如果采集目标组分数量急剧增加,在峰宽不变的情况下(即循环时间loop time不变),分到每个离子的驻留时间和切换时间将急剧减少,因此最小驻留时间和切换时间,直接决定了该质谱在所能同时采集的离子对数量,这对于靶向代谢组学或其他需要进行多目标物同时筛查的项目,至关重要! 图2. 质谱采集信号的过程,以及频率和点数的关系最后,举例说明岛津UFMS在靶向代谢组学中的一个应用实例:脂质组学属于代谢组学的一个分支。为进行靶向脂质组学研究,岛津公司利用超快速质谱适于多化合物同时检测的特性,推出了第三版脂质介质方法包:包含了主要脂类化合物如类花生酸、二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等多价不饱和脂肪酸代谢物,花生四烯酸乙醇胺(AEA)、血小板活化因子(PAF)等196种主要脂质介质及其相关物质的色谱、质谱条件(MRM通道)。 该方法只需20分钟的色谱分析便能获得这196种化合物的脂质介质的分析结果。此外,方法包中还根据出峰时间和结构特性,准备了18种氘代内标化合物的MRM通道。另外,该方法包可进行保留时间校正,可使用内标法进行半定量,所以可用于检索多变量解析时的标记物。下图显示了超快速质谱MRM模式中,196种脂质和18种内标同时分离所采集得到的色谱图。 图3. 脂质介质方法包用于196种脂质,18种内标的分离 撰稿人:钟启升
  • 《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》征求意见
    近日,由 TC270(全国粮油标准化技术委员会)归口,南京海关动植物与食品检测中心起草的国家标准计划《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》已完成征求意见稿编制,现公开征求意见。  橄榄油(Olive Oil)是以油橄榄树的果实为原料制取的油脂。根据加工工艺不同,可以分为初榨橄榄油和果渣油,初榨橄榄油又可根据品质分为不同等级,其中以特级初榨橄榄油营养价值最高。我国是食用油大国,随着经济发展,我国对橄榄油的需求量不断增加,仅 2017 年总消费量约为 60 万吨,其中 80%依赖进口。  然而,我国消费者对橄榄油系列产品认识有限,且特级初榨橄榄油产量少,价格高。经销商为了推销产品和谋取暴利,对橄榄油进行夸大宣传或以劣充好的现象屡见不鲜。尤其进口的橄榄油几乎一律标称“特级初榨橄榄油”,这种以次充好的橄榄油不仅严重侵害了消费者的权益,还可能影响消费者的身体健康。因此,建立一套能对橄榄油等级进行准确鉴定,尤其是对特级初榨橄榄油等级进行准确鉴定的方法,对保障消费者权益、打击不法行为和更好地把关国门,均具有重要的意义。 本文件规定了脂肪酸乙酯含量的气相色谱-质谱联用测定方法。本文件适用于特级初榨橄榄油中脂肪酸乙酯含量的测定。  方法提要:  试样中脂肪酸乙酯用正己烷溶解,经硅胶固相萃取柱净化,气相色谱-质谱联用仪分析,内标法定量。  仪器和设备:  1.气相色谱-质谱仪,配置有电子轰击(EI)源。  2.分析天平:感量 0.0001 g、0.00001 g。  3.固相萃取装置。  4.涡旋振荡器。  5.旋转蒸发仪。  色谱条件: 1.载气流速:1 mL/min。  2.进样口温度:300 ℃。  3.进样模式:不分流进样,分流阀打开时间为 1.00 min。  4.载气:氦气(纯度≥99.999 %)。  5.柱温:初始温度 150 ℃,以 20 ℃/min 升至 200 ℃,以 2.5 ℃/min 升至 240 ℃,保持 1.5 min,以 35 ℃/min 升至 310 ℃,保持 2 min。  6.进样量:1 μL。  质谱条件:  1.电离方式:电子轰击电离源(EI 源,电子能量 70 eV)。  2.离子源温度:230 ℃。  3.接口温度:280 ℃。 4.溶剂延迟时间:5 min。  5.数据采集方式:选择离子检测(SIM)模式。定量离子、定性离子和保留时间参考值详见表 1。  检测方法的灵敏度、准确度和精密度:  1.灵敏度  本文件的检出限,棕榈酸乙酯为 0.4 mg/kg,亚油酸乙酯为 0.5 mg/kg,油酸乙酯为 0.5 mg/kg,硬脂酸乙酯为 0.4 mg/kg。  本文件的定量限,棕榈酸乙酯为 1.2 mg/kg,亚油酸乙酯为 1.7 mg/kg,油酸乙酯为 1.6 mg/kg,硬脂酸乙酯为 1.3 mg/kg。  2.准确度  本文件在添加水平为 4.00 mg/kg~20.00 mg/kg 时,回收率范围为 90.7 %~106.6 %,参见附录 C。  3.精密度  在重复性条件下获得的 2 次独立测定结果的绝对差值不得超过算术平均值的 10%。  更多详情请见附件。 征求意见稿.pdf 编制说明.pdf
  • 在传承中发展,岛津开启离子色谱-质谱联用新篇章
    导读 离子色谱-质谱联用是近年来分析强极性可电离物质的利器,可以很大程度上弥补常规液相色谱-质谱联用的不足,轻松解决强电离物质保留差,稳定性不好的问题。譬如,在备受关注的极性离子型农药草甘膦、草铵膦、百草枯、敌草快的检测;国家标准-水质中卤代乙酸及卤氧型消毒副产物的分析;食品中高氯酸盐的定性定量检测;糖类的分离及定性分析等多领域,具有较为广阔的应用前景,是离子型、强极性化合物分析的理想之选。 岛津离子色谱-质谱联用系统 IC-MS技术原理及特点 离子色谱采用的是离子交换的分离原理,和常规液相色谱主要基于疏水吸附的反相分离原理形成互补,可以很好分离常规液相色谱难以分离的强极性可电离物质。即使是基于亲水相互作用的HILIC色谱,可以分离强极性物质,但也难以分离强电离物质。此外,为了实现强极性物质的保留,使用特殊固定相的液相色谱柱(如五氟苯基柱、HILIC、氨基柱等)虽有部分改善,但往往存在稳定性不好、平衡时间长、柱效下降较快等问题。综上,离子色谱具有可分离强极性可电离物质、平衡时间短、稳定较好的优点。 离子型目标物的分离,必须使用离子型流动相,但离子型物质本身和质谱的兼容问题一直是质谱致力于解决的疑难问题。而离子色谱特有的膜抑制器则可作为一个持续工作的脱盐装置,从而解决这个问题,使流动相变成可与质谱兼容。抑制器利用电子与电场交换膜的共同作用,使离子定向迁移、交换,使酸碱变成纯水,即可与质谱兼容。 岛津IC-MS系统的特点应用案例分享 近来,媒体报道了某些国际知名品牌的婴幼儿奶粉中检测到高含量的高氯酸盐,引起了全社会的高度关注。在奶粉生产过程中,高氯酸盐可能作为中间生产的污染物,残留在奶粉中。研究表明,高氯酸盐会与碘竞争进入人体甲状腺,抑制甲状腺对碘的吸收,从而影响甲状腺功能,导致新陈代谢功能紊乱、影响胎儿和婴儿神经中枢的正常生长和发育,高氯酸盐的高暴露甚至会导致甲状腺癌。 目前高氯酸盐的测定方法主要有分光光度法、液相色谱柱后衍生法、离子色谱法、液相色谱串联质谱法和离子色谱串联质谱法等,其中离子色谱-串联质谱法具有灵敏,准确,抗假阳性能力强的特点,是近年来较为理想的一种检测方法。 采用岛津离子色谱仪Essentia IC-16 串联LCMS-8060特色系统建立了奶粉中高氯酸盐含量测定的方法,本方法灵敏度高、准确,抗假阳性能力强,适用于奶粉中高氯酸盐的快速检测。 l 对照品色谱图Essentia IC-16 串联LCMS-8060进行测定,对照品色谱图如图1所示。 图1. 标准溶液MRM色谱图 l 校准曲线、检出限及定量限将对照品溶液按照上述分析条件进行测定,使用内标法定量。线性方程见图2、检出限及定量限结果见表1。 图2. ClO4-校准曲线 表1. 线性方程、检出限及定量限 l 实际样品测定取市售某品牌奶粉样品1 g进行测定,浓度为0.3 ng/mL, 结果回算值为3.0 μg/kg, 样品的MRM色谱图见图3。 图3. 样品的MRM色谱图 结语 离子色谱质谱联用,将会进一步拓宽质谱的应用范围,解决常规液相色谱质谱联用难以解决的问题,可用于多组分强极性可电离化合物的同时在线分析。两种技术的联合,将会在不同行业中发挥不可代替的作用,应用前景非常广阔。
  • ASMS 2020以谱求质引领创新 赛默飞重磅发布高分辨质谱新品
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strong仪器信息网讯/strong span style="text-indent: 2em "6月1-12日,全球质谱界盛会—第68届美国质谱年会(68th ASMS,以下简称ASMS)在线上盛大举行,赛默飞重磅发布两款革命性智能化LCMS系统!/span/pp style="text-align: center text-indent: 2em line-height: 1.75em "strongspan style="color: rgb(192, 0, 0) "全新一代Orbitrap Exploris 120质谱仪/span/strong/pp style="text-indent: 2em line-height: 1.75em "strongspan style="color: rgb(192, 0, 0) "/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b928a2c5-3f75-4769-9397-7a026fb8922a.jpg" title="120.PNG" alt="120.PNG"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "赛默飞发布了新一代四极杆-静电场轨道阱台式质谱仪Orbitrap Exploris 120。Orbitrap Exploris 120 高分辨质谱仪扩展了 Thermo Scientific Orbitrap Exploris 质谱产品线,为实验室进行高通量靶标筛查和定量提供了便利和坚固的技术支持。高分辨率、高质量精度(HRAM)能力提供了在解决方案中获得准确结果的快速途径,能够实现日复一日的可用性和持续一致的性能。帮助用户轻松应对不同分析领域的各种挑战!/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1、超高的工作效率/pp style="text-align: justify text-indent: 2em line-height: 1.75em "通过全新的设计避免用户频繁维护仪器,最大化仪器的工作时间,将用户的精力节省下来更多地去关注实验结果,保证工作持续、稳定地进行;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2、 简单易用/pp style="text-align: justify text-indent: 2em line-height: 1.75em "通过软件优化和丰富的内置方法模板,让仪器使用更便捷,操作更简单,降低仪器和软件的学习成本,保证用户快速上手;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3、 稳健性/pp style="text-align: justify text-indent: 2em line-height: 1.75em "内标校正使得仪器可以实现超长时间的质量轴稳定性;结构设计最大程度避免仪器被样品污染,从而达到更长的有效工作时间,为用户产生更大的价值。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong全新的设计带来优越的分析性能和体验/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.全新一代四极杆Orbitrap 质谱仪均采用扫描速度更快的高场 Thermo Scientific™ Orbitrap™ 质量分析器,扫描速度最高可达22 Hz。更快的扫描速度可以在更短的时间内分析更多的化合物,而不会出现丢峰或者扫描点数不够的情况,实现极佳的定量表现。同时更快的扫描速度也可以在相同时间内采集更多化合物的二级信息,提高化合物鉴定通量,实现定性分析百无一漏;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. 在分辨率设置为60,000的条件下,在不损失灵敏度的情况下实现高达1.4 Hz的正负极性切换扫描速度。一针进样即可获得正负两种模式的数据,大大缩短数据采集耗费的时间,让用户有更多时间和精力对数据进行深入的分析和挖掘,进而获得满意的结果;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 全新一代四极杆Orbitrap 质谱仪均使用高场 Orbitrap 质量分析器,在保证超高扫描速度的同时,还可实现最高120,000的分辨率,让质量偏差mDa级别的干扰物无处遁形,为用户分析复杂基质样品提供充足的信心。同时也可以提高数据分析的效率,避免被各种干扰物迷惑,快速、准确地获得满意的结果;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4.内置Thermo Scientific™ EASY IC™ 内标校正源,在仪器工作的同时即可实时校正质量轴,可实现连续五天质量漂移不超过1 ppm,为高通量分析时的质量精度保驾护航!/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5.具有全新的扫描方式选择,包括DDA,DIA,targeted SIM和 targeted MS/MS等模式,丰富的扫描模式保证用户能够从容面对不同领域内各种不同的分析挑战;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "6.高质量的共轭双曲面四极杆与RF应用相结合,可在更小的隔离窗口下实现极高的离子传输效率,提供出色的选择性,同时降低灵敏度损失。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "Orbitrap Exploris 120 质谱仪在更小的仪器体积内实现了领先的性能,并通过 Thermo Scientific™ 数据采集软件实现了简单、一致的用户体验。 Orbitrap Exploris 120 质谱仪具有极佳的稳健性,为用户提供更长的仪器运行时间,保证结果产出效率。该仪器。Orbitrap Exploris 120系统通过全新的设计,实现了体积更小的同时具有无与伦比的性能表现!/ppbr//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="color: rgb(192, 0, 0) "strong新一代Orbitrap Exploris 240质谱仪/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(192, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/fbf77a3c-eb8b-4972-a224-ccf53748df4e.jpg" title="222222.jpg" alt="222222.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "赛默飞发布了新一代四极杆-静电场轨道阱台式质谱仪Orbitrap Exploris 240。该系统继续扩展新一代 Orbitrap Exploris系列产品,改善并提高了大量关键的光学离子部件和仪器设计解决方案,扩展了先前的 Thermo Scientific™ Q Exactive ™ 系列质谱仪的分析能力。新质谱仪操作简单,可智能获取高分辨率高质量精度数据,为各种技术水平的用户提供快速获得高质量结果的通道,应对各种应用范围内的分析挑战!/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1. 采用快速扫描的高场 Thermo Scientific™ Orbitrap™ 质量分析器,全新扫描速度最高可达22Hz,具有出色的定性和定量性能;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. 可与包括 Thermo Scientific™ FAIMS Pro™ 接口在内的 Thermo Scientific二代离子源兼容,进一步提升定量准确性和分析通量;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 具有 Thermo Scientific™ AcquireX ™ 数据采集工作流程,可进行全面、自动化的样品分析;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4. 内置Thermo Scientific™ EASY IC™ 离子源内标校正,单次校正后可提供至少五天的高质量精度!/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5. 具有全新的扫描方式选择,包括 TopN/TopSpeed DDA,DIA 和 MSX等模式;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "6. 全新一代四极杆Orbitrap 质谱仪均使用高场 Orbitrap 质量分析器。 Orbitrap 中心电极的尺寸与 Orbitrap 内部获得的超高真空相结合,可实现最高240,000的分辨率;/pp style="text-align: justify text-indent: 2em line-height: 1.75em "7. 高质量的共轭双曲面四极杆与RF应用相结合,可在狭窄的隔离宽度下实现极高的离子传输效率,提供出色的选择性,同时降低灵敏度损失。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong全新的设计带来优越的分析性能和体验/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1. 在定性和定量蛋白质组学实验中的优异表现——Orbitrap Exploris 240可与选配的FAIMS Pro 高场非对称离子迁移谱接口联用,可以无缝地添加到现有的无标记定量 (或同位素标记定量)多路复用的工作流程中,提高低丰度多肽的信噪比,从而最大限度地提高灵敏度,并最小化共流出肽段的干扰,同时减少离线分馏的时间。该组合增加了蛋白质组的覆盖率,减少了干扰,提高了定量的可信度。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. TMT多路复用同位素标记中的卓越表现——更高分辨率的 MS/MS 扫描为 Thermo Scientific™ TMT 实验带来了更精确的比值测定。在单次 LC-MS 实验中, TMT 或 TMT pro 试剂允许同时分析最多11个或16个样本。当 Orbitrap Exploris 240 质谱与可选的 FAIMS Pro 接口结合使用时,可减少与TMT实验中共隔离的干扰带来的比值压缩问题。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 代谢组学从发现到高通量研究的完整解决方案——Orbitrap Exploris 240 质谱仪利用 Thermo Scientific™ AcquireX ™ 智能数据采集来收集更有意义的数据,结合强大的Compound Discoverer软件工作流程和数据处理,具有轻度捕集模式,可以减少或消除化合物意外碎裂导致的错误注释。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4. 通过简化的操作完成生物制药的多功能应用方向——新一代质谱仪Orbitrap Exploris 240可与Thermo Scientific™ BioPharma 选配项一起使用,该选项可将质量范围扩大至 m/z 8000 ,应对生物治疗大分子蛋白如单克隆抗体和抗体药物偶联物的非变性质谱分析的挑战!/pp style="text-align: justify text-indent: 2em line-height: 1.75em "Orbitrap Exploris 240 质谱仪在更小的仪器占用空间内实现了领先的性能,并通过 Thermo Scientific™ 数据采集软件实现了简单、一致的用户体验。 Orbitrap Exploris 240 质谱仪具有高可用性和稳健性,确保了通用性和正常运行时间。该新仪器在蛋白质鉴定、使用非标记 DDA 或 DIA 定量蛋白质组分析、多路复用 TMT 定量分析等方面表现出了优异的性能。Acquire X 软件可以让用户深入分析小分子化合物。此外,该系统能够利用肽图、自上向下、亚基和非变性分析方法对蛋白质和生物制药进行详细、全面的结构表征。Orbitrap Exploris 240系统拥有更小的体积,全新的设计,无与伦比的性能/pp style="text-align: center"br//ppbr//p
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • Mars-400 Plus便携式气相色谱-质谱联用仪检测土壤中挥发性有机物
    1 土壤中挥发性有机物的检测分析1.1 方法概述  按照世界卫生组织(WHO)的定义,挥发性有机化合物(Volatile Organic Compounds,VOCs)是指沸点范围在50~260 ℃之间,室温下饱和蒸汽压超过133.3 Pa,常温下以蒸气形式存在于空气中的一大类有机物。按化学结构,可进一步分为烷烃、芳香烃、烯烃、卤代烃、酯类、醛类、酮类和其他化合物等8类。不同的VOCs对人体具有不同的毒害作用,有些物质甚至具有强烈的“三致”作用(致病、致癌、致突变)。VOCs大体的危害如下:影响中枢神经系统,出现头晕、头痛、无力、胸闷等症状;感觉性刺激,嗅味不舒适,刺激上呼吸道及皮肤;影响消化系统,出现食欲不振、恶心等;怀疑性危害:局部组织炎症反应、过敏反应、神经毒性作用。能引起机体免疫水平失调,严重时可损伤肝脏和造血系统,出现变态反应等。  土壤中天然有机质主要是有腐殖质和部分分解的动植物残体组成,其对疏水性有机化合物的吸附起着重要的作用。土壤的污染是世界范围的一个环境问题,挥发性有机物通过大气沉降、废水排放、雨水淋溶与冲刷进入水体,最后沉积到土壤中,在土壤中逐步富集,使土壤造成严重污染,因此监测和控制土壤中的挥发性有机物意义重大。1.2 主要仪器与试剂(1)仪器Mars-400 Plus便携式气相色谱质谱联用仪(聚光科技);LTM DB-5ms 快速气相色谱柱(5 m×0.1 mm×0.4 μm);顶空/吹扫捕集进样系统;涡旋混匀仪分析天平(0.0001g)。(2)试剂和耗材微量移液器(100 μL);微量移液器(1000 μL);注射器(50 mL)氦气,纯度99.999%,用作载气;25种VOCs(浓度为100 μg/mL,其中环氧氯丙烷为500 μg/mL);甲醇(色谱纯)、4-溴氟苯(色谱纯)、氟苯(色谱纯)、1,4-二氯苯-D4(色谱纯)。石英砂、干净土壤。1.3 标准样品配制1.3.1 标准样品储备液配制(1)标准样品溶液  以甲醇为溶剂,配制25种挥发性有机物的混合标准溶液,浓度为10 μg/mL。具体做法是:在10 mL的容量瓶中,加约7 mL的甲醇。打开装有标准物质的安瓿瓶,使用微量移液器,移取1 mL的标准样品,用甲醇定容至10 mL,得到标准样品使用液。(2)内标标准溶液  以甲醇为溶剂,配制氟苯、1,4-二氯苯-D4的溶液,浓度为10 mg/mL,作为内标贮备液(表1)。具体做法是:在10 mL的容量瓶中,加约7 mL的甲醇,使用微量移液器移取氟苯(色谱纯)97 μL,使用分析天平精确称取0.100 g的1,4-二氯苯-D4,用甲醇定容至10 mL,得到浓度为10 mg/mL内标贮备液。再次用甲醇稀释至10 μg/mL,得到氟苯、1,4-二氯苯-D4的内标标准使用液。(3)替代物标准溶液  以甲醇为溶剂,配制4-溴氟苯的溶液,浓度为10 mg/mL,作为替代物贮备液(表1)。具体做法是:在10 mL的容量瓶中,加约7 mL的甲醇,使用微量移液器移取4-溴氟苯(色谱纯)63 μL,用甲醇定容至10 mL,得到浓度为10 mg/mL替代物贮备液。再次用甲醇稀释至10 μg/mL,得到替代物的标准使用溶液。(4)基体改性剂  如果使用的方法是吹扫捕集处理方法,选用二次蒸馏水作为基体改性剂(参考国家环境标准(HJ 605-2011))。如果使用的方法是静态顶空处理方法,选用pH≤2的磷酸氯化钠水溶液作为基体改性剂。本次分析的土壤VOCs浓度都较低,适合使用吹扫捕集作为预处理方法,因此本方法选用水作为基体改性剂。(5)空白样品  向40 mL样品瓶中,加入5 g石英砂和20 mL纯净水,密封,得到空白试剂样品。1.3.2 标准系列样品溶液的配制  向15支40 mL的样品瓶中依次加入5 g石英砂和20 mL基体改性剂(水)。再向各瓶中分别加入一定量的标准使用液,配制成目标化合物浓度分别为5 ng/mL、10 ng/mL、20 ng/mL、60 ng/mL、100 ng/mL,每组浓度平行3份。在配制标准样品的同时,向每个顶空瓶分别加入一定量的替代物使用液,一定量的内标使用液,立即密封(表2)。将配制好的标准系列样品在涡旋振荡仪上振荡约5 min,由低浓度到高浓度依次进样分析,绘制校准曲线。1.4 样品采集和保存1.4.1 样品采集  土壤样品的采集和保存参照国家环境标准HJ/T 166的相关规定。采集的样品工具应用金属制品,用前应经过净化处理。可在采样现场使用Mars-400便携式气质联用对样品进行目标物含量高低的初筛,当样品中挥发性有机物浓度大于1000 μg/kg,则视为高含量样品。所有样品均应至少采集3份平行样品。1.4.2 含量高低初筛(1)在40 mL的样品瓶中加入约60 g的干净土壤(通过检测无高浓度的VOCs)。(2)模拟高浓度的土壤样品:向60g土壤中加入6 mL的标准样品溶液(10 μg/mL),配制得到1000 μg/kg的模拟高浓度的土壤样品。(3)使用Mars-400便携式气质联用仪,采用“气体样品分析方法”,首先将“高浓度土壤样品”的上层顶空气体分析一遍。得到该气体的TIC总离子流图。(4)继续使用Mars-400便携式气质联用仪,采集被分析土壤上层气体,得到相应的TIC图。如果被分析土壤的上层气体TIC响应值大于模拟土壤的TIC图,判断被分析土壤为高含量土壤,否则按低含量土壤处理。1.4.3 样品保存(1)在现场保存:采用样品收集装置,加入大约5 g 的土壤到含有10 mL 甲醇的样品瓶中。快速地擦掉瓶子螺纹上粘附的土壤,然后立刻用螺旋帽和隔垫密封住瓶子。用冰存储样品于4 ℃。可以采用其它的样品质量或者甲醇的体积,分析人员需要能够证明整个分析过程的灵敏度对于当前的应用是适当的。(2)不在现场保存:收集不带保存液的高浓度的土壤样品,就是样品既不含有保存溶液,也不含有甲醇。当不采用在现场保存的方法时,尽可能地填充满整个样品容器,使顶空体积最小。1.5 样品分析1.5.1 样品分析条件1.5.2 样品分析步骤1.5.2.1 标准样品分析步骤(1)准备章节3.2的标准系列样品。打开仪器,并调试稳定。(2)设定好分析条件,激活方法,待所有分析条件达到设定值,将样品空白放入吹扫捕集装置的样品池中,等待平衡5 min,将吹扫捕集插针插入样品瓶中,点击主机界面的“运行方法”,仪器开始自动吹扫捕集-气质联用分析。(3)空白样品应该满足待测化合物浓度低于检出限,或者分析结果的5%。(4)按照步骤(2)从低到高分析标准系列样品。(5)样品高低浓度交叉分析时,需在中间插入空白样品分析,以防高浓度样品的残留影响低浓度样品分析。1.5.2.2 土壤样品分析步骤Mars-400便携式气质联用仪是一款适用于现场分析的仪器。本方法开发了一套现场分析的方法和步骤(图1)。(1)现场开机预热,同时开启和预处理设备,如涡旋振荡仪,简易天平等。(2)调试主机和吹扫捕集系统,激活“土壤分析”方法,或者按照章节5.1设置分析方法。(3)分析空白样品,空白样品分析结果应该满足待测化合物浓度低于检出限,或者分析结果的5%。(4)接下来分析质控样品,质控样品指的是浓度在校准曲线中间浓度点附近的标准溶液,本实验选取20 ng/mL标准样品作为质控样品。计算标准样品和替代物的回收率,回收率应在80% ~ 120%之间。图1 样品分析流程图(5)进行土壤样品的现场分析。通过章节4.2的浓度初筛,如果为低浓度的样品,称取5 g,直接加入20 mL基体改性剂,加入40 μL的内标贮备液、40 μL的替代物贮备液,使用涡旋混匀仪混匀,待测。如果为高浓度样品,称取5 g土壤,加入10 mL甲醇,先涡旋振荡提取10 min。将提取液稀释成水溶液,加入5 g石英砂,加入内标和替代品,涡旋混匀,待测。(6)将待测样品通过Mars-400 便携式气质联用仪进行分析,现场进行定性定量,并输出报告。1.6 结果与讨论1.6.1 标准曲线的制作  按照章节5.2.1的方法,从浓度低到浓度高分析标准系列样品,每组浓度平行分析3组。本试验采用特征离子定量法进行定量。以样品浓度与内标浓度的比值作为横坐标,以样品特征离子峰面积与内标特征离子峰面积作为纵坐标,绘制内标标准曲线(图2,表4)。图2 25种VOCs的总离子流图  图2是石英砂加标的25种VOCs的总离子流图,采用对溴氟苯作为替代物(第22号色谱峰),氟苯、1,4-二氯苯-D4作为内标。从表4可以得到,25种VOCs和对溴氟苯的线性相关系数都在0.99以上。1.6.2 精密度和准确度  在5 g石英砂中加入400 ng的标准样品,配制成80 μg/kg的土壤加标样品,按照低浓度土壤样品的方法进行吹扫捕集-便携式气质联用分析,样品连续分析7遍,计算标准偏差S,从而得到分析的精密度,然后通过计算平均回收率得到分析方法的准确度(表5)。  从表5可以得到,连续7次分析的相对标准偏差在20%以内。5 g石英砂中加标浓度为80 μg/kg,平均加标回收率在80%~120%之间。1.6.3 方法检出限  根据方法检出限的实验方法,取5 g石英砂,加入5 ng/mL标准样品,得到20μg/kg的空白加标土壤(计算检出限的3~5倍浓度),连续进样7遍,剔除异常值,计算标准偏差S,在99%的置信区间里,取MDL=3.143×S,如表6。从表5中可以看到,本方法的检出限在2.62 μg/kg ~ 12.06 μg/kg之间,可以用来检测泄露到土壤中的挥发性有机物。
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。 制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。 2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 质谱技术助力更精准、高效的水质检测
    在我国,大部分饮用水水源处于自然之中,经消毒后被送进千家万户。然而,无论是水源的纯净性还是消毒过程的完善性,饮用水都可能存在风险物质,对人体健康造成危害。今年10月,我国正式实施GB/T 5750-2023《生活饮用水标准检验方法》,为保障饮用水质量提供更科学的检测指导。时隔16年的第二次修订,GB/T 5750-2023的突出特点在于显著扩展了质谱技术的应用范围。相比于06版,23版中的质谱方法数量从3个扩展至33个,测定化合物的种类也从233个增加到了453个,自动化、高通量的质谱方法成为水质检验的重要手段。仪器信息网特别建立“《生活饮用水标准检验方法》——质谱篇”话题,聚焦质谱技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界质谱专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的质谱产品、技术解决方案。本文邀请到广州禾信仪器股份有限公司应用工程师卢思捷分享质谱技术在生活饮用水检测中的应用。优质产品与创新应用,构建饮用水质量的坚固屏障广州禾信仪器股份有限公司(简称“禾信仪器”)是国内最早成立的专业质谱民营企业,以坚实的质谱正向研发技术为基础,自主研制出高灵敏度、稳定性和出色耐用性的气相色谱质谱仪、液相色谱三重四极杆质谱联用仪和电感耦合等离子体质谱仪等质谱产品,能够准确测量水中复杂的化学成分和微量污染物,应用解决方案在新版饮用水标准检验方法中具备高度适配性,助力提高水质检验和评估能力。着眼于最新版饮用水标准检验方法的颁布和实施,禾信仪器发挥积累的技术优势,已开发出更全面、多样化的测定方案。为方便用户获取相关信息,特别制作了《禾信仪器应对生活饮用水卫生标准解决方案》应用文集(点击链接获取更多解决方案)。应用文集提供了详细的技术指导,涵盖了多种水质常规检测及科研方向的需求,帮助用户充分理解和应用最新的饮用水标准检验方法,满足广大分析者的实际需要。01 GCMS测定饮用水中的土臭素和2-甲基异莰醇1 前言《中国生活饮用水卫生标准》(GB 5749)最新征求意见稿规定了两种恶臭成分的最高限值为10 ng/L,由于这两种物质存在对饮用水的感官特性和饮用者接受度的影响,其鉴定、定量和去除成为水质保障必不可少的环节。2 实验部分仪器配置:GCMS 1000气相色谱-质谱联用仪,PAL多功能全自动样品前处理平台2.1制样步骤在20 mL顶空瓶中加入1.5 g氯化钠和10 mL待测水样,加入适量的标准品及内标,旋紧瓶盖,摇匀后等待上机测试。3 结果3.1 饮用水加标实验总离子流图图1 饮用水加标实验总离子流图(100 ng/L)[1] 2-异丁基-3-甲氧基吡嗪[2] 2-甲基异莰醇[3] 土素素图2 重复性谱图4 结论采用禾信GCMS 1000分析了自来水的土臭素和2-甲基异莰醇。实验结果:两种目标物的线性相关系数R2均大于0.999;自来水加标精密度RSD在2.64%-5.70%范围;自来水基质加标回收率在99.0%-106.0%范围;目标物方法检出限在2.17 ng/L-3.13 ng/L范围内。上述结果表明结果满足标准的要求,禾信GCMS 1000具有优异的重现性和检测灵敏度,其解决方案满足检测要求。02 GCMS分析生活饮用水中半挥发性有机化合物1 前言饮用水中的有害半挥发性有机物,如酚类、苯胺类、多环芳烃、酞酸酯类等对环境破坏很大,其中多环芳烃具有强致癌性,酞酸酯类物质主要属于环境激素污染物。如果长期接触,会造成人体慢性中毒,引发癌症,严重危害人体健康。2 实验部分2.1 仪器和设备气相色谱质谱仪:禾信GCMS 1000;2.2 样品前处理将样品通过固相萃取装置,将半挥发性有机物保留,后使用溶剂将其洗脱,除水后浓缩定容,上放置GCMS上分析。3 结果与讨论3.1仪器性能评价通过微量注射器移取1 μL浓度为50 mg/L的4-溴氟苯(BFB)溶液,得到BFB质谱图,对质谱图进行离子丰度评价。评价结果见图3,BFB各离子丰度比均符合标准要求。图3 BFB性能评价结果3.2 标准谱图和物质信息半挥发性有机物及其替代物浓度均2.0 mg/L,内标物的浓度均为2.0 mg/L,实验总离子流图见图4。图4 半挥发性有机物及其替代物和内标总离子流图(2.0 mg/L)4 结论本文依据GB/T 5750.8-2023《生活饮用水标准检验方法 第8部分:有机物指标》附录B,采用禾信GCMS 1000对生活饮用水进行加标回收实验,结果显示7种半挥发性有机物的线性相关系数R2均大于0.990;生活饮用水基质加标精密度在0.60%-8.4%,加标回收率在75.3%-127.0%范围内,方法检出限为0.004-0.011 μg/L,均符合标准要求。上述结果表明禾信GCMS 1000具有优异的重现性和检测灵敏度,满足检测需求。03 LC-TQ测定水质中37种抗生素等药物 1 前言由于抗生素废水具有生物毒性大、含有抑菌物质等特点,经过长时间可能会发展为人类难以解决的“超级细菌”,给人类带来严重的疾病。固相萃取/液相色谱-质谱联用法作为一种适用范围广、检测效率高的处理抗生素废水的方法受到广泛关注。2 实验部分2.1 仪器和设备仪器配置:LC-TQ 5200三重四极杆-液相色谱质谱联用仪色谱柱:Waters ACQUITY UPLC HSS T3(100×2.1mm,1.8μm)3 结果3.1 标准谱图和物质信息图5 37种目标物(100 ng/mL)和内标(50 ng/mL)总离子流图4 结论本文依据《水质 抗生素等药物的测定 固相萃取/液相色谱-三重四极杆质谱法》SOP文件,采用禾信LC-TQ 5200多反应分段监测法分析了自来水样品中37种抗生素类药物残留含量。实验结果显示:在2~200 μg/L的浓度范围内,37种抗生素药物的标准曲线相关系数R2均大于0.99;加标精密度RSD在1.32%~14.0%范围内;加标平均回收率在45.3%~131.27%范围内;本方法中37种目标物的方法定量限为0.2~4.7 ng/L ;定性目标物的特征峰保留时间和相对离子对丰度比及其相对误差均符合标准要求。上述结果表明禾信LC-TQ 5200具有优异的重现性和检测灵敏度,完全满足《水质 抗生素等药物的测定 固相萃取/液相色谱-三重四极杆质谱法》SOP文件的要求。
  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism & hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
  • 国内首个《医疗机构临床质谱实验室建设共识》正式发布!
    近期,国内首个《医疗机构临床质谱实验室建设共识》出炉,从临床质谱实验室通用要求、人员、环境、仪器、试剂及耗材要求等方面进行了相应的规范与指导。该共识最大的优点在于给出了非常多细节和明确的建议,解决了很多临床医院缺乏专业指导的情况下,在建设实验室的过程中无从下手的问题。虽然目前国家对质谱实验室并不存在硬性的建设要求和审查批准,但质谱平台涉及到的易燃易爆、毒性、挥发性等硬性风险,和高专业性、低自动化带来的人员、管理上的软性高需求都使之在实际建设开展中远远复杂于其他临床常见实验室。中华医学会检验医学分会临床生化检验学组、中国医学装备协会检验医学分会联合领域内专家制定此篇共识。  下为共识核心内容摘要:  近年来,随着质谱技术越来越多地应用于临床检验领域,配置质谱仪器、建设临床质谱实验室已成为众多医疗机构及第三方医学检测实验室的选择。与常规生化免疫系统相比,质谱分析检测系统对实验室环境的要求更为严格,需配备的辅助设备、耗材、试剂种类更为繁多,手工操作环节更加繁琐,同时对操作人员的技术能力要求更高。  如何建设安全高效、工作流程顺畅且符合质量规范要求的临床质谱实验室仍是医疗机构面临的严峻考验。为规范医疗机构临床质谱实验室建设,中华医学会检验医学分会临床生化检验学组、中国医学装备协会检验医学分会联合领域内专家从临床质谱实验室通用要求、人员、环境、仪器、试剂及耗材要求等方面制定共识。  该共识覆盖了临床检验目前使用较多的多个质谱平台(不包括应用于微生物领域的基质辅助激光解吸电离飞行时间质谱技术平台):主要应用于代谢物和药物监测的液相色谱串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)技术平台、应用于微量元素检测的电感耦合等离子体质谱(inductively coupled plasma mass spectrometry,ICP-MS)技术平台,和目前初步应用于在淀粉样变分型、M蛋白血症分型等临床诊断和鉴别诊断的高分辨率质谱平台。  一、通用要求  (一)管理要求  临床质谱实验室建设和运行应满足《医疗机构临床实验室管理办法》[10]等相关法律法规要求。临床质谱实验室可开展很多常规生化免疫方法无法检测的特殊项目,部分项目目前仍无注册的商品化试剂,使用实验室自建方法开展检测时应参考《医疗器械监督管理条例》(2021年6月1日实施)第53条的规定[11], 临床质谱实验室开展诊疗项目也应符合国家及地方相关规定。  质谱方法是许多重要检验项目检测的首选方法,然而临床质谱实验室的运行相对常规检测平台更加复杂,因此,应加强临床质谱实验室质量体系建设和日常质量管理,保障医疗安全。实验室可参照中国合格评定国家认可委员会《医学实验室质量和能力认可准则》(GB/T 22576.1)[12]、《医学检验实验室基本标准(试行)》和《医学检验实验室管理规范(试行)》国卫医发[2016]37号[13, 14]、《医学检验实验室管理暂行办法》[15]、《临床实验室设计总则》(GB/T 20469-2006)[16]、《临床实验室室间质量评价要求》(GB/T 20470-2006)[17]、《实验室生物安全通用要求》(GB 19489-2004)[18]等建立质量体系和管理要求,同时可参考美国病理家学会实验室认可检查清单中质谱相关条款完善相关程序。  (二)临床质谱实验室平台设置  基于满足临床需求、保障医疗安全质量及实现资源共享的原则,同一医疗机构内应集中设置临床质谱实验室。  推荐在医疗机构检验科内设立单独的临床质谱专业组,或者在检验科生化及免疫专业的组织架构下设置临床质谱实验室。根据实验室规模和不同质谱技术的技术特点和临床预期用途差异,可进一步根据临床需求分为定量检测组(LC-MS/MS、ICP-MS等)和定性检测组(高分辨质谱、质谱成像等) 或者基于待测物的临床应用可分为药物浓度组、激素检测组等。  (三)检验项目设置  开展临床质谱检验项目应综合考虑技术可及性和临床需求迫切性,优先考虑开展权威指南推荐的可明显提高诊断准确性的项目。另外,虽然色谱质谱技术对多种项目检测具有明显优势,但现阶段自动化程度低、仪器昂贵,故应充分考虑依托质谱技术开展检验项目的前沿性及实用性 检验项目开展后的质量保证,如室内质控、室间质评或实验室间比对等因素也应被充分考量。基于质谱技术的临床应用现状,本共识推荐开展的检验项目有:内分泌相关指标(类固醇激素、儿茶酚胺及代谢产物、肾素活性等)、遗传代谢病相关指标(氨基酸、有机酸、脂肪酸、酰基肉碱等)、治疗药物监测(免疫抑制剂、抗菌药物、精神类药物等)、营养素系列指标(维生素、微量元素等),部分多肽类标志物(如胰岛素样生长因子、胃泌素等),以及化学品中毒(重金属、农药等)的定性定量检测。  二、人员资格及岗位职责  (一)实验室主任和/或技术主管(实验室负责人)  实验室主任和/或技术主管应具有2年以上质谱实验室工作经验,充分了解质谱技术的优势、局限性、发展趋势及临床应用的适宜场景 具有较强的色谱质谱专业理论知识和丰富的技术实践经验 同时具有较强的组织管理与协调能力。实验室主任和/或技术主管主要职责包括:组织、管理实验室的各项检测工作,确保实验室设施设备完善,确保实验室环境及日常行为符合生物安全、化学品安全和消防安全要求,确保使用的检测系统和质量体系有效运行,制定实验室检测项目清单及相应的分析性能质量目标,负责检测报告的签审和解释等。实验室主任或技术主管应定期对技术人员进行规范化操作培训和考核[19]。  (二)技术人员  技术人员应具备临床检验、分析化学、药物分析或质谱相关教育背景,需熟练掌握色谱及质谱技术理论、仪器设备使用维护、检验项目标准操作规程(standard operation procedure,SOP)、质量控制方法,完成相关岗前培训及实操考核。  实验室应严格按照培训考核的项目种类和仪器类型授权上岗,人员轮岗后应重新进行培训及考核。质谱检测项目前处理步骤繁琐,自动化程度低,对技术人员的操作要求高。人员岗位相对固定有利于及时处理各类故障问题,保证检测质量,保障报告按时发出,结果报告审核人员应经过系统的临床检验或药学专业培训,具备质谱分析相关知识,并通过国家规定的检验人员技能考试。  建议1 临床质谱实验室主任和/或技术主管应具备质谱理论知识、实践经验及组织协调能力,应根据相关规定和实验室实际情况建立和制定临床质谱实验室的质量管理体系及管理规范、实验室各类制度等,以保障临床质谱实验室有序运行并高效服务临床。  建议2 临床质谱实验室技术人员应经过色谱质谱原理、仪器使用及维护、检测项目SOP、结果分析处理等专项培训,考核合格方可上岗 离岗半年需再次进行操作培训及考核 离岗超过2年,需经过再次理论培训、操作培训及考核。  建议3 临床质谱实验室技术人员岗位应相对固定,如需轮岗,建议同一岗位在岗时间不短于1年。  三、实验室设计、建设要求  (一)实验室布局  应根据开展的项目种类、仪器型号及配套设备的数量等测算临床质谱实验室所需的总面积,以及不同分区的面积分配。因质谱实验室涉及复杂的暖通装修及各种供电、供水等管路设计,故应充分考虑实验室空间的高度、外排系统等,需符合环境要求。  实验室应合理分配开展工作的空间,其设计应确保用户服务的质量、安全和有效,以及实验室员工、患者和来访者的健康和安全,实验室应评估和确定工作空间的充分性和适宜性。如有条件,无机类前处理操作区域与有机类前处理操作区域应分隔。此外,由于色谱-质谱仪易受环境洁净度、温/湿度、空气流、射频辐射及电磁场的影响,前处理和色谱分离环节使用的强挥发性的有机溶剂对人体损害较大,质谱仪真空泵噪音较强等原因,质谱室应设置在空间充足,通风良好且符合生物安全要求的区域内,不宜设置在患者诊疗区域内 如设置在检验科内,应与检验科其他功能空间有效分隔。在布局中应充分考量色谱-质谱检测系统对于通风、温湿度、供电系统的要求及其与周边实验室的兼容性,同时应远离震动源、远离大于10高斯的磁场(如核磁共振仪和扇形磁场质谱仪),避免日光直射,尽可能减少周围环境的射频辐射。  临床质谱实验室应基于工作流程、不同实验活动的不相容性及仪器运行期间相互影响的可能性等因素,进行有效的分区。ICP-MS产热量大,建议单独分区放置。为降低噪声及有害气体对实验人员的影响,还应充分考虑通过电脑远程控制系统实现人机分离。氮气发生器及空气压缩机等会散发大量热量及产生噪声,推荐将其放置于独立房间。此外,应有充足的标本、耗材、试剂存储空间,应设置专门区域安置冲淋装置、洗眼装置、急救箱及消防器材等。若为独立的实验室还应设置天平称量区及更衣室等。  建议4 质谱实验室应设置于相对独立的区域,不与常规生化、免疫等检测区混设,不与患者诊疗区域混设 ICP-MS建议设置于独立空间或在同一空间距离其他质谱设备较远的位置。  1.样本制备区:应在样本制备区配备足够的通风设施。质谱前处理过程中涉及有机试剂、挥发性酸、碱的操作应在通风橱中完成 自动移液工作站应该配备万向排气罩 应充分评估临床工作量、预处理操作时长及检测周转时间(turn-around time,TAT)要求,配备足够的通风橱、试验台,建议双侧操作试验台间距应1.6 m,单侧操作试验台距墙面或其他实体间距1.2 m,以保证同时操作不受干扰。可根据配置的通风橱、通风试剂柜及试验台的数量等测算样本制备区所需面积。初建实验室临床业务尚未确定时,可根据医院规模和业务类型估算样本制备区面积。  2.仪器区:应充分整合不同仪器制造商的安装条件及使用要求,对于直接影响检测质量的环境温湿度等应至少遵从制造商建议。通常,每台仪器(液相和质谱)长度在2.0 m左右,宽度在1.0 m左右。应根据设备型号、重量、体积选配合适规格的色谱质谱仪器专用工作台或根据色谱质谱设备规格设计通用实验台。工作台应结实稳定,可承受质谱、色谱、电脑等设备的重量。工作台后应预留出一定的维护空间,以方便工作人员对质谱仪器的维护保养。由于色谱、质谱设备及气体制备装置重量偏大,故工作台承重应不低于500 kg/m2, 如无法达到,应采用钢板分散压力。当实验室内无法实现人机分离时,应为机械泵加装减噪罩,建议装载于工作台下方并高于地面,周围留有足够的空间便于散热和维修保养。另外由于需要在吊顶内部铺设气体管路、电路等,建议吊顶内高度(即吊顶距天花板的高度)不低于0.8 m,用于铺设各类气体管路、通风管路、空调、除湿机、消防管路等设备安装及维护空间 吊顶至地面高度应满足质谱仪器放置需要,建议不低于2.8 m。  建议5 仪器区面积应根据仪器数量进行规划。实验台后应预留宽度不少于0.5 m的空间,实验台设计参考建议9,建议为每台仪器配置不少于7.5 m2的空间。  建议6 仪器区吊顶内高度不低于0.8 m,吊顶至地面间高度不低于2.8 m。  3.结果分析及报告区:应配备计算机及相应工作软件远程连接仪器区电脑,方便结果分析及报告发送。该区应该实现“人机分离”,尽可能地降低仪器噪音和环境对人体的危害。所有仪器设备的计算机及远程控制的计算机不可接入广域网。  4. 气源区:由于质谱仪正常运转会使用各种气体(如氮气、氩气等),实验室需要预留出存储或制备气体的空间 如实验室空间充足,建议设置集中供气房间(气源区)。气源区不宜距离仪器区及标本处理区过远,以免影响气压,同时该区域应便于运输及更换气瓶。  5. 耗材区:应在常温库房固定位置放置耗材,定期增补,保证供给充足,可同检验科其他耗材空间共用。  6.样本及检测试剂储存区:应配备冷藏、冷冻、低温冷冻冰箱,保证检测试剂和临床样本放置于合适的储存条件,临床样本与检测试剂应分开放置。  7.废液处置区:应依据《医疗废物管理条例》[20]、《医疗卫生机构医疗废物管理办法》[21]等法规,结合各实验室及所在单位的实际情况,制定排废标准。质谱分析及样本制备后所产生的污水大部分含有有机溶剂、酸、碱、盐等,均应进行必要的处理,符合国家排放标准后,方可排入城市污水管网 或者收集后(收集过程中应存放于相对独立、通风良好的空间)由有资质的废水处理机构进行处理。  建议7 质谱实验室宜设立独立的样本制备区、仪器区、结果分析及报告区、气源区,以上区域间应有明确的物理分隔以达到相应的环境要求。  建议8 对于拟配置设备及预期检测项目用途尚不明确的待建实验室,建议质谱实验室总面积不低于50 m2,按照样本制备区∶仪器区∶结果分析区∶其他=3∶5∶1∶2进行区域划分。  建议9 对预期用途及设备配置相对明确的实验室可以按照以下方法评估:样本制备区面积=(通风橱底面积×数量+实验台面积+大型设备底面积+其他)×2.0 m2 仪器区面积=质谱仪数量×6.0 m2。气源区面积可按照配置的氮气发生器、空气压缩机等的实际面积测算,通常1台质谱仪配套气体供应空间不少于1.0 m2,气源区面积不少于5.0 m2,该房间与质谱仪安装地点距离不宜超过10.0 m。  (二)环境及设施要求  1.洁净度:灰尘吸潮后质谱仪内部芯片或焊点处易产生锈斑,导致开机瞬间发生放电,进而导致电源或电路板故障。另外,散热过滤网上的灰尘会阻碍仪器内部热量向外散发,可导致仪器重要部件如电路板、涡轮泵等过热损坏。ICP-MS测定的微量元素在样本中的含量很低,易受环境中灰尘等影响。  建议10 仪器区应保持环境洁净无尘,推荐配备空气净化器、窗户防尘网、空调出风口的空气过滤器等。通风设施良好的实验室不建议开窗。  2.通风:甲醇、乙腈、正己烷、挥发性酸、碱等试剂是质谱实验室常用的流动相及提取试剂,存在潜在肝肾毒性及神经毒性等,因此,质谱实验室除满足一般检验科实验室6~8次/h全新风换气要求外,还应充分考虑不同操作步骤可能存在的挥发性气体损害风险,配置通风橱、万向排风罩等通风设备,以保障实验室人员安全。通风橱、万向排风罩一般风速达0.5 m/s即可满足要求,但对于挥发性较强、气味较大的操作,可适当增加风速,以便及时将废气排出室内。LC-MS/MS废气排放口距离排风口大于3.0 m以上的需加装排废管路,且仪器端的排废口风速应达0.5 m/s以上。对于无机质谱ICP-MS需安装专用排风系统,根据不同厂家要求风速一般需达8.0~15.0 m/s,且仪器端应有防冷凝水回流设计。各类排风系统的排放口都应有防雨水倒灌回流设计。通风橱、万向排风罩、排废管路等应为独立控制系统,建议有“一备一用”功能设计,最好有故障触发报警功能,以便能及时采取应对措施。  建议11 样本制备区涉及有机溶剂或挥发性酸、碱的使用均需在通风橱中完成,故应充分评估项目数、标本量及TAT要求,设置充足的通风橱,建议不少于2台1.5 m通风橱。  建议12 仪器区需根据实验室拟安装的质谱设备的位置和台数配备足够数量的万向排风罩,或按照每3.0~4.0 m2均匀排布万向排风罩,风速应大于0.5 m/s 废液瓶管路接口应尽可能密封。  建议13 统筹估算所有通风设备的风量及风口,合理设计风道及室外风机系统,建议单独配置风机系统电源(配电箱)。  建议14 ICP-MS应根据仪器要求设置独立的排风系统,风量应不小于8.0 m/s。  3.温湿度:为保证仪器状态的稳定,仪器区应保持恒温恒湿,应配置温湿度计进行监测,有条件的实验室,建议配备24 h智能监控系统,灵活设置不同区域的温湿度警戒值,失控时能及时通知相关人员采取措施。质谱仪通常可耐受的温度范围为15~30 ℃,温度过高会使电路板长期高温工作,降低仪器寿命 湿度过高会降低电子元件的绝缘强度,空气中的水分附着在绝缘材料的表面,使电子元件的绝缘电阻降低,设备的泄漏电流大大增加,造成绝缘击穿,产生电气故障,所以应根据不同质谱仪的制造商手册要求设置允许温湿度范围。另外,由于质谱仪散热量大,应计算每台质谱仪的散热量后,统一评估集中空调是否满足运行要求,如不满足应加装独立的空调。),空气压缩机及氮气发生器等设备散热量大,其所在空间需配备空调,保持室温不超过30 ℃。  建议15 仪器区最佳温度宜控制在20 ℃,温度波动小于2 ℃/h,最佳湿度宜控制在35%~50%,空气湿度过高推荐配备除湿器,空气干燥地区推荐配备加湿器。  4.噪音:质谱仪器、机械泵、氮气发生器、超声清洗仪等均会产生较大噪音,应尽量实行“人机分离”操作,另外采取必要的隔音或降噪措施,如将机械泵放入降噪箱中,优先选择不用泵油、噪音更小的干泵。  建议16 仪器区采用穿孔吸音板等材料进行装修,机械泵放入降噪箱中。进入仪器区宜佩戴降噪耳机。  5.供电设施:不同型号质谱的用电需求不同,应依照厂家提供的仪器用电需求进行供电,另外需配备不间断电源(uninterruptible power system, UPS)以防止突然断电导致的仪器损坏。每套色谱质谱仪或质谱仪应根据不同厂家的仪器配置情况配备足够的电源插座。氮气发生器及空气压缩机等仪器因通、断电时的瞬时电流大,比正常工作时高,较易熔断保险,压缩机的启动和停止会对电网电压造成干扰,所以建议将质谱仪和氮气发生器的电路分开。冰箱、自动化前处理工作站、超高速离心机及其他重要辅助设备同样应配备UPS。电源电压波动应小于5%。电源应具有良好的接地措施,接地电阻应小于4 Ω。电源插座有接地线、零线和火线,安装方法应符合电工规范(左零右相)。地线与零线的电压要求小于3 V。  建议17 每台色谱质谱仪器应设有独立开关,电源应有断电保护功能(断电之后重新输入电压不能自动上电,仪器有说明不允许使用漏电保护功能的除外)。  建议18 临床质谱实验室可根据未来5年质谱仪配置规划,参照不同种类质谱仪用电一般标准,统一评估用电量,设立独立配电箱并设置集中UPS。  6.供水设施:分析用水包括样本制备过程用水和流动相配制用水。样本制备及流动相配制应使用超纯水(电阻18.2 MΩ/cm),超纯水纯度要求可参照行业标准《临床实验室试剂用纯化水》[22]。可使用超纯水机制备超纯水,应监控水质并定期更换滤膜 另外也可使用商品化超纯水。  7.供气设施:质谱实验室应配备供气设施,用于质谱仪以及样本前处理的正压固相萃取装置、氮吹仪等。质谱仪通常用氮气作为辅助气,根据仪器要求配制氮气,一般要求氮气的纯度在99.99%以上,且需保证气源供气充足且稳定,推荐采用氮气发生器为质谱仪提供氮气。质谱仪还会使用清洁空气、氩气、氦气等作为辅助气,可采用空气压缩机、液氩钢瓶、氦气钢瓶等供气。  所有的气体管路应避免泄漏,气体传输推荐使用医用级不锈钢管道,气路接口应定期进行泄漏检测,压力阀应定期进行性能评估。气源区应有气体泄漏检测报警装置(对于氮气、氦气、氩气没有专门的泄漏报警装置,可采用氧气报警装置,保证气体室内氧气含量充足,以防实验人员在气体室内窒息)。  建议19 根据拟采购的质谱仪种类、品牌等,评估用气种类和最大负荷流量,统一配置相关供气设备。配置设备建议根据实验室诊疗项目发展规划及医疗应急需求按不少于评估量的150%配置。  8.危化品存储设施:质谱实验室常用的溶剂如甲醇、乙腈、正己烷等均为易燃溶剂,应配备易燃试剂专用柜,实行双人双锁管理,并有准确的出入库登记、使用记录。若实验室用到易腐蚀性化学品(如盐酸等)及易制爆化学品(如硝酸等),则应配备专用的易腐蚀化学品柜和易制爆化学品柜,均实行双人双锁管理,有出入库记录,并且设有监控。定期盘点所有的化学品。以上物品管理需满足医院及当地公安机关相关规定和要求。  建议20 应配备防腐蚀、防火及防爆专用试剂柜。在密闭空间内存放挥发性有机溶剂的试剂柜,应连接排风系统,排风量不小于0.5 m/s。  四、分析仪器及设备  (一)分析仪器  1.分析仪器的选择:出具临床检测报告的质谱分析仪器应该具备中华人民共和国医疗器械注册证,且出厂日期在注册证有效期内。需根据临床检测项目需求选择相应类型的质谱仪器。(1)液相色谱-三重四极杆质谱(LC-QQQ-MS):实验室开展内源性代谢物检测如维生素、氨基酸、胆汁酸、儿茶酚胺、类固醇激素、神经递质、β-淀粉样蛋白,以及药物浓度监测等项目应配备LC-QQQ-MS仪器。(2)电感耦合等离子体质谱:实验室开展无机元素检测项目(如碘、锌、硒等)应配备ICP-MS仪器。(3)气相色谱-质谱:实验室开展有机酸检测等项目应配置气相色谱-质谱仪器。(4)高分辨质谱:实验室开展毒物与药物筛查、蛋白鉴定分型等检测项目,在LC-QQQ-MS基础上可以增配高分辨质谱仪器。  分析仪器必须经过检定校准合格、性能验证符合要求后方可使用,并根据设备使用年限制定验证周期。仪器应有明显的运行状态标识并指定专人负责管理,具有使用、维护及维修的记录。  建议21 建议充分调研临床需求,确定所需要的合适的质谱仪类型。对小分子代谢物定量检测,建议配备LC-QQQ-MS 对无机元素定量,建议配备ICP-MS 对具有有机酸及相关代谢物检测需求的实验室,建议配备气相色谱-质谱仪器 有毒物、药物筛查及蛋白质组学等需求的可在LC-QQQ-MS基础上配备高分辨质谱仪器。  2.分析仪器的使用:使用仪器前,技术人员必须熟知仪器使用说明及项目操作SOP,通过相关考核,方可进行独立操作 使用前需要确保仪器用试剂、电、气均正常。  使用仪器时,技术人员需对质谱离子源等部件进行日常维护 开始进样前,应对以下要点进行核查:确认离子源的类型并保证安装正确 核对色谱柱型号及安装方向正确 检查流动相配制正确、体积足够、并且在效期内,配制流动相需记录配制日期、配制人等信息 检查废液桶未满且适用(液面达90%需更换) 检查样品室并对已测样本进行清理 启动系统,排出液相系统管路中的气泡,检查质谱仪器状态、参数是否正常 调用项目方法对仪器进行平衡,并进行系统适用性测试来进行仪器状态考察,观察系统压力、仪器状态、分析物色谱峰的保留时间以及质谱的响应值,正确设置进样板类型,并确保样本盘中样本位置与序列表中一致,满足要求后正式进样。  使用仪器后,技术人员需要根据检测物质及流动相对仪器进行冲洗。定期对仪器系统适应性结果进行分析,回顾仪器状态,若存在信号异常应及时进行维护或维修。定期进行仪器表面及部分部件的擦拭清洗,去除污物或灰尘。  建议22 建立完整的仪器使用前、中、后操作及维护保养SOP,严格按照规程操作并保留完整记录。  建议23 每年至少对质谱仪进行一次预防性维护。  3.分析仪器的质量控制措施:根据《液相色谱-质谱临床应用建议》[19]可将分析仪器的质量控制措施分为系统适用性测试和周期性质量监控。系统适用性测试:推荐至少在每个分析批次之前、预防性维护之后、仪器卸真空后或者是当系统平衡出现问题的时候进行系统适用性测试,以确保检测系统处于正常状态。周期性质量监控:仪器设备重大维修、维护保养、移动后,需评估仪器的性能指标与维修、维护保养、移动前保持一致,还需评估前后临床样本检测结果的偏移程度。  建议24 系统适应性测试既可以选择厂家提供的校准溶液,也可以选择检测项目的低浓度标准品溶液,测试仪器的灵敏度和稳定性,保证满足临床检测要求。  建议25 仪器设备校准合格、性能验证符合要求后方可使用。在用仪器设备应实行周期校准,并保存校准报告。  (二)前处理及其他设备的配置及使用  根据实验室检测项目需要,配备以下样本前处理设备及其他辅助设备。  1.正/负压装置:检测项目的样本前处理若用到固相萃取,则应配备正压或者负压装置。负压装置还需配备真空泵,正压装置则需配备氮气源。  2.氮吹装置:根据检测项目的前处理需求,配备多孔氮吹仪(连接氮气源或空气源),加速样本前处理环节中的溶剂挥发,推荐将氮吹装置放于通风橱中或连接排风装置,避免操作过程中可能存在的挥发性气体的损害风险。  建议26 质谱实验室前处理应根据需要配备氮吹仪、正/负压装置、自动样本处理系统。氮吹仪和正压装置应配备独立的气源,防止前处理操作影响质谱仪器供气的稳定性。  3.全自动样本处理系统:根据检测项目前处理方法学需求,可配备自动化前处理设备,以方便样本的处理。  4.其他辅助设备的配置及相关管理要求:样品前处理过程中涉及的关键仪器设备(包括计量器具、辅助设备等)要定期检定、校准、验证。分析天平、移液器、容量瓶、pH计等器具设备应制定计量周期,定期参加法定计量部门或有资质的计量服务机构检验,并保存计量检验证书。另外,根据实验需要可配制真空浓缩仪、离心机等 前处理中可能需要对流动相容器、玻璃器皿等进行清洗,应配置自来水池、水池旁应配备洗眼器。  五、试剂及耗材  (一)试剂的选择和制备  1.商品化试剂盒:开展检测项目应优先选择获得医疗器械注册证的商品化试剂盒 按照常规试剂盒管理,建立购买、验收入库、贮存和使用的SOP,并有准确的入库、保存、使用和有效期记录 应该在预开展本项目的仪器上论证试剂盒的系统适用性,方法学评价的数据需符合临床指南的要求。  2.自制试剂:目前尚没有商品化试剂盒的检测项目,可根据《液相色谱-质谱临床应用建议》、《液相色谱串联质谱临床检测方法的开发与验证》推荐[19, 23],建立实验室自建方法。实验室自建方法可购买和使用商品化的校准品,当无法获得商品化校准品时,可考虑自行配制,自制校准品的基质尽可能同临床样本相似或经过基质效应验证不受基质影响[23]。购买的校准品通常是粉末状或高浓度溶液,不能直接使用,应通过称量、混合、稀释等手段进一步制备校准溶液[24]。校准品优先推荐使用有证标准物质,若此物质不可获得,应尽量选择满足权威计量和标准物质研制机构研制的物质或具有明确定值信息的物质,确认分析证书内容的完整性并留存。分析过程涉及的标准品和试剂的纯度、级别、规格和来源应符合实验要求 自制校准品的批次更换应建立相应的接受标准,以免引入系统误差。内标的使用可校正基质效应以及样本萃取、色谱分离和离子化过程中产生的偏差,内标应选择样本中不存在的非内源性物质,可采用结构类似物或稳定同位素内标,推荐使用稳定同位素标记(氘标、13C标记)的内标,质荷比差异应大于3,且纯度应满足分析要求,建议在98%以上。其他试剂应满足色谱、质谱仪器使用的纯度要求。应科学论证自制试剂的性能,方法学评价的数据需符合临床指南的要求或满足预期用途。  3.质控品的选择和制备:优先选择商品化的质控品,无法获得商品化质控时,可考虑自行配制。一般需配制高、中、低3个浓度的质控,根据待测物的浓度分布选择合适的质控水平。质控品的基质应与待测样本相同或尽可能同待测样本接近,自制质控品可使用患者混合样本或进行预期浓度待测物添加的混合样本。  建议27 对于无商品化试剂的项目,可采用自建方法,并进行完整的方法学评价。对于已有注册商品化试剂的项目,应首选商品化试剂,并在该实验室系统上进行性能验证。推荐采用第三方质控品,自制质控品应评估均匀性、稳定性等。  (二)耗材的选择和使用  样本采集、前处理过程以及样本分析过程中所涉及到的所有耗材(如离心管、固相萃取板以及色谱柱等),都应建立购买、验收入库、贮存和使用的SOP,并有准确的出/入库登记、使用、维护及性能记录。耗材的厂家和批次不同可能会对实验结果造成影响,若有耗材发生变更,则需要开展相关验证实验。  六、检验样本及程序要求  质谱检测样本类型可为尿液、全血、血清、血浆、脑脊液、干血片等,应根据临床检测项目的具体需求选择合适的样本类型,并关注影响样本的可能因素如溶血、脂血等。检验样本及程序要求同临床生化免疫其他项目,针对质谱实验室特殊项目的检测及程序要求可参考《液相色谱-质谱临床应用建议》[19]、《CLSI C62A》[25]等质谱相关文件。  质谱在临床应用越来越多,本共识重点对医疗机构临床质谱实验室建设中的关键环节进行了阐述,本共识将适时修订,以满足临床规范化应用的需求。  执笔人:禹松林(中国医学科学院 北京协和医院检验科),马晓丽(中国医学科学院 北京协和医院检验科),杜鲁涛(山东大学第二医院检验科),邱玲(中国医学科学院 北京协和医院检验科)

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制