当前位置: 仪器信息网 > 行业主题 > >

质谱谱分析

仪器信息网质谱谱分析专题为您提供2024年最新质谱谱分析价格报价、厂家品牌的相关信息, 包括质谱谱分析参数、型号等,不管是国产,还是进口品牌的质谱谱分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱谱分析相关的耗材配件、试剂标物,还有质谱谱分析相关的最新资讯、资料,以及质谱谱分析相关的解决方案。

质谱谱分析相关的资讯

  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • 全球质谱市场分析及前景预测
    质谱是一种被用于鉴别样品中各种化学成分的分析技术,同时也被用于样品中特定化学组分的定量。目前,质谱已成为分析实验室中研究化合物生物和化学性质的一种很常用技术,其中在生命科学领域,质谱主要用于蛋白质的测序和表征,如鉴定疾病中的关键蛋白并定量、改变表型及识别诊断标志物以便于治疗。  得益于临床诊断的广泛应用,MALDI-TOF发展最快  根据技术划分,目前的质谱技术包括气相色谱-质谱(GC-MS)、液相色谱-质谱(LC-MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)、三重四极杆液相色谱-质谱,四极杆飞行时间液相色谱-质谱、电感耦合等离子体质谱等。其中,MALDI-TOF是全球质谱市场中发展速度最快的细分市场,这主要得益于该技术在临床诊断领域中日益广泛的应用。  使用频繁&成本降低,制药成为质谱最大应用领域  按照应用划分,质谱的应用领域包括制药、环境监测、食品和饮料检测、生物技术、工业化学等。其中,制药行业是全球质谱市场中最大的应用市场,这是因为质谱在药物安全方面使用日益频繁,同时还降低了药物发现相关过程中的成本。  北美市场规模最大,亚洲市场增速最快  从地理区域角度来看,北美地区占据了全球质谱市场的主导地位,这是因为该地区的生物技术和生物医学领域的政府投资不断增加,而且蛋白质组学领域研发力度加大也推动了该地区质谱技术的发展,美国是该地区最大的质谱技术市场,加拿大其次。法国、德国、意大利、西班牙和英国占据了欧洲地区的主要市场份额。然而,亚洲市场在未来五年预计将成为全球质谱市场中增速最高的地区,因为很多企业在该地区设立生产工厂和研究中心,并且质谱制造商为促进质谱技术参与发起的展会日渐增多,这也为亚洲质谱市场的快速发展做出了贡献;日本、中国和印度预计将成为亚洲地区增长最快的质谱市场。  剖析:全球质谱市场中驱动力、制约因素  近来,全球质谱市场的主要驱动力包括生命科学研究领域的政府投入加大、医药行业的研发投入提升,同时人们对食品和饮料安全问题的日益关注也推动了全球质谱市场的增长。此外,质谱技术不断进步也刺激了终端用户的采用。  然而,仪器的高成本成为了全球质谱市场增长的关键制约因素,同时质谱操作技术人员的缺失也妨碍了全球质谱市场的增速。  主流制造商兼并整合成全球质谱市场发展趋势  全球质谱市场中的主要参与者包括丹纳赫、安捷伦、沃特世、赛默飞、布鲁克、珀金埃尔默、岛津、日本电子、日本理学、Bio-Rad等,这些主流质谱制造商之间的兼并整合日渐频繁,这将成为全球质谱市场的主要发展趋势。编译:刘玉兰
  • 质谱进行微生物鉴定的优劣分析
    伴随着医学技术的迅猛发展,质谱技术快速走进人们的生活,特别是在医学中的应用越来越广泛,质谱技术在临床中快速鉴定细菌的成果颇为显著。近年来,全国各大检验室大力引进前沿的检测技术,主要针对微生物领域进行精准检测,质谱技术检测具有操作步骤简单、程序自动化和结果准确率高的优点,能够有效对微生物进行鉴定,此外,质谱技术具有高通量、高灵敏度和高特异性,基于此特点,该技术应用在临床微生物检测上,取得了惊人的效果。总而言之,质谱时代已经到来,打破了传统的微生物鉴定局限,为我国的医疗临床事业作出了巨大的贡献。一、质谱技术的应用原理及优势大量实验研究结果显示,质谱技术的工作原理很复杂,主要是对被检测的标本离子质荷比进行详细测定,采用标本与激光辐射基质混合点相结合形成结晶的方式,力争将标本通过基质分子吸附的方式将其电离,形成完全不相同的带电离子。同时,在带电离子的动能加速下,快速形成聚焦,从而进入质谱技术分析仪器科学分析。在微生物的检验中,质谱技术在一定程度上具有明显的优势,其主要优点在于检验时对标本的要求很低,不像传统的检验需要将标本进行分离甚至是提纯,质谱技术可以直接进行点样。与此同时,质谱技术检验微生物的准确性非常高且操作方便快捷。二、质谱技术在鉴定检测中的具体应用(一)细菌鉴定检测质谱技术应用于临床检验时可以对原始的样本进行检测,也可以对已经分离的纯菌落进行检测。实践证明,临床检验标本时采用质谱技术进行检测,其标本可以是原始样本,还可以是通过相关技术已经分离的纯菌落。临床上,质谱技术在对革兰氏阳性、阴性细菌进行检验鉴定时,其检验结果的准备性很高,但是,同样的标本采用原始检验方法进行对比,其结果相差很明显。在用原始方法与质谱检验方法检验革兰氏细菌的结果对比中,质谱技术检验结果明显比原始技术检验结果准确度高,同时采用质谱技术检验获取结果的时间更短,二者检验结果的差值在统计学上具有一定的存在意义。除此之外,质谱技术在细菌鉴定检测中还有一个特殊的优势,即能够将相同或相近的菌株准确区分开,从而快速鉴定出多种细菌的不同类型、各自的属性及种类等,最主要的是其准确率相当高,能够达到90%-95%左右,此外,在细菌鉴定中还有发现新型病原菌的可能。(二)真菌鉴定检测针对于真菌鉴定检验,质谱技术检验结果对比传统技术具有很高的精准率。在二者的真菌鉴定检测结果中,质谱技术检验结果要明显比传统检验方法更准确,且检测时常较短,其检验结果存在较大的差异性,在统计学上具有重要的存在意义。分析结果表明,因为真菌本身很干燥,不轻易挑选菌落,这种情形能够导致靶点涂菌分布不均匀,再加上检验人员如果在涂菌时涂得过薄,最后影响结晶不能完好形成,基于此特点,原始方法鉴定真菌,其鉴定检测结果与真实结果差异是非常大的。(三)药物敏感性检测临床上,质谱技术还可以对药物的敏感性进行检测,其检测结果具有极高的准确率,而且针对于药物敏感性的检测,质谱技术检验结果用时要比传统技术短很多,可以大幅度降低技术人员的劳动成本。质谱技术与传统技术在药物敏感性的检测中,除了在检测时间和检测结果上有很大的差异性外,在检测范围上也有所不同。传统技术检验范围具有一定的局限性,能够检测极少数的细菌,而质谱技术恰恰相反,可检测的范围十分广泛,且具有检测人工成本低和资源节约的作用。三、质谱技术的发展前景临床上,血液感染时一种十分严重且常见的感染性疾病,该疾病经常需要使用抗生素来治疗,但是由于抗生素使用的不规范,加上不间断的侵入性治疗方案陆续实施,导致每年因血液感染的发病机率持续升高,引起了医学界的高度关注。在过去应用传统的方法检验临床数据时,血培养鉴定结果经常需要很长的时间,进而严重影响治疗的最佳时间,因此,质谱技术应用在微生物检验上,解决了以往医疗上的大难题。大量的临床数据研究结果指出,根据目前的医疗科学技术能够把血液中的致病细菌大量提取出来,然后应用质谱技术检验细菌,对比之前的平板培养技术,其结果更加精准且耗时短。专家指出,有相关学者利用常规技术和质谱技术鉴定血培养结果,得出针对于血培养结果的鉴定还是质谱技术更准确、更快速,且具有明显的统计学意义。四、质谱技术存在的缺陷目前,在现代微生物检验技术中,质谱技术有着诸多优势,对比传统的检测技术,最明显的优势就是检验结果精准且用时很短,同时具有操作简单便捷、程序自动化的特点,但是在临床大量的实际检验中,质谱技术还是存在一定的缺陷,值得相关人员去大力研究。临床上,质谱技术是无法精准检验结构较为特殊的微生物菌种,例如罕见的菌种、新出现的菌种、复杂混合的菌种或与图谱极为相似的菌种,在检验结果上存在着一定误差。质谱技术检验细菌出现这种结果的原因是目前已有的数据库并不完善,现有数据库中已有的标准菌株图谱是有限的,质谱技术的数据库还需要持续不断的完善,因此在微生物鉴定的结果中会产生一定的差异,更无法对新型菌种和特殊菌种进行准确鉴定。除此之外,由于质谱技术刚刚在国内兴起,是一项新型高新技术,在微生物鉴定过程中要求技术人员的操作能力比较强,因技术员的相关知识匮乏、器械不充足或检验手法不熟练等因素都有可能对检验结果形成一定的差异,导致结果不准确。同时,质谱技术检验微生物是一种新型的技术方法,检验时需要采购相应的仪器,价格高昂的检验仪器导致市场推广难以进行。近年来,科学技术的高速发展有效推动了我国社会的进步,其中,作为重要的鉴定技术之一,微生物鉴定技术可以帮助医疗人员进一步实现对于病原微生物的合理理解与充分认识,基于此,医疗工作者在临床过程中可以进一步结合相关结果对于患者的健康情况进行全面分析,对于后续治疗方案的合理制定具有良好的促进意义。近年来,在科学技术的引导下,质谱技术在我国临床微生物鉴定工作中展现出了良好的应用价值,从而受到了广大医疗行业从业者的高度关注。总的来看,与传统微生物鉴定技术相比,质谱技术具有良好的应用优势,可以进一步提升微生物鉴定工作的效率与准确性,然而,该技术仍存在一定的发展空间,因此,为了更好地应用该技术为医疗行业服务,相关研究人员仍需结合大量临床实践合理做好对于质谱技术的探索与改良。
  • 沃特世出席第三届全国质谱分析学术报告会,展示最新质谱技术
    由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的第三届全国质谱分析学术报告会于12月8日至11日在厦门成功召开。本次会议以“高速发展中的中国质谱分析”为主题,吸引了来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加。该会议旨在促进中国质谱分析技术的快速发展,展示中国在该领域取得的成绩及增进同行间的学术交流,全国质谱分析学术报告会已成功举办两届,本次的会议内容包括:新仪器新技术、离子源、蛋白与代谢组学、质谱在精准医学中的应用、环境与食品安全分析、无机质谱、质谱成像、有机/生物质谱新方法、青年论坛。作为深耕质谱技术几十载的行业领导者,沃特世公司全方位参与了此次会议,并展示了一系列质谱分析技术领域的最新成果,包括三重四极杆质谱、高分辨质谱以及离子淌度技术等,引起了众多参会者的高度关注和浓厚兴趣。其中,作为Xevo家族最新成员的Xevo TQ-XS,以其极高的灵敏度和整体创新设计已先后荣获ACCSI“2016科学仪器行业优秀新产品”和分析测试百科AnTop奖殊荣。Waters Xevo TQ-XS三重四极杆质谱仪值得一提的是,今年恰逢沃特世推出全球第一台行波离子淌度质谱(IMS)10周年、全球第一台商品化QTof 20周年。从第一台淌度质谱SYNAPT HDMS,到新型淌度质谱VION IMS QTof,淌度质谱已不再神秘,可以应用到每一个实验室的常规分析中,帮助研究人员更有把握地进行分析物的探索、鉴定和定量。会议现场,沃特世公司特意设置了离子淌度知识答题活动,吸引了众多与会者踊跃参与。沃特世展台现场人头攒动,离子淌度答题活动气氛热烈在分会报告上,沃特世公司应用科学家殷薛飞博士作了题为“原位电离质谱技术及其在生物分析中的应用”的报告,详细介绍了沃特世独有的REIMS技术及无损的DESI技术在生物分析中的应用,包括微生物鉴定、质谱成像、药物分布等。原位电离质谱技术是近年来发展迅速的质谱离子化技术,因其无需复杂样品前处理即可实时进行样品分析的优点被广泛应用于快速检测。REIMS技术及无损的DESI技术是两类非常有用的原位电离质谱技术,已被广泛应用于生物科学、食品、制药等行业。沃特世公司应用科学家殷薛飞博士报告现场此外,为了鼓励和表彰本次会议的青年论坛优秀报告和墙报,会议特设“优秀青年报告奖”和“优秀墙报奖”。沃特世公司质谱产品市场发展总监舒放先生为获得“优秀墙报奖”的诸位作者颁奖,并表示:“沃特世非常荣幸能够赞助此次优秀墙报评选活动。作为质谱分析领域的领导者,沃特世将在未来继续大力支持中国质谱领域的创新发展和各项工作,加大与业内专家学者的学术交流,共同促进中国质谱事业的发展。”“优秀墙报奖”颁奖现场(左二为沃特世公司质谱产品市场发展总监舒放先生)关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p  4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。/pp  其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。/pp  仪器信息网摘录如下:br//ptable width="567" align="center" border="1" cellspacing="0" cellpadding="0"tbodytrtd width="469" align="center" valign="middle"p style="text-align: center "strong标准名称 /strong/p/tdtd width="55"p style="text-align: center "strong性质 /strong/p/tdtd width="43"p style="text-align: center "strong状态 /strong/p/td/trtrtd width="469" valign="top"p化妆品中硫酸二甲酯和硫酸二乙酯的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中7种萘二酚的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中二氯苯甲醇和氯苯甘醚的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中38种限用着色剂的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中7种4-羟基苯甲酸酯的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中5种限用防腐剂的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中8-羟喹啉和硝羟喹啉的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中10种二元醇醚及其酯类化合物的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中硫柳汞和苯基汞的测定 高效液相色谱-电感耦合等离子质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p唇用化妆品中对位红的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中11种生物碱的检测 液相色谱质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 电感耦合等离子体原子发射光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 电感耦合等离子体质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p锑矿石化学物相分析方法 锑华 辉锑矿和锑酸盐的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p镍(钴)矿石化学物相分析方法 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p铁矿石 多种微量元素含量的测定 电感耦合等离子体质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p铁合金产品粒度的取样和检测方法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p石墨烯材料比表面积的测定 亚甲基蓝吸附法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p石墨烯材料电导率测试方法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p石墨烯材料表面含氧官能团含量的测定 化学滴定法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p数字印刷版材中残留溶剂的检测 顶空-气相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 红外光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p光学遥感器在轨成像辐射性能评价方法 可见光-短波红外/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p甲基乙烯基硅橡胶 乙烯基含量的测定 近红外法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p染料产品中致敏染料的限量和测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p染料产品中4-氨基偶氮苯的限量及测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p染料产品中苯胺类化合物的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p染料产品中甲醛的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p真空技术 氦质谱真空检漏方法/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p真空技术 四极质谱检漏方法/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p铸钢铸铁件射线照相检测/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p铸件的工业计算机层析成像(CT)检测/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p耐火材料导热系数试验方法(铂电阻温度计法)/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p隔热耐火材料导热系数试验方法(量热计法)/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/tr/tbody/tablepbr//p
  • 谱育科技展现首台(套)风采:双通道走航质谱分析仪
    “首台(套)”是指国内实现重大技术突破、拥有知识产权、尚未取得市场业绩的装备产品,包括前三台(套)或批(次)成套设备、整机设备及核心部件、控制系统、基础材料、软件系统等。自2018年4月发改委等8部门联合印发《关于促进首台(套)重大技术装备示范应用的意见》以来,首台(套)重大技术装备受到了社会各界的广泛关注。各省份接连出台落地举措和认定名单,不仅给予政策上的支持,还有多达数百万的资金奖励 同时,获得首台(套)认定,也彰显着一家企业的领先科技和硬实力。  近年来,科学仪器行业也涌现了多批首台(套)仪器装备,为此,仪器信息网特别策划“聚焦科学仪器首台(套)”专题,向广大同行及用户展示这些仪器“尖子生”的创新风采。  谱育科技EXPEC 3500高性能双通道走航质谱分析仪于2018年上市,2020年12月获浙江省制造业首台(套)认定。  1、请介绍公司获首台(套)认定的产品推出及获认定时间,攻克了哪些技术难关,解决了国家哪些重要问题?  EXPEC 3500高性能双通道走航质谱分析仪上市的时间是2018年,首台(套)认定时间为2020年12月。  高性能双通道走航质谱分析仪产品针对挥发性有机物(VOCs)的实时走航监测所面临的问题创新研制,集单质谱分析、气相色谱质谱联用(GC-MS)分析于一体,在快速走航监测分析技术、多模式动态吸附热解析技术、径向聚焦脉冲内离子源技术、双极性射频电压动态平衡技术及质谱增益自动调谐技术上具有重大突破。同时,产品集成了自主开发的智能化走航软件及定制化改装载体,具有快速响应、高时空分辨、准确定性与定量、全污染因子覆盖等特点,实现了VOCs区域污染画像、异味精准溯源、连续在线监测等功能,相关技术指标达到了国际先进水平,填补了国内该领域装备的空白,对推动我国VOCs精准管控与执法具有重要的意义。  2、该产品研制推出的背后,有哪些意义深刻的里程碑事件,或者有哪些令人难忘的研发、生产等故事可以分享?  高性能双通道走航质谱分析仪从2015年研发立项到2018年产品研制成功共历时3年:开始方案设计和开发探索,生产加工、系统测试验证和升级乃至完成产业化发展。为满足国内走航监测市场的需求,实现高性能双通道走航质谱分析仪的产业化,项目从核心器件、关键部件、仪器整机到仪器应用为轴线的"全链条式"创新设计新模式,攻克了双通道走航质谱分析仪的核心器件和关键技术研究,开展了双通道走航质谱分析仪的研制与应用方法研究,实现了双通道走航质谱分析仪的研制和产业化,填补国内该领域空白。  3、该产品能够实现在哪些领域的关键应用,可以帮助用户解决哪些重要问题?相比以往,在应用上有哪些变化和创新?  为快速捕获区域污染源头,获取空气中挥发性有机物的时空分布。高性能双通道走航质谱分析仪研制过程中,采用直接进样(无需富集)和富集+分离进样的多(两个或更多)通道走航监测系统,可实现VOCs等的快速检测,同时能解决传统质谱走航监测仪器无法区分分子量相同物质的问题。直接进样通道实时分析空气中的污染物,当污染物等待测物超过阈值时,和富集+分离通道实现联动,确保目标VOCs等待测物及时采集、无遗漏 配合移动工具(如监测车)“边走边测”的特点,实现VOCs等待测物快速检测和精确定性、定量分析。该方法可以满足国家相关标准要求,能监测包括芳香烃类、卤代烃类、酯类、醛类、酮类、有机硫等污染因子在内的近千种以上环境大气挥发性有机物。  VOCs 监测技术是开展 VOCs 污染防治工作的重要基础。传统常用的VOCs监测分析方法 “手工采样、仪器分析、数据解析”在实际应用中存在一定的局限性,例如分析过程繁琐,周期长,样品采集,时效性低,耗费大量人力物力,且指向性较差,影响监测结果的准确性。  近年来,VOCs走航监测技术具有现场实时快速检测、移动进行区域快速排查等优势,在VOCs污染防治领域获得了快速发展。搭载广谱型VOCs监测设备,进行移动监测的技术手段。双通道走航监测车搭载质谱分析技术因其检测速度快、可实时在线监测、灵敏度高等优点,在VOCs监测方面具有强大优势。走航监测结合监测数据、GPS信息和电子地图,可实现对大气污染物的“边走边测”,摸清整体的挥发性有机物污染物分布情况,实现对监测区域、工业园区、重点企业实行地毯式快速监察,有效提升了环境监测部门的效率。  4、企业往往都希望采购成熟产品,首台(套)问世后,大规模应用和市场推广是主要难题。那么,您认为该产品的应用和市场推广层面,面临哪些挑战,公司采取了哪些手段积极应对?  高性能双通道走航质谱分析仪定位于高端VOCs监测设备市场,主要解决VOCs的全时空、快速走航监测需求,弥补传统在线、移动监测手段的不足,为VOCs的精准防控提供有力监测手段。国内外同类产品仅适用单通道质谱分析方法,由于该方法不涉及色谱分离,分析速度极快,单次分析时间可实现秒级响应,适合环境空气、厂界等多种场合的VOCs快速筛查。但是由于缺少色谱分离过程,直接进样质谱法的缺点也很明显,例如无法有效区分同分异构体以及分子量相同的化合物,从而无法实现这两类化合物的准确定性定量,存在明显的技术缺陷。  本设备将直接进样质谱法和GC-MS法相结合,优势互补,建立双通道分析模式,用于VOCs快速准确定性定量,是较为理想的监测技术方案。选用双通道VOCs质谱分析仪,分析仪能够同时支持GC-MS法和直接进样质谱法,可同时发挥GC-MS法定性定量准确、灵敏度高、监测因子覆盖范围广,以及直接进样质谱法分析速度快等优势。关键监测技术的升级,有效保证设备分析结果准确可靠,在同类型走航市场上具有明显优势。  在推广上公司积极发挥产品价值,发挥GC-MS法定性定量准确、灵敏度高、监测因子覆盖范围广等优势,也能发挥直接进样质谱法分析速度快的优势。本产品具备环境空气监测、污染源(有组织、无组织)监测及污染物实时走航监测等功能模式。利用双通道走航质谱的工作性能,不断带动走航设备行业的发展走向双通道质谱设计。  5、获首台(套)重大技术装备认定对公司而言意味着怎样的激励?带来了哪些实质性的助力?下一步公司在企业发展和产品研制层面还将有哪些计划?  首台套重大技术装备认定是对谱育科技双通道走航质谱的重要认可,一定程度上可定了双通道走航质谱在污染溯源筛查、环境监测、应急监测等领域的作用,同时助力监测设备市场更加认可双通道走航质谱的性能和价值,助力更好的推广产品。  围绕十四五及长期环境监测规划,谱育科技不断进行了技术平台提升,围绕环境管理的综合性和复杂性问题,探索走航技术与激光雷达技术、傅里叶红外遥感技术、半导体激光遥测技术等技术联用,研发多参数走航联用技术平台,实现高时空分辨、多类型污染物、天地空的多维度综合分析和评价,为达标管控和环境管理提供更详实的数据。
  • CIOAE 2012在线质谱、色谱分析专题讨论会
    仪器信息网讯 2012年10月29日,由中国仪器仪表学会分析仪器分会和中国仪器仪表行业协会分析仪器分会主办的“第五届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2012)”在北京国际会议中心隆重开幕。根据大会安排,在C报告厅安排了在线质谱、色谱分析专题论坛,部分报告内容摘录如下。  胡少成:在谱在线分析系统对RH精炼炉真空脱气国产的适时动态分析  据钢铁研究总院分析测试研究所胡少成报告,RH精炼工艺的主要功能有真空脱碳、脱氢、脱氧、脱氮、脱硫、脱磷以及的温度的补偿和均匀化。在安钢RH精炼设备上的质谱在线分析系统所用的质谱仪是俄罗斯METTEK公司的飞行时间质谱仪,取样和数据传输系统由钢研纳克检测技术有限公司与METTEK公司共同开发。成套系统功能是通过对RH脱气产物中CO、CO2、H2等含量的适时在线分析,结合温度测定系统,利用“炉气分析+测温”监测技术对RH工艺冶炼过程进行控制。在安钢第二炼轧厂RH工艺中应用的质谱炉气分析系统,对真空脱气过程中气体成分的测定快速、准确,各成分的变化同工艺的实际情况完全吻合。  Jian Wei:Extrel在线四极杆质谱仪在煤制气工艺中的应用  据来自Extrel CMS,LLC公司Jian Wei报告,气化工艺是将原材料和副产品,如煤炭、石油、或生物燃料等,通过气化反应,转化成各种不同化工产品。为了保证产品质量,有效地利用能源和识别未知或不需要的副产品,控制这些过程的不同阶段非常重要,使用在线质谱仪可以实时分析所有类型的气化工艺。Extrel的MAX300-IG在线四极杆质谱仪,用于监控合成气气化炉的多种组份,其分析速度、测试进度和检测的灵活性均表明其应用在合成气工艺的重要价值。Jian Wei通过举例介绍使用MAX300-IG在线质谱仪控制煤合成氨气工艺的多流路监测。  黎路:在线质谱仪在催化剂研究中的应用  据上海舜宇恒平科学仪器有限公司黎路报告,催化过程中的在线检测在各类催化研究中一直备受关注,其中,逸出气体中各种气体的组份及浓度变化能为过程研究提供有效信息。在线质谱技术分子选择性强,准确度、稳定性好、灵敏度高、动态范围宽,一台机器可以实现多点、多组份连续监测,准确快速反映动态过程。黎路通过“金属镍为前体负载型磷化镍催化剂的制备及其加氢性能”、“FeOx负载单原子Ir催化剂上CO水汽变化反应研究”等应用实例说明SHP8400PMS系列在反应机理研究方面的应用。  程平:在线挥发性有机物质谱仪的研制与应用  据广州禾信分析仪器有限公司程平报告,挥发性有机物(VOCs)具有浓度低、活性强、危害大等特点,而且具有“三致”作用。传统的VOCs检测手段有GC-MS、NDIR、FTIR、DOAS和TDLAS等,各有优缺点。如:GC-MS需要取样、预处理、富集、解吸附等处理,但是响应慢,耗时长 NDIR响应快、系统简单,但是选择性差 FTIR可以多组分同时检测,响应快,但是体积大,有运动部件,对环境震动敏感 DOAS和TDLAS也各自存在灵敏度差和不能同时测量多种气体等缺点。广州禾信研制的SPI-TOFMS采用SPI/PEI复合离子源,是一种软电离技术,基本无碎片,接飞行时间质量分析器 可以气体或者等灵活进样方式。SPI-TOFMS的灵敏度达到ppb量级,可以对大部分VOCs进行在线检测。在应用方面,对机动车尾气、汽车内饰、烟草和白酒等中的VOCs成分进行了初步分析和研究。  彭永强:Prima PRO在线质谱仪在合成氨过程分析中的应用  据赛默飞世尔科技彭永强报告,Prima PRO在线质谱仪采用封闭式双灯丝离子源,质量分析器采用扫描磁扇式,其质量范围在1000eV离子加速电压下为1-150amu,微通道电子倍增管测量范围为10ppb-1000ppm。彭永强通过Prima PRO在典型氮肥生产过程中应用实例,展示了Prima PRO在整个合成流程中的采样点,为合成氨生产过程提供精确的过程优化,如:转化炉中气体混合和燃烧的控制、天然气进料中的H2S、氢/氮比、蒸汽/甲烷比以及甲烷滑脱等,为企业降低了分析成本。  郭东华:安塞LNG项目色谱仪的通讯系统  据中国寰球工程公司的郭东华报告,天然气(NG)是从自然气田中开采出来的可燃气体,主要成分又甲烷组成。LNG是在常压下将气态的天然NG冷却至-162摄氏度,使之凝结成的液体,是一种情结、高效的能源。在从NG到LNG的过程中,色谱分析仪对工艺流程各个关键点的组分控制起到了非常重要的作用,为了工艺操作方便,各点的色谱测量数据通过色谱分析网络传至中心控制室,此次技术为安塞LNG流程的开发成功起到了重要的作用。  目前石油化工在建项目多采用在线色谱仪的网路系统,实现在线分析仪数据的采集、分析,并记录在线分析仪的工作状态。在线分析仪的网络协议宜采用Modbus,OPC等标准通讯协议。这样的分析系统网络解决方案在实际使用中表现良好。  张英涛:聚乙烯循环气在线色谱的应用  据中国石化广州分公司检验中心张英涛报告,气相流化床发是当今世界上生产聚乙烯的主要方法。聚乙烯产品质量的两个重要指标是产品的密度和融熔指数。通过连续调节反应循环气气相组成来实现密度和融熔指数质量控制。在线色谱仪用来分析循环气中各种组分(N2、乙烯、丁烯-1等)的含量,并调节原料乙烯、共聚单体等比例,以控制产品质量。
  • 许国旺研究员:代谢组学研究对色谱-质谱分析技术的挑战
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  中国科学院大连化学物理研究所许国旺研究员的研究关注的是内源性代谢,代谢组学研究就是用一系列分析化学手段,如色谱、质谱、核磁共振、光谱等,将代谢产物进行分离,然后用数据分析方法把有用的信息进行提取,最后对信息进行生物学解析。与基因组学、蛋白质组学相比,代谢组学研究的是已经发生的改变,而前两者研究的是可能发生的改变,因此在这个意义上说,代谢组学更接近于临床。中国科学院大连化学物理研究所许国旺研究员  但是,目前代谢组学研究面临以下挑战:其一,到目前为止,任何一种分析工具都只能分析代谢组中15%的代谢物 其二,代谢物的结构鉴定一直是一个没有解决的问题。许国旺研究员认为,代谢组学研究要取得进展,分析测试平台首先要取得突破,而其中色谱和质谱是最有前途的技术。  依据此思路,许国旺研究员在代谢组学分析手段方面进行了大量的研究,课题组搭建二维色谱-质谱联用仪器,使得代谢产物中亲水化合物与疏水化合物同时分离,并且提高了分辨率,使得以高分辨质谱为核心的集成方法解决代谢组学中未知化合物的定性问题。
  • 赛默飞世尔科技色谱质谱:人参提取物中人参皂甙的高分辨多级质谱分析
    赛默飞世尔科技色谱质谱应用经理王勇为博士  人参皂甙是人参的主要成分,具有提高动物体机能、抗衰老等多种药理作用。人参皂甙种类繁多,还有各种异构体,从人参中已经分离出39种人参皂甙单体。质谱技术的发展,尤其是高分辨多级质谱技术的使用能够更多、更快地发现人参皂甙可能的新成分。本文用LTQ-Orbitrap高分辨组合质谱仪对东北人参提取物进行了液质联用的5级高分辨质谱分析,得到了近30个人参皂甙成份的母离子和各级碎片离子的精确分子量,质量准确度在1ppm内,由此得到了唯一的分子式。通过和已报道的人参皂甙相比较,可以确定各种皂甙的甙元和糖组成。
  • 质谱分析可能帮助指导脑瘤手术
    使用一种基于质谱分析的技术探测肿瘤的代谢物,科研人员报告称,实时诊断可能有助于外科医生在手术室跟踪人类大脑肿瘤的范围。外科切除肿瘤常常需要诊断信息,目前是通过病理学家辛苦而耗费时间的活检显微检查获得的。  Nathalie Agar及其同事使用一种称为电喷雾解吸电离质谱(DESI-MS)的技术,用最少的样本处理在手术室迅速执行,从而检测2-HG,这是一种见于IDH-1 和IDH-2基因突变的人类大脑肿瘤的代谢物,这两种基因为参与细胞生长和分化的酶编码。  研究人员使用电喷雾解吸电离质谱(DESI-MS)在数分钟时间里区分了有IDH突变的人类大脑肿瘤样本和没有IDH突变的样本,而这种代谢物清晰地勾画出了肿瘤的范围,并且探测到了渗透的肿瘤细胞&mdash &mdash 这类能力被认为对于优化肿瘤切除和手术的结果具有关键意义。使用安装在美国波士顿的Brigham和女性医院的一间手术室的一台质谱仪,研究人员在手术期间测量了来自两名患星形细胞瘤的脑瘤病人的活检样本中的2-HG,他们提出这种方法可能用于实时诊断,并且有可能清除用其他方法可能会遗漏的肿瘤细胞。  研究人员说,电喷雾解吸电离质谱(DESI-MS)仪器可能有助于描述肿瘤,比组织病理学检查更有效,它们可以安装在手术室中,成本只有用于间接神经外科导航的外科手术MRI机器的一小部分。  原文检索:  Sandro Santagata, Livia S. Eberlin, Isaiah Norton, David Calligaris, Daniel R. Feldman, Jennifer L. Ide,Xiaohui Liu, Joshua S. Wiley, Matthew L. Vestal, Shakti H. Ramkissoon, Daniel A. Orringer,Kristen K. Gill, Ian F. Dunn, Dora Dias-Santagata, Keith L. Ligon, Ferenc A. Jolesz,Alexandra J. Golby, R. Graham Cooks, and Nathalie Y. R. Agar. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumorsurgery. PNAS, June 30, 2014 doi:10.1073/pnas.1404724111
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。  许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。中国科学院大连化学物理研究所 许国旺研究员  近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。  基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。  随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 质谱分类里程碑!中国分析测试协会《质谱仪器分类与代码》团标发布!
    由中国分析测试协会和中关村材料试验技术联盟发布的团体标准《质谱仪器分类与代码》于于2024年1月5日发布,标准将于4月5日开始实施。  质谱仪器作为质谱技术作为一种高灵敏、高分辨的分析技术,越来越受到关注和重视,其在食品、环境、制药、医疗以及学术研究等行业的应用也日益广泛。而在中国质谱界,对于日渐丰富的质谱仪器品类,如何更好的分类质谱仪器势在必行,于是本标准也在业内专家大力支持下应运而生。  《质谱仪器分类与代码》标准的分类原是按仪器结构和原理对质谱仪器进行分类,具体按照联用技术、离子化技术、质量分析器三个维度划分。分类方法采用分面分类法,包括按照联用技术划分、按照离子化技术划分、按照质量分析器类型划分。  分类方法  采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。  分面一:按照联用技术划分  根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳 6 个类目 各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀 3 个类目。  1) 直接离子化分析   2) 色谱联用划分为:  a) 液相色谱包括:  —液相色谱   —高效液相色谱   —超高效液相色谱   —多维液相色谱   b) 气相色谱包括:  —气相色谱   —全二维气相色谱   c) 离子色谱   d) 超临界流体色谱   e) 薄层色谱   f) 毛细管电泳   3) 常见非色谱联用划分为:  a) 热解吸   b) 流式细胞术   c) 激光烧蚀。  4) 其他。  分面二:按照离子化技术划分  根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。  1)轰击离子化包括:  a) 电子轰击离子化   10T/CAIA/YQ 008—2024/T/CSTM 01082—2024  b) 快速原子轰击离子化   c) 二次离子化   2) 电喷雾离子化包括:  a) 电喷雾离子化   b) 解吸附电喷雾离子化   c) 纳升电喷雾离子化   d) 脉冲直流电喷雾离子化   e) 电喷雾萃取离子化   f) 电喷雾辅助激光解吸离子化   g) 极性反转电喷雾离子化   3) 化学离子化包括:  a) 化学离子化   b) 大气压化学离子化   c) 质子转移反应   4) 光致离子化包括:  a) 基质辅助激光解吸离子化   b) 单光子离子化   c) 多光子离子化   d) 激光解吸离子化   5) 放电离子化包括:  a) 介质阻挡放电离子化   b) 辉光放电离子化   c) 低温等离子体离子化   d) 电晕放电离子化   e) 解吸电晕束离子化   f) 火花放电离子化   g) 电感耦合等离子体离子化   6) 热离子化   7) 场致离子化包括:  a) 场解吸离子化   b) 场离子化   8) 其他。  分面三:按照质量分析器类型划分  根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。  1) 四极杆质量分析器   2) 飞行时间质量分析器包括:  a) 直线飞行时间质量分析器   b) 单次反射飞行时间质量分析器   c) 多次反射飞行时间质量分析器   3) 离子阱质量分析器包括:  11T/CAIA/YQ 008—2024/T/CSTM 01082—2024  a) 二维离子阱质量分析器   b) 三维离子阱质量分析器   4) 磁质量分析器包括:  a) 单聚焦质量分析器   b) 双聚焦质量分析器   5) 傅里叶变换质量分析器包括:  a) 静电阱质量分析器   b) 离子回旋共振质量分析器   6) 其他。  本文件起草单位:广东省麦思科学仪器创新研究院、广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院。本文件主要起草人:朱芷欣、刘丹、周振、黄正旭、罗德耀、周志恒、丁传凡、丁力、黄泽建、陈江韩、徐牛生、俞晓峰、姚继军、闻路红、周向东、程文播、王世立、韩娜、刘召贵、沈学静、张小华、高俊海、景叶松、朱颖新、王海鉴、朱敏、潘晨松、洪义、李磊、陈政阁、黎彦、刘虎威、李志明、沈小攀。附件:TCAIAYQ 008—2024TCSTM 01082—2024《质谱仪器分类与代码》.pdf
  • 厦门千人质谱大会圆满闭幕 中国质谱分析“快马加鞭”
    仪器信息网讯2017年12月11日,为期三天的“第三届全国质谱分析学术报告会”在美丽厦门成功闭幕。厦门大学谢素原教授、浙江大学潘远江教授、中科院化学所陈义研究员、清华大学林金明教授、国家自然科学基金委员会分析化学学科庄乾坤教授作大会特邀报告。大会召开闭幕式,为50位青年学者颁发“优秀青年报告奖”及“优秀墙报奖”。应用于团簇分析和嗅探检测的质谱技术厦门大学谢素原教授  金属团簇配合物由较弱配位键、金属键结合在一起,在电离的过程中极易发生解离而得不到所需要的分子离子峰 金属团簇配合物质量较高,金属离子同位素分布复杂,质量分辨要求高,因此建立起针对金属(团簇)配合的成熟质谱方法非常关键。课题组开展DESI质谱探测氢键等系列工作,发现电喷雾离子源是分析金属团簇配合物的合适离子源,飞行时间质量分析器是分析金属团簇配合的理想的质量分析器,在探测较弱相互作用、检测金属物的团簇离子、跟踪团簇反应进程、指导团簇的合成线路设计方面应用前景广阔。质谱中的立体化学效应浙江大学潘远江教授  潘远江教授重点介绍课题组在质谱中立体化学效应研究领域开展的工作。如设计合成一系列酰氯试剂,通过对试剂反应活性及手性选择性的筛选得出N-苯磺酰基-2-吡咯酰氯为手性探针,以此探针实现了对手性氨基化合物的定性识别,克服基质效应的干扰,实现同时在有机溶剂体系和动物血浆中的测定氨基酸的对映体过量面。课题组还设计合成了一对具有反应动力学差异的质谱手性识别试剂,应用对探针实现对氨基酸、多肽氨基酸残基绝对构型的高通量测量,不需要与标准品进行比对。闲话电迁移谱中科院化学所陈义研究员  电泳的发现可上溯至1807年Ruess对黏土随电迁移的观测,而质谱则多溯源至1886年Goldtein发明的阴极射线管。前些年,课题组对电泳开展理论推演,结果显示理想电泳行为与真空质谱颇为类似,并无天壤之别,因此推算不依靠介质筛分,电泳亦能测量分子质量。为证实可行,课题组搭装置、测样品、绘谱图,获得了预期的离子迁移谱,具有质量谱图精致、装置易搭、成本甚低、操作简便、可测质量似无上限等特点。预测电迁移谱不仅能用于物质与环境作用之真实信息的提取与研究,还可发展成大颗粒物质质量测量的一种精密方法。对于该方法及其应用前景,陈义研究员用“研今举步兮吾鼓劲,前途未卜兮吾无忧”来形容。微流控芯片质谱联用细胞分析方法研究与应用清华大学林金明教授  多通道微流控芯片质谱联用细胞分析系统由细胞培养基注入系统、芯片的细胞培养及代谢物提取单元、代谢物富集分离系统、质谱检测器构成,具有“多通道芯片与质谱联用 细胞共培养 细胞形态观察”三大难点。为加强仪器的通用性,课题组设计了一个六通道芯片,在芯片进/出口尺寸确定的条件下,可任意改变细胞培养腔和微流控通道的结构与功能。通过与岛津中国质谱研发中心开展合作,课题组已开发出第一代多通道微流控芯片-质谱联用(Chip-MS)装置,并在细胞共培养研究、细胞的药物代谢研究有逐步应用。系统预计明年初正式发售。中国分析化学与质谱分析现状国家自然科学基金委员会分析化学学科庄乾坤教授  2017年,我国AnalyticalChemistry发表论文数量达501篇,首次超过美国。AC近3年论文单篇平均引用率中国学者位居第一,近3年各国发表论文(不包括23篇综述)中国高被引篇数也是第一。当前,中国分析化学已经通过跟踪,部分学科方向与世界先进水平实现并行,下一阶段需瞄准目标,力争登上“国际领跑”新台阶。  但庄乾坤教授指出,中国分析化学在新形势下也呈现出缺乏创新,研究工作趋同性、研究思路同质化,学科方向趋同,研究对象太浅入、难以产生重大影响、热点研究没特色、解决能力不足等问题。基于以上现状,分析化学发展在如何开展创新研究、如何坚持科学研究特色、如何进行有效学术交流等方面仍需深入思考。此外,报告还重点介绍了杰出、优青、重点、仪器项目评审过程,解读2018年国家自然科学基金委化学科学部申请代码调整。中国化学会质谱分析专业委员会副主任/副秘书长杭纬主持闭幕式中国化学会质谱分析专业委员会副主任/秘书长林金明介绍会议情况  时隔两年,第三届全国质谱分析学术报告会在美丽厦门再次召开。本次会议共邀请18名报告专家、30名主题报告专家、56名邀请报告专家、53名口头报告专家,安排23名优秀青年报告和400多篇墙报论文,参会人数规模达1568人。参会代表专心致志,汇报内容处处创新。大会成功发挥总结我国质谱分析领域最新研究成果,推动质谱分析研究创新发展作用。  大会还宣布了“优秀青年报告奖”及“优秀墙报奖”获奖名单。奖项分别由安捷伦、布鲁克、赛默飞、沃特世等仪器企业赞助。优秀墙报奖获奖人名单序号姓名单位1高晋君北京大学2宗兆运清华大学3SarjuAdhikar清华大学4董瀚阳天津医科大学5徐婧中国医学科学院6吴梅北京大学7井红宇北京蛋白质组研究中心8张晓勤复旦大学9韩京吉林大学10续红妹南京大学11曾珺集美大学12赵秀秀南京师范大学13赵雪清华大学14许旭上海应用技术大学15罗晓彤武汉大学16王李原延边大学17赵晓勇浙江大学18毛家维中科院大连化物所19占铃鹏中科院化学研究所20曾文锋中科院计算技术研究院21王佳清华大学22刘新玮清华大学23李海方清华大学24王岩北京师范大学25张权青复旦大学26叶似剑中国计量科学研究院27赵旭清华大学28程肖玲厦门大学29汪伟西北核技术研究所30郑亚婧清华大学31郭建影清华大学32刘蓉厦门大学33薛晋娟中科院化学研究所34秦姗姗上海科技大学35高校飞东华理工大学36马格浙江大学37傅弦中科院成都生物研究所38张华吉林大学39任天坤中国医学科学院40肖开捷同济大学“优秀墙报奖”颁奖仪式优秀青年报告奖获奖人名单序号姓名单位1曹婷复旦大学2王博弘中科院大连化物所3毛思锋清华大学4周智伟中科院上海有机所5喻佳俊暨南大学6徐福兴复旦大学7申小涛中科院上海有机所8刘迎亚华东理工大学9孟一凡厦门大学10张婉玲清华大学“优秀青年报告奖”颁奖仪式中国化学会质谱分析专业委员会主任陈洪渊院士致辞  陈洪渊院士为大会致闭幕辞。下届全国质谱学术会议将更名为“2018年全国质谱学术大会”,由中国广州分析测试中心与中山大学承办,时间初步定于2018年12月下旬。  本次大会的成功召开,离不开志愿者辛勤付出与奉献。会议接近尾声时,他们也合影留念,留下珍贵瞬间。
  • 高速发展中的中国质谱分析——第三届全国质谱分析学术报告会厦门开幕
    p  strong仪器信息网讯 /strong2017年12月9日,由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的“第三届全国质谱分析学术报告会”在厦门翔鹭国际大酒店隆重开幕。来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加了本次会议,会议规模相比往届再攀新高。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d9a64a36-0110-403a-8e4d-c17705f4d45b.jpg" title="IMG_1740.jpg"//pp style="text-align: center "第三届全国质谱分析学术报告会/pp  本届会议为期3天(12月9日-11日),邀请18个大会报告并开设主题为新仪器新技术、蛋白组学与代谢组学、新型离子源、质谱在医药研究中的应用、有机/生物质谱新方法、无机质谱、环境与食品安全分析的七个分会场报告。会议同期还设置了青年论坛专场和学术墙报展示,以促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流,/pp  9日的大会开幕式由中国化学会质谱分析专业委员会秘书长林金明主持。中国化学会质谱分析专业委员会主任陈洪渊、国家自然科学基金委化学部常务副主任陈拥军、厦门大学教授江云宝为大会致开幕词。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/64cc686a-1abe-40a4-b241-421ca43984b3.jpg" title="IMG_4693.jpg"//pp style="text-align: center "清华大学 林金明教授/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/cfc5d196-b624-46e8-bc47-842eb6c24f28.jpg" title="IMG_4696.jpg"//pp style="text-align: center "南京大学 陈洪渊院士/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/00ed94fa-6461-42aa-8820-bede16497eb9.jpg" title="IMG_4701.jpg"//pp style="text-align: center "国家自然科学基金委化学部常务副主任 陈拥军研究员/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/9145234d-2e40-4e8a-8e83-f982526ade6f.jpg" title="IMG_4707.jpg"//pp style="text-align: center "厦门大学 江云宝教授/pp  恰逢两年一届的质谱盛会,仪器信息网联合主办方——中国化学会质谱分析专业委员会,完成“快速发展中的中国质谱分析”系列专题采访,全景展现中国质谱发展现状。/pscript src="https://p.bokecc.com/player?vid=F974830A9FF69D9C9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptpbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/24fccf78-7c02-4e30-beeb-8d3097f7f774.jpg" title="IMG_1735_副本.jpg"//pp  开幕式后是特邀大会报告环节,陈拥军、陈洪渊、张玉奎、柴之芳、王海舟、张新荣、刘虎威、杨芃原、李灵军、再帕尔· 阿不力孜、许国旺、蔡宗苇、Kaveh Kahen等13位重量级质谱专家将在9日当天分享前沿成果。更多详实内容,敬请关注仪器信息网从会场发回的报道。/pp  此外,本次会议还得到珀金埃尔默、布鲁克、安捷伦、岛津、赛默飞、SCIEX、日立、沃特世、麦特绘谱、美资力可、霍尼韦尔、华质泰科等近20家仪器厂商的鼎力支持,并带来他们最新技术及产品展示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/1cee4ccf-d637-45f1-82b2-a20f030dab4f.jpg" title="珀金埃尔默.jpg"//pp style="text-align: center "珀金埃尔默/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/133fe7c3-290a-4664-8281-83442e79bb54.jpg" title="布鲁克.jpg"//pp style="text-align: center "布鲁克/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/ff6b4dc4-b538-4c5e-8a04-3709aac172a0.jpg" title="安捷伦.jpg"//pp style="text-align: center "安捷伦/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/eaa111d2-a298-4885-ae22-204ad19c806c.jpg" title="岛津.jpg"//pp style="text-align: center "岛津/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d7e8d230-676e-4b9b-989a-02fe461997c9.jpg" title="赛默飞.jpg"//pp style="text-align: center "赛默飞/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a4fc5124-5edc-4b50-8640-edf0bb05f9a0.jpg" title="SCIEX.jpg"//pp style="text-align: center "SCIEX/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/bc6ab755-b510-46e0-a157-4595d1599a34.jpg" title="日立高新.jpg"//pp style="text-align: center "日立高新/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/64c7d50d-a324-4241-a881-1d52aca37338.jpg" title="沃特世.jpg"//pp style="text-align: center "沃特世/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/9d540869-0754-4a25-8716-7284c867d6fa.jpg" title="麦特绘谱.jpg"//pp style="text-align: center "麦特绘谱/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/4a3d0c97-9279-45f4-9717-dc9a38ab83a1.jpg" title="美资力可.jpg"//pp style="text-align: center "美资力可/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/dc142b22-36d8-4318-afc1-4c385aa12ff9.jpg" title="霍尼韦尔.jpg"//pp style="text-align: center "霍尼韦尔/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/e5c0a50d-c90f-4e34-8c1a-94b6b9090cee.jpg" title="华质泰科.jpg"//pp style="text-align: center "华质泰科/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d3cf8e17-cfb0-452b-9c23-ede2d775cae6.jpg" title="毕克气体.jpg"//pp style="text-align: center "毕克气体/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/546b6c1c-acc6-453f-ba67-a9cfcd0707c3.jpg" title="上海基泰.jpg"//pp style="text-align: center "上海基泰/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/fa13d125-74e0-4232-b8cb-893847f120a7.jpg" title="东宇电机.jpg"//pp style="text-align: center "东宇电机/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a01c0adf-02d6-4a6f-bb54-aceab68ee778.jpg" title="上海科哲.jpg"//pp style="text-align: center "上海科哲/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/0263b49f-f9b7-4d2a-81bf-77102d306c1b.jpg" title="复华质芯.jpg"//pp style="text-align: center "复华质芯/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/39b94826-6200-4a34-98bd-94ad72ae2216.jpg" title="华仪宁创.jpg"//pp style="text-align: center "华仪宁创/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a526eae6-dc02-4d4c-9bdf-9e9d3cada53e.jpg" title="上海康昱盛.jpg"//pp style="text-align: center "上海康昱盛/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/1065c844-e2d2-4ff6-b85c-eb5a51202802.jpg" title="仪器信息网.jpg"//pp style="text-align: center "仪器信息网/p
  • 安捷伦研发下一代质谱:智能质谱将改变分析领域
    随着自主技术的全球趋势,质谱领域也不例外。仪器智能的进步,如诊断和故障排除能力,使分析实验室能够简化工作流程,节省时间,提高准确性和再现性,并延长仪器正常运行时间。  在Select Science访谈中,安捷伦科技公司四极杆质谱仪助理研发副总裁Shane Tichy博士讨论了仪器智能的趋势和挑战,以及它们将如何影响食品安全、环境、制药/生物制药、生命科学、临床诊断、法医学等领域的科学家。 Shane Tichy博士,安捷伦科技公司四极杆质谱仪助理研发副总裁  质谱专长  在安捷伦科技公司,Tichy领导着一支由化学家、科学家、项目经理、电气工程师、软件程序员和机械工程师组成的的团队,这些才华横溢的人员在做质谱创新的前沿工作。在过去十年中,该小组开发并引进了十种新型四极杆质谱仪。“我很幸运能在安捷伦从事多个最先进的项目。” Tichy分享道。  在此期间,他最喜欢的部分项目包括灵敏的6495C三重四极杆LC/MS、紧凑且功能强大的Ultivo三重四极杆液质联用LC/MS(LC/TQ)以及为方便使用而设计的InfinityLab LC/MSD iQ。这些仪器结合了推进分析应用的关键技术和特点。Tichy强调,“6495C三重四极杆LC/MS系统在灵敏度、可靠性和准确性方面处于领先地位,是许多应用的完美选择,包括肽定量、食品安全、环境测试、临床研究和法医学。”Ultivo和LC/MSD iQ同时为分析实验室提供了一个紧凑但功能强大的解决方案,并结合了多项创新技术和智能功能。Tichy说:“它们提供了适用的、简单的、强健的LC/MS分析,而且相比于同类更高性能的产品,尺寸要小得多。”  结合智能功能  该团队的最新项目旨在进一步改变分析领域。Tichy分享道:“我们最近一直在研究新一代LC/MS三重四极杆,它可以进一步提高灵敏度、精度和仪器智能。”  新系统将集成可编程智能芯片,实现高级监控和反馈。Tichy充满热情道,“我们很高兴将智能芯片纳入我们的质谱仪,因为它提供了更高的精度、重复性和长期稳定性。同时,它可以减少重新校准的频率,通过故障自诊断降低维护成本,以及存储调谐和校准数据的能力,这些数据可以在下次校准期间进行评估。”  这些智能功能将有助于满足所有市场质谱仪用户的需求。Tichy解释道:“除了提高精度和灵敏度外,他们还需要反馈,‘嘿,我的仪器是在最高水平上运行的。而且,当分析性能下降时,系统出了什么问题?’这就是仪器智能真正发挥作用的地方。”  仪器智能化趋势  “过去几年来,围绕仪器智能的讨论相当热烈。”Tichy分享道:“不管你信不信,30多年前出现了第一台智能仪器。”  虽然昂贵的可编程芯片最初阻碍了分析仪器行业的发展,但自那时以来,随着功率的增加,成本也在下降。Tichy解释道:“我们看到的是,这些设备的价格大幅下降,而其功率却有所增加,使得智能设备和传统设备之间的成本差异相对较小。”  将智能芯片纳入质谱仪的能力为用户提供了丰富的优势,从物理上更小的仪器和快速双向数字通信,到仪器自校准。这将提高在不同环境条件下的测量精度,以及仪器自我诊断,同时可以指示系统的健康状况,并提醒操作员测量质量的变化和潜在问题。  质谱仪将更易使用  采用质谱仪的一个关键挑战是,缺乏经验的用户往往将质谱仪视为复杂的仪器,难以操作和维护。 “一些操作人员努力手动优化仪器调谐或源参数,以达到最高的性能水平。”Tichy解释道:“另一个挑战是对仪器进行故障排除。当系统性能下降时,客户不知道该去哪里查找。是柱吗?是脏污吗?是否有透镜污染?可能与机械或电气组件有关?对于这些原因,即使质谱是解决其挑战的最佳分析工具,他们也会怯于使用该系统。”  在这里,仪器智能有助于克服这些挑战,并增加质谱的可及性。通过在安捷伦科技公司的系统中使用智能芯片,Tichy和他的团队增强了自动调谐和校准算法,使他们能够始终如一地设置最佳仪器参数。通过早期维护反馈跟踪系统的健康状况,最大限度地减少了停机时间,同时,自我感知即插即用技术也避免了使用新系统进行质谱检测的冗长学习时间。  Tichy强调:“仪器智能化使质谱分析变得更简单,并帮助我们的客户克服威胁因素。它从本质上将高度复杂的质谱仪转变为易于使用的质量检测设备。”。  未来趋势  展望未来,Tichy预计仪器智能将在实验室和未来仪器发展中发挥关键作用。Tichy总结道:“我会保持简单。我看到了一种更自主、更复杂的技术趋势,它让人们在实验室的工作更容易。质谱也不例外。我们将继续创新,让我们的客户保持在未来趋势的领先地位。”
  • 质谱分析助力治疗药物监测 TDM青年沙龙在岛津质谱中心举办
    仪器信息网讯 2016年11月11日下午,治疗药物监测(TDM)京津冀青年沙龙在岛津企业管理(中国)有限公司岛津中国质谱中心举行。该沙龙由中国药理学会治疗药物监测专业委员会青年委员会组织。来自积水潭医院、协和医院、朝阳医院、北京大学第六医院、军事医学科学院、宝鸡市中心医院、中检院、北京和合医学诊断所、北京博奥医学检验所的临床医学检验和TDM研究专家以及岛津中国质谱中心的质谱应用专家参加了本次沙龙。TDM青委会部分委员与岛津中国质谱中心成员合影  沙龙讨论  岛津中国质谱中心部长滨田尚树和岛津中国质谱中心副部长兼岛津全球应用技术开发中心副部长八卷聪也出席了沙龙活动。他们表示,这样的青年活动将对精准医疗带来新的动力,希望岛津的仪器和技术能够给TDM研究和应用提供更多帮助。  岛津分析测试仪器市场部部长胡家祥  岛津分析测试仪器市场部部长胡家祥代表岛津欢迎TDM青委会委员和其他沙龙成员的到来。他表示,岛津非常支持青年研究者在临床医学研究和药物监测方面的工作,也将继续为TDM和其他本领域的青年团体提供支持。TDM青年委员会主任委员陈志刚  北京积水潭医院临床试验中心主任陈志刚作为TDM青年委员会主任委员主持了本次沙龙并致辞。他说,此前TDM青年沙龙活动已经举行过多次,希望沙龙活动不拘于形式和时间限制,能够轻松愉快,各委员各抒己见更多交流。他还提出,目前国际TDM相关组织非常活跃,青委会正在策划与国际TDM专家和组织的进一步交流。  岛津中国质谱中心LCMS高级应用工程师韩美英首先代表岛津介绍了岛津GC-MS、LC-MS 和MALDI-TOFMS三大系列临床检测仪器及各自相关应用。据介绍,岛津MALDI-TOF主要服务于医疗微生物鉴定以及其他生物医药领域尖端科研。在新生儿筛查中,岛津GC-MS和LC-MS系统能与试剂盒搭配快速准确的给出检测结果。另外,韩美英以干血片中生物标志物分析、补充剂中辅酶Q10的分析为例介绍了岛津在线超临界流体萃取分离系统Nexera UC的应用优势。作为重点,韩美英介绍了医学检验前端技术IMScope显微质谱成像系统的仪器特点以及其在癌症标记物局部存在可视化、药代动力学、疾病发病原理解析、药物控制释放系统研究等方面的应用,IMScope将显微成像与IT-TOF联用,通过分析多级质谱,能够更好的排除干扰物。她还提及,岛津公司致力于提供全面的医学检验应用方案,目前已经出版了包含遗传代谢病筛查、诊断标志物分析、治疗药物监测和基因检测等相关方案的《医学检验应用文集》。  岛津中国质谱中心LCMS高级应用工程师韩美英  韩美英还通过分享《LC-MS测定12种药物血药浓度的集成方法建立》介绍了岛津液质系统方法在TDM的应用。现在治疗药物监测仍是以免疫法和HPLC法为主,改善的液质方法能够节省试剂成本和提高检测灵敏度,而目前的液质方法还不涉及大通量多种不同药物血药浓度同时监测。岛津中国质谱中心与中日友好医院药学部就免疫抑制剂、抗癫痫药、抗肿瘤药、抗生素、强心苷、平喘药等药品种类中的12中常用药物进行了LCMSMS同时监测的方法开发与验证。该方法开发建立在岛津Nexera MP和LCMS-8060组成的分离分析系统之上,LCMS-8060是目前岛津灵敏度最高的三重四极杆产品。开发得到的新方法在12种药物的不同血药浓度条件下得到较好的重现性和回收率,研究组用免疫法对LC-MSMS方法进行了相关性验证,同样证实了该方法的可靠性。  首都医科大学附属北京安定医院药剂科副主任果伟  首都医科大学附属北京安定医院的剂科副主任药师果伟以研究分析与大家讨论了《京津冀治疗药物监测服务中心发展思路》。据介绍,新的医疗改革令药师和检验科都需要完成角色的转变,药师被赋予了保障患者合理用药的职责 医院检验科成为独立法人需要承担检测结果的法律责任。这对药师、检验师和医院水准都提出了更高要求。果伟以德国和英国的两处规范TDM服务中心为例,指出区域性TDM服务中心将是发展趋势。在我国,目前京津冀地区纳入临床检验结果互认的医疗机构共132家,均为三级医院和医学检验所。第一批试行的互认项目包括生化、免疫和血细胞分析在内的27个项目。另外,果伟还介绍了区域性治疗药物检测服务中心(RTSC),这是一类为跨行政区医生和患者提供TDM服务的机构。其优势在于集中资源产生的规模效应,但也有一些细节问题待解决。  北京协和医院临床药理中心助理研究员郑昕  来自北京协和医院临床药理中心助理研究员郑昕向大家介绍了北方地区另一个青年联盟组织CBF。CBF是中国生物分析论坛的简称,其以鼓励中国生物分析领域学术界和工业界之间的科学互动为己任,希望为中国从事生物分析的青年科学家提供科学教育、技术培训和系统培养。CBF青年联盟在2016年6月进行了首次沙龙活动,并在几个月的时间内展开了多次调研问卷调查和调查统计结果讨论活动。调研问题涉及“LC-MS生物分析中分析批标准曲线应如何设置”、”LC-MS/MS方法进行生物样本分析时对溶血样本的处理策略”等。    参观岛津中国质谱中心(左:岛津中国质谱中心滨田尚树为TDM青委会介绍中心情况 右:TDM委员听工程师讲解质谱技术特点)  沙龙报告分享之后,TDM青委会委员参观了岛津质谱中心,从应用工程师那里得到了有关岛津全二维气质联用、Nexera UC与质谱联用系统、IMScope显微质谱成像系统等岛津高端质谱产品技术的更多相关信息。编辑:郭浩楠 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 罗氏全自动质谱方案最新解读|2024准备好进入质谱分析新维度了吗?
    距离上一年度罗氏的半年报中公布了比较多的临床质谱方案细节后,又过去了半年时间,按其规划,2024年底将会在欧洲率先上市。  随着上市时间的临近,按着新品上市的一般推进流程,罗氏公司也不断对外公布了一些最新细节,使得其质谱方案的神秘面纱也一层一层的逐渐揭开。  在临床质谱火热之际,我们之所以如此关注罗氏公司的质谱项目,还是基于业界对罗氏公司全自动质谱方案的高度期望,尤其在科学仪器巨头赛默飞世尔(Thermo Fisher)公司全自动质谱一体机Cascadion项目以失败告终之后,我们更期待IVD巨头的解决方案。  看从IVD企业的方向是否可以走通,彻底解决临床质谱自动化,推进临床质谱进入临床检测科室,完成临床质谱普及的最后一公里路。  本文仅为分享临床质谱相关知识、探讨质谱自动化方案,以期质谱技术在临床端的进一步发展。质谱技术的普及,需要各级别企业的共同努力,有大象起舞,也有蚂蚁雄兵。文中内容仅为技术探讨,是对公开信息的进一步学习、推测和探讨,如有理解偏差、不准确的地方,请仅以罗氏公司未来官方资料及解释为准。我们敬重头部企业罗氏这么有创新的技术尝试且需保护相应的专属设计,也期待各家质谱相关公司凭借独立的创新精神取得各自的突破。  上市计划进展  简言之,如期推进!  落地时间与之前公布的信息没有变化,侧面证明在欧美地区的注册工作顺利、项目的研发按期望进展。  2024年1月9日,在第42届摩根大通医疗健康大会(JPM 2024)上,罗氏公司CFO Alan Hippe 以Entering the next growth cycle(进入下一个增长周期) 为题汇报了罗氏公司的一些主要进展,其中有两页提到了诊断部的质谱项目,确定其对未来增长的重要性,并再次提到其上市计划,2024年底CE欧盟区域落地,2025年预计美国FDA获批。  2024年2月初发布的2023年财报中,在诊断部CEO Matt Sause的报告部分,也看到他把i601全自动质谱系统在2024年CE落地作为他的首条关键任务。    我们还注意到,2023年5月,在意大利罗马举行的第25届国际临床化学与检验医学大会(IFCC WORLDLAB)暨第25届欧洲临床化学与检验医学大会(EUROMEDLAB)上,罗氏也将其质谱系统进行了揭幕,为欧洲市场的上市预热。  关于中国的上市时间,按业内推测及罗氏新产品在中国上市的规划传统,预计在2026年争取拿到国内上市资质。  值得提及的一件事情,在2023年12月国家卫健委临检中心第二届临床质谱的培训班上,很高兴的看到罗氏公司RA注册部相关人员也来学习质谱相关内容。  质谱技术对于罗氏公司也是一项新技术、新方法,为了做好相关注册工作、确保注册进度,相关人员主动学习相关知识,值得认可肯定!  设备整体结构  从左到右依次为进出样单元(含STAT急诊端口)、加样及磁珠前处理部分、色谱质谱部分。总体的尺寸并没有相关资料公布,但参照图片里其他模块的尺寸(e801及进样模块尺寸),按比例可大致估算,整体的设备长度约3.8米(含进样单元)。  其中色谱质谱部分从图中可以看出比e801(含MSB样本缓冲区)尺寸略短一些,我们姑且按1.4米算。  关于重量,我们也做个大概估算:考虑到色谱质谱部分有泵单元、分子涡轮泵、质量分析器等重量较大组件,整体重量应大于等于e801的730公斤,所以三者相加(190+730+730)整体重量应在1.7吨上下。  设备的整体结构,可以理解为进样单元,加上e801系统(含MSB样本缓冲区、无ECL电化学发光的检测系统),后面再加一个液相色谱及质谱分析仪部分。  此系统的e801部分,负责样品的进出样,传输,样品的加入,试剂的加入,基于磁珠的前处理等的流程,最后转移至液相色谱部分,进行液质分析相关步骤。  质谱试剂产线  在公布了质谱系统的型号i601之后,质谱的试剂盒也有了它的名称:Ionify(已注册商标),并形成Ionify® reagent line。很显然,这个词来自于离子的词根,这也正是质谱的工作原理,使物质离子化,测量待检物的质荷比M/Z。  至此,我们又可以大胆的猜测i601质谱系统这个cobas i系列的命名起源,那就是也是源于Ion离子这个词,与其免疫系统的e来自Electro ChemiLuminescence (ECL) elecsys电化学发光系统、临床生化的c来自Clinical Chemistry形成家族化命名逻辑,共同组成cobas中心实验室的主力机型系列。  试剂盒形式沿用cobas生化、免疫系统的cassettes式设计,即试剂多联包形式,从截图可看出也为3组分、尺寸与免疫e green package一致,这也使得其能兼容使用免疫系统e801的试剂处理单元,享用在线装卸载试剂功能。  若如猜测与e pack green试剂盒大小一致且试剂仓一致,则单模块也可以放置48个试剂。  我们可以对比下罗氏的质谱试剂与赛默飞世尔的Cascadion质谱系统的试剂,从临床使用角度,罗氏的即开即用、成分整合、可高度自动化的试剂更符合临床工作人员的喜好。  样本前处理工作流程  质谱检测与生化免疫等其他间接检测(检测器隔检测杯读值、非直接接触待检物)不同,其待检物质是被吞进检测单元的,是直接读取待检物M/Z质荷比的一种技术,无需标记物。  但血清中的成分非常复杂,有大量的磷脂、蛋白等基质杂质成分,待检成分只是非常少的一些物质,所以质谱检测是需要进行样本纯化后才能进样的,尽可能纯的待检物质可降低基质干扰,提升检测的灵敏度和准确性。样本前处理工作由于步骤复杂,目前是临床质谱分析的一个难点和重点,也是各家临床质谱自动化方案主要需解决的关键步骤。在众多的前处理方法中,磁珠法(或称萃取磁珠法)是最有希望实现高通量、自动化、标准化的,国内也有很多公司在这个方向下取得了卓有成效的进展。  这里我们看到罗氏采用的是磁珠法的方案,其过程简要整理如下:  此部分用到的各类试剂应主要来自Ionify的试剂包部分,从图中可大致判断罗氏的磁珠方案为正向抓取待检物的模式,磁珠依靠binder正向结合、抓取待检物质,最后洗脱下待检物质与内标物,进行后续检测。  这里稍微补充一句,磁珠法其实也能做除杂的方式,即沉降基质等成分,用上清部分作为为后续待检样品。  色谱质谱部分  前处理纯化后的样本转移到色谱部分,经过色谱柱,再到质谱检测器进行检测,得到信号。  为了提高检测通量,罗氏方案中设计了8个色谱柱单元,柱子放在cartridge中,这是一种特殊盛放色谱柱的弹夹式结构的装置,它还具有RFID标签。  此种设计与Cascadion的Quick Connect Cartridge有相似的设计理念,都是为了使其安装更换更加便捷,易于临床客户上手。  我们在上一次解读中提及到其设计检测通量可达到100个样品/小时,有过质谱使用经验的都知道,若按传统的单线程标准过色谱柱模式,要实现此速度非常困难。  罗氏采用了多线程模式,即有8根色谱柱可供样本通过,后面将顺序出锋而陆续进入质谱检测。  为便于理解整个实验流程,附简易功能模块示意图。  布局仅为推测,最终布局请以官方公布为准。  还有个非常重要的细节我们从图中可以看出,8个色谱柱单元长短并不一样,其中5个短柱子,3个长(常规)柱子区域。  从如此高的检测通量设计来推测,短柱子是做单项目(或小组合)测试的,这类柱子应与常规的色谱柱不同,是为这些快速检测项目而设计的,如激素类单项。  在结果界面的截图中,我们看到睾酮的色谱图里,单个测试是36秒的检测时间(注:色谱质谱系统里,30秒处为保留时间或出峰时间),按此检测模式恰好可以达到标称的100标本/小时(3600秒/36秒)的速度。  而对于长柱子(相对于短柱子的称呼),应该与传统色谱系统中的常规柱子更接近,预估是做一些联检类的项目,会有较长的检测时间来处理套餐类的项目组合。具体哪些是组合项目和色谱柱具体工作模式,还请大家静待罗氏公司的最终公布吧。  在设备的下方,则应是流动相溶剂等液体耗材部分及质谱仪部分(右侧)。  分析软件  检测流程的最后一部分,将会对数据进行自动处理,软件应用复杂的算法对结果进行验证,然后传输至LIS系统。这相比于传统的质谱分析软件有很大的改善,减少了很多人为参与、调整、确认结果的过程。  在软件界面我们可以看到峰型整合和结果验证的细节,如这个睾酮结果的界面中,分别显示了内标物与待检物质的响应值与峰型情况,依靠峰面积得出待检物的浓度。  在这个过程中,将自动完成待检物质与内标物的峰型质量检查、质谱仪与色谱仪的状态确认、整合与定标质量的确认、结果确认。  项目菜单  检测菜单也是质谱项目是否能成功的重要因素,罗氏公司一直以规划检测项目见长,这次在项目规划上也进行了大量的前期调研和顾问工作。  按规划i601将有一个超过60多个项目、全面的试剂套餐组合,分两批上市。  项目大类为以下5类:类固醇类激素类、维生素D类、TDM药物浓度检测、免疫抑制剂药物检测、滥用药物类检测。  未来质谱模块的灵活配置  模块化的设计一直是罗氏诊断产品的特点,从最早的Modular时代开始,到cobas 6000/8000。  作为cobas Pro的一个模块,罗氏的质谱方案同样拥有灵活的配置形式,在以下图片中我们可以看到i601可以进行双模块的拼接,以便进一步的扩展检测通量和项目数。  当然,还有几种与cobas Pro里其他模块的联机,与免疫模块e801的连接、与生化模块c503的连接,及与生化、免疫混合模块的连接 同样在今年落地的高速生化分析模块c703作为cobas Pro方案里的一员,未来也应可以参与到质谱模块的灵活配置中。  但请注意,在官网的标注中,明确的告知:在上市初期,将仅以单模块形式提供,所有其他的包括生化、免疫的配置将会在随后的日期提供。  一个有意思的探讨: 一套i601质谱系统算几个模块?  我的猜测是算2个,那么一个线体分支就最多可连接2个i601(4个模块),为什么?  视频里的2个i601联机展示图可作为依据吗? 不是仅仅从这里。  我的考量如下:通量的需求、设备长度、系统的复杂度、人员动线、通讯的限制、标本周转时间等等。  但需要进一步的官方消息确认,仅作猜测探讨。  补充知识:罗氏的多模块联机方案中,cobas 8000及Pro系列的模块连接数量,最多可扩展至4个。  我们再看一下罗氏公司的一个整体规划图,这是一套CCM2.0的流水线系统,颇为壮观,从图中可以看出P系列前处理+后处理、日立的轨道系统与生化、免疫、质谱、分子、尿机、血球、凝血组成的强大多学科布局,i601质谱系统作为一个新学科模块,占据着极为重要的战略意义位置。  写在最后  近些年,临床质谱一直是热门赛道,资本方、客户端、企业端,一直期待这一技术在精准医学中大展拳脚,但其发展速度一直不如预期,这里面有很多的因素限制。  我们非常期待有更多的企业在解决诸多困难中取得实质性突破,带我们进入临床质谱的新维度、新时代。  如罗氏官网中质谱项目的标题:Are you ready to enter a new dimension in mass spectrometry?  你准备好进入质谱分析的新维度了吗?  作为相关从业者中的一员,也意识到,临床质谱的普及除了产品维度外,还需要更多的质谱相关知识的推广,让大家理解这一检测利器,最终懂它、用它,真正发挥其作用。  希望今天的分享能起到一点点的作用。作者:IVD崔哥
  • 岛津成像质谱显微镜应用专题丨质谱成像数据分析利器
    镜质合璧 还原真实质谱成像数据分析软件IMAGEREVEAL MS 简化常规分析您还在担心浪费宝贵的时间或丢失有价值的数据?利用IMAGEREVEAL MS可自动从大量数据中发现重要信息。 IMAGEREVEAL MS工作流程 主要特点 只需3步即可完成数据处理✦ 利用“整合分析”模式在“整合分析”模式下通过预设参数可自动获取具有显著特征的质谱图像。这一功能非常便于用户以同样方式处理大量数据。用户只需执行一步操作即可创建基于差异分析和/或图像分析的数据列表、进行数据统计分析以及获取质谱图像。 使用“整合分析”的示例在“整合分析”模式下,软件会自动选取NASH组织中与正常组织相具有特殊性的质谱图像。 多种分析模式3个分析模式示例对NASH(非酒精性脂肪性肝炎)小鼠肝脏的分析NASH(非酒精性脂肪性肝炎)是指一种与饮酒无关的脂肪肝疾病。 1找出NASH组织特有的分子差异分析 2查找与染色图像分布相似的分子图像分析 3创建显示目标分子浓度分布的质谱图像定量分析 处理多种格式数据利用自带的数据转换工具“IMDX Converter”可以将多种格式的数据转换为IMAGEREVEAL MS可读取的imdx格式。 * 无法保证转换其他仪器中的所有数据。有关数据转换的实际结果,请参阅产品介绍网站。 其他功能1靶向分析/非靶向分析靶向分析:基于列表中目标m/z值进行分析,如脂质或代谢物等。此外,还可以创建自定义列表。 非靶向分析:在指定的质量范围内对所有m/z进行分析。可用于检查该范围内包含的有意义的m/z值。 化合物列表 2同时处理多个质谱图像数据文件本软件可以同时处理多个数据文件,并且一次性导入所有数据后即可进行图像对比,操作简单。分析大数据无需拆分,可直接分析达几百GB的数据文件。30天试用版IMAGEREVEAL MS包含所有功能,如有需要可登录以下网站或点击文末“阅读原文”前往下载。https://www.shimadzu.com/an/lifescience/imaging/reveal.html 本文内容非商业广告,仅供专业人士参考。
  • 中国化学会质谱分析专业委员会成立
    经中国化学会第28届第3次常务理事会研究决定,同意设立中国化学会分支机构&ldquo 中国化学会质谱分析专业委员会&rdquo ,委员会挂靠清华大学化学系,陈洪渊院士担任委员会首任主任。  2013年10月22日,以陈洪渊院士为主任的首届质谱分析专业委员会,在北京新世纪日航饭店召开首届全体委员会议,共商&ldquo 中国化学会质谱分析专业委员会&rdquo 的活动宗旨以及发展规划。会议来自全国不同领域的质谱专家共35名,由清华大学分析中心承办,陈洪渊院士主持会议。国家自然科学基金委员会分析化学学科主任庄乾坤教授到会致词。庄教授对质谱分析专业委员会的成立表示衷心祝贺,介绍了分析化学学科的发展近况,强调质谱分析研究要瞄准国际学术前沿,开展高水平的基础理论研究 加强质谱分析方法以及质谱仪器研发的创新研究,扩大质谱分析的应用领域,使质谱分析的研究成果在科研领域和经济建设中发挥更大的社会效益和经济效益 吸引更多的年轻人加入质谱分析以及质谱仪器的研究,加强质谱分析的人才培养和队伍建设。  中国化学会常务理事、首届质谱分析专业委员会主任委员陈洪渊院士宣布首届中国化学会质谱专业委员会成员名单,到会委员逐一做了自我介绍。陈院士简要地回顾了我国质谱仪器研制、分析方法研究与应用的发展过程,指出成立中国化学会质谱分析专业委员会是顺应分析化学学科的发展趋势,有利于开展广泛的学术交流,可以为生命科学、环境保护、医药卫生、石油化工、新材料、新能源等领域提供更大的帮助。本次会议秘书长林金明教授介绍了委员会成立的经过,考虑到质谱分析涉及研究领域多、应用范围宽等特点,委员会的成立经过长期的酝量,在不同领域、不同单位的院士、领导和专家的推荐下,成立了以陈洪渊院士为主任委员,江桂斌院士、张新荣、刘虎威、陈义、邹汉法、杨芃原、林金明、钱小红、再帕尔· 阿不力孜、潘远江等教授为副主任委员的首届质谱分析专业委员会。得到中国化学会秘书长会议以及常务理事会的大力支持,于2013年1月15日召开的中国化学会第28届第3次常务理事会上表决通过。  会议期间,委员们踊跃发言,对于如何更加快速推动我国质谱分析,乃至其它分析方法研究水平的提高,献计献策。会议讨论了质谱分析专业委员会的活动宗旨和业务范围,讨论了与中国物理学会质谱分会联合开展各项学术活动的相关事项,初步确定于2014年召开中国化学会首届全国质谱分析学术研讨会 确定了杨芃原教授作为特约主编,在《中国科学》(化学)出版首届质谱分析专业委员会成立的纪念专辑 确定与《仪器信息网》合作,开展质谱技术讲座和网络研讨会,普及推广质谱研究成果。  附:中国化学会质谱分析专业委员会组织机构(第一届)  挂靠单位:清华大学化学系  主任:陈洪渊  副主任:江桂斌、张新荣、刘虎威、陈义、邹汉法、杨芃原、林金明、钱小红、再帕尔&bull 阿不力孜、潘远江  秘书长: 林金明  委员(按姓氏拼音排列):  蔡宗苇、陈焕文、储晓刚、段忆翔、方向、郭良宏、郭寅龙、杭伟、黄业茹、黄光明、纪建国、蒋宇扬、李晓东、刘劲松、刘建华、刘斯奇、刘震、刘志强、陆豪杰、吕强、聂宗秀、史权、谭蔚泓、吴永宁、汪海林、吴侔天、熊行创、许国旺、徐建中、杨福全、张丽华、张四纯、张殷、张智平、周江、周振、赵镇文
  • 中科院一电喷雾质谱装置及其质谱分析方法获国家专利
    p  中国科学院成都生物研究所“一种基于导电纳米材料的电喷雾质谱装置及其实现电喷雾质谱分析的方法”获国家知识产权局发明专利(专利号:ZL 201610125529.5)。  /pp  中国科学院成都生物研究所成立于1958年,是以一级学科建所的中国科学院直属科研事业单位。成都生物所公共实验技术中心具有多种共用实验装备,拥有600MHz核磁、高分辨质谱、氨基酸自动分析仪、多功能显微镜等各类先进仪器设备。目前,成都生物所已取得科技成果300多项,其中获省部级以上科技成果奖100多项。一直以来,成都生物所一直对于电喷雾离子化技术都有很深的研究。/pp  电喷雾离子化技术于上世纪七十年代问世,具有不易引发化合物碎裂的软电离特性,是质谱分析领域应用最广泛的离子化方法。但是传统的技术具有如不能直接分析含高盐的生物样品的缺点,需要事先对高盐样品预先脱盐处理,也不能与使用缓冲盐的液相色谱联用。/pp  2017年的时候,成都生物研究所主持承担的中科院科研装备研制项目“生物质谱探针电喷雾离子源的研制”就通过了结题验收。成都生物研究所通过不断优化控制方式、样品加载方式、高压接通方式及离子传输方式,使其具备了抗高压干扰、耐盐、抗基质干扰等特性,在此基础上,继续深入开发了液相接口,使得该离子源可与使用高盐缓冲溶剂的液相色谱联用,并且已经成功的研制出了设备。/pp  在研发过程中,成都生物研究所又遇到了新的问题。电喷雾离子化过程通常在极性溶剂中完成的,这种电离技术适用于中高极性体系的离子化分析。然而,许多化合物只溶于低极性溶剂中,而这种样品难以通过电喷雾离子化,从而使得ESI-MS在低极性溶剂体系的分析和部分有机反应的机理研究方面中受到限制。/pp  针对遇到的难题,中国科学院成都生物研究所研究人员克服现有技术的缺点,提供一种基于导电纳米材料的电喷雾质谱装置及其实现电喷雾质谱分析的方法,除了能够离子化溶解在极性溶剂中的化合物,还能够较好的离子化溶解在低极性溶剂中的化合物,同时满足极性和低极性体系的质谱分析需求,且方法简单、成本低廉、需调节参数少、离子化效率高、无需引入额外辅助溶剂、无额外溶剂的基质干扰。/p
  • 北京理化分析测试中心采购1758万质谱/色谱等仪器
    p  近日,北京市理化分析测试中心一连发布4项招标公告,采购X射线荧光光谱仪、液相色谱-质谱联用仪、超高效液相色谱仪、流式细胞仪等仪器,采购预算共计1758万元,具体采购内容如下:/pp strong 北京市理化分析测试中心食品安全检测实验室设备升级采购(2015)项目/strong/pp  招标编号:0686-1541B153115Z/pp  项目采购预算:人民币488.75万元/pp style="text-align: center "img style="width: 450px height: 161px " alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/20154711267.jpg"//pp  strong北京市理化分析测试中心超高效液相色谱-四极杆静电场轨道阱质谱联用仪等仪器购置政府采购项目/strong/pp  项目编号:HCZB-2015-BJ1098/pp  本项目预算金额549.84万元。/pp  简要技术要求/招标项目的性质:超高效液相色谱-四极杆静电场轨道阱质谱联用仪等仪器购置/pp  strong北京市理化分析测试中心X射线荧光光谱仪等仪器购置政府采购项目/strong/pp  项目编号:HCZB-2015-BJ1099/pp  本项目预算金额479.7万元。/pp  简要技术要求/招标项目的性质:X射线荧光光谱仪等仪器购置/pp  strong北京市理化分析测试中心流式细胞仪仪器采购项目/strong/pp  招标编号:0686-1541B153116Z/pp  项目采购预算:人民币240万元/pp style="text-align: center "img style="width: 450px height: 98px " alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201547112627.jpg"//pp  此前,北京市理化分析测试中心在2015年已先后采购了X射线荧光分析仪、气相色谱仪、紫外可见光分光光度计、高通量测序仪等1179万元的检测仪器。/p
  • 临床质谱会议丨仪真分析关注临床质谱发展
    2023年3月11日,2022-2023中国国际临床质谱暨分子诊断高峰论坛于上海星河湾酒店圆满落幕。本次大会由临床质谱网和分子诊断网共同主办,聚焦于质谱和分子诊断等前沿创新检验技术领域,国内外各大医院、高校及企业界的知名专家、教授、学者及行业管理者皆聚于此,围绕相关技术临床应用、行业标准、人才培养、产业融合等议题展开深入探讨和互动交流,共同推动行业健康有序发展。近年来,临床质谱凭借高特异性、高灵敏度、多指标检测等优势,逐渐展露成为精准医疗领域下的黄金赛道之一。仪真分析积极响应,携荷兰Spark UHPLC超高压液相色谱系统出席本次会议。 展会现场,仪真分析专业团队为与会嘉宾展示产品,介绍答疑,提供业务咨询服务。 为助力临床质谱的快速发展,仪真分析还可为质谱前端提供下列自动化方案和OEM服务。
  • 2014年我国质谱仪器专利现状分析
    作为最高端的科学仪器之一,质谱仪是直接检测物质分子量的唯一手段,具有高分辨、高灵敏、大通量和高准确度的特性。因所有分析测试领域都要用质谱仪器,其在生命科学、材料科学、食品安全、环境监测、医疗卫生、国家安全及国际反恐等领域具有不可替代的作用和举足轻重的地位。  伴随着质谱技术应用广泛,国际社会的重视程度日渐加强。截至目前,已有六位科学家因对质谱技术发展做出杰出贡献而获得诺贝尔奖,而我国也早在 2012年将其列入&ldquo 产业共性技术&rdquo 。然而,我国质谱研发技术水平以及产业化水平与国际领先水平差距较大:由于经济发展以及科技发展需求,目前中国已成为全球高端科学仪器的应用中心,但不是技术中心,几乎所有的商品化质谱仪器都依赖进口。具体看来,全面掌握质谱相关的精密机械、精密电子、电子离子光学、软件、自动控制等技术的团队较少,具备高性能质谱产业化能力的企业更少。  从仪器仪表市场前景分析预测报告了解,由于质谱仪器研发投入大、技术创新难度大,对技术创新成果的有效保护有利于持续推进技术开发及技术创新,同时企业需要通过专利保护来确保创新技术所带来的初期超额利润,所以质谱专利保护显得尤为重要。现将从质谱专利信息分析利用和保护策略、专利技术申请两个方面解读我国质谱仪器专利的现状,并针对性提出笔者的思考建议,期望对产业发展有些许启发。  首先,从质谱专利信息分析利用和保护现状来看,由于我国质谱产业发展尚处于起步阶段,产业重要性尚未受到充分重视,所以开展此方面深入研究的机构非常少,特别是相关企业更是空白。  目前从事质谱技术专利分析的团队主要为中国科学技术信息研究所战略研究中心,该中心张志娟博士发表了两篇与质谱专利分析相关的文章,是目前仅有的与质谱相关的公开发表的学术论文,主要是针对申请量随时间变化、优先权国家分布、国际专利分类分布、专利国家分布、申请人排名、申请人国家分布、同族专利国家分布等进行定量研究。但由于质谱技术非常复杂,细分技术种类繁多,仅仅通过简单分析,很难了解细分技术的发展趋势及分布情况。在此基础上,李志荣博士、梁琴琴分别做过关于《质谱仪器专利分析及技术预测》以及《质谱仪中外专利比较及境外部署专利为国产质谱产业带来的机会》的报告,其中梁琴琴在报告中将质谱技术分为离子源、分析器两大类,并将离子源细分为四种,将分析器技术分为六种,对各细分技术的专利申请人分布情况进行了分析。  然而,由于开展质谱技术专利分析的专业科技信息服务单位缺乏对相关领域技术的深入、全面了解,特别是缺乏对前沿技术的敏感度,相关研究很难深入到细分技术领域,研究成果在具体指导技术开发或为具体研发活动提供参考中发挥的作用较小。而真正具有技术信息需求的质谱研发企业或技术开发单位,虽然对该领域的技术了解深入全面,但缺乏技术文献分析的科学、系统方法,缺乏专利文献检索的相关知识和技巧,同时缺乏专利文献数据库等数据库资源,导致很难系统全面有针对性的进行专利信息的分析与利用。这也是我国许多战略性新兴产业、技术密集型产业在专利信息利用上普遍面临的难题。  其次,从质朴技术专利申请来看,情况也是喜忧参半。在质谱技术领域,由于中国本土质谱研发机构增多、相关技术的发展以及中国的分析仪器市场需求及市场量逐年增大,专利申请数量增长非常迅速。  我们看出特别是2009年&mdash 2011年这近三年-国内关于质谱仪器技术相关发明专利的数量增长明显(专利公布具有18个滞后性,2012年后的申请量数据不具有统计意义)。截止2011年全球质谱专利数据显示,中国的相关申请量排名达到第三位。  在我国境内生成的质谱仪器技术相关发明专利构成中,国外的企业和研究机构在发明专利申请、授权专利申请方面所占比例较大,特别是美国、日本,均超过了十个百分点。  虽然中国本土企业注重专利申请的数量,加之政府专利奖励政策等的支持,促使专利申请数量有所增加,但是我们不得不承认:创新性强及保护范围大的高质量的上游专利申请数量较少,对专利质量的重视程度也不足。同时,发明专利申请后的驳回及公开后撤回的情况较多:很多单位缺乏系统的专利申请及专利文献撰写策略。另外,中国本土企业申请美国、欧洲、日本等国家专利较少,这在一定程度上反映我国质谱研发单位的技术创新性以及国际化战略布局与西方技术发达国家存在一定的差距。  如何在现有条件下弥补差距,是值得深思的问题。无论是整体尚处于技术追赶型的中国质谱行业,还是初创型的质谱企业,或许可从以下几个方面着手寻求突破。  在专利策略上,首先,应该高效利用专利信息,借鉴国际上已有的非侵权专利技术,系统分析各细分领域的专利布局,跟踪国外专利法律状态,寻找具有市场需求但技术竞争小的领域,把握国外大企业在中国可能存在的专利空白区,以此促进我国质谱技术水平的提升 同时,加强对自主创新技术的专利保护,提高专利保护的意识,在注重专利申请数量的同时,注重专利授权率以及注重专利质量,专利申请前做好充分的在线技术的检索分析、评估授权前景,提高专利授权率及扩大权利要求的范围,对重要或创新性强的专利争取多个国家的授权,提升中国本土企业或研究机构专利影响力。  在具体实践中,作为专利信息分析的政府型公益事业单位应该加强与产业企业、技术研究机构的合作,针对具体的信息检索及分析的需求,开展针对性的系统培训,同时一定程度上共享文献数据库资源,真正促进专利信息利用 另一方面,产业企业、研究机构应当重视专利信息的利用工作,加强专门人才的培养,充分发挥专利信息在技术开发、产品研发、市场推广等方面的作用。  质谱仪器研发涉及精密机械、电子离子光学、真空技术、软件技术等,需要融合多种前沿技术,具有尖端技术密集的特点。为了实现弯道超车的愿景,未来我国在质谱领域可通过直接申请专利、购买相关核心专利等方式获得完全自主知识产权的核心技术,在面对侵权问题时,考虑无效相关专利、进行规避设计等方式解决专利侵权问题,争取用10年的时间,完成初期技术积累,到2025年努力进入世界领先技术行列。
  • BCEIA 新品奖,原位电离助力前沿质谱分析!
    在 BCEIA 盛会上,华质泰科以“原位检测”为主题,携 7 款产品亮相,并有 5 款产品获得“BCEIA2017 新品奖”。先来感受下展会盛况:展出产品现场交流BCEIA 分析测试仪器与 技术评议注重应用开发,搭建原位检测应用平台“我们引进国外先进的质谱技术,通过和国内不同市场的整合,刺激客户的需求。在与客户的不断交流中发现新的问题,从而开发具有中国特色的新部件和下一代产品,迎合一带一路的策略,走向全球各地。”—— 华质泰科总裁兼首席技术官刘博士“我们不只是担任仪器的销售代理,更希望能够从仪器的技术应用到生产制造,都发挥特殊的价值和作用。国家的发展带来了对分析仪器、分析技术的强烈需求,因此我认为新应用平台的搭建大有可为。”—— 华质泰科运营总监汤总前沿原位质谱部件,荣获五项“BCEIA2017 新产品奖”在 BCEIA 的颁奖晚会上,华质泰科有五款产品喜获“BCEIA2017 新产品奖”。这是华质泰科第二次荣获中国分析仪器行业新品奖,原位电离质谱技术能够再次得到专家和同行的肯定,令产品厂商及相关研究人员备受鼓舞。传播前沿质谱理念,共谋实时科学发展,是华质泰科一直坚持不懈的追求。我们致力于引领行业领域中先进的原位质谱技术潮流,为国内质谱行业的发展做出贡献。相关产品信息:HM4 或 Pearl 为第四代“超”高分子量 MALDI 质谱检测系统,基于独特的转换打拿极技术,扩展 MALDI 质谱检测质量上限到 250 万 Da 以上,实现 nM 浓度的超痕量、大分子抗体药物和蛋白质复合物的高灵敏度分析。在诸如蛋白质复合物测定、蛋白质相互作用、抗原抗体相互作用、蛋白质聚集分析、高分子量 MALDI 质谱成像、临床转化医学、生物制药,等领域的应用卓有成效。实时直接分析离子源(DART),兼容各主流质谱厂家的液质(LC-MS)质谱仪,用于快速、无损、原位分析固体、液体、气体、及异型样品中的极性、弱极性甚至非极性有机分子。适于食品、材料、体液、商品、农副产品、水产品、药品、理化、物证、化纤、玩具、临床、环境等等活性成分、功能组分或有毒有害化合物的快速定性、定量分析及快筛和确认。该技术不需要(像 ESI 那样)引入其他溶剂来影响离子的形成过程,真正实现直接、快速或无损、无接触分析。由于溶剂、基质(如蛋白质)、盐类对 DART 离子化过程不产生抑制效应,因而该技术对样品基质不需要进行特殊的前处理。DART 能充分实现几秒钟内的快速、高通量的样品分析,大大提高大批量样品的瞬时定量和定性分析能力。如某地商检用 6545 飞行时间质谱接 DART 源快速筛查并定量鸡蛋中氟虫腈,每个样本检测时间 6 秒(内)。而常规分析接色谱柱至少要 5 分钟才能完成每次检测,该(DART-QTOF)方法极大地提高了效率,真正意义上实现高通量。DESI (解析电喷雾电离) 为常压离子化技术,可直接原位分析固相或凝固相样品,用于药物代谢物分布、肽、脂质、和蛋白质分析,实现分子成像而不需(像 MALDI 那样)采用基质,保持样品的形态和特征无损,快捷获取器官、材料、和组织切片中的关键物质信息及分布信息。其独特的高分辨率成像功能可实现器官组织等基体中关键物质的快速分析,并能在多个质谱厂家(如 Bruker、SCIEX、Thermo、Agilent 和 Waters)的各型质谱仪上使用。flowprobe 流动微萃取探针离子源, 是一种实时的原位动态微萃取技术,是美国橡树岭国家实验室的 Gary Van Berkel 博士发明了静态液滴萃取表面分析(LESA)之后的又一创新发明。该技术基于液相微临界表面取样探针 (LMJ-SSP) 原理,其萃取效率在商品化的原位电离技术中首屈一指,适用于细胞、组织、聚合物等平面类样品的药物分布研究、癌症分析、微生物聚类分析等方面,并与主流质谱兼容(如 Thermo、Bruker 和 SCIEX 等)。多通道纳喷离子源 (TriVersa NanoMate,简称 TVNM) ,是基于芯片的多通道纳升电喷雾离子化 (Chip-based nanoESI) 技术,集液相色谱 (LC)、质谱 (MS)、芯片纳升注射 (Chip-based Infusion)、馏分收集 (Fraction Collection) 和液滴萃取表面分析 (LESA) 等众多优异功能于一身的新型高端质谱产品。LESA 能够实现极小量样品的多次重复测量,准确度高,重复性好,实现生物样品如组织切片、食品、材料表面等的原位、灵敏、直接、和高通量分析,可帮助解决围绕食品中的蛋白质、脂质、抗体、代谢物、药物残留、小分子质谱成像、药物在组织中的分布等生命科学中的问题。LESAPlus 添加了第五种功能 -- 用于液滴萃取表面分析后的进一步分离,对复杂体系、抗体分析、蛋白分析等等添加了新的第四维度的分离。AP-MALDI (常压基质辅助激光解析电离源)基于独特的脉冲动态聚焦技术,采用高效的固态 Nd:YAG 激光器,离子化更加连续稳定。调谐优化简便,可质谱成像,最高成像分辨率达10 μm。与各种质谱分析器相联,适于多肽、蛋白质、核酸、唾液酸神经节苷酯、低聚木糖、表面活性剂、聚合物等大分子以及氨基酸、寡肽、中性寡糖、植物皂苷等小分子化合物的原位、直接分析。
  • 赛默飞亮相2014美国质谱大会,彰显全新质谱分析能力
    2014年7月28日,中国上海——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)亮相2014年第62届美国质谱大会。期间,赛默飞发布并展示了全新仪器、软件和耗材,进一步为客户在研发和应用市场方面带来更高性能。 “新产品的推出,让我们不断突破和拓展,在质谱分析方面取得长远发展。我们致力于此,也凭借这样的创新能力帮助客户实现在研发和应用市场方面的目标。”赛默飞总裁兼首席执行官Marc N.Casper先生表示:“我们的能力涵盖了包括仪器、软件和耗材等多个方面,这使赛默飞具备独有优势,既助力客户加速取得成果,又能提升整体实验室工作效率。”赛默飞此次发布的新品包括: Q Exactive HF(高场)液质联用(LC-MS)系统是此次新品中的亮点。该系统通过将Q Exactive Plus平台与一个超高场轨道阱质量分析器结合,显著提高了这一平台的性能。Q Exactive HF系统设计用于加快定性、定量和确定过程,以帮助生命科学研究员们在诸如蛋白鉴定等应用中显著提高分析速度和敏感度。 全新应用程序——赛默飞特定软件能帮助研究员利用大量光谱数据解答科学难题。例如,PepFinder 1.0肽段图谱软件能增加生物治疗蛋白定性的质量和准确性,是药物开发和生产质量控制的关键。随着质谱分析法开始成为鉴定复杂生物样品的首选方法,Proteome Discoverer 2.0软件用以提供出色的灵敏度、大量的生物信息学工具和可定制的工作流程。 新款耗材。赛默飞认识到样品准备对于实验结果精确性的重要性,因此还推出了用于在分析过程中富集目标蛋白、肽段和抗体的全新耗材。质谱免疫分析移液器吸头采用了专有的微柱技术,用以在LC-MS分析之前对生物样品进行强化、反复的目标纯化。另外,串联质谱标记试剂经特别设计,能够实现从方法开发过程快速过渡到高通量蛋白定量过程。 对于应用市场方面的客户,Thermo Scientific TSQ 8000 Evo三重串联四极杆气相色谱 - 质谱联用系统再次升级。升级后采用全新EvoCell技术,可提供比上一代仪器增加三倍的生产力,并能使用户在单次运行中同时筛选和定量一千多种复合物。该系统是实验室分析食物、环境、药物和司法鉴定样品中诸如二噁英和杀虫剂等复杂化合物的理想工具。 在质谱大会上展出产品的完整清单请访问www.thermoscientific.com/asms 获取;相关新闻和信息,请访问www.thermofisher.com/news 查询。关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 东西分析光彩绽放2014北京质谱年会
    由北京理化分析测试技术学会北京质谱学会主办,国家大型科学仪器中心北京质谱中心协办的“2014年度北京质谱年会”于2014年3月 21日在北京拉斐特城堡酒店拉开帷幕,北京东西分析仪器有限公司倾情赞助了本次大会,并给与会者带来了全新的无机质谱技术及最新应用实例。 本次质谱年会的大会报告凸显了“生命科学”主题。主办方邀请到了军事医学科学院张学敏院士、中国科学院化学所万立骏院士、北京大学刘小云、北京生命科学研究所董梦秋、北京大学医药卫生分析中心王京宇等多名业内著名专家,介绍了质谱技术在生命科学方面的应用和创新。会后安排了学术沙龙及质谱知识技巧培训环节,为青年学者提供了极好的交流和学习的机会。Flynn做大会报告 本次质谱年会上,致力于国产分析仪器事业25多年的“东西分析”给人带来了耳目一新的感觉。“东西分析”2013年收购合并了国际著名品牌GBC Scientific Equipment Pty Ltd,会上,GBC公司Optimass 9500 ICP-TOF-MS产品经理Dr. Andrew Flynn Saint详细介绍了全新的飞行时间质谱技术以及应用。 Flynn介绍到,Optimss可以提供比竞争技术快五倍的分析速度,可以对1-260amu范围内的所有离子进行连续扫描,可以可靠的得到完整的数据,并具备半定量、可追溯半定量及指纹图谱功能。在应用方面,Flynn以丰富的应用实例展示了Optimass 9500与氢化物发生、LC和激光烧蚀(LA)等联用在一些全新领域如:刑侦科学(药品/毒品来源地认定,墨水痕迹认定)、考古研究(文物来源地分析,艺术品研究)、地质研究(稀有金属检测,样品局部分析)以及食品、土壤分析等方面的独特应用,引起了与会者的高度关注。在沙龙环节中,Flynn和与会者就无机质谱分析技术进行了深入讨论,详细解答了每位参会者提出的问题,大家对这一新技术表示了极大的兴趣,并充满期待。 Flynn现场解答与会者疑问 关于我们:北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。 “完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 快速发展中的中国质谱分析——听院士、顶级专家谈中国质谱发展
    p style="text-indent: 0em "strong仪器信息网讯/strong 2017年12月9日,第三届全国质谱分析学术报告会在厦门隆重开幕。仪器信息网联合主办方——中国化学会质谱分析专业委员会,共同制作完成“快速发展中的中国质谱分析”系列专题采访,全景展现中国质谱发展现状。/pscript src="https://p.bokecc.com/player?vid=F974830A9FF69D9C9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/script
  • 赛默飞质谱、色谱、元素分析前处理仪器开年好礼!
    赛默飞质谱、色谱、元素分析前处理仪器开年好礼!Vanquish UHPLC 超高效液相色谱仪年底限时种子机试用活动我们提供种子机计划,在您自己的实验室免费使用半年体验,喜欢,再拥有它★ 新型三重四极杆质谱仪 TSQ Altis 及 TSQ Quantis 促销 两款质谱在灵敏度、耐用性及稳定性上都有极大的提升,特别是优化分段双曲面四极杆,可以实现高分辨的 SRM,为您的实验解决方案带来更多可能。活动对象:生物等效性评价(BE)或药物代谢及药代动力学实验(DMPK)客户。活动时间 : 即日起至 2018 年 1 月 31 日还想要更多促销?◆ 超高性价比 U3000 主机同时打包购买网络版变色龙 CDS 再享优惠;◆ GC/ GCMS 或者高分辨气质,赠送软件或享折扣;◆ ICPMS 买主机送耗材。更多年终优惠,请扫描下方二维码填写采购意向表或电话垂询400-611-9236,也可以咨询当地销售工程师获取详细介绍。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制